
95-865 Unstructured Data Analytics

Nearly all slides by George H. Chen 
with a few by Phillip Isola

Lecture 11: Wrap up basic prediction concepts; 
intro to neural nets & deep learning



(Flashback) Example: k-NN Classification

What should the label of 
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?



How do we choose k?

What I’ll describe next can be used to select 
hyperparameter(s) for any prediction method

Fundamental question: 
How do we assess how good a prediction method is?

(Flashback)



(Flashback) Hyperparameters vs. Parameters

• We fit a model’s parameters to training data 
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not automatically 
get fit to training data

• Example: Gaussian mixture model 
• Hyperparameter: number of clusters k 
• Parameters: cluster probabilities, means, covariance matrices

• Example: k-NN classification 
• Hyperparameter: number of nearest neighbors k 
• Parameters: N/A

Actually, there’s another hyperparameter: distance function to use 
(for simplicity, we assume Euclidean distance for now)



⚠ Major assumption: 
training and test data “look alike” 

(technically: training and test data are i.i.d. 
sampled from the same underlying distribution)

Prediction is harder when training and test data appear quite different!
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Example: future 
emails to classify as 

spam/ham
Example: Each data point is an email and 

we know whether it is spam/ham
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This is called data splitting/“train-validation split”

In this example: we did a 80%-20% split

(shuffling makes sense since we assume data are i.i.d.)

Terminology for this class: 
“Proper training data” 

(the green box)

“Validation data” 
(the pink box)

Some people, including sklearn, call this “train-test split” but in this class, we will 
use “test data” to refer to true test data that the training procedure does not see
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1. Train k-NN classifier on proper training data

2. Use a score function to evaluate how well the 
trained model predicts on validation data

Use whichever value of k achieves the best score

Randomly split into 
two portions 

(example: 80% / 20%)
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For k = 1, 2, …, some user-specified max:

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)



Terminology Remarks
• What we’re using is commonly called a train/validation split

• If you also consider that there’s a test set that’s not part of 
train/validation data: division is called train/validation/test split

• Warning: in the machine learning community, what I’m calling the 
“proper training data”/“proper training set” is commonly also called 
the “training data”/“training set” even though it is typically a subset of 
the full training data (that we split into proper training/validation sets)

• Put another way: what precisely the “training data” refers to can be 
ambiguous as it could mean the full training data or the 
full training data minus the validation data

• In 95-865, to avoid confusion, we use the somewhat non-standard 
terminology “proper training set”/“proper training data” to refer to 
the the full training data minus the validation data



Hyperparameter Tuning for k-NN Classifier

Demo
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1. Train k-NN classifier on proper training data 
with distance dist 𝜌

2. Use a score function to evaluate how well the 
trained model predicts on validation data

Use whichever value of k achieves the best score

For k, 𝜌 = (1, “Euclidean”), (1, “Cosine”), …:

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

List of hyperparameters 
you are willing to try

Randomly split into 
two portions 

(example: 80% / 20%)
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1. Train prediction model on proper training data 
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the 
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃  ∈                               Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)
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1. Train prediction model on proper training data 
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the 
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃  ∈                               Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)
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⚠ How we randomly split 
affects the scores we get



Randomly split into 
two portions 

(example: 80% / 20%)
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1. Train prediction model on proper training data 
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the 
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃  ∈                               Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)

⚠ Randomness in model training 
affects the scores we get



Randomly split into 
two portions 

(example: 80% / 20%)
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1. Train prediction model on proper training data 
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the 
trained model predicts on validation data

Use whichever value of k achieves the best score

For 𝜃  ∈                               Θ

There are many score functions possible
Example: fraction of validation points correctly predicted (raw accuracy)



The rest of the prediction models we 
consider in UDA will be based on neural nets 

(which commonly have hyperparameters!)
Neural net models can be tuned in the same manner 

we just saw for k-NN classification

Important: some of you may have seen cross-validation before

• If you don’t know what this is, don’t worry about it

• Cross-validation is commonly too expensive for neural net 
training so we stick to the train/val split strategy



Neural Nets & Deep Learning
Extremely useful in practice:

• Human-level image classification

• Human-level speech recognition

• Human-level in machine translation, text-to-speech

• Self-driving cars

• Better than humans at playing Go and many other games

• Capable of generating fake images, video, and audio that look real

• Human-level chatbots (ChatGPT, GPT4.0, Gemini, Claude, …)

⚠ We don’t fully understand when many of these technologies fail 
or how best to prevent their misuse

⚠ All of this technology will get better over time

🤔 Sometimes, I think the question isn’t whether you ask chatbots for help, 
the question is whether in a few years they’ll bother asking you for help



What is deep learning?



Serre, 2014Slide by Phillip Isola



Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola
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“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola

Deep learning just refers to learning deep neural nets



Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled sheets of 
paper corresponding to the different classes

deep learning: series (“layers”) of simple 
unfolding operations to try to disentangle 

the 2 sheets



Representation Learning

“clown fish”
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(e.g., t-SNE)
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Visualize

Visualize

Visualize

Visualize

Visualize

Each layer’s output is another way we could represent the input data
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Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s TPU’s
CPU’s 

& Moore’s law

• Better algorithms

There’s even a patent from 1961 that basically 
amounts to a convolutional neural net for OCR

Many companies now make dedicated hardware for 
deep nets (e.g., Google, Apple, Tesla)



Structure Present in Data Matters
Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) neatly 
incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time

• Note: text is a time series of tokens

• Note: video is a time series of images

Historical note: RNNs were all the rage some years back (especially 
starting around the late 90s) but they’ve been getting replaced by 
transformers (Vaswani et al, 2017), which in turn might be getting 
replaced by state space models like Mamba (Gu & Dao, 2024)…

• Transformers are also for time series analysis and incorporate 
the concept of learning how to weight previous time steps’ 
contributions to a prediction at the current time step



Handwritten Digit 
Recognition Example

Walkthrough of 2 extremely simple neural nets



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums activation

(can be 
thought of as 

post-
processing)

(parameterized 
by a weight 

matrix W and a 
bias b)



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
by a weight 

matrix W and a 
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of 
dimensions 
10-by-784)

(1D numpy array 
with 10 entries)

linear layer 
with 10 nodes



length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
by a weight 

matrix W and a 
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of 
dimensions 
10-by-784)

(1D numpy array 
with 10 entries)

linear layer 
with 10 nodes

Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[0, :]) + b[0]
linear[1] = np.dot(input, W[1, :]) + b[1]

linear[i] = input[j] W[i,j]� + b[i]

<latexit sha1_base64="Lgf3EoMWbxF0jLBUMCJvIQ7Zw5E="></latexit>

783X

j=0



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)
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(parameterized 
by a weight 

matrix W and a 
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linear layer 
with 10 nodes
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Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative
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Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: softmax converts a table of numbers 
into a probability distribution

exp = np.exp(linear) 
final = exp / exp.sum()

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear layer 
with 10 nodes

linear final

0.17

0.10

0.17

0.00

0.01

0.02

0.00

0.06

0.00

0.46

softmax



Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: linear activation does nothing

final = linear
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no activation function


