
95-865 Unstructured Data Analytics

Slides by George H. Chen

Last lecture: Text generation with generative 
pre-trained transformers; a few more deep 

learning concepts; course wrap-up



HW2 Questionnaire (1/2)

24 hours, oh no!

Please do make use of OH 
if you’re having trouble



HW2 Questionnaire (2/2)
• Lots of students said that interpreting clusters or topics can be hard

• Interpreting clusters or topics can indeed be challenging!

• Even with newer topic models developed (such as BERTopic), 
interpretation can still be challenging depending on the dataset

• Lots of students said that t-SNE plots are confusing to interpret

• Yes, this is indeed the case…

• A lot of students find StatQuest helpful

• A number of students said that they used Bilibili 
(I had no idea what this was until I looked it up)

• A number of students expressed that it wasn't straightforward 
keeping track of what different sklearn models' fit/transform/etc do

Is this only in Chinese?

• If you have some ground truth annotation that can be used to help 
color the data points, it might be easier seeing what's going on…

• This is good to write down on a cheatsheet including shape info 
for what comes out of transform/predict/predict_proba



(Flashback) Predict Next Character
The opioid epidemic or opioid crisis is the rapid increase 
in the use of prescription and non-prescription opioid 
drugs in the United States and Canada in the 2010s.

Let’s treat this string as a single data point (a time series of tokens)

For tokenization, let’s split by individual characters 
(so no need to use spaCy)

Given ['T'], predict next character 'h'

Given ['T', 'h'], predict next character 'e'

Given ['T', 'h', 'e'], predict next character ' '

Given ['T', 'h', 'e', ' '], predict next character 'o'

…

If the string has L + 1 characters total, then there are L such prediction tasks



Reminder

'The opi'Training point:

Input to RNN language model: 'The op'

Desired output of RNN language model: 'he opi'

Technically, the input is encoded as token IDs:
[48, 60, 57, 1, 67, 68]

[60, 57, 1, 67, 68, 61]

Technically, the desired output is encoded as token IDs:
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Linear layer with softmax activation, 
# output nodes = vocab size

Train using minibatch gradient descent with cross entropy loss 
(similar to other models we've seen in lecture)
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Linear layer with softmax activation, 
# output nodes = vocab sizeRNN layer

We can 
stack 
RNN 

layers!

Train using minibatch gradient descent with cross entropy loss 
(similar to other models we've seen in lecture)



How to Generate Text After Model Training
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to generate next character!
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How to Generate Text After Model Training

44'T' 44
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output is a probability 
distribution over characters

randomly sample from this distribution 
to generate next character!
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57'e'

start with some 
initial character

Keep generating text in this manner!



An Alternative Solution: 
Generative Pre-trained Transformers 

(GPTs)

Explicitly figure out how to weight the contribution of the 
current & past time steps
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Linear layer with softmax activation, 
# output nodes = vocab size
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Linear layer with softmax activation, 
# output nodes = vocab size

This sort of dependence is "causal": any time step can 
only depend on its current input and all past inputs 

(and not on future time steps’ inputs)
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How should we combine information from the input embeddings?

Another issue: the input embeddings by themselves do not 
contain information about when the time steps happened

Bad idea: have this box correspond to 
averaging the 3 input embeddings

Taking a simple average is too simplistic… 
need something more clever…

Let's address this issue first

Let’s focus on time step 2’s prediction task for the moment…
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Each embedding: 1D table with D entries

a hyperparameter 
(512 in the demo)
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Pink Embedding layers share the same parameters

Cyan Embedding layers share the same parameters

Each embedding: 1D table with D entries

a hyperparameter 
(512 in the demo)



Try to predict ' '
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Cyan Embedding layers share the same parameters

We next discuss what goes in this box
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How much should time step 1’s information contribute?

How much should time step 2’s information contribute?
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w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Remember: at this point, we are only computing the 
output for time step 2

How much should time step 0’s information contribute 
(to the output for time step 2)?

Idea: make the contribution amount dependent on:

w_norm = softmax(w)

Let’s normalize the weights so they are probabilities:

Output at time step 2:
w_norm[0]*value[0] + w_norm[1]*value[1] \ 

+ w_norm[2]*value[2]



Output at time step 2:
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Remember: at this point, we are only computing the 
output for time step 2

How much should time step 1’s information contribute?

How much should time step 2’s information contribute?

w[0] = np.dot(query[2], key[0])

w[1] = np.dot(query[2], key[1])

w[2] = np.dot(query[2], key[2])

Idea: make the contribution amount dependent on:

Let’s normalize the weights so they are probabilities:

w_norm[0]*value[0] + w_norm[1]*value[1] \ 
+ w_norm[2]*value[2]

w_norm = softmax(w / np.sqrt(H))

In practice: include this division (helps with training)

How much should time step 0’s information contribute 
(to the output for time step 2)?
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1D table with H entries

This box is called a self-attention (SA) head
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The hope: keys, queries, and values that 
get learned help with prediction

But what if we get unlucky and the keys, 
queries, and values found aren’t great 

(or only focus on a single concept)?

Analogy: imagine if we used a Conv2d 
layer but only used 1 filter and hoped 

that the 1 filter captures everything

The fix: use many self-attention heads

(we’re finding how much to pay attention to 
current/previous time steps of the time series)
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Self-attention (whether single or multi head) 
could be thought of as gathering information 

from the current & previous time steps

Rough intuition: after gathering 
information, it helps to “think” on the 

information gathered

Multi-head self-attention

⟹ Stick an MLP after self-attention

Example: 2 SA heads (second one is in red)
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Self-attention (whether single or multi head) 
could be thought of as gathering information 

from the current & previous time steps

Rough intuition: after gathering 
information, it helps to “think” on the 

information gathered

Multi-head self-attention

⟹ Stick an MLP after self-attention

M
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Example: 2 SA heads (second one is in red)



There are a few implementation details 
that I won’t go over in lecture

Basically, it turns out that when neural nets get very deep, 
training can be more difficult without some now-standard tricks 

(these tricks work with many neural net architectures, not just GPTs)

• LayerNorm 
• Residual connections 
• Dropout

You’re not expected to 
know these technical details

Also, there are some standard strategies for initializing GPT training
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Each SA head uses Dropout to 
randomly disallow some past 
time steps from contributing

This entire box is a decoder-only transformer



Generative Pre-trained Transformer (GPT)
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Generative Pre-trained Transformer (GPT)
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It is possible to stack transformer layers (similar to RNN layers)



Generative Pre-trained Transformer (GPT)
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How to Generate Text After Model Training
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How to Generate Text After Model Training

output is a probability 
distribution over characters

randomly sample from this distribution 
to generate next character!
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Keep generating text in this manner!



GPT

Demo



How to Get GPTs to Answer Prompts

A system like ChatGPT is trained in two phases

• First, it is “pre-trained” on a massive chunk of the internet using the 
prediction task we described already (this prediction task does not 
require any human annotations)

• Next, we “fine-tune” the model by giving it labeled training data 
showing questions & answers, and over time, we improve the 
model by letting humans scoring responses of the model

After this pre-training step, the model can randomly 
generate text but doesn’t know how to answer prompts yet 
(the model is “unaligned” with human goals at this point)

This is called “reinforcement learning with human feedback” 
(RLHF)

We focused on this first step today I’ll briefly discuss fine-tuning 
(but not reinforcement learning)



(Flashback) Generative Pre-trained Transformer (GPT)
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(Flashback) Generative Pre-trained Transformer (GPT)
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The output before the classifier could 
be thought of as a token embedding 

that accounts for context

If we tokenized instead using words, 
then we would have word embeddings

The BERT model is basically what we 
showed today except without the causal 
constraint & with a different tokenizer

(As we saw previously, BERT's 
tokenization uses words and 

sometimes subwords)



causal dependence
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BERT (2018)

no causal dependence

The prediction at any time 
step depends on the 
input at all time steps

A transformer layer like 
this without a causal 

constraint is sometimes 
called an "encoder-only" 

transformer layer

This lack of causal 
dependence is also 

sometimes referred to as 
"bidirectional"

BERT is short for 
Bidirectional Encoder 
Representations from 

Transformers
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Fine-Tuning
Load in an already trained model, possibly change the last few layers, 

and modify it for our purposes

Sentiment analysis RNN demo
128-dim 

word 
embedding

0

1

3

“this movie sucks”

C
la

ss
ifi

er

LSTM

Each “layer” in orange 
dotted box corresponds 

to an iteration of the 
RNN's for loop & these 

layers share the same 
parameters!

BERT-Tiny

32-dim 
vector

We loaded in a pre-trained BERT-Tiny 
model, which is a compressed version of 
BERT-Large, trained on a large dataset 
including BooksCorpus (800M words) + 

English Wikipedia (2500M words)

We then fine-tuned BERT-Tiny for our 
sentiment analysis neural net

Note that we fine-tuned on a relatively small 
dataset (only 25000 training reviews, which is 

much smaller than BooksCorpus/English 
Wikipedia)



Handling Small Datasets
• Fine-tuning has an extremely important application: it allows us to 

use an existing model trained on a massive dataset to help us with 
a new prediction task where we might only have a small dataset

We just talked about this for the sentiment analysis demo (previous slide)

GPT pre-trained on massive dataset (exact size undisclosed…)

Fine-tune on human-annotated training dataset (of Q&A pairs and scores of 
how good the system’s automatically generated Q&A pairs are), known to be 

much smaller than what the model is pre-trained on

ChatGPT/GPT 4.0:



Handling Small Datasets
• Fine-tuning has an extremely important application: it allows us to 

use an existing model trained on a massive dataset to help us with 
a new prediction task where we might only have a small dataset

• Another extremely important strategy: data augmentation 
(randomly perturb training data to get more training data)

Training label: cat

Training image Mirrored

Still a cat!

Rotated & translated

Still a cat!

State-of-the-art vision systems are all trained with data augmentation!

We just turned 1 training example in 3 training examples!

Allowable perturbations depend on data 
(e.g., for handwritten digits, rotating a 6 or 9 by 180 degrees would be bad)



Interpretability/Explainability: Current State of Affairs
• There are lots of “explanation” approaches that can be used after 

learning a deep net to try to understand what has been learned
• Many of these are implemented in the Python package Captum 

developed by Meta/Facebook: https://captum.ai/

Crop image 
(many CNNs need the input 
image to be a specific size)

ResNet-18 (a CNN) predicts my 
cat to be an “Egyptian cat” What pixels are important for prediction?

These are the answers from 3 different 
explanation models (they give different answers!)

Warning: there’s a lot of debate as to how much we should actually 
trust these explanations, as they can often be misleading

https://captum.ai/


Interpretability/Explainability: Current State of Affairs

There are neural net architectures that by design are interpretable 
(e.g., prototypical part networks, neural topic models, neural decision 
tree models…)

• No separate explanation approach needed since model directly 
provides explanation

• My opinion: if you really care about interpretability/explainability, 
then you’re better off using this sort of model

Unfortunately, deep nets with state-of-the-art prediction accuracy tend 
to be difficult to interpret

It’s important to distinguish between tasks where interpretability is 
important vs ones where it’s not as important



Exploratory data 
analysis

prediction

write computer programs to assist analysis

Unstructured Data Analysis

Data

The dead body

Some times you 
have to collect 
more evidence!

Finding Structure InsightsQuestion

When? Where? 
Why? How? 
Perpetrator 
catchable?

Puzzle solving, 
careful analysis

The evidence

This is provided 
by a domain 

expert

Exploratory data 
analysis

Answer original 
question

There isn’t always a follow-up prediction problem to solve!

UDA involves lots of data ➔ write computer programs to assist analysis

Becoming good at data scientist requires you to think like a detective!

Much like how some murder mysteries are hard to solve, many data 
analysis problems (unstructured or not) are hard to solve too!



Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try

• Come up with quantitative metrics that make sense for your 
problem, and use these metrics to evaluate models (think about 
how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:

• Manually obtain labels (either you do it or crowdsource)

• Set up “self-supervised” learning task

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in the 
context of your original problem!

• There is a lot we did not cover — keep learning!



Want to Learn More?

• One of the best ways to learn material is to teach it!

Apply to be a TA for me next term!

• Natural language processing (analyze text): 11-611

• Machine learning with large datasets: 10-605

• Computer vision (analyze images): 16-720

• Deep learning: 11-785, 10-707

• Deep reinforcement learning: 10-703

• Math for machine learning: 10-606, 10-607

• Intro to machine learning at different levels of math: 
10-601, 10-701, 10-715

• Some courses at CMU:


