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(Last Time) Neural Net as Function Approximation

Given 1nput,learn a computer program that computes output
Multinomial logistic regression:

output = softmax(np.dot(input, W) + b)
Multilayer perceptron:

intermediate = relu(np.dot(input, W1l) + bl)
output = softmax(np.dot(intermediate, W2) + b2)

Learning a neural net: learning a simple computer program that maps inputs
(raw feature vectors) to outputs (predictions)



(Last Time) Convolution

Very commonly used for:

* Blurring an image
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(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/
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Images from: http://aishack.in/tutorials/image-convolution- examples/



Convolution Layer

Output images

Conv2d

(3 kernels,
each size 3x3),
Rel .U activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
. images Into a
single “output
feature map”
nput dimensions:
dimensions: Conv2d 3,
| (# channels), (3 kernels, height-2,
height, each size 3x3), width-2
width RelLlU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
. images Into a
single “output
feature map”
nput dimensions:
dimensions: Conv2d k,
| (# channels), (k kernels height-2,
height, each size 3x3), width-2
width RelLlU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
. images Into a
single “output
feature map”
nput dimensions:
dimensions: Conv2d k,
d (# channels) (k kernels height-2,
height, each size dx3x3), width-2
width RelU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
g images Into a
single “output
feature map”
nput dimensions:
dimensions: Conv2d k,

d (# channels) (k kernels height-2,
height, each size dx3x3), width-2
width RelLlU activation

=35I8 B
T L
Fach filter: d{ T d{ EV
e 1
\



Pooling

* Produces smaller image summarizing original larger image

* Jo produce this smaller image, need to aggregate or “pool”
together information

* [f"object” In Input iImage shifts by a little bit, want output to stay
the same



Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)
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Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)

--------------------------------------------------------------------------------------------
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Output after max
pooling



Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)

--------------------------------------------------------------------------------------------

olojololofo]o

olol 1|1 ]1]o]o ol 11310 o1 |3]1]o0
o A T T A A || -1 -] L33 ]33
ot |1 |1]ololol*xl2|2|2|=|0o|0|2|4 -4 olololo]o
o A T T A A -1 -1 L33 L33
olol 1|1 ]1]o]o o1 13]1]o0 o1 310
O10]9019]0]07]09 - Output image

Input - after RelU

--------------------------------------------------------------------------------------------

Output after max
pooling



Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)

--------------------------------------------------------------------------------------------
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Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)
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Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)

--------------------------------------------------------------------------------------------
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Max Pooling

Convolution layer (| filter, for simplicity no bias, 1.e., bias = 0)

--------------------------------------------------------------------------------------------
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What numbers were involved in computing this |? T~
In this example: | pixel in max pooling output captures |
information from |6 input pixels! 3

Example: applying max pooling again results in a single pixel Output after max
that captures info from entire input iImage! pooling



Small Shifts & Max Pooling
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Small shift in
input object of
Interest results In
same output



Small Shifts & Max Pooling

lolo]o
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0/0/0]0 "l [max pooling
0/0/0]0 (2-by-2)
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00|00 "l [max pooling
0/0]0|0 (2-by-2)

A bigger shift in the input
results In a different output




Basic Building Block of CNNs

stack of images

>
output stack of
smaller images
Conv2d Max Pool 2d
(k kernels), (applied to each
RelU activation image In stack)

Images from: http://aishack.in/tutorials/image-convolution-examples/



Handwritten Digit Recognition

Training label: 6

v
—> > » | Loss | = error
Categorical

Cross entropy

Input

Flatten Linear Linear

(512 nodes), (10 nodes),
RelLU Softmax



Handwritten Digit Recognition

Training label: 6

v
— — —> » | Loss | = error
Categorical

Cross entropy

Input

Conv2d, Max Flatten Linear
RelLU Pool (10 nodes),
2d Softmax



Handwritten Digit Recognition

Training label: 6

Input

—| || || || |—]| |

v

L oss

= error

Categorical

Conv2d, Max:: Conv2d, Max: Flatten Lindar
RelLU  Pooli: RelLU  Pool (10 nodes),
2d 2d Softmax

Cross entropy



CNNs

Demo



CNNs

* [earn convolution filters for extracting simple features

* Max pooling produces a smaller summary output and Is somewhat
invariant to small shifts in input “objects”

* For examples where max pooling falls to achieve this and for a
petter way to do pooling, see Richard Zhang's fix for max
hooling linked on the course webpage

* Repeat convolution—activation—pooling to learn increasingly
higsher-level features



CNNs Encode Semantic Structure for Images

Conv2d, Max Conv2d, Max Flatten Linear
ReLlU Pool RelU  Pool (10 nodes),
2d 2d Softmax
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CNNs Encode Semantic Structure for Images

Conv2d, Max Conv2d, Max Flatten Linear
ReLlU Pool RelU  Pool (10 nodes),
2d 2d Softmax
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Conv2d, Max Conv2d, Max Flatten
RelU Pool RelU Pool
2d 2d

Conv2d, Max Conv2d, Max Flatten
RelU Pool RelU Pool
2d 2d



Time Series Data

What we've seen so far are "feedforward” NNs




Time Series Data

What we've seen so far are "feedforward” NNs

What if we had a video!



Feedforward NN's:
treat each video frame
Time O > > separately
Time | > >
Time 2 > >




Recurrent Neural Nets

Feedforward NN's:
treat each video frame

> / > separately

RNNSs:
feed output at previous
> » lime step as input to
RNN layer at current
time step

There exist many

g dn‘ferent kinds of RNNs!
Today: we mostly talk
5 about vanilla RNNSs




tTlmIe > / > outputt — |
Time t > > outputt
ime > > outputt + |
t+ | /



| D tables of length input_dim | D tables of length num_nodes
(so If it's an Image, flatten It first) (num_nodes Is a hyperparameter)

' ¥
Iﬁ?f inputs[t-1 > ‘///// >outputs[t—1]‘//

» outputs[t]

Timet 1inputs[t]

Time

R inputs[t+1] > ‘///// » outputs[t+1]




» outputs[t-1]

Timet 1inputs[t] > » outputs[t]

|D table: # entries = num_nodes

\

linear = np.dot(inputs[t], W) + np.dot(outputs[t-11, iU) + ib
outputs[t] = np.maximum(®, /linear) # RelLU

2D table: # rows = input_dim 2D table: # rows = num_nodes
# cols = num_nodes # cols = num_nodes



Vanilla RNN with RelLU Activation

st of |D tables, each with input dim entries
{/ | D table: # entries = num nodes

llllllllllllllll

lllllllllllllllll

output = np.zeros(num nodes)

for input in inputs: B . B
linear = np.dot(input, W) + np.dot(output, iU) + ibs
output np.maximum(®, flinear) # RelU

2D table: # rows = input_dim 2D table: # rows = num_nodes
# cols = num_nodes # cols = num_nodes

return output

Parameters: weight matrices W & U, and bias vector b

The vanilla RNN is basically tracking how output changes over time



Vanilla RNN with RelLU Activation

st of |D tables, each with input dim entries
{/ | D table: # entries = num nodes

llllllllllllllll

lllllllllllllllll

outputs = []
output = np.zeros(num nodes)
for input in inputs:

linear = no.dot(input,iﬂb + np.dot(output,§ﬁ5 +5§3
output = np.maximum(®, flinear) # RelLU
outputs.append(output)

return output
# alternatively, could rgturn outputs’ 1nstea7

2D table: # rows = input_dim 2D table: # rows = num_nodes
# cols = num_nodes # cols = num_nodes

Parameters: weight matrices W & U, and bias vector b

The vanilla RNN is basically tracking how output changes over time



Vanilla RNN with RelLU Activation

def g(input, prev output):
linear = np.dot(input, W) + np.dot(prev_output, U) + Db
output = np.maximum(®, linear) # RelU
return output

def f(inputs):
outputs = []
output = np.zeros(num nodes)
for input 1n 1nputs:
output = g(input, output)
outputs.append(output)

return output
# alternatively, could return "outputs’



| D tables of length input_dim | D tables of length num_nodes

(so If it's an Image, flatten It first) (num_nodes Is a hyperparameter)
Time . v |
Fo inputs[t-1 > | o »outputs[t-1
Timet 1inputs[t] / > | o » outputs[t]
Time .

inputs[t+1] > | 2 » outputs[t+1]
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Recurrent Neural Nets

Key idea: combine RNN layer with other neural net layers!

applied to each
time step separately

» output

Time series RNN layer

RNN layer itself does not
actually know image structure!l!



Recurrent Neural Nets

Key idea: combine RNN layer with other neural net layers!

applied to each
time step separately

» output

Time series RNN layer

RNN layer itself does not
actually know image structure!l!



Recurrent Neural Nets

Key idea: combine RNN layer with other neural net layers!

it goal Is to classity
entire video, add
classifier

applied to each
time step separately

Classifier
v

Time series RNN layer

RNN layer itself does not
actually know image structure!l!



Conv2d, Max Conv2d, Max Flatten
RelU Pool RelU Pool
2d 2d

Conv2d, Max Conv2d, Max Flatten
RelU Pool RelU Pool
2d 2d



Recurrent Neural Nets

Key idea: combine RNN layer with other neural net layers!

it goal Is to classity
entire video, add
classifier

applied to each
time step separately

Classifier
v

Time series RNN layer

RNN layer itself does not
actually know image structure!l!



Time series

Recurrent Neural Nets

applied to each
time step separately

------------------------------------------

iConde, Max Conv2d, Max FlauttenE
.+ RelU Pool RelU Pool

___________________________________________

N layer

Classifier




Recurrent Neural Nets

Key idea: combine RNN layer with other neural net layers!

it goal Is to classity
entire video, add
classifier

applied to each
time step separately

Classifier
v

Time series RNN layer

RNN layer itself does not
actually know image structure!l!



Recurrent Neural Nets

Example: Given text (e.g., movie review, weet), fisure out whether It has
positive or negative sentiment (binary classification)

applied to each
time step separately

- o om g,

' O
| |:inputs = Positive/negative
fext = F > | g % .
: : © sentiment
: ),

-----

Common first step for text: turn RNIN| ayer
words Into semantically meaningful
vector representations



Flashback) Do Data Actually Live on
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Recurrent Neural Nets

Example: Given text (e.g., movie review, weet), fisure out whether It has
positive or negative sentiment (binary classification)

applied to each
time step separately

- EE O gy

o
- -
+ [o[:1nputs = Positive/negative
S ECE © sentiment
= U
| Linear layer (2 nodes),

-----

Common first step for text: turn RNN ayer Softmax activation

words Into semantically meaningful
vector representations

In PyTorch, use the Embedding layer and
load In pre-trained word embeddings



Vanilla RNNs tend to have gold fish memory
and forget things very quickly



Time

t— |

Timet

Time
+ |

t

inputs[t-1]

inputs[t]

inputs[t+1]

Long-term memory

)

Add explicit long-term
memory!

87

» outputs[t-1]

But need some way to
update long-term
memory!

87

» outputs[t]

Y

»outputs[t+1]



Time
t— |

Timet

inputs[t-1]

inputs[t]

Long-term memory

b

Add explicit long-term
memory!

» outputs[t-1]

But need some way to
update long-term
memory!

» outputs[t]



Time
t— |

Timet

inputs[t-1]

inputs[t]

Long-term memory

b

Add explicit long-term
memory!

» outputs[t-1]

But need some way to
update long-term
memory!

» outputs[t]



Time
t— |

Timet

inputs[t-1]

inputs[t]

Long-term memory

)

Add explicit long-term
memory!

A 4

g

Long-term

memory updater

=

»outputs[t-1]

But need some way to
update long-term
memory!

Called a “long short-term
memory" (LSTM) RNN

Remembers things longer
than vanilla RNN

» outputs|t



Recap/Important Reminder

Neural nets are not doing magic; incorporating structure is very
important to state-of-the-art deep learning systems

An RNIN tracks how what's stored in memory changes over time

— an RNIN’s job is made easier if the memory is a semantically
meaningful representation

Word embeddings encode semantic structure—words with
similar meaning are mapped to nearby tuclidean points

CNNs encode semantic structure for images—images that are
“similar’” are mapped to nearby tuclidean points

Vanilla RNNs do not explicitly track long-term memory and tends
to forget things

* [STMs explicitly incorporate long-term memory and learn when
to update long-term memory



We barely saw deep learning in this class!
(At this point, there are multiple semester-long
courses on specific deep learning concepts!)



Generate Fake Data that Look Real

Unsupervised approach: generate data that look like training data

Example: Generative Adversarial Network (GAN)

Real training
example

Counterfeiter I Cop
Dee ake Deep net
Noise —» P —> training = Pick | > P —> Real/fake
net classifier
example
Counterferter tries to get better at Cop tries to get better at telling
tricking the cop which examples are real vs fake

Terminology: counterferter is the generator, cop Is the discriminator

Other approaches: variational autoencoders, pixelRNNs/pixel CNNs



Generate Fake Data that Look Real

Fake celebrities generated by NVIDIA using GANs
(Karras et al Oct 2/,2017)

Google DeepMind’'s WaveNet makes fake audio that sounds like
whoever you want using pixelRNNs (Oord et al 2016)



Generate Fake Data that Look Real

Summer _ Winter

7 A

Phtograph 7. Monet o an Gogh zanne

Image-to-image translation results from UC Berkeley using GANs (lsola
et al 2017, Zhu et al 2017/)



The technology or generating fake images/video/
audio that look real is getting a lot better over time
& | think will lead to serious societal problems...

What it we simply can no longer tell what is fake vs real news anymore!

What It governments take advantage of better and better Al technologies to
oenerate fake news to make their crtizens think a certain way!



The Future of Deep Learning

Deep learning learns computer programs

* We have only seen simple examples of these computer
programs In this class, but the programs that can be learned are
becoming increasingly sophisticated

All the best ideas that lead to amazing prediction results
incorporate problem-specific structure

How do we automatically discover important problem structure?
How do we do lifelong learning?

How do we reason about causality?



Some Parting Thoughts

Remember to visualize steps of your data analysis pipeline
* Helpful In debugging & interpreting intermediate/final outputs
Very often there are tons of models/design choices to try

* [ry to come up with quantitative metrics that make sense for
your problem, and use these metrics to evaluate models (think
about how we chose hyperparameters!)

* But don't blindly rely on metrics without interpreting results in
the context of your original problem!

Often times you won't have labels! If you really want labels:

» Manually obtain labels (erther you do 1t or crowdsource)

There Is a lot we did not cover — keep learning!



Want to Learn More!

Some courses at CMU:

* Natural language processing (analyze text): | [-61 |
« Computer vision (analyze images): | 6-720

* Deep learning: | 1-785, 10-707/

* Deep reinforcement learning: 10-/03

» Math for machine learning: 10-606, 10-60/

* Intro to machine learning at different levels of math:
10-601, 10-701, 10-715

* Machine learning with large datasets: 10-605

This list isn't exhaustive and there are courses not just at CMU
(e.g., other schools, Coursera, edX, Udacity)!



