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(Last time) Example: ID GMM with k Clusters

Cluster | Cluster k
Probability of generating a Probability of generating a
point from cluster | = point from cluster k = g
(Gaussian mean = (41 (Gaussian mean = g
(Gaussian std dev = o (Gaussian std dev = oy

How to generate |D points from this GMM:

. Flip biased k-sided coin (the sides have probabilities 7y, ..., m)

2. Let Z be the side that we got (it Is some value |, ..., k)

3.Sample | point from the Gaussian for cluster Z



Example: 2D GMM with k Clusters

Cluster | Cluster k
Probability of generating a Probability of generating a
point from cluster | = point from cluster k = g
(Gaussian mean = (41 (Gaussian mean = g
(Gaussian covariance = > (Gaussian covariance = 2.

How to generate 2D points from this GMM:

. Flip biased k-sided coin (the sides have probabilities 7y, ..., m)

2. Let Z be the side that we got (it Is some value |, ..., k)

3.Sample | point from the Gaussian for cluster Z



GMM with k Clusters

Cluster | Cluster k
Probability of generating a Probability of generating a
point from cluster | = point from cluster k = g
Gaussianmean=yn  Gaussian mean = " d-dim,
Gaussian covariance =%y Gaussian covariance = ¥
\—d—by—d matrices

How to generate points from this GMM:

|. Flip biased k-sided coin (the sides have probabillities 7y, ..., 7Tk)

2. Let Z be the side that we got (it Is some value |, ..., k)

3.Sample | point from the Gaussian for cluster Z



High-Level Idea of GMM

» (Generative model that gives a hypothesized way In which data points
are generated

In_reality, data are unlikely generated the same way!

In reality, data points might not even be independent!




“All models are wrong, but some are useful.”

—George Box

Photo: “George Edward Pelham Box, Professor Emeritus of Statistics, University of Wisconsin-Madison”
by DavidMCEddy is licensed under CC BY-5A 3.0



High-Level Idea of GMM

» (Generative model that gives a hypothesized way In which data points
are generated

In_reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

* Learning ("fitting") the parameters of a GMM
* |Input: d-dimensional data points, your guess for k

° OUJEPUJEZ 7T1,...,Wk,ul,...,,uk,Zl,...,Zk
* After learning a GMM:

* For any d-dimensional data point, can figure out probability of it
belonging to each of the clusters



k-means

Step 0: Pick k Step |: Pick guesses for where cluster centers are

We'll pick k = 2 ®
® ®
O 0

. ‘ Example: choose k of
O ® ihe points uniformly at

® 9 random to be inrtial
suesses for cluster

[ R ® ® centers

O
® ® (There are many ways
to make the initial

Repeat until convergelﬁe: ouesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)



k-means

Step 0: Pick k

Step |: Pick guesses for where cluster centers are

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)



(Rough Intuition) Learning a GMM

Step 0: Pick k

Step |: Pick guesses for cluster probabilities, means, and covariances

Repeat until convergence:

Step 2: Compute probability of each point being in each of the k clusters

Step 3: Update cluster probabilities, means, and covariances accounting
for probabilities of each point belonging to each of the clusters



(Rough Intuition) How Shape is Encoded
by a GMM

For this ellipse-shaped Gaussian, point B is considered more
similar to the cluster center than point A

A GMM

cluster
shape

k-means would think that point A and point B are equally similar to the
cluster center (since both points are distance r away from the center)



Relating k-means to GMM's

It the ellipses are all circles and have the same "skinniness”
(e.g, In the | D case it means they all have same std dev):

* k-means approximates the EM algorithm for GMM's
(as there Is no need to keep track of cluster shape)

* k-means does a "hard" assignment of each point to a cluster, whereas
the EM algorithm does a "soft" (probabilistic) assisnment

Interpretation: When the data appear as if they're from a GMM with true
clusters that "look like circles of equal size”, then k-means should work well



k-means should do well on this



But not on this



Relating k-means to GMM's

It the ellipses are all circles and have the same "skinniness”
(e.g, In the | D case it means they all have same std dev):

* k-means approximates the EM algorithm for GMM's
(as there Is no need to keep track of cluster shape)

* k-means does a "hard" assignment of each point to a cluster, whereas
the EM algorithm does a "soft" (probabilistic) assisnment

Interpretation: When the data appear as if they're from a GMM with true
clusters that "look like circles of equal size”, then k-means should work well



Even if data aren’t generated
from a GMM, k-means and
GMM’s can still cluster correctly



This dataset obviously doesn't look generated by a GMM

k-means with k = 2, and 2-component GMM will both work well
in identifying the two shapes as separate clusters

Key idea: the clusters are very well-separated
(so that many clustering algorithms will work well in this case!)



k-means & GMMs, Sketch of Interpretation

Demo



Automatically Choosing k

Fork = 2,3, ... up to some user-specified max value:

Fit model using k

S = m =

A}

Compute a:score:for the model

4

------

But what score function should we use!?

Use whichever k has the best score

No single way of choosing k Is the “best’” way



Here’s an example of a score
function you don’t want to use

But hey it's worth a shot



Residual Sum of Squares

O
Look at one cluster at a time O o
O O
O ® ‘ @
O ® O
® o0
®o0 © ®
O ® O Cluster 2

O
Cluster |



Residual Sum of Squares

| ook at one cluster at a time

°
® 0
® o o
o ® o

O
Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
its cluster center

O
Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to

its cluster center O
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Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to

its cluster center ®
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Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to

its cluster center ® O
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Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to

its cluster center ® O
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Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
its cluster center O

O
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® ‘Q\O
O
Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
its cluster center

Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to

its cluster center ® O
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Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
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Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
its cluster center

Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
its cluster center

Residual sum of squares for cluster |:
sum of squared purple lengths

Cluster |



Residual Sum of Squares

| ook at one cluster at a time

Measure distance
from each point to
its cluster center

Residual sum of squares for cluster |:

RSS1 = > lx—mlP

X €Ecluster 1

Cluster |



Residual Sum of Squares

L ook at one cluster at a time

Measure distance
from each point to

. Repeat similar calculation
ts cluster center

for other cluster

Cluster 2

Residual sum of squares for cluster 2:

RSS2 = > lx— pel?

Xx€Ecluster 2



Residual Sum of Squares

RSS=RSS; +RSS; = > [x—mlf+ > [x—pel?

X Ecluster 1 X€Ecluster 2

In general If there are k clusters:

RSS - ZRSSQ-Z S lx— gl

g=1 x&cluster g

Remark: k-means tries to minimize RSS
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles



Why is minimizing RSS a bad way
to choose k?

What happens when k is equal to the number of data points!



A Good Way to Choose k

RSS measures within-cluster variation

W = RSS = ZRSSQ-Z > lIx = pgll?

g=1 x&cluster g

Want to also measure between-cluster variation

k
B =) (#pointsin cluster g)|ug —(1)|%
g=1

A good score function to use for choosing k:
B-(n— k) Pick k with highest CH(k)

W-(k—1) (Choose k among 2, 3, ... up to
n = total # points pre-specified max)

CH(k) =



Automatically Choosing k

Demo



