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Lecture 13: Wrap up CNNs; 
time series analysis with 

recurrent neural nets (RNNs)



Administrivia

• There’s no questionnaire for HW3 — instead there are official 
Faculty Course Evaluations (FCEs)!

• HW3 has been released (due Mon Apr 28, 11:59pm)

• Please fill this out to provide feedback on the course!

• Your predecessors’ feedback greatly improved the course 
(and your feedback could greatly improve the course for your 
successors, i.e., future 95-865 students)



(Flashback) Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/
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(Flashback) Convolution Layer
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(k kernels 

each size dx3x3), 
ReLU activation
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Pooling

• To produce this smaller image, need to aggregate or “pool” 
together information

• Produces smaller image summarizing original larger image



Max Pooling
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Max Pooling
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Common Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/
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(k kernels), 
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Max Pool 2d 
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Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax

Categorical 
cross entropy



Input

Handwritten Digit Recognition

Conv2d, 
ReLU

Training label: 6

Loss error
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Handwritten Digit Recognition

Conv2d, 
ReLU

Training label: 6

Max 
Pool 
2d

Conv2d, 
ReLU

Input
Linear 

(10 nodes), 
Softmax

FlattenMax 
Pool 
2d

errorLoss

Categorical 
cross entropy

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific classifier



CNNs

Demo



Recap

• A convolution filter processes an input image to produce an output 
image by taking weighted sums 
(examples: blurring an image, finding edges in an image)

• Repeat convolution→nonlinear activation→pooling to learn 
increasingly higher-level features

• Max pooling produces a smaller summary output

• Max pooling can sometimes produce unexpected behavior 
when an input image shifts by a small amount: 
see Richard Zhang’s fix for max pooling (supplemental materials)



CNNs Encode Semantic 
Structure for Images

Remember how back in the text clustering & topic modeling demos, 
100-dimensional PCA space captured semantic structure of words 

(such as “study” and “learn” being similar)?

CNNs capture semantic structure for images



CNNs Encode Semantic Structure for Images
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CNNs Encode Semantic Structure for Images

final output for different input 
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actually, intermediate 
representations close 
to the last layer are 

also similar!

(intuition: recall the 
crumpled paper analogy!)
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One more PyTorch thing…



Constructing PyTorch Models with nn.Module

Another way to write this:

deeper_model = nn.Sequential(nn.Flatten(), 
                             nn.Linear(in_features=784, out_features=512), 
                             nn.ReLU(), 
                             nn.Linear(in_features=512, out_features=10))

class DeeperModel(nn.Module): 
    def __init__(self, num_in_features, num_intermediate_features, num_out_features): 
        super().__init__() 
        self.flatten = nn.Flatten() 
        self.linear1 = nn.Linear(num_in_features, num_intermediate_features) 
        self.relu = nn.ReLU() 
        self.linear2 = nn.Linear(num_intermediate_features, num_out_features) 

    def forward(self, inputs): 
        flatten_output = self.flatten(inputs) 
        linear1_output = self.linear1(flatten_output) 
        relu_output = self.relu(linear1_output) 
        linear2_output = self.linear2(relu_output) 
        return linear2_output 

deeper_model = DeeperModel(784, 512, 10)

(we’ll need this level of detail in the next demo)



Accounting for time series structure 
using recurrent neural networks 

(RNNs)



Time Series Data

Each data point is a video



… …

Time 0

Time 1

Time 2

Previous coverage: 
MLPs & CNNs can handle 

each frame separately



Recurrent Neural Nets
Previous coverage: 

MLPs & CNNs can handle 
each frame separately

… …

RNNs: 
include output at 

previous time step as 
input to current time step

Time 0

Time 1

Time 2
There are different kinds 

of RNNs, such as: 
RNN (vanilla), 
LSTM, GRU



Recurrent Neural Nets

RNN layerTime series

Previous coverage: 
MLPs & CNNs can handle 

each frame separately

RNNs: 
include output at 

previous time step as 
input to current time step

There are different kinds 
of RNNs, such as: 
RNN (vanilla), 
LSTM, GRU



linear = np.dot(input, W.T) + b   \ 

        + np.dot(current_state, U.T)

Vanilla ReLU RNN

current_state = np.zeros(num_nodes)

for input in input_sequence:

                                  \ 

        + np.dot(current_state, U.T)

Parameters: weight matrices W & U, and bias vector b

How memory changes from one time step to the next is determined by an 
operation that looks like a linear layer followed by a nonlinear activation

memory that evolves over time; we want to learn how it changes

current_state = output

b is a 1D table: 
num_nodes entries

linear = np.dot(input, W.T) + b

Python list that 
can have any 

nonzero length!

W is a 2D table: # rows: num_nodes, 
# cols: num_features

linear is a 1D table: 
num_nodes entries

output = np.maximum(0, linear) # ReLU U is a 2D table: 
num_nodes by 
num_nodes

input is a 1D table: 
num_features entries



Vanilla ReLU RNN

for input in input_sequence:

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

linear = np.dot(input, W.T) + b   \ 

        + np.dot(current_state, U.T)

For simplicity, in today’s lecture, we only use the very last time step’s output

In general: there is an output at every time step

output = np.maximum(0, linear) # ReLU



Recurrent Neural Nets

RNN layer

⇒ combine with other neural net layers

Time series models how output changes 
over time but does not know 

image or text structure!!!



Recurrent Neural Nets

RNN layer
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semantically meaningful 
representation

⇒ combine with other neural net layers
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Recurrent Neural Nets

RNN layer

C
N

N

Time series models how output changes 
over time but does not know 

image or text structure!!!

apply CNN to each video 
frame to extract 

semantically meaningful 
representation

⇒ combine with other neural net layers



Recurrent Neural Nets

C
N

N

Time series RNN layer

C
la

ss
ifi

er

models how output changes 
over time but does not know 

image or text structure!!!

⇒ combine with other neural net layers

apply CNN to each video 
frame to extract 

semantically meaningful 
representation



Recurrent Neural Nets

Time series Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d

RNN layer

C
la

ss
ifi

er

apply CNN to each video 
frame to extract 

semantically meaningful 
representation



Recurrent Neural Nets

C
N

N

Time series RNN layer

C
la

ss
ifi

er

models how output changes 
over time but does not know 

image or text structure!!!

⇒ combine with other neural net layers

apply CNN to each video 
frame to extract 

semantically meaningful 
representation



Recurrent Neural Nets

RNN layer

Text
Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has 
positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful
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Linear layer (2 nodes), 
Softmax activation

label 0: negative sentiment
label 1: positive sentiment



(Flashback) Do Data Actually Live on 
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Recurrent Neural Nets

RNN layer

Text
Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has 
positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In PyTorch, use the 
Embedding layer

Em
be

dd
in

g

C
la

ss
ifi

er

Linear layer (2 nodes), 
Softmax activation

label 0: negative sentiment
label 1: positive sentiment



Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

“this movie rocks”

“this movie sucks”

0 1 2

0 1 3

“this sucks” 0 3

Ordering of words 
matters

Different reviews can 
have different lengths

Step 3: Use word embeddings to represent each word



Word index Word 2D Embedding

0 this [-0.57, 0.44]

1 movie [0.38, 0.15]

2 rocks [-0.85, 0.70]

3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word

0 this

1 movie

2 rocks

3 sucks

Step 3: Use word embeddings to represent each word

“this movie sucks”

[-0.57, 0.44] 
[0.38, 0.15] 
[-0.26, 0.66]

0 1 3


