
Unstructured Data Analysis for Policy

George Chen

Last lecture: Image analysis with CNNs, 
time series analysis with RNNs, 

deep learning & course wrap-up



(Last Time) Neural Net as Function Approximation

output = softmax(np.dot(input, W) + b)

Given input, learn a computer program that computes output

Multinomial logistic regression:

Multilayer perceptron:

intermediate = relu(np.dot(input, W1) + b1)

output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps inputs 
(raw feature vectors) to outputs (predictions)



(Last Time) Convolution
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Very commonly used for :
• Blurring an image

• Finding edges
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(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with each 
filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

filters & biases (1 bias number per filter) 
are unknown and are learned!

add bias

add bias

add bias

apply 
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Conv2d 
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Activation layer 
(such as ReLU)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(3 kernels, 

each size 3x3),
ReLU activation

Input

Output images



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(3 kernels, 

each size 3x3),
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

dimensions: 
3, 

height-2, 
width-2

dimensions: 
1 (# channels), 

height, 
width



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(k kernels 

each size 3x3),
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

dimensions: 
1 (# channels), 

height, 
width

dimensions: 
k, 

height-2, 
width-2



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(k kernels 

each size dx3x3),
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

dimensions: 
d (# channels) 

height, 
width

dimensions: 
k, 

height-2, 
width-2



Convolution Layer

Conv2d 
(k kernels 

each size dx3x3),
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

dimensions: 
d (# channels) 

height, 
width

dimensions: 
k, 

height-2, 
width-2

∗}

d
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d

image width
image height

Each filter :



Pooling

• To produce this smaller image, need to aggregate or “pool” 
together information

• Produces smaller image summarizing original larger image

• If “object” in input image shifts by a little bit, want output to stay 
the same



Max Pooling
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Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)



Max Pooling
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Output image 
after ReLU

Output after max 
pooling

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)



Max Pooling
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Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)



Max Pooling
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Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)



Max Pooling
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Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)



Max Pooling
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Max Pooling
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What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output captures 

information from 16 input pixels!
Example: applying max pooling again results in a single pixel 

that captures info from entire input image!

Convolution layer (1 filter, for simplicity no bias, i.e., bias = 0)



Small Shifts & Max Pooling
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Small Shifts & Max Pooling

A bigger shift in the input 
results in a different output

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0
0 0max pooling 

(2-by-2)

max pooling 
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Basic Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(k kernels),

ReLU activation

Input
Max Pool 2d 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax

Categorical 
cross entropy



Input

Handwritten Digit Recognition

Conv2d, 
ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax

Categorical 
cross entropy

Max 
Pool 
2d

Flatten



Handwritten Digit Recognition

Conv2d, 
ReLU

Training label: 6

Max 
Pool 
2d

Conv2d, 
ReLU

Input Linear 
(10 nodes), 

Softmax

FlattenMax 
Pool 
2d

errorLoss

Categorical 
cross entropy

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific classifier



CNNs

Demo



CNNs

• Learn convolution filters for extracting simple features

• Repeat convolution→activation→pooling to learn increasingly 
higher-level features

• Max pooling produces a smaller summary output and is somewhat 
invariant to small shifts in input “objects”
• For examples where max pooling fails to achieve this and for a 

better way to do pooling, see Richard Zhang’s fix for max 
pooling linked on the course webpage



CNNs Encode Semantic Structure for Images

Linear 
(10 nodes), 

Softmax

Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d



CNNs Encode Semantic Structure for Images

final output for different 
input 6’s is similar

Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d

Linear 
(10 nodes), 

Softmax

Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d



Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d

Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d actually, intermediate 

representations close 
to the last layer are 

also similar!

(intuition: recall the crumpled 
paper analogy!)



Time Series Data

What we’ve seen so far are “feedforward” NNs



Time Series Data

What we’ve seen so far are “feedforward” NNs

What if we had a video?



… …

Time 0

Time 1

Time 2

Feedforward NN’s: 
treat each video frame 

separately



Recurrent Neural Nets
Feedforward NN’s: 

treat each video frame 
separately

… …

RNNs: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

Time 0

Time 1

Time 2 There exist many 
different kinds of RNNs!
Today: we mostly talk 
about vanilla RNNs



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

…

…
…



… …

Time 
t − 1

Time t

Time 
t + 1

inputs[t-1]

inputs[t]

inputs[t+1]

outputs[t-1]

outputs[t]

outputs[t+1]

…

… …

1D tables of length input_dim 
(so if it’s an image, flatten it first)

1D tables of length num_nodes 
(num_nodes is a hyperparameter)



Time 
t − 1

Time t

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]

… …

1D tables of length input_dim 
(so if it’s an image, flatten it first)

1D tables of length num_nodes 
(num_nodes is a hyperparameter)

linear = np.dot(inputs[t], W) + np.dot(outputs[t-1], U) + b

outputs[t] = np.maximum(0, linear)  # ReLU

2D table: # rows = input_dim 
# cols = num_nodes

2D table: # rows = num_nodes 
# cols = num_nodes

1D table: # entries = num_nodes



Vanilla RNN with ReLU Activation

def f(inputs): 

    output = np.zeros(num_nodes) 
    for input in inputs: 
        linear = np.dot(input, W) + np.dot(output, U) + b 
        output = np.maximum(0, linear)  # ReLU 

    return output 

2D table: # rows = input_dim 
# cols = num_nodes

1D table: # entries = num_nodes

2D table: # rows = num_nodes 
# cols = num_nodes

list of 1D tables, each with input_dim entries

Parameters: weight matrices W & U, and bias vector b
The vanilla RNN is basically tracking how output changes over time



Vanilla RNN with ReLU Activation

def f(inputs): 
    outputs = [] 
    output = np.zeros(num_nodes) 
    for input in inputs: 
        linear = np.dot(input, W) + np.dot(output, U) + b 
        output = np.maximum(0, linear)  # ReLU 
        outputs.append(output) 
    return output 
    # alternatively, could return `outputs` instead

2D table: # rows = input_dim 
# cols = num_nodes

1D table: # entries = num_nodes

2D table: # rows = num_nodes 
# cols = num_nodes

list of 1D tables, each with input_dim entries

Parameters: weight matrices W & U, and bias vector b
The vanilla RNN is basically tracking how output changes over time



Vanilla RNN with ReLU Activation

def g(input, prev_output): 
    linear = np.dot(input, W) + np.dot(prev_output, U) + b 
    output = np.maximum(0, linear)  # ReLU 
    return output

def f(inputs): 
    outputs = [] 
    output = np.zeros(num_nodes) 
    for input in inputs: 
        output = g(input, output) 
        outputs.append(output) 
    return output 
    # alternatively, could return `outputs`



… …

Time 
t − 1

Time t

Time 
t + 1

inputs[t-1]

inputs[t]

inputs[t+1]

outputs[t-1]

outputs[t]

outputs[t+1]

…

… …

1D tables of length input_dim 
(so if it’s an image, flatten it first)

1D tables of length num_nodes 
(num_nodes is a hyperparameter)

g

g

g



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

…

…
…
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Recurrent Neural Nets

RNN layerTime series

g
inputs

output

Fla
tte

n

applied to each 
time step separately

RNN layer itself does not 
actually know image structure!!!

Key idea: combine RNN layer with other neural net layers!



Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each 
time step separately

RNN layer itself does not 
actually know image structure!!!

output
inputs

Key idea: combine RNN layer with other neural net layers!



Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each 
time step separately

RNN layer itself does not 
actually know image structure!!!

Cl
as

sifi
er

if goal is to classify 
entire video, add 

classifier

inputs

Key idea: combine RNN layer with other neural net layers!



Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d

Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d actually, intermediate 

representations close 
to the last layer are 

also similar!

(intuition: recall the crumpled 
paper analogy!)



Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each 
time step separately

RNN layer itself does not 
actually know image structure!!!

Cl
as

sifi
er

if goal is to classify 
entire video, add 

classifier

inputs

Key idea: combine RNN layer with other neural net layers!



Recurrent Neural Nets

RNN layerTime series

Cl
as

sifi
er

Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d

applied to each 
time step separately

g
inputs



Recurrent Neural Nets

RNN layerTime series

g

CN
N

applied to each 
time step separately

RNN layer itself does not 
actually know image structure!!!

Cl
as

sifi
er

if goal is to classify 
entire video, add 

classifier

inputs

Key idea: combine RNN layer with other neural net layers!



Recurrent Neural Nets

RNN layer

g

applied to each 
time step separately

Cl
as

sifi
erinputs

Example: Given text (e.g., movie review, Tweet), figure out whether it has 
positive or negative sentiment (binary classification)

Text Positive/negative 
sentiment

Common first step for text: turn 
words into semantically meaningful 

vector representations



(Flashback) Do Data Actually Live on 
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Recurrent Neural Nets

RNN layer

g

applied to each 
time step separately

Cl
as

sifi
erinputs

Example: Given text (e.g., movie review, Tweet), figure out whether it has 
positive or negative sentiment (binary classification)

Text Positive/negative 
sentiment

Common first step for text: turn 
words into semantically meaningful 

vector representations
In PyTorch, use the Embedding layer and 

load in pre-trained word embeddings

Em
be

dd
in

g

Linear layer (2 nodes), 
Softmax activation



Vanilla RNNs tend to have gold fish memory 
and forget things very quickly



… …

Time 
t − 1

Time t

Time 
t + 1

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!

inputs[t-1]

inputs[t]

inputs[t+1]

outputs[t-1]

outputs[t]

outputs[t+1]
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Time 
t − 1

Time t

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!

… …

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]



Time 
t − 1

Time t

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!

… …

Long-term 
memory updater Called a “long short-term 

memory” (LSTM) RNN

Remembers things longer 
than vanilla RNN

inputs[t-1]

inputs[t]

outputs[t-1]

outputs[t]



Recap/Important Reminder
Neural nets are not doing magic; incorporating structure is very 
important to state-of-the-art deep learning systems

• Word embeddings encode semantic structure—words with 
similar meaning are mapped to nearby Euclidean points

• CNNs encode semantic structure for images—images that are 
“similar” are mapped to nearby Euclidean points

• An RNN tracks how what’s stored in memory changes over time 
— an RNN’s job is made easier if the memory is a semantically 
meaningful representation

• Vanilla RNNs do not explicitly track long-term memory and tends 
to forget things

• LSTMs explicitly incorporate long-term memory and learn when 
to update long-term memory



We barely saw deep learning in this class! 
(At this point, there are multiple semester-long 
courses on specific deep learning concepts!)

Let me go over one key topic that I think is relevant to policy…



Generate Fake Data that Look Real

Noise

Real training 
example

Deep 
net

Fake 
training 
example

Deep net 
classifier Real/fakePick 1

Counterfeiter tries to get better at 
tricking the cop

Cop tries to get better at telling 
which examples are real vs fake

Counterfeiter Cop

Terminology: counterfeiter is the generator, cop is the discriminator

Unsupervised approach: generate data that look like training data

Example: Generative Adversarial Network (GAN)

Other approaches: variational autoencoders, pixelRNNs/pixelCNNs



Generate Fake Data that Look Real

Google DeepMind’s WaveNet makes fake audio that sounds like 
whoever you want using pixelRNNs (Oord et al 2016)

Fake celebrities generated by NVIDIA using GANs 
(Karras et al Oct 27, 2017)



Generate Fake Data that Look Real

Image-to-image translation results from UC Berkeley using GANs (Isola 
et al 2017, Zhu et al 2017)



The technology or generating fake images/video/
audio that look real is getting a lot better over time 

& I think will lead to serious societal problems…

What if we simply can no longer tell what is fake vs real news anymore?

What if governments take advantage of better and better AI technologies to 
generate fake news to make their citizens think a certain way?



The Future of Deep Learning

• Deep learning learns computer programs

• How do we do lifelong learning?

• How do we automatically discover important problem structure?

• We have only seen simple examples of these computer 
programs in this class, but the programs that can be learned are 
becoming increasingly sophisticated

• All the best ideas that lead to amazing prediction results 
incorporate problem-specific structure

• How do we reason about causality?



Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Try to come up with quantitative metrics that make sense for 

your problem, and use these metrics to evaluate models (think 
about how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in 
the context of your original problem!

• There is a lot we did not cover — keep learning!



Want to Learn More?

• Natural language processing (analyze text): 11-611

• Machine learning with large datasets: 10-605

• Computer vision (analyze images): 16-720
• Deep learning: 11-785, 10-707
• Deep reinforcement learning: 10-703
• Math for machine learning: 10-606, 10-607
• Intro to machine learning at different levels of math: 

10-601, 10-701, 10-715

Some courses at CMU:

This list isn’t exhaustive and there are courses not just at CMU 
(e.g., other schools, Coursera, edX, Udacity)!


