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(Last Time) Manifold Learning

he dataset here is clearly 3D

But when we zoom in a lot on any point,
around the point it looks like a flat 2D sheet!

Another example: Earth i1s approximately a 3D sphere,
but zooming a lot on any point, around the point it's
approximately a 2D sheet

In general: It we have d-dimensional data where when you
zoom In a lot, the data dimensionality 1s smaller than d,
then the lower-dimensional object is called a manifold

* We have the data’s high-dim. coordinates, but we want to find the
ow-dim. coordinates (on the manifold) =¥ this is manifold learning

* Manifold learning is nonlinear whereas PCA s linear
(this will make more sense after we see code demos)

Image source: "Head Pose Estimation via Manifold Learning” (Wang et al 2017)



Do Data Actually Live on Manifolds!?
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Image source: http://www.columbia.edu/~jwp2 | 28/Images/faces.jpeg
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Do Data Actually Live on Manifolds!?
IY

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 201 5.



There are many manifold learning methods

We begin with one that's easy to describe
(but It often doesn't work well Iin practice...)



Manifold Learning with Isomap

A

Step |: For each point, find its (?-g-, find C|OS€STI2
nearest neighbors, and builda @<= neighbors per point

road (“edge”) between them and add edges to
them)

>

Step 2: Compute shortest
distance from each point to
every other point where
you're only allowed to travel
on the roads

Step 3: It turns out that given all the distances between pairs of points, we
can compute what the low-dimensional points should be
(the algorithm for this Is called multidimensional scaling)
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Thls matrix gets fed into

multidimensional scaling to get | D
version of A, B, C, D, E

The solution I1s not unigue!
16 13 8 5 0



Multidimensional Scaling (MDS)
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Multidimensional Scaling (MDS)

High-dimensional lanad

L ow-dimensional land

Suppose we have a guess for where
the low-dimensional points are

CI BI El AI Dl
-3 -2—-1 0 2 3

MDS moves the low-dim. points to make the 2 tables as close as possible




Isomap

Build k-NN graph,
computed shortest distances

Distance table

Original high-dim. data — (for high-dim. points)

fixed

Make these two as

close as possible (Euclidean dist)
(move low-dim. data)

Distance table

Low-dim. data — (for low-dim. points)

adjustable

Compute Euclidean
distances between all pairs
of low-dim. points



Isomap Calculation Example

Demo



Isomap

—>|f k Is set too large and

Build kNN araph we connect everything:

computed shortest distances Isomap becomes MDS

Distance table

Original high-dim. data — (for high-dim. points)

fixed

Make these two as

close as possible (Euclidean dist)
(move low-dim. data)

Distance table

Low-dim. data — (for low-dim. points)

adjustable

Compute Euclidean
distances between all pairs
of low-dim. points



3D Swiss Roll Example

Key idea: true distance on manifold is the blue line

We're approximating the blue line with the red line
(poor choice of # nearest neighbors can make approximation bad)

Joshua B.Tenenbaum,Vin de Silva, John C. Langford. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science 2000.



Some Observations on Isomap

The quality of the result
o= critically depends on the
nearest neighbor graph

o -®
Emphasize local Emphasize global
structure structure
Ask for nearest neighbors to Allow for nearest neighbors to
be really close by be farther away

Might connect points that

There might not be enough edges shouldn’t be connected

In general: try different parameters for nearest neighbor graph construction
when using Isomap + visualize



t-SNE
(t-distributed stochastic neighbor
embedding)



High-level t-SNE Idea

 Don't use deterministic definition
of which points are neighbors

» Use probabillistic notation instead
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t-SNE

Technical detall: creates probabillities
based on Gaussian distribution

Probability table

Original high-dim. data — (for high-dim. points)

fixed

Make these two as
close as possible
(move low-dim. data)

Probability table
(for low-dim. points)

(Technical detall:
KL divergence)

L ow-dim. data —»

adjustable

Technical detall: creates
probabilities based on
Student’s t-distribution

Technical details are in separate slides (posted on webpage)



t-SNE Parameters...

A

Roughly: perplexity Is like a
® |¢ ® CONtinuous version of “number
® of nearest neighbors”
o
o
o9
o o °
O ® g
® o
Emphasize local @ o ®  Emphasize global
structure ®>® ° structure
® 9 ®
Low perplexity value High perplexity value

Also: play with learning rate, # rterations

In practice, often people inrtialize with PCA



Manifold Learning with t-SNE

Demo



t-SNE Interpretation

https://distill.pub/20 | 6/misread-tsne/



Dimensionality Reduction for Visualization

* There are many methods (I've posted a link on the course webpage
to a scikit-learn example using ~ 10 methods)

« PCA is very well-understood; the new axes can be interpreted

* Nonlinear dimensionality reduction (manifold learning):
new axes may not really be all that interpretable

* Practice advice for visualization: try PCA first, and If that doesn't
work, try t-SNE and then possibly other manifold learning methods

* If you have good reason to believe that only certain features matter,
of course you could restrict your analysis to those!



