
95-865 Unstructured Data Analytics

Nearly all slides by George H. Chen
with a few by Phillip Isola

Lecture 11: Wrap up basic prediction concepts;
intro to neural nets & deep learning

(Flashback) Example: k-NN Classification

What should the label of
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?

How do we choose k?

What I’ll describe next can be used to select
hyperparameter(s) for any prediction method

Fundamental question:
How do we assess how good a prediction method is?

(Flashback)

(Flashback) Hyperparameters vs. Parameters

• We fit a model’s parameters to training data
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not automatically
get fit to training data

• Example: Gaussian mixture model
• Hyperparameter: number of clusters k
• Parameters: cluster probabilities, means, covariance matrices

• Example: k-NN classification
• Hyperparameter: number of nearest neighbors k
• Parameters: N/A

Actually, there’s another hyperparameter: distance function to use
(for simplicity, we assume Euclidean distance for now)

⚠ Major assumption:
training and test data “look alike”

(technically: training and test data are i.i.d.
sampled from the same underlying distribution)

Prediction is harder when training and test data appear quite different!

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Test data
point

Test data
point

Test data
point

Test data
point

Test data
point

Want to classify
these points

correctly

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data

Example: future
emails to classify as

spam/ham
Example: Each data point is an email and

we know whether it is spam/ham

Training
data point

Training
data point

Predicted
labels on
validation

data

Predict on
data in pink

Train method on data in green

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Compute
prediction
accuracy

50%
This is called data splitting/“train-validation split”

In this example: we did a 80%-20% split

(shuffling makes sense since we assume data are i.i.d.)

Terminology for this class:
“Proper training data”

(the green box)

“Validation data”
(the pink box)

Some people, including sklearn, call this “train-test split” but in this class, we will
use “test data” to refer to true test data that the training procedure does not see

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train k-NN classifier on proper training data

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

For k = 1, 2, …, some user-specified max:

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

Terminology Remarks
• What we’re using is commonly called a train/validation split

• If you also consider that there’s a test set that’s not part of
train/validation data: division is called train/validation/test split

• Warning: in the machine learning community, what I’m calling the
“proper training data”/“proper training set” is commonly also called
the “training data”/“training set” even though it is typically a subset of
the full training data (that we split into proper training/validation sets)

• Put another way: what precisely the “training data” refers to can be
ambiguous as it could mean the full training data or the
full training data minus the validation data

• In 95-865, to avoid confusion, we use the somewhat non-standard
terminology “proper training set”/“proper training data” to refer to
the the full training data minus the validation data

Hyperparameter Tuning for k-NN Classifier

Demo

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train k-NN classifier on proper training data

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

For k = 1, 2, …, some user-specified max:

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train k-NN classifier on proper training data
with distance dist 𝜌

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

For k, 𝜌 = (1, “Euclidean”), (1, “Cosine”), …:

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

List of hyperparameters
you are willing to try

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃 ∈ Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

List of hyperparameters
you are willing to try

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃 ∈ Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

⚠ How we randomly split
affects the scores we get

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃 ∈ Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

⚠ Randomness in model training
affects the scores we get

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃 ∈ Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

The rest of the prediction models we
consider in UDA will be based on neural nets

(which commonly have hyperparameters!)
Neural net models can be tuned in the same manner

we just saw for k-NN classification

Important: some of you may have seen cross-validation before

• If you don’t know what this is, don’t worry about it

• Cross-validation is commonly too expensive for neural net
training so we stick to the train/val split strategy

Neural Nets & Deep Learning
Extremely useful in practice:

• Human-level image classification

• Human-level speech recognition

• Human-level in machine translation, text-to-speech

• Self-driving cars

• Better than humans at playing Go and many other games

• Capable of generating fake images, video, and audio that look real

• Human-level chatbots (ChatGPT, GPT4.0, Gemini, Claude, …)

⚠ We don’t fully understand when many of these technologies fail
or how best to prevent their misuse

⚠ All of this technology will get better over time

🤔 Sometimes, I think the question isn’t whether you ask chatbots for help,
the question is whether in a few years they’ll bother asking you for help

What is deep learning?

Serre, 2014Slide by Phillip Isola

Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola

Edges

Texture

Colors

Segments

Parts
“clown fish”

Feature extractors Classifier

Object Recognition

Slide by Phillip Isola

“clown fish”

Edges

Texture

Colors

Segments

Parts

Learned

Object Recognition

Slide by Phillip Isola

Feature extractors Classifier

“clown fish”

Learned

Neural Network

Slide by Phillip Isola

“clown fish”

Learned

Neural Network

Slide by Phillip Isola

“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola

Deep learning just refers to learning deep neural nets

Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled sheets of
paper corresponding to the different classes

deep learning: series (“layers”) of simple
unfolding operations to try to disentangle

the 2 sheets

Representation Learning

“clown fish”

Learned

Visualize

(e.g., t-SNE)

Visualize

Visualize

Visualize

Visualize

Visualize

Visualize

Each layer’s output is another way we could represent the input data

Representation Learning

“clown fish”

Learned

Visualize

(e.g., t-SNE)

Visualize

Each layer’s output is another way we could represent the input data

cl
as

si
fie

r

Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s TPU’s
CPU’s

& Moore’s law

• Better algorithms

There’s even a patent from 1961 that basically
amounts to a convolutional neural net for OCR

Many companies now make dedicated hardware for
deep nets (e.g., Google, Apple, Tesla)

Structure Present in Data Matters
Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) neatly
incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs)
incorporates ability to remember and forget things over time

• Note: text is a time series of tokens

• Note: video is a time series of images

Historical note: RNNs were all the rage some years back (especially
starting around the late 90s) but they’ve been getting replaced by
transformers (Vaswani et al, 2017), which in turn might be getting
replaced by state space models like Mamba (Gu & Dao, 2024)…

• Transformers are also for time series analysis and incorporate
the concept of learning how to weight previous time steps’
contributions to a prediction at the current time step

Handwritten Digit
Recognition Example

Walkthrough of 2 extremely simple neural nets

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

28x28 image

flatten

linear layer
with 10 nodes

final
output

weighted sums activation

(can be
thought of as

post-
processing)

(parameterized
by a weight

matrix W and a
bias b)

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

weighted sums

(parameterized
by a weight

matrix W and a
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of
dimensions
10-by-784)

(1D numpy array
with 10 entries)

linear layer
with 10 nodes

length 784 vector
(784 input nodes)

weighted sums

(parameterized
by a weight

matrix W and a
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of
dimensions
10-by-784)

(1D numpy array
with 10 entries)

linear layer
with 10 nodes

Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[0, :]) + b[0]
linear[1] = np.dot(input, W[1, :]) + b[1]

linear[i] = input[j] W[i,j]� + b[i]

<latexit sha1_base64="Lgf3EoMWbxF0jLBUMCJvIQ7Zw5E=">AAAEAHicjVPLbtNAFJ3GPIp5pbBkY5FWYmU5oWrLolIKQmKDVETTVopNNB5fJ0PnYXnGIdHIG76DLYgdYsuXwN8wTlLFTUBwR5auzn2cc69n4oxRpYPg10bDuXb9xs3NW+7tO3fv3W9uPThVssgJ9IhkMj+PsQJGBfQ01QzOsxwwjxmcxRcvqvjZGHJFpTjR0wwijoeCppRgbaFBsxmqgg/M+8OgfGf2D56Wg2Yr8DtBZV7g782dth9cdVpoYceDrcbPMJGk4CA0YVipfjvIdGRwrilhULphoSDD5AIPoW9dgTmoyMykl96ORRIvlbn9hPZmaL3CYK7UlMc2k2M9UquxCvxTrF/o9CAyVGSFBkHmRGnBPC29ag9eQnMgmk2tg0lOrVaPjHCOibbbcl13x6t3UwQzSCIzAjYGXVbRHAR8IJJzLJIwxZyyaQIpLpg2oUoXbumtNDppR6aatNK0QlJvXkMVFvMpXXdd0WHgP+ssZYVC5hyzisD9T4HuX9X9W4RJVJU9H+Qt6Nc244hlIxyD5Zj9kzROy1l1aUkXTWx3mVAxLOs6TDyxiWx1etBSslhOZviRfg5DKl6KMc2lqC7cUpgJGegw5jVae6zc5RJMSEViEzVMrLxCXNZuz2oSZdrldlmVXAbsW1i7+evOacdv7/m7b3Zb3e7iVWyiR+gxeoLaaB910St0jHqIoDH6hD6jL85H56vzzfk+T21sLGoeoivm/PgN65Bbpw==</latexit>

783X

j=0

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

weighted sums

(parameterized
by a weight

matrix W and a
bias b)

linear layer
with 10 nodes

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

28x28 image

flatten

linear layer
with 10 nodes

final
output

weighted sums activation

(can be
thought of as

post-
processing)

(parameterized
by a weight

matrix W and a
bias b)

Handwritten Digit Recognition

final
output

activation

(can be
thought of as

post-
processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU)
zeros out entries that are negative

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear

final = np.maximum(0, linear)

linear layer
with 10 nodes

final

4

3.5

4

0

0.5

2

0

3

0

5

ReLU

Handwritten Digit Recognition

final
output

activation

(can be
thought of as

post-
processing)

Many different activation functions possible

Example: softmax converts a table of numbers
into a probability distribution

exp = np.exp(linear)
final = exp / exp.sum()

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear layer
with 10 nodes

linear final

0.17

0.10

0.17

0.00

0.01

0.02

0.00

0.06

0.00

0.46

softmax

Handwritten Digit Recognition

final
output

activation

(can be
thought of as

post-
processing)

Many different activation functions possible

Example: linear activation does nothing

final = linear

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear layer
with 10 nodes

linear final

4

3.5

4

-1

0.5

2

-4

3

-2

5

linearThis is equivalent to there being
no activation function

