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Principal Component Analysis (PCA)

Demo



PCA Recap

PCA reduces high-dimensional data to k dimensions

e These k dimensions (the principal component directions) are the
k orthogonal directions that explain the most variance in the data

Fitting a PCA model means:
e Figuring out the center of mass of the data we're fitting the model to
e Figuring out "weights” for each principal component direction

 We saw how to compute the PCA coordinates by taking an inner
oroduct (also called a dot product)

After fitting a PCA model, we can also compute the fraction of
variance explained by each principal component

Reminder: a 3D PCA model contains the solution to a 2D PCA model
as well as a 1D PCA model

 More generally: if you have a k-dimensional PCA model, then we also
have PCA models for number of dimensions from 1 up to k



When does PCA not work well?



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcl/AAAAAAAAGPS8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll

PCA would just flatten this thing and
lose the information that the data actually lives
on a 1D line that has been curved!



2D Swiss Roll




2D Swiss Roll
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2D Swiss Roll




2D Swiss Roll

This is the desired result



Manifold Learning

The dataset here is clearly 3D

But when we zoom in a lot on any point,
around the point it looks like a flat 2D sheet!

Another example: Earth is approximately a 3D sphere,
but zooming a lot on any point, around the point it's
approximately a 2D sheet

In general: it we have d-dimensional data where when you
zoom in a lot, the data dimensionality is smaller than d,
then the lower-dimensional object is called a manifold

e We have the data’s high-dim. coordinates, but we want to find the
low-dim. coordinates (on the manifold) =¥ this is manifold learning

e Manifold learning is nonlinear whereas PCA is linear
(this will make more sense after we see code demos)

Image source: “Head Pose Estimation via Manifold Learning” (Wang et al 2017)



Do Data Actually Live on Manitfolds?
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Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg



Do Data Actually Live on Manifolds?
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Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Do Data Actually Live on Manitfolds?
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Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning.
Nature 2015.



There are many manifold learning methods

We begin with one that's easy to describe
(but it often doesn't work well in practice...)



Manifold Learning with Isomap

A

Step 1: For each point, find its (e.g., find closest 2

nearest neighbors, and builda @S neighbors per point

and add edges to
them)

road ("edge”) between them

>

Step 2: Compute shortest
distance from each point to
every other point where
you're only allowed to travel
on the roads

Step 3: It turns out that given all the distances between pairs of points,
we can compute what the low-dimensional points should be
(the algorithm for this is called multidimensional scaling)



Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A: B, C

2 nearest neighbors of B: A C
2 nearest neighbors of C: B, D

2 nearest neighbors of D: C, E

2 nearest neighbors of E:
Build "symmetric 2-NN" graph

e ecges for each point o 12 -ﬂ-ﬂ-

nearest neighbors)

/’

5 0 5 10 13
Shortest distances between
: . 8 5 0 5 8
every point to every other point
where we are only allowed to 13 10 5 0 5

travel along the roads
16 13 3 5 0



Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A: B, C

2 nearest neighbors of B: A C
2 nearest neighbors of C: B, D

2 nearest neighbors of D: C, E

2 nearest neighbors of E:
Build "symmetric 2-NN" graph

e ecges for each point o 12 -ﬂ-ﬂ-

nearest neighbors)

/’

Shortest distances between

Thls matrix gets fed into

multidimensional scaling to get 1D

every point to every other point versionof A, B, C, D, E

where we are only allowed to . .
The solution is not unique!

travel along the roads
16 13 3 5 0



Multidimensional Scaling (MDS)

High-dimensional land

|l ow-dimensional land

Suppose we have a guess for where

the low-dimensional points are

C'" B" E A D

e —

-3-2-1 0 1 2 3

MDS moves the low-dim. points to make the 2 tables as close as possib




Isomap

Build k-NN graph,
computed shortest distances

Distance table

Original high-dim. data —» (for high-dim. points)

fixed

Make these two as

close as possible (Euclidean dist)
(move low-dim. data)

Distance table

Low-dim. data —» (for low-dim. points)

djustabl
e Compute Euclidean

distances between all pairs
of low-dim. points



Isomap Calculation Example

Demo



Isomap

— |t k is set too large and
we connect everything:

Build:k-NN graph, lsomap becomes MDS

computed shortest distances

Distance table

Original high-dim. data —» (for high-dim. points)

fixed

Make these two as

close as possible (Euclidean dist)
(move low-dim. data)

Distance table

Low-dim. data —» (for low-dim. points)

djustabl
e Compute Euclidean

distances between all pairs
of low-dim. points



Some Observations on Isomap

The quality of the result
o= critically depends on the
nearest neighbor graph

o -®
Emphasize local Emphasize global
structure structure
Use small # of nearest neighbors Use large # of nearest neighbors
(edges tend to connect points that (edges can connect points that
are closer to each other) are tarther apart)

Might connect points that

There might not be enough edges shouldn’t be connected

In general: try different parameters for nearest neighbor graph construction
when using Isomap + visualize



