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Abstract

Integer programs defined by two equations with two free integer variables and nonneg-
ative continuous variables have three types of nontrivial facets: split, triangle or quadri-
lateral inequalities. In this paper, we compare the strength of these three families of
inequalities. In particular we study how well each family approximates the integer hull.
We show that, in a well defined sense, triangle inequalities provide a good approximation
of the integer hull. The same statement holds for quadrilateral inequalities. On the other
hand, the approximation produced by split inequalities may be arbitrarily bad.

1 Introduction

In this paper, we consider mixed integer linear programs with two equality constraints, two
free integer variables and any number of nonnegative continuous variables. We assume that
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the two integer variables are expressed in terms of the remaining variables as follows.

x = f +
∑k

j=1 r
jsj

x ∈ Z2

s ∈ Rk
+.

(1)

This model is a natural relaxation of a general mixed integer linear program (MILP) and
therefore it can be used to generate cutting planes for MILP. Currently, MILP solvers rely on
cuts that can be generated from a single equation (such as Gomory mixed integer cuts [13],
MIR cuts [16], lift-and-project cuts [3], lifted cover inequalities [8]). Model (1) has attracted
attention recently as a way of generating new families of cuts from two equations instead of
just a single one [1, 7, 10, 11, 14].

We assume f ∈ Q2 \ Z2, k ≥ 1, and rj ∈ Q2 \ {0}. So s = 0 is not a solution of (1). Let
Rf (r

1, . . . , rk) be the convex hull of all vectors s ∈ Rk
+ such that f +

∑k
j=1 r

jsj is integral.

A classical theorem of Meyer [17] implies that Rf (r
1, . . . , rk) is a polyhedron. Andersen,

Louveaux, Weismantel and Wolsey [1] showed that the only inequalities needed to describe
Rf (r

1, . . . , rk) are s ≥ 0 (called trivial inequalities), split inequalities [6] and intersection cuts
(Balas [2]) arising from triangles or quadrilaterals in R2. Cornuéjols and Margot [7] char-
acterized the facets of Rf (r

1, . . . , rk): The nontrivial facets are minimal inequalities related
to maximal lattice-free convex sets in R2 with nonempty interior (Borozan and Cornuéjols
[5]). By lattice-free convex set we mean a convex set with no integral point in its interior.
However integral points are allowed on the boundary. These maximal lattice-free convex sets
are splits, triangles, and quadrilaterals as proved in the following theorem of Lovász [15].

Theorem 1.1. (Lovász [15]) In the plane, a maximal lattice-free convex set with nonempty
interior is one of the following:

(i) A split c ≤ ax1 + bx2 ≤ c+ 1 where a and b are coprime integers and c is an integer;

(ii) A triangle with an integral point in the interior of each of its edges;

(iii) A quadrilateral containing exactly four integral points, with exactly one of them in
the interior of each of its edges; Moreover, these four integral points are vertices of a
parallelogram of area 1.

Rf (r
1, . . . , rk) is a polyhedron of blocking type and a nontrivial valid inequality for

Rf (r
1, . . . , rk) is of the form

k
∑

j=1

ψ(rj)sj ≥ 1 (2)

where ψ : R2 → R+[19]. A nontrivial valid inequality is minimal if there is no other nontrivial
valid inequality

∑k
j=1 ψ

′(rj)sj ≥ 1 such that ψ′(rj) ≤ ψ(rj) for all j = 1, . . . , k. The following
result provides a link between minimal nontrivial valid inequalities and the maximal lattice-
free convex sets of Theorem 1.1.

Theorem 1.2. (Borozan and Cornuéjols [5]) Minimal nontrivial valid inequalities are as-
sociated with functions ψ that are nonnegative positively homogeneous piecewise linear and
convex. Furthermore, the closure of the set

Bψ := {x ∈ Q2 : ψ(x− f) ≤ 1} (3)
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is a maximal lattice-free convex set with nonempty interior.

Conversely, any maximal lattice-free convex set B with f in its interior defines a minimal
function ψB : R2 → R+ that can be used to generate a minimal nontrivial valid inequality.
Indeed, define ψB(0) = 0 and ψB(x−f) = 1 for all points x on the boundary of B. Then, the
positive homogeneity of ψB implies the value of ψB(r) for any vector r ∈ R2\{0}: If there is a
positive scalar λ such that the point f+λr is on the boundary of B, we get that ψB(r) = 1/λ.
Otherwise, if there is no such λ, r is an unbounded direction of B and ψB(r) = 0.

Following Dey and Wolsey [10], the maximal lattice-free triangles can be partitioned into
three types (see Figure 1):

• Type 1 triangles: triangles with integral vertices and exactly one integral point in the
relative interior of each edge;

• Type 2 triangles: triangles with at least one fractional vertex v, exactly one integral
point in the relative interior of the two edges incident to v and at least two integral
points on the third edge;

• Type 3 triangles: triangles with exactly three integral points on the boundary, one in
the relative interior of each edge.

Figure 1 shows these three types of triangles as well as a maximal lattice-free quadrilateral
and a split satisfying the properties of Theorem 1.1.

Type 1 Type 2 Type 3 Quadrilateral Split

Figure 1: Maximal lattice-free convex sets with nonempty interior in R2

1.1 Motivation

An unbounded maximal lattice-free set has two edges and is called a split. These two edges
are parallel and their direction is the direction of the split. Split inequalities for (1) are
valid inequalities that can be derived by combining the two equations in (1) and by using
the integrality of π1x1 + π2x2, where π ∈ Z2 defines the normal to the unbounded direction
of the split. Similarly, for general MILPs, the equations can be combined into a single
equality from which a split inequality is derived. Split inequalities are equivalent to Gomory
mixed integer cuts [18]. Empirical evidence shows that split inequalities are effective for
strengthening the linear programming relaxation of MILPs [4, 9]. Interestingly, triangle
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and quadrilateral inequalities cannot be derived from a single equation. They can only be
derived from (1) without aggregating the two equations. Recent computational experiments
by Espinoza [11] indicate that quadrilaterals also induce effective cutting planes in the context
of solving general MILPs. In this paper, we consider the relative strength of split, triangle and
quadrilateral inequalities from a theoretical point of view. We use an approach for measuring
strength initiated by Goemans [12], based on the following definition and results.

Let Q ⊆ Rn
+ \ {0} be a polyhedron of the form Q = {x : aix ≥ bi for i = 1, . . . ,m} where

ai ≥ 0 and bi ≥ 0 for i = 1, . . . ,m and let α > 0 be a scalar. We define the polyhedron
αQ as {x : αaix ≥ bi for i = 1, . . . ,m}. Note that αQ contains Q when α ≥ 1. It will be
convenient to define αQ to be Rn

+ when α = +∞.
We need the following generalization of a theorem of Goemans [12].

Theorem 1.3. Suppose Q ⊆ Rn
+ \ {0} is defined as above. If convex set P ⊆ Rn

+ is a
relaxation of Q (i.e. Q ⊆ P ), then the smallest value of α ≥ 1 such that P ⊆ αQ is

max
i=1,...,m

{

bi
inf{aix : x ∈ P}

: bi > 0

}

.

In other words, the only directions that need to be considered to compute α are those
defined by the nontrivial facets of Q. Goemans’ paper assumes that both P and Q are
polyhedra, but one can easily verify that only the polyhedrality of Q is needed in the proof.
We give the proof of Theorem 1.3 in Section 2, for completeness.

1.2 Results

Let the split closure Sf (r
1, . . . , rk) be the intersection of all split inequalities, let the triangle

closure Tf (r
1, . . . , rk) be the intersection of all inequalities arising from maximal lattice-free

triangles, and let the quadrilateral closure Qf (r
1, . . . , rk) be the intersection of all inequalities

arising from maximal lattice-free quadrilaterals. Since all the facets of Rf (r
1, . . . , rk) are

induced by these three families of maximal lattice-free convex sets, we have

Rf (r
1, . . . , rk) = Sf (r

1, . . . , rk) ∩ Tf (r
1, . . . , rk) ∩Qf (r

1, . . . , rk).

It is known that the split closure is a polyhedron (Cook, Kannan and Schrijver [6]) but such
a result is not known for the triangle closure and the quadrilateral closure. In this paper we
show the following results.

Theorem 1.4. Tf (r
1, . . . , rk) ⊆ Sf (r

1, . . . , rk) and Qf (r
1, . . . , rk) ⊆ Sf (r

1, . . . , rk).

We study the strength of the triangle closure and quadrilateral closure in the sense defined
in Section 1.1. We first compute the strength of a single Type 1 triangle facet as f varies in
the interior of the triangle, relative to the entire split closure.

Theorem 1.5. Let T be a Type 1 triangle as depicted in Figure 2. Let f be in its interior
and assume that the set of rays {r1, . . . , rk} contains rays pointing to the three corners of T .
Let

∑k
i=1 ψ(ri)si ≥ 1 be the inequality generated by T . The value

inf

{

k
∑

i=1

ψ(ri)si : s ∈ Sf (r
1, . . . , rk)

}
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is a piecewise linear function of f for which some level curves are depicted in Figure 2. This
function varies from a minimum of 1

2 in the center of T to a maximum of 2
3 at its corners.

f

r1 r2

r3

x1
x2

x3

y1y2

y3

1

2

2

3

2

3

2

3

11

18

10

18

10

18

10

18

11

18

11

18

Figure 2: Illustration for Theorem 1.5

Next we show that both the triangle closure and the quadrilateral closure are good ap-
proximations of the integer hull Rf (r

1, . . . , rk) in the sense that

Theorem 1.6.

Rf (r
1, . . . , rk) ⊆ Tf (r

1, . . . , rk) ⊆ 2Rf (r
1, . . . , rk) and

Rf (r
1, . . . , rk) ⊆ Qf (r

1, . . . , rk) ⊆ 2Rf (r
1, . . . , rk).

Finally we show that the split closure may not be a good approximation of the integer
hull.

Theorem 1.7. For any α > 1, there is a choice of f , r1, . . . , rk such that
Sf (r

1, . . . , rk) 6⊆ αRf (r
1, . . . , rk).

These results provide additional support for the recent interest in cuts derived from two
or more rows of an integer program [1, 5, 7, 10, 11, 14].

2 Proof of Theorem 1.3

Proof. Let

α = max
i=1,...,m

{

bi
inf{aix : x ∈ P}

: bi > 0

}

.

We first show that P ⊆ αQ. This holds when α = +∞ by definition of αQ. Therefore we
may assume 1 ≤ α < +∞. Consider any point p ∈ P . The inequalities of αQ are of the form
αaix ≥ bi with ai ≥ 0 and bi ≥ 0. If bi = 0, then since p ∈ P ⊆ Rn

+, aip ≥ 0 and hence this
inequality is satisfied. If bi > 0, then we know from the definition of α that

bi
inf{aix : x ∈ P}

≤ α.
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This implies
bi ≤ α inf{aix : x ∈ P} ≤ αaip.

Therefore, p satisfies this inequality.
We next show that for any 1 ≤ α′ < α, P 6⊆ α′Q. Say α =

bj
inf{ajx : x∈P} (i.e. the

maximum, possibly +∞, is reached for index j). Let δ =
bj
α′ −

bj
α

. We have δ > 0. From the

definition of α we know that inf{ajx : x ∈ P} =
bj
α

. Therefore, there exists p ∈ P such

that ajp <
bj
α

+ δ =
bj
α′ . So α′ajp < bj and hence p 6∈ α′Q.

3 Split closure vs. triangle and quadrilateral closures

In this section, we present the proof of Theorem 1.4.

Proof. (Theorem 1.4). We show that if any point s̄ is cut off by a split inequality, then it is
also cut off by some triangle inequality.

Consider any split inequality
∑k

i=1 ψS(ri)si ≥ 1 (see Figure 3) and denote by L1 and
L2 its two boundary lines. Point f lies in some parallelogram of area 1 whose vertices
y1, y2, y3, and y4 are lattice points on the boundary of the split.

Assume without loss of generality that y1 and y2 are on L1. Consider the family T of
triangles whose edges are supported by L2 and by two lines passing through y1 and y2 and
whose interior contains the segment y1y2. See Figure 3. Note that all triangles in T are of
Type 2. For T ∈ T we will denote by ψT the minimal function associated with T .

L1

L2

f

y1

y2

Figure 3: Approximating a split inequality with a triangle inequality. The triangle is formed
by L2 and the two dashed lines

By assumption,
∑k

i=1 ψS(ri)s̄i < 1. Let ǫ = 1 −
∑k

i=1 ψS(ri)s̄i.
We now make the following simple observation.
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Observation 3.1. Given a finite set X of points that lie in the interior of the split S, we
can find a triangle T ∈ T as defined above, such that all points in X are in the interior of T .

Proof. Consider the convex hull C(X) of X. Since all points in X are in the interior of S,
so is C(X). This implies that the tangent lines from y1 and y2 to C(X) are not parallel to
L1. Two of these four tangent lines along with L2 of S form a triangle in T with X in its
interior.

Let smax = max{s̄i : i = 1 . . . , k} and define δ = ǫ
2·k·smax

> 0. For every ray ri define

c(ri) = ψS(ri) + δ. Therefore, by definition pi = 1
c(ri)

· ri is a point strictly in the interior of

S. Using Observation 3.1, there exists a triangle T ∈ T which contains all the points pi. It
follows that the coefficient ψT (ri) for any ray ri is less than or equal to c(ri).

We claim that for this triangle T we have
∑k

i=1 ψT (ri)s̄i < 1. Indeed,

k
∑

i=1

ψT (ri)s̄i ≤
k

∑

i=1

c(ri)s̄i

=

k
∑

i=1

(ψS(ri) + δ)s̄i =

k
∑

i=1

ψS(ri)s̄i +

k
∑

i=1

ǫ

2 · k · smax
s̄i

≤
k

∑

i=1

ψS(ri)s̄i +
ǫ

2
= 1 −

ǫ

2
< 1

The first inequality follows from the definition of c(ri) and the last equality follows from
the fact that

∑k
i=1 ψS(ri)s̄i = 1 − ǫ.

This shows that Tf (r
1, . . . , rk) ⊆ Sf (r

1, . . . , rk). For the quadrilateral closure, we also use
two lines passing through y3 and y4 on L2 and argue similarly.

4 Tools

Cornuéjols and Margot [7] characterized the facets of Rf (r
1, . . . , rk) as follows. Let Bψ be a

maximal lattice-free split, triangle or quadrilateral with f in its interior. For any j = 1, . . . , k
such that ψ(rj) > 0, let pj be the intersection of the half-line f + λrj, λ ≥ 0, with the
boundary of Bψ. The point pj is called the boundary point for rj. Let P be a set of boundary
points. We say that a point p ∈ P is active if it can have a positive coefficient in a convex
combination of points in P generating an integral point. Note that p ∈ P is active if and only
if p is integral or there exists q ∈ P such that the segment pq contains an integral point in its
interior. We say that an active point p ∈ P is uniquely active if it has a positive coefficient
in exactly one convex combination of points in P generating an integral point.

Apply the following Reduction Algorithm:

0.) Let P = {p1, . . . , pk}.

1.) While there exists p ∈ P such that p is active and p is a convex combination of other
points in P , remove p from P . At the end of this step, P contains at most two active
points on each edge of Bψ and all points of P are distinct.
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2.) While there exists a uniquely active p ∈ P , remove p from P .

3.) If P contains exactly two active points p and q (and possibly inactive points), remove
both p and q from P .

The ray condition holds for a triangle or a quadrilateral if P = ∅ at termination of the
Reduction Algorithm.

The ray condition holds for a split if, at termination of the Reduction Algorithm, either
P = ∅, or P = {p1, q1, p2, q2} with p1, q1 on one of the boundary lines and p2, q2 on the other
and both line segments p1q1 and p2q2 contain at least two integral points.

Theorem 4.1. (Cornuéjols and Margot [7]) The facets of Rf (r
1, . . . , rk) are

(i) split inequalities where the unbounded direction of Bψ is rj for some j = 1, . . . , k and
the line f + λrj contains no integral point; or where Bψ satisfies the ray condition,

(ii) triangle inequalities where the triangle Bψ has its corner points on three half-lines f+λrj

for some j = 1, . . . , k and λ > 0; or where the triangle Bψ satisfies the ray condition,

(iii) quadrilateral inequalities where the corners of Bψ are on four half-lines f+λrj for some
j = 1, . . . , k and λ > 0, and Bψ satisfies a certain ratio condition (the ratio condition
will not be needed in this paper; the interested reader is referred to [7] for details).

Note that the same facet may arise from different convex sets. For example quadrilaterals
for which the ray condition holds define facets, but there is always also a triangle that defines
the same facet, which is the reason why there is no mention of the ray condition in (iii) of
Theorem 4.1.

4.1 Reducing the number of rays in the analysis

The following technical theorem will be used in the proofs of Theorems 1.5, 1.6 and 1.7, where
we will be applying Theorem 1.3.

Theorem 4.2. Let B1, . . . , Bm be lattice-free convex sets with f in the interior of Bp, p =
1, . . . ,m. Let Rc ⊆ {1, . . . , k} be a subset of the ray indices such that for every ray rj with
j 6∈ Rc, r

j is the convex combination of some two rays in Rc. Define

z1 = min

k
∑

i=1

si

k
∑

i=1

ψBp(r
i)si ≥ 1 for p = 1, . . . ,m

s ≥ 0

and

zc = min
∑

i∈Rc

si

∑

i∈Rc

ψBp(r
i)si ≥ 1 for p = 1, . . . ,m

s ≥ 0 .
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Then z1 = zc.

Proof. Assume there exists j 6∈ Rc and r1, r2 are the rays in Rc such that rj = λr1 +(1−λ)r2

for some 0 < λ < 1. Let K = {1, . . . , k} − j and define

z2 = min
∑

i∈K
si

∑

i∈K
ψBp(r

i)si ≥ 1 for p = 1, . . . ,m

s ≥ 0 .

We first show that z1 = z2. Applying the same reasoning repeatedly to all the indices not in
Rc yields the proof of the theorem.

Any optimal solution for the LP defining z2 yields a feasible solution for the one defining
z1 by setting sj = 0, implying z1 ≤ z2. It remains to show that z1 ≥ z2.

Consider any point ŝ satisfying
∑k

i=1 ψBp(r
i)ŝi ≥ 1 for every p ∈ {1, . . . ,m}. Consider

the following values s̄ for the variables corresponding to the indices t ∈ K.

s̄t =







ŝt if t 6∈ {1, 2, j}
ŝ1 + λŝj if t = 1
ŝ2 + (1 − λ)ŝj if t = 2

One can check that
∑

i∈K
s̄i = ŝj +

∑

i∈K
ŝi .

By Theorem 1.2 ψBp is convex, thus ψBp(r
j) ≤ λψBp(r

1)+(1−λ)ψBp(r
2) for p = 1, . . . ,m.

It follows that
∑

i∈K ψBp(r
i)s̄i ≥ ψBp(r

j)ŝj +
∑

i∈K ψBp(r
i)ŝi =

∑k
i=1 ψBp(r

i)ŝi ≥ 1 for
p = 1, . . . ,m. Hence s̄ satisfies all the inequalities restricted to indices in K and has the same
objective value as ŝ. It follows that z1 ≥ z2.

5 Proof sketch for Theorems 1.5 and 1.6

In this section, we give a brief outline of the proofs of Theorems 1.5 and 1.6. A complete
proof will be given in Sections 6 and 7 respectively.

In Theorem 1.5, we need to analyze the optimization problem

inf

{

k
∑

i=1

ψ(ri)si : s ∈ Sf (r
1, . . . , rk)

}

, (4)

where ψ is the minimal function derived from the Type 1 triangle.
For Theorem 1.6, recall that all non trivial facet defining inequalities for Rf (r

1, . . . , rk) are
of the form ais ≥ 1 with ai ≥ 0. Therefore, Theorem 1.3 shows that to prove Theorem 1.6, we
need to consider all nontrivial facet defining inequalities and optimize in the direction ai over
the triangle closure Tf (r

1, . . . , rk) and the quadrilateral closure Qf (r
1, . . . , rk). This task is

made easier since all the non trivial facets of Rf (r
1, . . . , rk) are characterized in Theorem 4.1.

Moreover, Theorem 1.4 shows that we can ignore the facets defined by split inequalities.
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Formally, consider a maximal lattice-free triangle or quadrilateral B with associated mini-
mal function ψ that gives rise to a facet

∑k
j=1 ψ(rj)sj ≥ 1 of Rf (r

1, . . . , rk). We want to
investigate the following optimization problems:

min







k
∑

j=1

ψ(rj)sj : s ∈ Tf (r
1, . . . , rk)







(5)

and

min







k
∑

j=1

ψ(rj)sj : s ∈ Qf (r
1, . . . , rk)







(6)

We first observe that, without loss of generality, we can make the following simplifying
assumptions for problems (4), (5) and (6).

Assumption 5.1. Consider the objective function ψ in problems (4), (5) and (6). For every
j such that ψ(rj) > 0, the ray rj is such that the point f + rj is on the boundary of the
lattice-free set B generating ψ.

Indeed, this amounts to scaling the coefficient for the ray rj by a constant factor in every
inequality derived from all maximal lattice-free sets, including B. Therefore, this corresponds
to a simultaneous scaling of variable sj and corresponding coefficients in problems (4), (5) and
(6). This does not change the optimal values of these problems. Moreover, Cornuéjols and
Margot [7] show that the equations of all edges of triangles of Type 1, 2, or 3, of quadrilaterals
and the direction of all splits generating facets of Rf (r

1, . . . , rk) are rational. This implies
that the scaling factor for ray rj is a rational number and that the scaled ray is rational too.

As a consequence, we can assume that the objective function of problems (4),(5) or (6)
is

∑k
j=1 sj ≥ 1.

When Bψ is a triangle or quadrilateral and f is in its interior, define a corner ray to be
a ray r such that f + λr is a corner of Bψ for some λ > 0.

Remark 5.2. If {r1, . . . , rk} contains the corner rays of the convex set defining the objective
functions of (4),(5) or (6), then Assumption 5.1 implies that the hypotheses of Theorem 4.2
are satisfied. Therefore, when analyzing (4),(5) or (6), we can assume that {r1, . . . , rk} is
exactly the set of corner rays.

6 Type 1 triangle and the split closure

In this section, we present the proof of Theorem 1.5.
Consider any Type 1 triangle T with integral vertices xj , for j = 1, 2, 3, and one integral

point yj for j = 1, 2, 3 in the interior of each edge. We want to study the optimization
problem (4). Recall that Remark 5.2 says that we only need to consider the case with three
corner rays r1, r2 and r3.

We compute the exact value of
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zSPLIT = min
3

∑

j=1

sj

3
∑

j=1

ψ(rj)sj ≥ 1 for all splits Bψ

s ∈ R3
+.

(7)

Observe that, using an affine transformation, T can be made to have one horizontal edge
x1x2 and one vertical edge x1x3, as shown in Figure 2. Without loss of generality, we place
the origin at point x1.

We distinguish two cases depending on the position of f in the interior of triangle T :
f is in the inner triangle TI with vertices y1 = (1, 1), y2 = (0, 1) and y3 = (1, 0); and
f ∈ int(T ) \ TI . We show that zSPLIT = 1

2 when f is in the inner triangle TI and that
zSPLIT increases linearly from 1

2 when f is at the boundary of TI to 2
3 at the corners of the

triangle T when f ∈ int(T )\TI . See the right part of Figure 2 for some level curves of zSPLIT
as a function of the position of f in T . By a symmetry argument, it is sufficient to consider
the inner triangle TI and the corner triangle TC defined by f1 + f2 ≤ 1, f1, f2 ≥ 0.

Theorem 6.1. Let T be a triangle with integral vertices, say (0, 0), (0, 2) and (2, 0). Then

(i) zSPLIT = 1
2 when f is interior to the triangle with vertices (1, 0), (0, 1) and (1, 1).

(ii) zSPLIT = 1 − 1
3−f1−f2 when f = (f1, f2) is interior to the corner triangle f1 + f2 ≤ 1,

f1, f2 ≥ 0. The value of zSPLIT when f is in the other corner triangles follows by
symmetry.

To prove this theorem, we show that the split closure is completely defined by only three
split inequalities. In other words, all other split inequalities are dominated by these three
split inequalities.

Define S1 as the convex set 1 ≤ x1 + x2 ≤ 2, S2 as the convex set 0 ≤ x1 ≤ 1 and S3 as
the convex set 0 ≤ x2 ≤ 1. Define Split 1 (resp. Split 2, Split3) to be the inequality obtained
from S1 (resp. S2, S3).

Let S be a split inequality with f in the interior of S. The shores of S are the two
half-planes containing the points not in the interior of S.

Lemma 6.2. Let A, B, and C be three points on a line, with B between A and C and let S
be a split. If A and C are not in the interior of S but B is, then A and C are on opposite
shores of S.

Proof. If A and C are on the same shore W of S then, by convexity of W , the segment AC
is completely in W , a contradiction.

Lemma 6.3. If f is in the interior of the triangle TI with vertices (0, 1), (1, 0) and (1, 1),
then the split closure is defined by Split 1, Split 2 and Split 3.

11



z1 z2
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r1
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x2

x3

y1y2

y3

Figure 4: Illustration for the proof of Lemma 6.3

Proof. Let S be a split defining an inequality that is not dominated by either of Split 1, Split
2, or Split 3. Let L1 and L2 be the two parallel lines bounding S. For i = 1, 2, 3, let zi (resp.
wi) be the boundary point for ri on the boundary of TI (resp. S) (see Figure 4). (Note that
since xi = f + ri is integer, these points exist.) Observe that if z1 is not in the interior of
S, then the inequality obtained from S is dominated by Split 1, since the three boundary
points w1, w2, w3 are closer to f than the corresponding three boundary points z1, x2, x3 for
the three rays on the boundary of S1. A similar observation holds for z2 and Split 2 and for
z3 and Split 3, yielding that z2 and z3 are also in the interior of S.

Since the points y1, y2 and y3 are integer, they are not in the interior of S. Applying
Lemma 6.2 to y1, z3, y2, we have that y1 and y2 are on opposite shores of S. Now, y3 is in
one of the two shores of S. Assume without loss of generality that it is on the same shore as
y1. Applying Lemma 6.2 to y1, z2, y3, we have that y1 and y3 are on opposite shores of S, a
contradiction.

Lemma 6.4. If f is in the interior of the triangle TI with vertices (0, 1), (1, 0) and (1, 1),
then zSPLIT = 1

2 .

Proof. By Lemma 6.3, zSPLIT is given by

zSPLIT = min

k
∑

j=1

sj

k
∑

j=1

ψi(r
j)sj ≥ 1 for i = 1, 2, 3

s ∈ Rk
+

(8)

where ψi(r
j) is the coefficient of sj in Split i, for i = 1, 2, 3. Let f = (f1, f2). The coeffi-

cient of sj in the split inequality can be computed from the boundary point for rj with the
corresponding split. For example, the boundary points for r2 and r3 with S1 are the integer
points x2 and x3. This implies that ψ1(r

2) = ψ1(r
3) = 1. On the other hand, the boundary

point for r1 is the point t =
(

f1
f1+f2

, f2
f1+f2

)

. The length of r1 divided by the length of the

segment ft determines the coefficient ψ1(r
1) of s1 (This follows from the homogeneity of ψ1

12



and the fact that ψ1(t− f) = 1 since t is on the boundary of S1). We get ψ1(r
1) = f1+f2

f1+f2−1 .
Repeating this for S2 and S3, we get that zSPLIT is the optimal value of the following linear
program.

zSPLIT = min s1 +s2 +s3
f1+f2
f1+f2−1s1 +s2 +s3 ≥ 1

s1 +2−f1
1−f1 s2 +s3 ≥ 1

s1 +s2 +2−f2
1−f2 s3 ≥ 1

s ≥ 0.

(9)

Its optimal solution is s1 = f1+f2−1
2 , s2 = 1−f1

2 , s3 = 1−f2
2 with value zSPLIT = s0 + s1 +

s2 = 1
2 . To verify that this solution is optimal, note that the dual of (9) is

zSPLIT = max z1 +z2 +z3
f1+f2
f1+f2−1z1 +z2 +z3 ≤ 1

z1 +2−f1
1−f1 z2 +z3 ≤ 1

z1 +z2 +2−f2
1−f2 z3 ≤ 1

z ≥ 0,

(10)

with optimal solution z1 = f1+f2−1
2 , z2 = 1−f1

2 , z3 = 1−f2
2 , with value 1

2 .

Now we prove the second part of the theorem, when f is interior to the corner triangle
with vertices (0, 0), (1, 0) and (0, 1) or an inner point on the segment y2y3.

Lemma 6.5. If f is in the interior of the triangle with vertices (0, 0), (0, 1) and (1, 0), or an
inner point on the segment joining (0, 1) to (1, 0), then the split closure is defined by Split 2
and Split 3.

Proof. Let S be a split defining a split inequality that is not dominated by either of Split 2,
or Split 3. Let L1 and L2 be the two parallel lines bounding S. Let z2 be the intersection
of r2 with y1y3 and let z3 be the intersection of r3 with y1y2. For i = 1, 2, 3, let wi be the
intersection of ri with either L1 or L2. (Note that since xi is integer, ri has to intersect one
of the two lines.) Observe that if z2 is not in the interior of S, then the inequality obtained
from S is dominated by Split 2, since the three intersections w1, w2, w3 are closer to f than
the corresponding three intersections x1, z2, x3 for S2. A similar observation holds for z3 and
S3, yielding that z3 is also in the interior of S.

Since the points y1, y2 and y3 are integer, they are not in the interior of S. Applying
Lemma 6.2 to y1, z3, y2, we have that y1 and y2 are on opposite shores of S. Applying
Lemma 6.2 to y1, z2, y3, we have that y1 and y3 are on opposite shores of S. It follows that
y2 and y3 are on the same shore W of S and thus the whole segment y2y3 is not in W . This is
a contradiction with the fact that both f and z3 are in the interior of S, as the two segments
y2y3 and fz3 intersect.

Lemma 6.6. If f = (f1, f2) is in the interior of the triangle with vertices (0, 0), (0, 1) and
(1, 0), or an inner point on the segment joining (0, 1) to (1, 0), then zSPLIT = 1 − 1

3−f1−f2 .

13



Proof. The optimal solution of the LP

zSPLIT = min s1 +s2 +s3
s1 +2−f1

1−f1 s2 +s3 ≥ 1

s1 +s2 +2−f2
1−f2 s3 ≥ 1

s ≥ 0.

(11)

is s1 = 0, s2 = 1−f1
3−f1−f2 , s3 = 1−f2

3−f1−f2 .

This completes the proof of Theorem 6.1. This theorem in conjunction with Theorem 1.3
implies that including all Type 1 triangle facets can improve upon the split closure only by
a factor of 2.

Corollary 6.7. Let F be the family of all facet defining inequalities arising from Type 1
triangles. Define

S̄f = Sf (r
1, . . . , rk) ∩

{

k
∑

i=1

ψ(ri)si ≥ 1 : ψ in F

}

.

Then S̄f ⊆ Sf (r
1 . . . , rk) ⊆ 2S̄f .

7 Integer hull vs. triangle and quadrilateral closures

In this section we present the proof of Theorem 1.6. We show that the triangle closure
Tf (r

1, . . . , rk) and the quadrilateral closure Qf (r
1, . . . , rk) both approximate the integer hull

Rf (r
1, . . . , rk) to within a factor of two. As outlined in Section 5, we can show this by taking a

facet of Rf (r
1, . . . , rk), and optimizing in that direction over Tf (r

1, . . . , rk) or Qf (r
1, . . . , rk).

As noted in that section, we need to analyze the optimization problems (5) and (6).

7.1 Approximating the integer hull by the triangle closure

Theorem 1.4 shows that we can ignore the facets defined by split inequalities. We only need to
consider facets of Rf (r

1, . . . , rk) derived from quadrilaterals to obtain the objective function
of problem (5). We prove the following result.

Theorem 7.1. Let Q be a maximal lattice-free quadrilateral with corresponding minimal

function ψ and generating a facet

k
∑

i=1

ψ(ri)si ≥ 1 of Rf (r
1, . . . , rk). Then

min

{

k
∑

i=1

ψ(ri)si : s ∈ Tf (r
1, . . . , rk)

}

≥
1

2
.

Proof. The theorem holds if the facet defining inequality can also be obtained as a triangle
inequality. Therefore by Theorem 4.1, we may assume that rays r1, . . . r4 are the corners rays
of Q (See Figure 5). We remind the reader of Remark 5.2, showing that we can assume that
k = 4 and that the four rays are exactly the corner rays of Q.
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By an affine transformation, we may further assume that the four integral points on the
boundary of Q are (0, 0), (1, 0), (1, 1), (0, 1). Moreover, by symmetry, we may assume that
the fractional point f satisfies f1 ≤ 1

2 and f2 ≤ 1
2 as rotating this region about (1

2 ,
1
2) by

multiples of π
2 covers the entire quadrilateral. Note that f1 < 0 and f2 < 0 are possible.

We relax Problem (5) by keeping only two of the triangle inequalities, defined by triangles
T1 and T2. T1 has corner f + r4 and edges supported by the two edges of Q incident with
that corner and by the line x = 1. T2 has corner f + r1 and edges supported by the two
edges of Q incident with that corner and by the line y = 1. The two triangles are depicted
in dashed lines in Figure 5.

f

r1

r2
r3

r4

(γ, δ)

(α, β)

f2 ≤
1
2

f1 ≤
1
2

Figure 5: Approximating a quadrilateral inequality with triangle inequalities

Thus, Problem (5) can be relaxed to the LP

min s1 + s2 + s3 + s4
4

∑

i=1

ψT1
(ri)si ≥ 1 (Triangle T1)

4
∑

i=1

ψT2
(ri)si ≥ 1 (Triangle T2)

s ∈ R4
+.

(12)

Let (α, β) = f + r2 and (γ, δ) = f + r3. Computing the coefficients ψT1
(r2) and ψT2

(r3),
LP (12) becomes
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min s1 + s2 + s3 + s4

s1 +
α− f1

1 − f1
s2 + s3 + s4 ≥ 1 (T1)

s1 + s2 +
δ − f2

1 − f2
s3 + s4 ≥ 1 (T2)

s ∈ R4
+.

(13)

Using the equation of the edge of Q connecting f + r2 and f + r3, we can find bounds on
ψT1

(r2) and ψT2
(r3). The edge has equation x1

1
t
+ t−1

t
x2 = 1 for some 1 < t <∞. Therefore

α ≤ t and δ ≤ t
t−1 . Using these two inequalities together with f1 ≤ 1

2 and f2 ≤ 1
2 we get

α− f1

1 − f1
=

α− 1

1 − f1
+ 1 ≤ 2(t− 1) + 1 = 2t− 1 and

δ − f2

1 − f2
≤ 2

t

t− 1
− 1 .

Using these bounds, we obtain the relaxation of LP (13)

min s1 + s2 + s3 + s4

s1 + (2t− 1)s2 + s3 + s4 ≥ 1 (T1)

s1 + s2 + (2
t

t− 1
− 1)s3 + s4 ≥ 1 (T2)

s ∈ R4
+.

(14)

Set λ = 2t − 1 and µ = 2 t
t−1 − 1. Then t > 1 implies λ > 1 and µ > 1. The optimal

solution of the above LP is s1 = s4 = 0, s2 = µ−1
λµ−1 and s3 = λ−1

λµ−1 with value

s1 + s2 + s3 + s4 =
λ+ µ− 2

λµ− 1
=
t2 − 2t+ 2

t2
.

To find the minimum of this expression for t > 1, we set its derivative to 0, and get the
solution t = 2. Thus the minimum value of s1 + s2 + s3 + s4 is equal to 1

2 .

7.2 Approximating the integer hull by the quadrilateral closure

In this section, we study Problem (6). Theorem 1.4 shows that we can ignore the facets
defined by split inequalities. Moreover, we can approximate the facets derived from Type 1
and Type 2 triangles using quadrilaterals in a similar manner as the splits were approximated
by triangles and quadrilaterals. See Figure 6. We again define the set X of points which
lies strictly inside the Type 1 or Type 2 triangle, similarly to Observation 3.1. Then we can
find quadrilaterals as shown in Figure 6 that contain the set X. The proof goes through in
exactly the same manner.

However triangles of Type 3 pose a problem. They cannot be approximated to any desired
precision by a sequence of quadrilaterals.

In this section, we work under Assumption 5.1. By Theorem 4.1, a Type 3 triangle T
defines a facet if and only if either the ray condition holds, or all three corner rays are present.
First we consider the case where the ray condition holds.
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f

f

Type 1 Type 2 Type 3

Figure 6: Approximating a triangle inequality with a quadrilateral inequality

Theorem 7.2. Let T be a triangle of Type 3 with corresponding minimal function ψT defining
a facet of Rf (r

1, . . . , rk). If the ray condition holds for T then Problem (6) has optimal value
1.

Proof. We first prove that if the ray condition holds the points pj = f +rj are integral points
on the boundary of T , for j = 1, . . . , k.

For i = 1, 2, 3, let Pi be the set of points left at the end of Step i of the Reduction
Algorithm given in Section 4. Each pj ∈ P1 with pj integral is uniquely active and is removed
during Step 2 of the Reduction Algorithm. Hence, all points in P2 are non-integral. Observe
that Step 3 can only remove boundary points p and q when the segment pq contains at least
two integral points in its relative interior. Therefore this step does not remove anything in a
Type 3 triangle and P3 = P2.

Since the ray condition holds, we have P3 = P2 = ∅ and P1 contains only integral points.
But then P1 = P , showing that all boundary points at the beginning of the Reduction
Algorithm are integral.

It is then straightforward to construct a maximal lattice-free quadrilateral Q with pj,
j = 1, . . . , k on its boundary, and containing f in its interior. It follows that the value of
Problem (6) is equal to 1.

We now consider the case where T is a Type 3 triangle with the three corner rays present.
In this case, we can approximate the facet obtained from T to within a factor of two by
using inequalities derived from triangles of Type 2. Define another relaxation T̄f (r

1, . . . , rk)
as the convex set defined by the intersection of the inequalities derived only from Type 1 and
Type 2 triangles. By definition, Tf (r

1, . . . , rk) ⊆ T̄f (r
1, . . . , rk). From the discussion at the

beginning of this section, we also know Qf (r
1, . . . , rk) ⊆ T̄f (r

1, . . . , rk). Hence (6) can be
relaxed to

min

{

k
∑

i=1

ψ(ri)si : s ∈ T̄f (r
1, . . . , rk)

}

. (15)
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Theorem 7.3. Let T be a triangle of Type 3 with corresponding minimal function ψ and

generating a facet
k

∑

i=1

ψ(ri)si ≥ 1 of Rf (r
1, . . . , rk). Then,

min
{

ψ(ri)si : s ∈ T̄f (r
1, . . . , rk)

}

≥
1

2
.

This theorem implies directly the following corollary.

Corollary 7.4. Qf (r
1, . . . , rk) ⊆ 2Rf (r

1, . . . , rk).

Proof of Theorem 7.3. We first make an affine transformation to simplify computations. Let
y1, y2, y3 be the three lattice points on the sides of T . We choose the transformation such
that the two following properties are satisfied.

(i) The standard lattice is mapped to the lattice generated by the vectors v1 = (1, 0) and

v2 = (1
2 ,

√
3

2 ), i.e. all points of the form z1v
1 + z2v

2, where z1, z2 are integers.

(ii) y1, y2, y3 are respectively mapped to (0, 0), (1, 0), (0, 1) in the above lattice.

We use the basis v1, v2 for R2 for all calculations and equations in the remainder of the
proof. See Figure 7.

(0, 0) (1, 0)

(0, 1)

v1

v2

f2 ≤
1
2

f1 ≤
1
2

T1

T2

r1

r2

r3

Figure 7: Approximating a Type 3 triangle inequality with Type 2 triangle inequalities. The

Type 3 triangle is in solid lines. The basis vectors are v1 = (1, 0) and v2 = (1
2 ,

√
3

2 )

With this transformation, we can get a simple characterization for the Type 3 triangles.
(See Figure 7 for an example.) We make the following claim about the relative orientations
of the three sides of the Type 3 triangle.

Lemma 7.5. Let F be the family of triangles formed by three lines given by:

Line 1 : −
x1

t1
+ x2 = 1 with 0 < t1 <∞ ;

Line 2 : t2 x1 + x2 = 0 with 0 < t2 < 1 ;

Line 3 : x1 +
x2

t3
= 1 with 1 < t3 <∞ .
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Any Type 3 triangle is either a triangle from F or a reflection of a triangle from F about
the line x1 = x2.

Proof. Take any Type 3 triangle T . Consider the edge passing through (1, 0). Since it cannot
go through the interior of the equilateral triangle (0, 0), (0, 1), (1, 0), there are only two choices
for its orientation : a) It can go through the segment (0, 1), (1, 1), or b) It can go through
the segment (0, 0), (1,−1).

In the first case its equation is that of Line 3. This now forces the edge of T passing
through (0, 0) to have the equation for Line 2. This is because the only other possibility
for this edge would be for the line to pass through the segment (−1, 1), (0, 1). But then the
lattice point (1,−1) is included in the interior of the triangle. Similarly, the third edge must
now have Line 1’s equation, because (−1, 1) needs to be excluded from the interior.

Case b) can be mapped to Case a) by a reflection about the line x1 = x2.

Remark 7.6. We can choose any values for t1, t2, t3 independently in the prescribed ranges,
and we get a lattice free triangle. This observation shows that the family F defined above is
exactly the family of all Type 3 triangles modulo an affine transformation.

We now show how to bound Problem (15) and hence prove Theorem 1.7.
Consider any Type 3 triangle T . It is sufficient to consider the case where the lines

supporting the edges of T have equations as stated in the Lemma 7.5.
We consider two cases for the position of the fractional point f = (f1, f2).

(i) f1 ≤ 1
2 , f2 ≤ 1

2 ;

(ii) f1 ≤ 0, f1 + f2 ≤ 1
2 .

The two regions described above when rotated by 2π/3 and 4π/3 about the point (1
2 ,

1
2),

cover all of T . By rotational symmetry, investigating these two cases is enough.
For the first case, we relax Problem (15) by using only two inequalities from T̄f (r

1, . . . , rk).
These are derived from Type 2 triangles T1 and T2 (See Figure 7), which are defined as follows.
T1 has Line 1 and Line 2 supporting two of its edges and x1 = 1 supporting the third one
(with more than one integral point). T2 has Line 2 and Line 3 supporting two of its edges
and x2 = 1 supporting the third one (with more than one integral point). Let ψT1

and ψT2

be the corresponding minimal functions derived from T1 and T2.
The following LP is a relaxation of Problem (15).

min
k

∑

i=1

si

k
∑

i=1

ψT1
(ri)si ≥ 1 (Triangle T1)

k
∑

i=1

ψT2
(ri)si ≥ 1 (Triangle T2)

s ∈ Rk
+.

(16)

Theorem 4.2 and Remark 5.2 imply that LP (16) is equivalent to
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min s1 + s2 + s3
ψT1

(r1)s1 + ψT1
(r2)s2 + ψT1

(r3)s3 ≥ 1 (Triangle T1)
ψT2

(r1)s1 + ψT2
(r2)s2 + ψT2

(r3)s3 ≥ 1 (Triangle T2)
s ∈ R3

+.

(17)

where r1, r2 and r3 are the three corner rays (See Figure 7).
We now show that this LP has an optimal value of at least 1

2 .
Note that ψT1

(r2) = ψT1
(r3) = 1. ψT1

(r1) needs to be computed. First we compute r1

and r2 in terms of t1, t2, t3, f1 and f2.
The intersection of Line 2 and Line 3 is given by

(

t3
t3 − t2

,
−t2t3
t3 − t2

)

and thus r1 =

(

t3
t3 − t2

,
−t2t3
t3 − t2

)

− (f1, f2) .

As ψT1
(r1) = 1

γ
where γ is such that (f1, f2) + γr1 lies on the line x1 = 1, we get

ψT1
(r1) =

t3
t3−t2 − f1

1 − f1
.

Similarly, we only need ψT2
(r2) as ψT2

(r1) = ψT2
(r3) = 1. The intersection of Line 1 and

Line 3 is

t1(t3 − 1)

1 + t1t3
,
t3(t1 + 1)

1 + t1t3
and thus r2 =

(

t1(t3 − 1)

1 + t1t3
,
t3(t1 + 1)

1 + t1t3

)

− (f1, f2) .

Computing the coefficient like before, we get

ψT2
(r2) =

t3(t1+1)
1+t1t3

− f2

1 − f2
.

Hence LP (17) becomes

min s1 + s2 + s3
t3

t3−t2 − f1

1 − f1
s1 + s2 + s3 ≥ 1 (Triangle T1)

s1 +

t3(t1+1)
1+t1t3

− f2

1 − f2
s2 + s3 ≥ 1 (Triangle T2)

s ∈ R3
+.

(18)

As
t3

t3−t2 − f1

1 − f1
=

t3
t3−t2 − 1

1 − f1
+ 1 ,

the assumptions f1 ≤ 1
2 and t2 < 1 yield

t3
t3−t2 − 1

1 − f1
+ 1 ≤ 2

t3
t3 − 1

− 1 .
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Similarly,
t3(t1+1)
1+t1t3

− f2

1 − f2
=

t3(t1+1)
1+t1t3

− 1

1 − f2
+ 1

and the assumption f2 ≤ 1
2 gives

t3(t1+1)
1+t1t3

− 1

1 − f2
+ 1 ≤ 2

t3(t1 + 1)

1 + t1t3
− 1 = 2

t3 − 1

1 + t1t3
+ 1 .

Under the assumption t1 > 0, we obtain 2 t3−1
1+t1t3

+ 1 ≤ 2t3 − 1.
To get a lower bound on (18), we thus can relax its constraints to

min s1 + s2 + s3

(2
t3

t3 − 1
− 1)s1 + s2 + s3 ≥ 1 (Triangle T1)

s1 + (2t3 − 1)s2 + s3 ≥ 1 (Triangle T2)

s ∈ R3
+.

(19)

Set λ = 2t3 − 1 and µ = 2 t3
t3−1 − 1. Then t3 > 1 implies λ > 1 and µ > 1. The optimal

solution of LP (19) is s1 = λ−1
λµ−1 , s2 = µ−1

λµ−1 and s3 = 0 with value

s1 + s2 + s3 =
λ+ µ− 2

λµ− 1
=
t23 − 2t3 + 2

t23
.

To find the minimum over all t3 > 1, we set the derivative to 0, which gives the solution
t3 = 2. Thus the minimum value of s1 + s2 + s3 is 1

2 .

Next we consider f1 ≤ 0 and f1+f2 ≤ 1
2 , the shaded region in Figure 8. We relax Problem

(15) using only two inequalities. We take T1 as before, but T2 is the triangle formed by the
following three lines : Line 2 from Lemma 7.5, line parallel to Line 1 from Lemma 7.5 but
passing through (−1, 1) and the line passing through (1, 0), (0, 1).

As in the previous case, we formulate the relaxation as an LP with constraints corre-
sponding to T1 and T2. The only difference from LP (17) is the coefficient ψT2

(r2). This time
the point (f1, f2) + γr2 lies on the line x1 + x2 = 1 (recall that ψT2

(r2) = 1
γ
). This gives us

ψT2
(r2) =

2t1t3+t3−t1
1+t1t3

− f1 − f2

1 − f1 − f2
.

We then have the following LP.

min s1 + s2 + s3
t3

t3−t2 − f1

1 − f1
s1 + s2 + s3 ≥ 1 (Triangle T1)

s1 +

2t1t3+t3−t1
1+t1t3

− f1 − f2

1 − f1 − f2
s2 + s3 ≥ 1 (Triangle T2)

s ∈ R3
+.

(20)
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(−1, 1)

f1 + f2 ≤
1
2

f1 ≤ 0

(0, 0) (1, 0)

(0, 1)
T1

T2

r1

r2

r3

Figure 8: Approximating a Type 3 triangle inequality with Type 2 triangles inequalities -
Case 2

We simplify the coefficients as earlier :

t3
t3−t2 − f1

1 − f1
= 1 +

t3
t3−t2 − 1

1 − f1
and

2t1t3+t3−t1
1+t1t3

− f1 − f2

1 − f1 − f2
= 1 +

2t1t3+t3−t1
1+t1t3

− 1

1 − f1 − f2
.

Using the assumptions f1 ≤ 0, f1 + f2 ≤ 1
2 , we get that

1 +

t3
t3−t2 − 1

1 − f1
≤

t3
t3 − t2

and 1 +

2t1t3+t3−t1
1+t1t3

− 1

1 − f1 − f2
≤ 2(

2t1t3 + t3 − t1
1 + t1t3

) − 1 .

We also have the conditions t2 < 1 and t1 > 0. t2 < 1 implies t3
t3−t2 ≤ t3

t3−1 . Moreover

2

(

2t1t3 + t3 − t1
1 + t1t3

)

− 1 = 2

(

2 +
t3 − t1 − 2

1 + t1t3

)

− 1

decreases in value as t1 increases. Its maximum value is less than the value for t1 = 0,
because of the condition t1 > 0. It follows that 2(2t1t3+t3−t1

1+t1t3
) − 1 ≤ 2t3 − 1. After putting

these relaxations into the constraints of LP (20), we get

min s1 + s2 + s3

t3
t3 − 1

s1 + s2 + s3 ≥ 1 (Triangle T1)

s1 + (2t3 − 1)s2 + s3 ≥ 1 (Triangle T2)
s ∈ R3

+.

(21)

The optimal solution of LP (21) is

s3 = 0, s1 =
2(t3 − 1)2

2t23 − 2t3 + 1
, s2 =

1

2t23 − 2t3 + 1
, and s1 + s2 + s3 =

2t23 − 4t3 + 3

2t23 − 2t3 + 1
.

22



Under the condition t3 > 1, the minimum value of s1 + s2 + s3 is achieved for t3 = 1.70711
with value 0.586 > 1

2 .

8 Split closure vs. a single triangle or quadrilateral inequality

In this section, we prove Theorem 1.7.
This is done by showing that there exist examples of integer programs (1) where the gap

between the split closure Sf (r
1, . . . , rk) and a single triangle or quadrilateral inequality can

be arbitrarily large. We give such examples for facets derived from triangles of Type 2 and
Type 3, and from quadrilaterals.

These examples have the property that the point f lies in the relative interior of a segment
joining two integral points at distance 1.

Furthermore, in these examples, the rays end on the boundary of the triangle or quadri-
lateral and hence the facet corresponding to it is of the form

∑k
j=1 sj ≥ 1. We show that the

following LP has optimal value much less than 1.

zSPLIT = min
k

∑

j=1

sj

k
∑

j=1

ψ(rj)sj ≥ 1 for all splits Bψ

s ∈ Rk
+.

(22)

Theorem 1.3 then implies Theorem 1.7.
A key step in the proof is a method for constructing a polyhedron contained in the split

closure (Lemma 8.3). The resulting LP implies an upper bound on zSPLIT . We then give a
family of examples showing that this upper bound can be arbitrarily close to 0. We start the
proof with an easy lemma.

8.1 An easy lemma

Refer to Figure 9 for an illustration of the following lemma.

Lemma 8.1. Let r1 and r2 be two rays that are not multiples of each others and let H1

and H2 be the half-lines generated by nonnegative multiples of r1 and r2 respectively. Let
p := k1 r

1 + k2 r
2 with k1, k2 > 0. Let L1, L2, and L3 be three distinct lines going through p

such that each of the lines intersect both H1 and H2 at points other than the origin. Let dij be
the distance from the origin to the intersection of line Li with the half-line Hj for i = 1, 2, 3
and j = 1, 2. Assume that d11 < d21 < d31. Then there exists 0 < λ < 1 such that

1

d21
= λ

1

d11
+ (1 − λ)

1

d31
and

1

d22
= λ

1

d12
+ (1 − λ)

1

d32
.

Proof. Let ui be a unit vector in the direction of ri for i = 1, 2. Using {u1, u2} as a base of
R2, for i = 1, 2, 3, Li has equation

1

di1
x1 +

1

di2
x2 = 1
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p

Figure 9: Illustration for Lemma 8.1

As L2 is a convex combination of L1 and L3, there exists 0 < λ < 1 such that λL1+(1−λ)L3 =
L2. The result follows.

Corollary 8.2. In the situation of Lemma 8.1, let L4 be a line parallel to r1 going through
p. Let d42 be the distance between the origin and the intersection of H2 with L4. Then there
exists 0 < λ < 1 such that

1

d21
= λ

1

d11
and

1

d22
= λ

1

d12
+ (1 − λ)

1

d42
.

Proof. Similar to the proof of Lemma 8.1.

(−1, t1)

(1, t2)

(−1, t3) S1

S2

S3

f

y1

y2

Figure 10: Dominating the Split closure with pseudo-splits
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8.2 A polyhedron contained in the split closure

Our examples for proving Theorem 1.7 have the property that the point f lies in the relative
interior of a segment joining two integral points y1, y2 at distance 1.

To obtain an upper bound on the value zSPLIT of the split closure, we define some
inequalities which dominate the split closure (22). A pseudo-split is the convex set between
two distinct parallel lines passing through y1 and y2 respectively. The direction of the lines,
called direction of the pseudo-split, is a parameter. Figure 10 illustrates three pseudo-splits
in the directions of three rays. The pseudo-split inequality is derived from a pseudo-split
exactly in the same way as from any maximal lattice-free convex set. Note that pseudo-splits
are in general not lattice-free and hence do not generate valid inequalities for Rf (r

1, . . . rk).
However, we can dominate any split inequality cutting f by an inequality derived from these
convex sets. Indeed, consider any split S containing the fractional point f in its interior.
Since f lies on the segment y1y2, both boundary lines of S pass through the segment y1y2.
The pseudo-split with direction identical to the direction of S generates an inequality that
dominates the split inequality derived from S, as the coefficient for any ray is smaller in the
pseudo-split inequality.

The next lemma states that we can dominate the split closure by using only the inequalities
generated by the pseudo-splits with direction parallel to the rays r1, . . . , rk assuming mild
conditions on the rays and f . We say that vectors in a given set are not pairwise collinear if
no two of them are multiple of each other.

Lemma 8.3. Assume that none of the rays r1, . . . , rk has a zero first component and that at
least three of them are not pairwise collinear. Assume also that f = (0, f2) with 0 < f2 < 1.
Let y1 = (0, 1) and y2 = (0, 0), these two points being used to construct pseudo-splits. Let
S1, . . . , Sk be the pseudo-splits in the directions of rays r1, . . . , rk and denote the corresponding
minimal functions by ψS1

, . . . , ψSk
. Let S be any split with f in its interior and let S′ be

the corresponding pseudo-split. Then the inequality
∑k

j=1 ψS′(rj)sj ≥ 1 corresponding to

S′ is dominated by a convex combination of the inequalities
∑k

j=1 ψSi
(rj)sj, i = 1, . . . , k.

Therefore, the split inequality corresponding to S is dominated by a convex combination of
the inequalities corresponding to ψS1

, . . . , ψSk
.

Proof. As a convention, the direction of a pseudo-split forms an angle with the x1-axis in the
range of ] − π

2 ,
π
2 [. Without loss of generality, assume that the slope of the directions of the

pseudo-splits corresponding to the rays r1, . . . rk are monotonically non increasing. We can
assume that the direction of S′ is different than the direction of any of the rays in {r1, . . . , rk}
as otherwise the result trivially holds.

First note that, if S′ has a direction with slope greater than the slope of r1, then the
inequality generated by S′ is dominated by the one generated by S1. Indeed, any ray rj

having a slope smaller than r1 has its boundary point for S′ closer to f than the one for S1.
It follows that ψS′(rj) ≥ ψS1

(rj). See Figure 11. A similar reasoning holds for the case where
S′ has a direction with slope smaller than the slope of rk.

Thus we only have to consider the case where the slope of the direction of S′ is strictly
between the slopes of the directions of Si and Si+1, for some 1 ≤ i ≤ k − 1. We claim the
following.
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Figure 11: Bounding the split closure with a finite number of pseudo-splits

Observation 8.4. There exists a 0 < λ < 1 such that ψS′(r) = λψSi
(r) + (1 − λ)ψSi+1

(r)
for every ray r ∈ {r1, . . . , rk}.

Proof. For each pseudo-split S ∈ {S′, Si, Si+1}, we denote by LS1 its boundary line passing
though (0, 1) and by LS2 its boundary line passing through (0, 0).

Consider first any ray rj with j < i and let Lr
j

be the half-line f + µrj, µ ≥ 0. We have
that Lr

j

has a slope greater than the slope of the direction of Si and thus Lr
j

intersects the
boundaries of S′, Si and Si+1 on LS

′

1 , L
Si+1

1 and LSi

1 . By Lemma 8.1, there exists a 0 < λ1 < 1
such that, for all r ∈ {r1, . . . , ri−1}

ψS′(r) = λ1ψSi
(r) + (1 − λ1)ψSi+1

(r) . (23)

By Corollary 8.2, equation (23) also holds for r = ri.

Using a similar reasoning for the rays {ri+1, . . . , rk} and the boundary lines LS
′

2 , L
Si+1

2

and LSi

2 , there exists a 0 < λ2 < 1 such that, for all r ∈ {ri+1, . . . , rk}

ψS′(r) = λ2ψSi
(r) + (1 − λ2)ψSi+1

(r) . (24)

It remains to show that λ1 = λ2. Consider any ray rj that is not collinear with ri or ri+1

and let L be the line passing through f with direction rj. For each S ∈ {S′, Si, Si+1}, let zS1
(resp. zS2 ) be the intersection of L with LS1 (resp. LS2 ) and let dS1 (resp. dS2 ) be the distance
from f to zS1 (resp. zS2 ). See Figure 11. By Lemma 8.1

1

dS
′

1

= λ1
1

dSi

1

+ (1 − λ1)
1

d
Si+1

1

and
1

dS
′

2

= λ2
1

dSi

2

+ (1 − λ2)
1

d
Si+1

2

. (25)
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The length of segments fy1, fzS1 , fy
2 and fzS2 are respectively 1 − f2, d

S
1 , f2 and dS2 .

Observe that the triangles fzS1 y
1 and fzS2 y

2 are homothetic with homothetic ratio t = 1−f2
f2

.

It follows that
dS
1

dS
2

= t. Substituting dS1 by t · dS2 in (25) yields λ1 = λ2.

This observation proves the lemma.

Using the above lemma, we can bound the split closure for three rays, assuming that none
of the rays has a zero first component and that they are not pairwise collinear. The latter
condition is always verified if we assume that nonnegative combinations of the three rays
generate R2, the situation we will consider in the remainder of this section. Without loss of
generality, we make the following assumptions. The rays are r1 = µ1(−1, t1), r

2 = µ2(1, t2)
and r3 = µ3(−1, t3), where ti’s are rational numbers in the range [−∞,∞], with t1 > t3 and
µi’s are scaling factors with µi > 0. Any configuration of three rays satisfying the above
assumptions either fits this description or is a reflection of it about the segment (0, 0), (0, 1).
In addition, we must have −t1 < t2 < −t3. See Figure 10 for an illustration.

Theorem 8.5. Assume that f = (0, f2) with 0 < f2 < 1. Consider rays r1 = µ1(−1, t1),
r2 = µ2(1, t2) and r3 = µ3(−1, t3), where ti’s are rational numbers with −t1 < t2 < −t3 and
µi > 0. Then

zSPLIT ≤
1

t1 − t3

(

1 − f2

µ1
+
f2

µ3

)

.

Proof. Let y1 = (0, 1) and y2 = (0, 0), these two points being used to construct pseudo-
splits. By Lemma 8.3, we know that the three pseudo-splits S1, S2, S3 corresponding to the
directions of r1, r2, r3 dominate the entire split closure. More formally, the following LP is a
strengthening of (22) in this example of three rays.

min s1 + s2 + s3
ψS1

(r1)s1 + ψS1
(r2)s2 + ψS1

(r3)s3 ≥ 1
ψS2

(r1)s1 + ψS2
(r2)s2 + ψS2

(r3)s3 ≥ 1
ψS3

(r1)s1 + ψS3
(r2)s2 + ψS3

(r3)s3 ≥ 1
s ∈ R3

+.

(26)

It is fairly straightforward to compute the coefficients in the above inequalities. We give
the calculations for S1; the coefficients for the other two follow along similar lines.

ψS1
(r1) is 0, since r1 is parallel to the direction of S1.

Consider r2 and let its boundary point p for S1 be (0, f2) + γµ2(1, t2), for some γ ≥ 0.
Then ψS1

(r2) is 1
γ
. To compute γ, we observe that p is on boundary 1 of S1, by assumption

of t2 > −t1. Hence, the slope of the line connecting p and (0, 1) is −t1. Therefore,

f2 + γµ2t2 − 1

0 + γµ2
= −t1

which yields γ = 1−f2
µ2(t1+t2) . Hence ψS1

(r2) = µ2(t1+t2)
1−f2 .
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Now consider r3. As before, let its boundary point p′ for S1 be (0, f2) + γ′µ3(−1, t3), for
some γ′ ≥ 0. This time note that the ray intersects boundary 2 (by the assumption t3 < t1).
Equating slopes, we get

f2 + γ′µ3t3
0 − γ′µ3

= −t1

which yields γ′ = f2
µ3(t1−t3) . Hence ψS1

(r3) = µ3(t1−t3)
f2

.
So we have that the inequality corresponding to S1 is

0 · s1 +
µ2(t1 + t2)

1 − f2
s2 +

µ3(t1 − t3)

f2
s3 ≥ 1 .

By very similar calculations, we can get the inequalities corresponding to ψS2
and ψS3

.
LP (26) becomes

min s1 + s2 + s3

0 · s1 +
µ2(t1 + t2)

1 − f2
s2 +

µ3(t1 − t3)

f2
s3 ≥ 1

µ1(t1 + t2)

1 − f2
s1 + 0 · s2 +

µ3(−t3 − t2)

f2
s3 ≥ 1

µ1(t1 − t3)

1 − f2
s1 +

µ2(−t3 − t2)

f2
s2 + 0 · s3 ≥ 1

s ∈ R3
+.

(27)

As a sanity check, note that the assumption −t1 < t2 < −t3 implies that all the coefficients
are non-negative.

The following solution is feasible for LP (27):

s1 =
1 − f2

µ1(t1 − t3)
, s2 = 0, s3 =

f2

µ3(t1 − t3)
and s1 + s2 + s3 =

1

t1 − t3

(

1 − f2

µ1
+
f2

µ3

)

.

Since the above LP was a strengthening of (22), we obtain

zSPLIT ≤ s1 + s2 + s3 =
1

t1 − t3

(

1 − f2

µ1
+
f2

µ3

)

.

If the rays are such that µ1 = µ3 = 1, then the above expression is 1
t1−t3 . This implies

that in this case if we have rays such that (t1 − t3) tends to infinity, then zSPLIT tends to 0.

8.3 Type 2 triangles that do much better than the split closure

In Section 8.2, we showed that we can bound the value of the split closure under mild
conditions on f and the rays. In particular, we showed that as t1 − t3 increases in value, the
split closure does arbitrarily badly. In this section, we consider an infinite family of Type 2
triangles with rays pointing to its corners which satisfy these conditions.

Consider the same situation as in section 8.2 and consider the Type 2 triangle T with the
following three edges. The line parallel to the x2-axis and passing through (−1, 0) supports
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Figure 12: Facets from Type 2 triangles with large gap versus the split closure

one of the edges, and the other two edges are supported by lines passing through (0, 1) and
(0, 0) respectively. See left part of Figure 12. Note that in this example, the rays are of the
form r1 = (−1, t1), r

2 = µ(1, t2), r
3 = (−1, t3). In the notation of Section 8.2, µ1 = µ3 = 1.

Theorem 8.6. Given any α > 1, there exists a Type 2 triangle T as shown in Figure 12
such that for any point f in the relative interior of the segment joining (0, 0) to (0, 1), LP
(22) has value zSPLIT ≤ 1

α
.

Proof. Let M = ⌈α⌉. When the fractional point f is on the segment connecting (0, 0) and
(0, 1), consider the triangle T with M integral points in the interior of the vertical edge (the
triangle on the left in Figure 12). This implies t1 − t3 ≥ M . Therefore, from the result of
Section 8.2, µ1 = µ3 = 1 implies that zSPLIT ≤ 1

t1−t3 ≤ 1
α
.

In this example, for any large constant α, optimizing over the split closure in the direction
of the facet defined by these Type 2 triangles yields at most 1

α
. This implies Theorem 1.7.

8.4 More bad examples

The examples of Section 8.3 can be modified in various ways while keeping the property that
the split closure is arbitrarily bad. The proofs are similar to that of Theorem 1.7.
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8.4.1 Type 2 triangles when f is not on the segment joining (0, 0) to (0, 1)

The example of Section 8.3 can be generalized to the case where f is not on the segment
connecting the points (0, 0) and (0, 1) as follows. Let T be a Type 2 triangle as shown on the
right part of Figure 12. Let ∆ be the triangle with vertices (0, 0), (0, 1) and the vertex x2 of
T with positive first coordinate. When the fractional point f is in the interior of triangle ∆,
and triangle T has 2M integral points on its vertical edge, one can show that zSPLIT ≤ 1

M
.

However, such bad examples cannot be constructed for any position of point f in the
triangle T . In particular, define the triangle ∆′ obtained from ∆ by a homothetic transfor-
mation with center x2 and factor 2 (so one vertex of ∆′ is x2 and points (0, 0) and (0, 1)
become the middle points of the two edges of ∆′ with endpoint x2). When f is an interior
point of T outside ∆′, it is easy to see that the split inequality obtained from the split parallel
to the x2-axis −1 ≤ x1 ≤ 0 approximates the triangle inequality defined by T to within a
factor at most 2. Indeed the linear program is

min s1 + s2 + s3

1 + u− f1

1 − f1
s1 + s2 + s3 ≥ 1

s ∈ R3
+,

(28)

where u is the first coordinate of x2. The optimal solution is s1 = 1−f1
1+u−f1 , s2 = s3 = 0. Thus

s1 + s2 + s3 = 1−f1
1+u−f1 ≥ 1

2 since 1 − f1 ≥ u for any f ∈ T \ ∆′. This implies that the split

inequality approximates the triangle inequality by a factor at most 2 when f is outside ∆′.

8.4.2 Triangles of Type 3 and quadrilaterals

We now show how to modify the construction of Section 8.3 to get examples of Type 3
triangles and quadrilaterals that do arbitrarily better than the Split Closure.

To get a Type 3 triangle, we tilt the vertical edge of the triangle in Figure 12 around its
integral point with minimum x2-value. See Figure 13. The same bound on zSPLIT is then
achieved.

Similarly, quadrilaterals can be constructed by breaking the vertical edge in Figure 12
into two edges of the quadrilateral. See Figure 13. By very similar arguments as the previous
section, we can show that zSPLIT tends to 0.

9 Conclusion

In this paper we gave examples of integer programs with two equality constraints, two free
integer variables and nonnegative integer variables where the fraction of the integrality gap
closed by the split closure is arbitrarily small. On the other hand we showed that the triangle
closure always closes at least half of the integrality gap. Similarly, the quadrilateral closure
always closes at least half of the integrality gap.
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Figure 13: Facets from Type 3 triangles and quadrilaterals on which the split closure does
poorly
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