
Unstructured Data Analysis for Policy

George Chen

Last lecture: Image analysis with CNNs,
time series analysis with RNNs,

deep learning & course wrap-up

(Last Time) Neural Net as Function Approximation

output = softmax(np.dot(input, W) + b)

Given input, learn a computer program that computes output

Multinomial logistic regression:

Multilayer perceptron:

intermediate = relu(np.dot(input, W1) + b1)

output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps inputs
(raw feature vectors) to outputs (predictions)

(Last Time) Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for :
• Blurring an image

• Finding edges

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with each
filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

filters & biases (1 bias number per filter)
are unknown and are learned!

add bias

add bias

add bias

apply
activation

apply
activation

apply
activation

Conv2d
layer

Activation layer
(such as ReLU)

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(3 kernels,

each size 3x3),
ReLU activation

Input

Output images

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(3 kernels,

each size 3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

dimensions:
3,

height-2,
width-2

dimensions:
1 (# channels),

height,
width

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(k kernels

each size 3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

dimensions:
1 (# channels),

height,
width

dimensions:
k,

height-2,
width-2

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(k kernels

each size dx3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

dimensions:
d (# channels)

height,
width

dimensions:
k,

height-2,
width-2

Convolution Layer

Conv2d
(k kernels

each size dx3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

dimensions:
d (# channels)

height,
width

dimensions:
k,

height-2,
width-2

∗}

d

}

d

image width
image height

Each filter :

Pooling

• To produce this smaller image, need to aggregate or “pool”
together information

• Produces smaller image summarizing original larger image

• If “object” in input image shifts by a little bit, want output to stay
the same

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image
after ReLU

Output after max
pooling

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image
after ReLU

1

Output after max
pooling

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image
after ReLU

1 3

Output after max
pooling

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image
after ReLU

1 3

1

Output after max
pooling

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image
after ReLU

1 3

1 3

Output after max
pooling

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

0 1 3 1 0

1 1 1 3 3

0 0 0 0 0

1 1 1 3 3

0 1 3 1 0

Output image
after ReLU

1 3

1 3

Output after max
pooling

What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output captures

information from 16 input pixels!
Example: applying max pooling again results in a single pixel

that captures info from entire input image!

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)

Small Shifts & Max Pooling
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0
0 0max pooling

(2-by-2)

Small shift in
input object of

interest results in
same output

max pooling
(2-by-2)

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0
0 0

max pooling
(2-by-2)

max pooling
(2-by-2)

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1 0
0 0

1 0
0 0

Small Shifts & Max Pooling

A bigger shift in the input
results in a different output

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0
0 0max pooling

(2-by-2)

max pooling
(2-by-2)

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1
0 0

Basic Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(k kernels),

ReLU activation

Input
Max Pool 2d

(applied to each
image in stack)

stack of images

output stack of
smaller images

Input

Handwritten Digit Recognition

Flatten Linear
(512 nodes),

ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax

Categorical
cross entropy

Input

Handwritten Digit Recognition

Conv2d,
ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax

Categorical
cross entropy

Max
Pool
2d

Flatten

Handwritten Digit Recognition

Conv2d,
ReLU

Training label: 6

Max
Pool
2d

Conv2d,
ReLU

Input Linear
(10 nodes),

Softmax

FlattenMax
Pool
2d

errorLoss

Categorical
cross entropy

extract low-level visual
features & aggregate

extract higher-level visual
features & aggregate

non-vision-specific classifier

CNNs

Demo

CNNs

• Learn convolution filters for extracting simple features

• Repeat convolution→activation→pooling to learn increasingly
higher-level features

• Max pooling produces a smaller summary output and is somewhat
invariant to small shifts in input “objects”
• For examples where max pooling fails to achieve this and for a

better way to do pooling, see Richard Zhang’s fix for max
pooling linked on the course webpage

CNNs Encode Semantic Structure for Images

Linear
(10 nodes),

Softmax

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

CNNs Encode Semantic Structure for Images

final output for different
input 6’s is similar

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Linear
(10 nodes),

Softmax

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d actually, intermediate

representations close
to the last layer are

also similar!

(intuition: recall the crumpled
paper analogy!)

Time Series Data

What we’ve seen so far are “feedforward” NNs

Time Series Data

What we’ve seen so far are “feedforward” NNs

What if we had a video?

… …

Time 0

Time 1

Time 2

Feedforward NN’s:
treat each video frame

separately

Recurrent Neural Nets
Feedforward NN’s:

treat each video frame
separately

… …

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

Time 0

Time 1

Time 2 There exist many
different kinds of RNNs!
Today: we mostly talk
about vanilla RNNs

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

…

…
…

… …

Time
t − 1

Time t

Time
t + 1

inputs[t-1]

inputs[t]

inputs[t+1]

outputs[t-1]

outputs[t]

outputs[t+1]

…

… …

1D tables of length input_dim
(so if it’s an image, flatten it first)

1D tables of length num_nodes
(num_nodes is a hyperparameter)

Time
t − 1

Time t

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]

… …

1D tables of length input_dim
(so if it’s an image, flatten it first)

1D tables of length num_nodes
(num_nodes is a hyperparameter)

linear = np.dot(inputs[t], W) + np.dot(outputs[t-1], U) + b

outputs[t] = np.maximum(0, linear) # ReLU

2D table: # rows = input_dim
cols = num_nodes

2D table: # rows = num_nodes
cols = num_nodes

1D table: # entries = num_nodes

Vanilla RNN with ReLU Activation

def f(inputs):

 output = np.zeros(num_nodes)
 for input in inputs:
 linear = np.dot(input, W) + np.dot(output, U) + b
 output = np.maximum(0, linear) # ReLU

 return output

2D table: # rows = input_dim
cols = num_nodes

1D table: # entries = num_nodes

2D table: # rows = num_nodes
cols = num_nodes

list of 1D tables, each with input_dim entries

Parameters: weight matrices W & U, and bias vector b
The vanilla RNN is basically tracking how output changes over time

Vanilla RNN with ReLU Activation

def f(inputs):
 outputs = []
 output = np.zeros(num_nodes)
 for input in inputs:
 linear = np.dot(input, W) + np.dot(output, U) + b
 output = np.maximum(0, linear) # ReLU
 outputs.append(output)
 return output
 # alternatively, could return `outputs` instead

2D table: # rows = input_dim
cols = num_nodes

1D table: # entries = num_nodes

2D table: # rows = num_nodes
cols = num_nodes

list of 1D tables, each with input_dim entries

Parameters: weight matrices W & U, and bias vector b
The vanilla RNN is basically tracking how output changes over time

Vanilla RNN with ReLU Activation

def g(input, prev_output):
 linear = np.dot(input, W) + np.dot(prev_output, U) + b
 output = np.maximum(0, linear) # ReLU
 return output

def f(inputs):
 outputs = []
 output = np.zeros(num_nodes)
 for input in inputs:
 output = g(input, output)
 outputs.append(output)
 return output
 # alternatively, could return `outputs`

… …

Time
t − 1

Time t

Time
t + 1

inputs[t-1]

inputs[t]

inputs[t+1]

outputs[t-1]

outputs[t]

outputs[t+1]

…

… …

1D tables of length input_dim
(so if it’s an image, flatten it first)

1D tables of length num_nodes
(num_nodes is a hyperparameter)

g

g

g

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

…

…
…

g

g

g

Fla
tte

n
Fla

tte
n

Fla
tte

n

Recurrent Neural Nets

RNN layerTime series

g
inputs

output

Fla
tte

n

applied to each
time step separately

RNN layer itself does not
actually know image structure!!!

Key idea: combine RNN layer with other neural net layers!

Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each
time step separately

RNN layer itself does not
actually know image structure!!!

output
inputs

Key idea: combine RNN layer with other neural net layers!

Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each
time step separately

RNN layer itself does not
actually know image structure!!!

Cl
as

sifi
er

if goal is to classify
entire video, add

classifier

inputs

Key idea: combine RNN layer with other neural net layers!

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d actually, intermediate

representations close
to the last layer are

also similar!

(intuition: recall the crumpled
paper analogy!)

Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each
time step separately

RNN layer itself does not
actually know image structure!!!

Cl
as

sifi
er

if goal is to classify
entire video, add

classifier

inputs

Key idea: combine RNN layer with other neural net layers!

Recurrent Neural Nets

RNN layerTime series

Cl
as

sifi
er

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

applied to each
time step separately

g
inputs

Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each
time step separately

RNN layer itself does not
actually know image structure!!!

Cl
as

sifi
er

if goal is to classify
entire video, add

classifier

inputs

Key idea: combine RNN layer with other neural net layers!

Recurrent Neural Nets

RNN layer

g

applied to each
time step separately

Cl
as

sifi
erinputs

Example: Given text (e.g., movie review, Tweet), figure out whether it has
positive or negative sentiment (binary classification)

Text Positive/negative
sentiment

Common first step for text: turn
words into semantically meaningful

vector representations

(Flashback) Do Data Actually Live on
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Recurrent Neural Nets

RNN layer

g

applied to each
time step separately

Cl
as

sifi
erinputs

Example: Given text (e.g., movie review, Tweet), figure out whether it has
positive or negative sentiment (binary classification)

Text Positive/negative
sentiment

Common first step for text: turn
words into semantically meaningful

vector representations
In PyTorch, use the Embedding layer and

load in pre-trained word embeddings

Em
be

dd
in

g

Linear layer (2 nodes),
Softmax activation

Vanilla RNNs tend to have gold fish memory
and forget things very quickly

… …

Time
t − 1

Time t

Time
t + 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

inputs[t-1]

inputs[t]

inputs[t+1]

outputs[t-1]

outputs[t]

outputs[t+1]

… …

Time
t − 1

Time t

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]

Time
t − 1

Time t

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]

Time
t − 1

Time t

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term
memory updater Called a “long short-term

memory” (LSTM) RNN

Remembers things longer
than vanilla RNN

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]

Recap/Important Reminder
Neural nets are not doing magic; incorporating structure is very
important to state-of-the-art deep learning systems

• Word embeddings encode semantic structure—words with
similar meaning are mapped to nearby Euclidean points

• CNNs encode semantic structure for images—images that are
“similar” are mapped to nearby Euclidean points

• An RNN tracks how what’s stored in memory changes over time
— an RNN’s job is made easier if the memory is a semantically
meaningful representation

• Vanilla RNNs do not explicitly track long-term memory and tends
to forget things

• LSTMs explicitly incorporate long-term memory and learn when
to update long-term memory

We barely saw deep learning in this class!
(At this point, there are multiple semester-long
courses on specific deep learning concepts!)

Let me go over one key topic that I think is relevant to policy…

Generate Fake Data that Look Real

Noise

Real training
example

Deep
net

Fake
training
example

Deep net
classifier Real/fakePick 1

Counterfeiter tries to get better at
tricking the cop

Cop tries to get better at telling
which examples are real vs fake

Counterfeiter Cop

Terminology: counterfeiter is the generator, cop is the discriminator

Unsupervised approach: generate data that look like training data

Example: Generative Adversarial Network (GAN)

Other approaches: variational autoencoders, pixelRNNs/pixelCNNs

Generate Fake Data that Look Real

Google DeepMind’s WaveNet makes fake audio that sounds like
whoever you want using pixelRNNs (Oord et al 2016)

Fake celebrities generated by NVIDIA using GANs
(Karras et al Oct 27, 2017)

Generate Fake Data that Look Real

Image-to-image translation results from UC Berkeley using GANs (Isola
et al 2017, Zhu et al 2017)

The technology or generating fake images/video/
audio that look real is getting a lot better over time

& I think will lead to serious societal problems…

What if we simply can no longer tell what is fake vs real news anymore?

What if governments take advantage of better and better AI technologies to
generate fake news to make their citizens think a certain way?

The Future of Deep Learning

• Deep learning learns computer programs

• How do we do lifelong learning?

• How do we automatically discover important problem structure?

• We have only seen simple examples of these computer
programs in this class, but the programs that can be learned are
becoming increasingly sophisticated

• All the best ideas that lead to amazing prediction results
incorporate problem-specific structure

• How do we reason about causality?

Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Try to come up with quantitative metrics that make sense for

your problem, and use these metrics to evaluate models (think
about how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in
the context of your original problem!

• There is a lot we did not cover — keep learning!

Want to Learn More?

• Natural language processing (analyze text): 11-611

• Machine learning with large datasets: 10-605

• Computer vision (analyze images): 16-720
• Deep learning: 11-785, 10-707
• Deep reinforcement learning: 10-703
• Math for machine learning: 10-606, 10-607
• Intro to machine learning at different levels of math:

10-601, 10-701, 10-715

Some courses at CMU:

This list isn’t exhaustive and there are courses not just at CMU
(e.g., other schools, Coursera, edX, Udacity)!

