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Abstract

Let Ps denote the induced path on six nodes. We prove that if a perfect graph G
contains Fs as an induced subgraph but not two families introduced by Conforti and
Cornuéjols then G is bipartite or disconnected, or G has a star cutset.
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1 Introduction

1.1 Main Result

In this paper, we follow the definitions and notation in West [11]. A graph G is perfect
if, for any W C V(G), the chromatic number of G(WW) is equal to the clique number of
G(W). Otherwise, it is imperfect. A minimally imperfect graph is an imperfect graph
whose proper induced subgraphs are perfect. A well-known result about perfect graphs,
which was conjectured by Berge [1] and proved by Lovéasz [8], is that a graph G is perfect
if and only if its complement G is perfect. A hole is a chordless cycle of length at least
four, and a hole is odd if it has an odd number of edges. The strong perfect graph conjecture
(SPGC), also proposed by Berge [1] in 1960, states that a graph is minimally imperfect if
and only if it is an odd hole or the complement of an odd hole. This conjecture was proved
recently by Chudnovsky, Robertson, Seymour and Thomas [2]. We say that G contains H
if H is isomorphic to an induced subgraph of G. We say that G is H-free if G does not
contain H.

A star cutset is a node cutset such that one node of the cutset is adjacent to all the other
nodes of the cutset. Chvatal [3] showed their importance in the study of perfect graphs.
Conforti and Cornuéjols [4] considered a class of perfect graphs that can be decomposed
into bipartite graphs and line graphs of bipartite graphs using star cutsets and another
decomposition called extended strong 2-joins. These graphs are called WP-free and are
defined by excluding two families of induced subgraphs which we will define later. WP-free
graphs do not contain Ps. In this paper, we extend the class of WP-free graphs by allowing
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Ps and another family as induced subgraphs. Graphs in this larger class will be called WP’-
free. This class of graphs contains all bipartite graphs (and, more generally, all Meyniel
graphs [9]), all line graphs of bipartite graphs and all complements of bipartite graphs. The
main result of this paper is the following decomposition theorem.

Theorem 1 Let G be a WP -free perfect graph. If G contains Ps as an induced subgraph,

then G has a star cutset, or G is a bipartite graph or is disconnected.

1.2 Notation and Definitions

A node u is adjacent to a node set S (or S is adjacent to u) if w is adjacent to at least one
node in S. A node u is not adjacent to a node set S (or S is not adjacent to w) if w is
adjacent to none of S. Node u is universal for S if u is adjacent to every node in S. Let
S1 and Sy be disjoint node sets in G. A path P(vi,v9,...,v,) in G\ (S1 U S2) minimally
connects S1 and Sy if P is a chordless path, only v; in P is adjacent to S; and only v, in
P is adjacent to Ss.

A wheel (H;v) consists of a hole H (a chordless cycle with at least four nodes) and a center
v such that v has at least three neighbors in H. A wheel is an odd wheel if it contains an
odd number of triangles. It is easy to check that an odd wheel contains an odd hole. So a
perfect graph cannot contain an odd wheel.

A wheel (H;wv) is called a twin wheel or T-wheel if v has exactly three neighbors in H
and these three neighbors induce a path. A wheel (H;v) is called a A-free wheel if (H;v)
induces a triangle-free graph. A wheel (H;v) is called a universal wheel if v is adjacent to
every node in H. A wheel (H;v) is called a line wheel or L-wheel if it contains exactly two
triangles and these two triangles have only the center v in common. A wheel is called a
proper wheel if it is in none of the above four classes.

An L-parachute LP(ay,b1,as,bs,as,z) is a graph induced by an L-wheel (H;as) where
H =a1,b1,... ,2,... ,bo,a9,... ,a1, and a1, ao, by and by are the neighbors of a3 in H,
together with a chordless path P(as, ... ,z) of length greater than 1 (i.e. with at least two
edges). No node of H \ {z,b1} may be adjacent to an intermediate node of P.

A T-parachute TP(ay,a9,b1,bs,2) (see Fig.1) is a graph induced by an T-wheel (H;as9)
where H = by, a1,bo, ... ,2,... ,b1, and a1, by and by are the neighbors of as in H, together
with a chordless path P(ag, ... , z) of length greater than 1. No node of H\{z, b; } may be ad-
jacent to an intermediate node of P. Sometimes, we use T'P(a1, a9, b1, ba, 2, u1,ug, . .. ,Upm)
to denote the T-parachute where uy,uo, ... ,u,, are all the other nodes in the T-parachute.

A parachute is either an L-parachute or a T-parachute. A graph is WP-free if it contains
neither a proper wheel nor a parachute. All these definitions were introduced by Conforti
and Cornuéjols [4]. A graph is WP'-free if it contains neither a proper wheel nor a T-
parachute other than Ps. Notice that the class of WP’-free graphs contains bipartite graphs,
complements of bipartite graphs and line graphs of bipartite graphs (since any proper wheel
and T-parachute other than Ps contains a triangle, a stable set of size 3 and either a claw
or a diamond).



Figure 1: a T-parachute

1.3 Motivation

Bipartite graphs, line graphs of bipartite graphs and the complements of these graphs are
perfect graphs. Let us call basic graph a graph in one of these four classes. What is the
structure of nonbasic perfect graphs? Chudnovsky, Robertson, Seymour and Thomas [2]
showed that nonbasic perfect graphs contain a skew partition, a 2-join or its complement
or a homogeneous pair. In this paper, we focus on a subclass of perfect graphs that have
a finer structure. Conforti and Cornuéjols [4] showed that, if a nonbasic perfect graph G
contains no proper wheel or parachute, then G a star cutset or an extended strong 2-join
or G is disconnected. Perfect graphs with proper wheels are not basic, and perfect graphs
with big parachutes (all parachutes other than the two graphs with 6 nodes in Fig.2) are
not basic, either. The graph in Fig.2(a), called Lg, is the complement of the line graph of
a bipartite graph, and the graph in Fig.2(b) is a co-bipartite graph. So both are in basic
classes. Our motivation is to generalize the result in Conforti and Cornuéjols [4] by allowing
Ps as an induced subgraph. It follows from Theorem 1 and the results in [4] that all perfect
graphs G that contain no proper wheel, no big parachute and no Lg can be decomposed
into bipartite graphs, line graphs of bipartite graphs and complements of bipartite graphs
using star cutsets and extended strong 2-joins, or G is disconnected. Recently, Conforti,
Cornuéjols and Zambelli [5] proved a decomposition theorem for perfect graphs G such that
neither G nor G contains a proper wheel or a long prism. This class does not contain the
class studied in this paper and vice versa.

We call the graph of Fig.2(b) a Ps because its complement is a chordless path with 6 nodes.
Notice that in this graph, nodes 6 and 2 are symmetric, nodes 5 and 3 are symmetric, and



Figure 2: Lg and Ps

nodes 4 and 1 are symmetric. This symmetry will be used in the proofs.

1.4 Proof of Theorem 1

In this paper, we consider a WP'-free perfect graph G that contains Ps. In the rest of this
paper, when we refer to a T-parachute, it will always be a T-parachute other than Ps.

To prove Theorem 1, we first prove the following result.

Theorem 2 Let G be a WP -free perfect graph that contains Ps. Let ¥ be the node set of
a Ps of G and let x be a node in G\'% adjacent to 3. Then G has a star cutset or YU {x}

induces a co-bipartite graph.

The proof of this theorem is given in Section 2. Using this result, we then prove the following
theorem in Section 3, which implies Theorem 1.

Given a graph F', define an auxiliary graph H as follows. The nodes of H correspond to the
Fg’s of F. Two nodes of H are adjacent if and only if the corresponding Fgs’s have at least
one edge in common. We say that an induced subgraph B of F' is mazimally Ps-connected
if B contains at least one Py and the nodes of H corresponding to the Fs’s of B induce a
connected component of H.

Theorem 3 Let G be a WP -free perfect graph that contains a Py and let B be a mazimally
Ps-connected induced subgraph of G. If G has no star cutset then B is a bipartite connected

component of G.

2 Proof of Theorem 2

In this section, we prove Theorem 2. Let G be a WP’-free perfect graph that contains a P.
Let ¥ denote the node set of a Ps of G. We label the Pg as in Fig.2. We prove Theorem 2
by first enumerating the possible adjacencies of a node = in G \ X to the node set X. As
shown in Lemma 4, the possible adjacencies can be divided into four classes. Then we prove
that G has a star cutset in the last three cases (Lemmas 6 and 7). Theorem 2 follows.
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Lemma 4 If a node x in G\ X is adjacent to ¥ then only one of the following cases occurs.
1) XU {x} induces a co-bipartite graph.

2) The subgraph induced by ¥ U {x} is one of the graphs in Fig.3. These two graphs are
isomorphic.

3) The subgraph induced by XU {x} is one of the graphs in Fig.4. Each of them is the
complement of the line graph of a bipartite graph. The graph in Fig.4(a) is isomorphic
to the graph in Fig.4(b).

4) N(z)N X induces a clique distinct from {1,2,3} or {4,5,6}.
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Figure 3:

Proof: If x is universal for {1,2,3} or for {4,5,6} then 1) holds. If z is adjacent to none
of {1,2,3} or to none of {4,5,6} then 1) or 4) holds. We consider the remaining cases as
follows.

Case 1 z is adjacent to exactly one of 1, 2, 3 and one of 4, 5, 6. There are 9 cases.

If N(x)NX = {1,6}, {2,4}, {2,6}, or {3,5}, then N(z)NX induces a clique. The remaining
five cases are as follows. If N(z) N¥ = {1,4} then G contains a 5-hole (5,3,1,z,4,5).
If N(z)n¥ = {1,5} then G contains a 5-hole (5,4,2,1,2,5). If N(z) N ¥ = {2,5} then
we have a T-parachute TP(1,2,6,3,5,z). If N(z) N ¥ = {3,4} then G contains a 5-hole
(4,2,3,1,6,4). If N(x) N3 = {3,6} then we have a T-parachute T'P(4,6,5,2,3,x).

Case 2 z is adjacent to exactly one of 1, 2, 3 and two of 4, 5, 6. There are also 9 cases.
Case 2.1 x is adjacent to 1 but not 2 or 3.

If N(z)NnX = {1,4,5} then we have a T-parachute TP(4,5,6,z,1,3). If N(x)N¥ = {1,4,6}
then G contains a 5-hole (5,3,1,2,4,5). If N(z) N X = {1,5,6} then G contains a 5-hole
(5,4,2,1,2,5).

Case 2.2 z is adjacent to 2 but not 1 or 3.
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Figure 4:

If N(z)NX = {2,4,5} then we have a T-parachute TP(1,2,6,3,5,x). If N(z)NnX = {2,4,6}
then N(z) N X induces a clique. If N(z) N ¥ = {2,5,6} then G(X U {z}) is the graph in
Fig.3(a).

Case 2.8 x is adjacent to 3 but not 1 or 2.

If N(z)NnE = {3,4,5} then G contains a 5-hole (4,2,3,1,6,4). If N(z)NX = {3,4,6} then
we have a T-parachute TP(4,6,5,2,3,1). If N(x) N X = {3,5,6} then G(X U {z}) is the
graph in Fig.4(b).

Case 8 z is adjacent to exactly two of 1, 2, 3 and one of 4, 5, 6. There are also 9 cases.
By symmetry, we get either contradictions or the graph in Fig.3(b) or Fig.4(a).

Case 4 z is adjacent to exactly two of 1, 2, 3 and two of 4, 5, 6. There are also 9 cases.
Case 4.1 x is adjacent to 1 and 2 but not 3.

If N(z)n¥ = {1,2,4,5} then we have a T-parachute TP(4,5,6,2,1,3). If N(z)N¥ =
{1,2,4,6} then G contains a 5-hole (5,3,1,z,4,5). If N(z) N ¥ = {1,2,5,6} then we have
a T-parachute TP(1,2,z,3,5,4).

Case 4.2 x is adjacent to 1 and 3 but not 2.

If N(z)n¥ = {1,3,4,5} then the graph induced by {1,2,3,4,5,6,2} is the complement
of a 7-hole. If N(z) N'¥ = {1,3,4,6} then we have a T-parachute TP(1,3,2,z,4,5). If
N(z)n¥ ={1,3,5,6} then G contains a 5-hole (5,4,2,1,z,5).

Case 4.8 x is adjacent 2 and 3 but not 1.

If N(x)NnX ={2,3,4,5} then G contains a 5-hole (4,z,3,1,6,4). If N(z)NX = {2,3,4,6}



then we have a T-parachute TP(4,6,5,2,3,1). If N(z) N ¥ = {2,3,5,6} then G(X U {z})
is the graph in Fig.4(c).

This completes the proof. O

It is worth looking at the complements of the graphs in Fig.3 and 4. Their complements
contain a P5(6,3,4,1,5,2) and z is adjacent to 1, 4 and at most one of 2, 3, 5 and 6.

Lemma 5 If G has neither the star cutset N(2)U{2}\{1,4} (center 2) nor the star cutset
N(6)U{6}\{1,4} (center 6), then G contains one of the graphs in Fig.5.

(b)

© (d)

«a may be adjacent to 3.

Figure 5:

Proof: We prove this lemma by contradiction.

Let S = N(2)U{2}\ {1,4}. Suppose that S is not a star cutset (center 2). Let P(z1,...,zp)
be any path in G\ (SU{1,4,5}) that minimally connects node 1 and {4,5}. z; is adjacent



to node 1. x, is adjacent to {4,5}. Nodes of P may be adjacent to node 3 or 6 but not
2. Suppose that P contains only a single node 1. Then by Lemma 4, z; is adjacent to 1,
4, 5, 6 (and possibly 3) but not 2. Thus we get node « of Fig.5. We assume now that P
contains at least one edge. We consider the following cases.

Case 1 zy is adjacent to node 4 but not 5.

If no node of P is adjacent to 3 then G contains an odd wheel (5,3, 1, P,4,5;2). Therefore,
V(P) must be adjacent to 3. By Lemma 4, z,, cannot be adjacent to 3. Let z; be the node
of largest index adjacent to 3. Let @ be the subpath of P from x; to z,. If no node of
V(@) is adjacent to 6 then G contains an odd wheel (4, @, 3,1,6,4;2). Hence, @ has a node
adjacent to 6. Let x;(j > i) be the node of smallest index adjacent to 6. Let Q' be the
subpath of P from x; to ;. If j # n then we have a T-parachute TP(4,6,5,2,3,Q"). If
j = n then we have a T-parachute T'P(4,6,5,2,,3,1,Q).

Case 2 x, is adjacent to both node 4 and 5.

V(P) must be adjacent to both 3 and 6. Otherwise, we have a T-parachute TP (2,1,6,3,5, P).
The wheel (4, P, 1,2, 4;6) is either a proper wheel or a universal wheel. The wheel (4, P, 1,2, 4; 3)
is either a proper wheel, a T-wheel or a line wheel. If (4, P,1,2,4;6) is a universal wheel,
and (4, P,1,2,4;3) is a T-wheel or a line wheel, then a node y in P\ {z,} is adjacent to
both 3 and 6 (and possibly 1), which contradicts Lemma 4.

Case 8 x, is adjacent to node 5 but not 4.

The wheel (5,P,1,2,4,5;6) is either a proper wheel or a universal wheel. The wheel
(5,P,1,2,4,5;3) is either a proper wheel or a line wheel. If (5,P,1,2,4,5;6) is a uni-
versal wheel and (5, P,1,2,4,5;3) is a line wheel, then the wheel (3, P, 1,3;6) is a proper
wheel unless P contains exactly one edge. In this case, x; is adjacent to 1 and 6, and zs is
adjacent to 3, 5, 6 and x1, and these are the only adjancies between x1, xo and .

By symmetry, if N(6) U {6} \ {1,4} (center 6) is not a star cutset, then either there is a
node y; adjacent to 1, 2, 3, 4, (and possibly 5) but not 6 (this is node g of Figure 5), or
there is an edge (y1,y2) with y; adjacent to only 2, 4 and y2 adjacent to only 2, 3, 5 in ¥
(symmetrical to Case 3 above). To complete the proof of this lemma, we show that the two
following cases lead to a contradiction.

Case i G contains nodes 1 , x2 as in Case 3 above and y; adjacent to 1, 2, 3, 4 (and
possibly 5) but not 6.

If y; is not adjacent to xo then G contains a 5-hole (x2,3,y1,4,6,x2). Otherwise, if y; is
adjacent to xo then we have a T-parachute T'P(3,y1,1,z9,6,4).

Case it G contains nodes x1 , x5 as in Case 3 above and an edge (y1,y2) with y; adjacent
to only 2, 4 and y» adjacent to only 2, 3, 5 in X.

If z; is adjacent to ys then we have a T-parachute TP(1,6,z1,2,y2,5). Therefore, x;
cannot be adjacent to y3. Then G contains a proper wheel (z9,5,y2,2,1, 21, x9;6) if 29 is
not adjacent to yo, or a 5-hole (z2,ys2,2,1,x1,x9) if x5 is adjacent to ys. O

Lemma 6 If G contains any of the graphs in Fig.8 or Fig.4 then G has a star cutset.

Proof: This lemma holds by the following claims.



Claim 1 If G contains any graph in Fig.3 then G has a star cutset.

Proof of Claim 1 The graphs in Fig.3(a) and (b) are isomorphic. We prove that if G contains
the graph in Fig.3(b) then G has a star cutset. It follows from Lemma 5 that there exists
a node 3 that has the same neighbors in ¥ as in Fig.5.

If 3 is not adjacent to x then G contains a 5-hole (6,4, 3,3, z,6). Otherwise, if 3 is adjacent
to z then we have a T-parachute TP(3,0,1,x,6,4). O

Claim 2 If G contains any graph in Fig.4 then G has a star cutset.

Proof of Claim 2 Notice that the graphs in Fig.4(a) and (b) are isomorphic. We prove that

if G contains the graph in Fig.4(a) or (c¢) then G has a star cutset. By Lemma 5, there

exists a node « that has the same neighbors in ¥ as in Fig.5.

If « is not adjacent to x then G contains a 5-hole (z,2, 1, a, 5,2). Otherwise, if « is adjacent

to = then we have a T-parachute TP (5, o, x,4,2,1). &
O

Lemma 7 If a node x € G\ ¥ is adjacent to ¥ and N(x)NXY induces a clique distinct from
{1,2,3} or {4,5,6} then G has a star cutset.

Proof: We prove this by contradiction. Let K = N(z) N X. By symmetry we can assume
that K N {4,5,6} # (. We break the proof into the following steps.

Claim 1 If K contains node 5 then G has a star cutset.

Proof of Claim 1 This claim covers K = {5}, {5,3}, {5,4} or {5,6}. Let S = N(5)U
{5} \ {z}. Suppose that S is not a star cutset (center 5). Let P(z1,...,z,) be any path in
G\ (SU{z,1,2}) that minimally connects node x and {1,2}. z; is adjacent to node z. z,
is adjacent to {1,2}. V(P) may be adjacent to node 3, 4 or 6 but not 5. Let P’ be the
path induced by V(P) U {z}. We also use x to denote x for convenience. We consider the
following cases.

Case 1 x, is adjacent to 1 but not 2.

V(P') is adjacent to 4 or z is adjacent to 3. Otherwise, G contains a proper wheel
(x,P,1,2,4,5,2;3). Suppose that V(P’) is not adjacent to 4. This implies that = is ad-
jacent to 3. Then node 6 must be universal for V(P’). Otherwise, G contains a proper
wheel (z, P,1,2,4,5,2;6). This contradicts the fact that x is not adjacent to both 3 and
6. Therefore, V(P') must be adjacent to 4. If V(P’) is not adjacent to both 3 and 6 then
we have a T-parachute TP(2,1,6,3,5, P,z) or a T-parachute TP(2,1,3,6,5, P,z). Hence,
V(P') is adjacent to 3, 4 and 6. Let Q(y1,...,ym) be a minimal subpath of P’ such that
V(Q) is adjacent to 3 and 4. We assume w.l.o.g. that y; is adjacent to 4 and y,, is adjacent
to 3. Suppose that V(@) contains x. Notice that x cannot be adjacent to both 3 and 4
by our assumption. If y; is « then G contains an odd wheel (4, z,Q,3,2,4;5). Otherwise,
if yp, is « then G contains an odd wheel (3,2,4,Q,z,3;5). Hence, V(Q) cannot contain z.
Now we consider the following cases.

Case 1.1 @ does not contain x,.



If V(Q) is not adjacent to 6 then G contains an odd wheel (4,0, 3,1,6,4;2). Therefore,
V(Q) must be adjacent to 6. Let y; be the node of largest index adjacent to 6. Let Q' denote
the subpath of @ from y; to ym,. If i # 1 then we have a T-parachute TP(4,6,5,2,3,Q").
Otherwise, if i = 1 then we have a T-parachute T'P(4,6,5,y1,3,1, Q).

Case 1.2 @ contains z,,.
By Lemma 4, y; cannot be z,,. Then we have a T-parachute TP(1,3,2,z,,4,5,Q).
Case 2 x, is adjacent to 2 but not 1.

If V(P') is not adjacent to both 3 and 6 then we have a T-parachute TP(1,2,3,6,5, P, )
or a T-parachute TP(1,2,6,3,5, P,x). Therefore, V(P’') must be adjacent to both 3 and 6.
Let Q(y1, ..., ym) be a minimal subpath of P’ such that V(Q) is adjacent to 3 and 6. We
assume w.l.o.g. that y; is adjacent to 6 and y,, is adjacent to 3.

Suppose that V(Q) contains z. Notice that = cannot be adjacent to both 3 and 6 by our
assumption. If y; is z then G contains an odd wheel (6, z,Q,3,1,6;5). Otherwise, if y,, is
x then G contains an odd wheel (6,Q,x,3,1,6;5). Hence, V(Q) does not contain z.

Suppose that @ does not contain z,. If V(Q) is not adjacent to 4 then we have a T-
parachute TP(4,6,5,2,3,Q). Hence, V(Q) must be adjacent to 4. Let y; be the node of
largest index adjacent to 4. Let " denote the subpath of @ from y; to y,,. If i # 1 then G
contains an odd wheel (4,Q’,3,1,6,4;2). Otherwise, if ¢ = 1 then we have a T-parachute
TP(4,6,y1,5,3,1,Q). Therefore, any minimal subpath @ of P that is adjacent to 3 and 6
must contain x,.

If @ contains only node x,, then G has a star cutset by Lemmas 4 and 6. So we can assume
that @ contains at least one edge. If y; is x,, then G contains an odd wheel (5,3, Q, 6, 5;2).
If Y is @y, then G contains an odd wheel (6,0, 3,1,6;2).

Case 8 x, is adjacent to both 1 and 2.

Suppose that V(P’) is not adjacent to 4. If V(P’) is not adjacent to 6, either, then we
have a T-parachute TP(1,2,6,xy,5,4, P,x). Hence, V(P') is adjacent to 6. Then node 6 is
universal for V(P') since otherwise, G' contains a proper wheel (5,2, P,2,4,5;6). Further-
more, V(P’) is adjacent to 3 since otherwise, G contains a proper wheel (5,z, P,2,3,5;6).
Notice that z cannot be adjacent to both 3 and 6 by our assumption. Then the wheel
(5,z, P,2,4,5;3) is either a proper wheel or a A-free wheel. If it is a A-free wheel then
there exists a node y € V(P) \ {z,} adjacent to both 3 and 6. This implies that we have a
T-parachute TP(4,6,5,2,3,y). Therefore, V(P') must be adjacent to 4.

Let x; be the node of largest index adjacent to 4. Let @ denote the subpath of P’ from z; to
Zn. Suppose i = 0 (z is adjacent to 4). Notice that x cannot be adjacent to both 3 and 4 by
our assumption. If V(P) is not adjacent to 3 then G contains an odd wheel (5, x, P, 2,3, 5;4).
Hence, V(P) is adjacent to 3. Let x; be the node of smallest index adjacent to 3. Let W be
the subpath of P’ from z to x;. Suppose that j = n. If V(P’) is not adjacent to 6 then G
contains an odd wheel (6,4, z, P, 1,6;2). Hence, V(P’) is adjacent to 6. If z, is not adjacent
to 6 (this implies |V (P)| > 2) then the wheel (4,x, P,2,4;6) or the wheel (5, z, P,3,5;6) is
a proper wheel since x cannot be adjacent to both 4 and 6 by our assumption. However, if
xy, is adjacent to 6 then we have a T-parachute TP(1,x,,6,3,5, P,z). Hence, j # n. Then
G contains an odd wheel (4,2, W,3,2,4;5). Therefore, i # 0. In the rest of the proof we
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assume that 7 > 1.

If V(Q) is not adjacent to 3 then G contains a proper wheel (5,3,1,z,,Q,4,5;2). Hence,
V(Q) must be adjacent to 3. Let j(j > i) be the smallest index such that z; is adjacent to
3. We use Q' to denote the subpath of P from z; to z;.

Case 3.1 j # n. This also implies that 7 # n.

If V(Q') is not adjacent to 6 then G contains an odd wheel (4,Q’,3,1,6,4;2). Hence, V(Q')
is adjacent to 6. Let k(k < j) be the largest index such that zj is adjacent to 6. We
use Q" to denote the subpath of P from zj to z;. If k # ¢ then we have a T-parachute
TP(4,6,5,2,3,Q"). Otherwise, if k = i then we have a T-parachute TP(4,6,5,2;,3,1,Q").
Case 3.2 j =n.

If ¢ # n then G contains an odd wheel (5,3, x,, @, 4,5;2). Hence, i = n. Let P” = P'\{x,}.
Suppose that V(P”) is not adjacent to 3. Then n = 1 and x is adjacent to 4 since, otherwise
we have a T-parachute TP(2,x,,4,3,5, P,x). By our assumption,  cannot be adjacent to
6. Then z; must be adjacent to 6 since otherwise, G contains a 5-hole (5, z,x1,2,6,5). But
now we have a T-parachute TP(2,21,6,3,5,2). Therefore V(P") is adjacent to 3. Suppose
that V(P") is not adjacent to 4. Then n = 1 and z is adjacent to 3 since, otherwise we
have a T-parachute TP(2,xy,3,4,5, P,x). Then x; must be adjacent to 6 since otherwise,
G contains a 5-hole (5, z,21,2,6,5). In this case, the graph induced by {1, 3,4,5,6,z1,z} is
isomorphic to the graph in Fig.4(a) (notice that {1,3,4,5,6, 71} induces a Ps). By Lemma
6, GG has a star cutset.

Therefore, V(P") must be adjacent to both 3 and 4. Let W (z1, ..., 2, ) be a minimal subpath
of P"” such that V(W) is adjacent to both 3 and 4. We assume w.l.o.g. that z; is adjacent
to 4 and z,, is adjacent to 3. If V(W) is not adjacent to 6 then G contains an odd wheel
(4,W,3,1,6,4;2). Hence, V(W) is adjacent to 6. Let | be the largest index such that z; is
adjacent to 6. We use W’ to denote the subpath of W from z; to z,,. Notice that z cannot
be adjacent to both 4 and 6. If | # 1 then we have a T-parachute TP(4,6,5,2,3,W').
Otherwise, if [ = 1 then we have a T-parachute T'P(4,6,5, z1,3,1, W). This completes the
proof. &

Claim 2 If K contains node 6 but not 5 then G has a star cutset.

Proof of Claim 2 By symmetry between {1,2,6} and {2,4,6}, we can assume that K #
{1,2,6}. Therefore, this case covers the following K = {6}, {6, 1}, {6,2}, {6,4} or {6,2,4}.
Let S = N(6)U{6} \ {x}. Suppose that S is not a star cutset (center 6). Let P(z1,...,zy)
be any path in G\ (S U {x,3}) that minimally connects node x and 3. z; is adjacent to
node x. z, is adjacent to 3. V(P) may be adjacent to node 1, 2, 4 or 5 but not 6. By
Claim 1, we can assume that N(z,) NY # {3}, {3,1}, {3,2} and {3,5}, since node 3 is
symmetric to node 5. It follows from Lemmas 4 and 6 that xz, is also adjacent to 1 and 2
(and possibly 4, 5). We consider the following cases.

Case 1 P contains only a single node z;.

Notice that = cannot be adjacent to 5 by our assumption. If z; is not adjacent to 5 then G
contains an odd wheel (6,5,3,x1,x,6;2). Therefore, z; must be adjacent to 5. Notice also
that x cannot be adjacent to both 1 and 2 by our assumption. Then we have a T-parachute
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TP(3,21,1,5,6,2) or a T-parachute TP(3,21,2,5,6,z).

Case 2 P contains at least one edge.

Suppose that V' (P) is not adjacent to 5. Then the wheel (z, P, 3,5, 6, x;2) is either a proper
wheel or a line wheel. The wheel (z, P,3,5,6,2;1) is either a proper wheel or a line wheel.
If both the wheel (z, P, 3,5,6,2;1) and the wheel (z, P,3,5,6,x;2) are line wheels then z is
adjacent to both 1 and 2. This contradicts our assumption. Therefore, V(P) is adjacent to
5. Let P’ denote the path induced by V(P) U {z}. Let Q(y1, ..., ym) be a minimal subpath
of P' such that V(Q) is adjacent to both 5 and 1. We assume w.l.o.g. that y; is adjacent
to 5 and y,, is adjacent to 1.

y1 cannot be z by our assumption. Suppose that y,, is . That is, x is adjacent 1. Then @
contains at least one edge by our assumption. If y; is not x, then G contains an odd wheel
(5,3,1,2,Q,5;6). Otherwise, if y; is x,, then we have a T-parachute TP (3,x,,1,5,6,Q,z).
Therefore, y., is not x, either.

Case 2.1 @) does not contain x,.

Case 2.1.1 V(Q) is not adjacent to 4.

If V(Q) is not adjacent to 2 then G contains an odd wheel (5,4,2,1,Q,5;3). Therefore,
V(Q) is adjacent to 2. Let y; be the node of smallest index adjacent to 2. If i = m then we
have a T-parachute TP(1,2,yp,,3,5,4,Q). Otherwise, if i # m then we have a T-parachute
TP(1,2,6,3,5,Q"), where Q' is the subpath of Q from y; to y;.

Case 2.1.2 V(Q) is adjacent to 4.

Let y; be the node of largest index adjacent to 4. Let Q" be the subpath of @ from y; to
Ym. If 7 # 1 then the wheel (5,3,1,Q",4,5;2) is either a proper wheel or a line wheel. If it
is a line wheel then the wheel (6,4,Q",1,6;2) is a proper wheel. If j = 1 then we have a
T-parachute TP(4,5,6,y1,1,3,Q).

Case 2.2 () contains x,,.

Case 2.2.1 () contains at least one edge.

This implies that y,, is x, since x, is adjacent to 1. Then G contains an odd wheel
(6,5,Q,n,1,6;3).

Case 2.2.2 @ contains only node .

Let P" = P'\ {z,}. V(P"”) must be adjacent to both 5 and 1. Otherwise, we have a T-
parachute TP(3,x,,1,5,6, P,z) or a T-parachute T P(3,z,,5,1,6, P,z). Let W (z1,..., zx)
be a minimal subpath of P” such that V(W) is adjacent to 5 and 1. We assume w.l.o.g.
that z; is adjacent to 5 and zj is adjacent to 1.

z1 cannot be adjacent to x by our assumption. Suppose that zp is . This implies that
W contains at least one edge. Then G contains an odd wheel (5,3, 1, xz, W, 5;6). Hence, 2
cannot be x, either.

If V(W) is not adjacent to 2 then we have a T-parachute TP(2,1,6,3,5,W). Therefore,
V(W) is adjacent to 2. Let z be the node of smallest index adjacent to 2. Let W’ be the
subpath of W from z to z;. If | # k then we have a T-parachute TP(1,2,6, 3,5, W'). Hence,
I = k. If V(W) is not adjacent to 4 then we have a T-parachute T'P(1,2, z,3,5,4, W).
Therefore, V(W) is adjacent to 4. Notice that W contains at least one edge by Lemma 4.
The wheel (5,W,2,6,5;4) is either a universal wheel or a proper wheel. If it is a universal
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wheel then the wheel (5,W,2,3,5;4) is a proper wheel. &

Claim 3 If N(z) N3 = {4} then G has a star cutset.

Proof of Claim 3 Let S = N(4) U {4} \ {z}. Suppose that S is not a star cutset. Let
P(x1,...,x,) be any path in G\ (S U {z,1,3}) that minimally connects node x and {1, 3}.
x1 is adjacent to node z. z,, is adjacent to {1,3}. By Claims 1 and 2 (and Lemmas 4 and
6), we can assume that N(z,)NY = {1} or N(z,) N X D {1,2,3} since 3 is symmetric to 5
and 2 is symmetric to 6. V(P) may be adjacent to node 2, 5 or 6 but not 4.

Case 1 N(zp)NX = {1}

V(P) must be adjacent to 5. Otherwise, G contains a proper wheel (5,3, 1, P,z,4,5;2). Let
x; be the node of largest index adjacent to 5. Let @) be the subpath of P from x; to x,.
If V(Q) is not adjacent to 2 then G contains an odd wheel (5,4,2,1,Q,5;3). Hence, V(Q)
must be adjacent to 2. Let j(j > i) be the smallest index such that z; is adjacent to 2.
Let @' be the subpath of P from z; to x;. If Q' contains at least one edge then we have a
T-parachute TP(1,2,6,3,5,Q"). Therefore, Q" contains only node x;. If z; is not adjacent
to 6 then we still have a T-parachute TP(1,2,6,3,5,Q’"). Hence, x; is adjacent to 6. Then
G contains the graph in Fig.3(a). By Lemma 6, G has a star cutset.

Case 2 N(zp)N¥E D{1,2,3}

If V/(P) is not adjacent to 5 then G contains a proper wheel (5,3, z,,, P, z,4,5;2). Therefore,
V(P) must be adjacent to 5.

Case 2.1 x,, is adjacent to 5.

Let P' = P\ {z,}. Then n > 1 and V(P’) must be adjacent to both 2 and 5. Otherwise,
we have a T-parachute TP(3,2,,2,5,4, P,z) or a T-parachute TP(3,z,,5,2,4, P,z). Let
@ be a minimal subpath of P’ such that V(Q) is adjacent to both 2 and 5. If ) contains at
least one edge, or V(Q) is not adjacent to 6 then we have a T-parachute TP(1,2,6,3,5,Q).
Otherwise, if @ contains only a single node, and it is adjacent to 6 then G contains the
graph in Fig.3(a). By Lemma 6, G has a star cutset.
Case 2.2 x, is not adjacent to 5.
Let x; be the node of largest index adjacent to 5. Let ) be the subpath of P from z; to
Tp—1. If V(Q) is not adjacent to 2 then G contains an odd wheel (5,4,2,z,,Q,x;,5;3).
Therefore, V(Q) must be adjacent to 2. Let j(j > i) be the smallest index such that z;
is adjacent to 2. Let @' denote the subpath of @ from z; to z;. If Q" contains at least
one edge, or V(Q') is not adjacent to 6 then we have a T-parachute TP(1,2,6,3,5,Q").
Otherwise, if Q' contains only a single node, and it is adjacent to 6 then G contains the
graph in Fig.3(a). By Lemma 6, G has a star cutset. This completes the proof. <&
g

These lemmas imply Theorem 2.
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3 Proof of Theorem 3

In this section, we prove our main result as follows. Recall the notation introduced in
Section 1.4: B is a maximally Ps-connected subgraph of G. Lemma 10 shows that every
node outside V(B) is universal for B or has no neighbor in B. Lemma 11 shows that B is
bipartite. Before proving these lemmas, we prove two technical lemmas (Lemmas 8 and 9).

6 1

o=
/

5\% 3

x1 may be also adjacent to 4 or 5 or both but not 6.

Figure 6:

Lemma 8 Let G be a WP -free perfect graph that contains Ps. Let X be the node set of a Pg
of G as labeled in Fig.2. A node x in G\ X adjacent to X satisfies the following properties.

1) If N(x) N ¥ = {4,5,6} then G has a star cutset or G contains the graph in Fig. 6 or
both.

2) If N(z)NX ={1,2,3} then G has a star cutset or G contains the graph in Fig. 7 or
both.

6 1

o=
/

s\g 3

x1 may be also adjacent to 1 or 3 or both but not 2.

Figure 7:
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Proof: By symmetry, the proof of 2) is similar to the proof of 1). We prove 1) as follows.
Let S = N(6)U{6}\{z, 1,2}. Suppose that S is not a star cutset (center 6). Let P(z1,...,zy)
be any path in G\ (S U{1,2,3,2}) that minimally connects node x and {1,2,3}. =z is
adjacent to node x. x, is adjacent to {1,2,3}. V(P) may be adjacent to 4 or 5 but not 6.
By Theorem 2, we can assume that x,, is adjacent to 1, 2, 3 (and possibly 4, 5).

If P contains only node x; then G contains the graph in Fig. 6. In the rest of this proof
we assume that P contains at least one edge.

If V(P) is not adjacent to 4 then we have a T-parachute TP(1,2,6,x,,z,4, P). If V(P) is
adjacent to 4 then the wheel (x, P,2,6,x;4) is either a proper wheel or a universal wheel.
If it is a universal wheel then the wheel (z, P,1,6,2;4) is a proper wheel. This completes
the proof. O

Let G be a WP'-free perfect graph that contains a Ps and let B be a maximally Ps-connected
induced subgraph of G. In the rest of this section, we work on G unless specified otherwise.
Recall that the complements of the graphs in Fig.5 are formed by a P;(6,3,4,1,5,2), a
node o adjacent to 2 (and possibly 3) but not 1, 4, 5 or 6, and a node 3 adjacent to 6 (and
possibly 5) but not 1, 2, 3 or 4.

Lemma 9 Suppose that G has no star cutset. Let ¥ be the node set of a Ps of B. If a node
y € X has a neighbor x in X but y is not universal for 33, then y belongs to B. Furthermore,

if edge (z,y) does not belong to any Ps then B contains one of the graphs in Fig.8.

Proof: Let Ps(6,3,4,1,5,2) denote the path induced by ¥. ¥U{y} induces a bipartite graph
by Theorem 2. It is easy to check that, in the graph induced by ¥ U {y}, the edge (z,y)
belongs to some Py that shares an edge with P5(6,3,4,1,5,2) except in the case where y is
only adjacent to 4 in the P5(6,3,4,1,5,2) and in the case where y is only adjacent to 4, 5,
and 6 in the P5(6,3,4,1,5,2) (z may be 4, 5 or 6) and their symmetric cases. We consider
these two cases as follows.

Case 1 y is only adjacent to 4 in the P5(6,3,4,1,5,2)

Recall that by Lemma 5, G contains one of the graphs in Fig.5 since G has no star cutset.
We further consider the following cases.

Case 1.1 N(a)NX = {2}.

(4,y) belongs to FPs(y,4,1,5,2,a) if « is not adjacent to y, or Fs(6,3,4,y,,2) if « is
adjacent to y. Both of these Ps’s share an edge with F5(6,3,4,1,5,2).

Case 1.2 N(a)NX ={2,3}.

If y is not adjacent to « then (4,y) belongs to Ps(y,4,1,5,2, «), which shares an edge with
P5(6,3,4,1,5,2). We assume now that y is adjacent to a. Notice that § cannot be adjacent
to y since G is perfect. If N(8) NX = {5,6} then (4,y) belongs to Ps(y,4,3,6,3,5), which
shares an edge with Ps(6,3,4,1,5,2). Notice that («,y) belongs to Ps(a,y,4,1,5,5) if a is
not adjacent to 3, and («,y), (o, 3) belong to Ps(1,4,y,a, 3,6) if a is adjacent to 5. Thus,
we can assume that N(5) N X = {6}.
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(b)

Figure 8: Neither (3,z1) nor (5,y) belongs to any Ps in (a). (4,y) does not belong to any Ps in
(b).
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If 8 is adjacent to « then (4,y) belongs to Ps(5,1,4,y,,3), which shares an edge with
Ps(6,3,4,1,5,2). If 8 is not adjacent to a then B contains the Ps(53,6,3,4,1,5). Note
that 3 is adjacent to none of o, y and 2. By Lemma 5, there exists one more node o’
such that N (/) NV (Ps(8,6,3,4,1,5)) = {B} or {1,8} in G. o is not adjacent to «
in G since G is perfect. If o/ is not adjacent to y then (4,y) belongs to Ps(y,4,3,6,3,a/),
which shares an edge with P5(6,3,4,1,5,2). Notice that («,y) belongs to Ps(</, 3,6, 3, «, y)
in this case. So we can assume that o is adjacent to y. In the case where N(a/) N
V(Ps(8,6,3,4,1,5)) = {8}, the edge (4,y) belongs to Ps(1,4,y,d/,3,6), which shares an
edge with Ps(6,3,4,1,5,2). In the case where N(a') N Ps(5,6,3,4,1,5) = {1, 3}, the sub-
graph induced by {«,3,4,1,¢/, 3,y,6} is isomorphic to the graph in Fig.8(b). Furthermore,
y belongs to Ps(1,d/,y,,3,6), which shares an edge with P;(6,3,4,1,5,2). Therefore,
y € B. Notice that (a,y) belongs to Ps(5,2,a,y,a’,3) in both cases.

Case 2 y is only adjacent to 4, 5, and 6 in the P4(6,3,4,1,5,2).

By Lemma 8, there exists a node x1 adjacent to 2 (and possibly 1, 3) but not y, 4, 5 or 6
in G.

If x; is adjacent to 2 (and possibly 1) but not 3 in the Ps(6,3,4,1,5,2) then (4,y) and (5, y)
belong to the Ps(3,4,y,5,2,z1), and (6,y) belongs to the Ps(3,6,y,5,2,z;1). Both of these
Py’s share an edge with F;(6,3,4,1,5,2).

If z; is only adjacent to 2 and 3 in the Fs(6,3,4,1,5,2) then the graph induced by
{6,3,4,1,5,2,y,x; } is the graph in Fig.8(b). As noted above, y € B in this case.

If 21 is only adjacent to 2, 1 and 3 in the Fs(6,3,4,1,5,2) then the graph induced by
{6,3,4,1,5,2,y, 21} is the graph in Fig.8(a), and (4,y), (6,y), (1,z1) and (2,z1) belong
to the Ps(6,y,4,1,21,2). Notice that neither (5,y) nor (3,z1) belongs to any Fs in this
subgraph. Finally, note that z; and y belongs to the Py(6,y,4,1,21,2), which shares an
edge with P5(6,3,4,1,5,2). Therefore, z1,y € B. a

Lemma 10 Suppose that G has no star cutset. A node y ¢ V(B) adjacent to V(B) is
universal for V(B).

Proof: By Lemma 9, node y is universal for the node set 3 of some Fs in B. It follows from
Theorem 2 that y is also universal for the node set of the Fy’s that share an edge with X.
Since B is Ps-connected graph, this implies that y is universal for V(B). O

Lemma 11 Suppose that G has no star cutset. Then B is bipartite.

Proof: Suppose that B is not bipartite. Since B is perfect, B contains a triangle (z,y, 2).
Obviously, these three nodes cannot belong to the same Fs. Suppose that two nodes of
these three nodes, say = and ¥, belong to some Fs. Let ¥ denote the node set of this Fj.
Then by Theorem 2, the third node z should be universal for 3. Now we prove that it is
also universal for V(B) \ {z}. Suppose that z is universal for S C V(B), where ¥ C S and
SU{z} # V(B). Since B is Ps-connected, in B there exists another P, denote by ¥’ the
node set of this FPs, not entirely contained in S which shares an edge e with some Fg in S.
Since, z is adjacent to both ends of e, z ¢ ¥'. Furthermore, by Theorem 2, z is universal
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for ¥'. Therefore, z is universal for S U X'. By induction, z is universal for V(B) \ {z}.
This contradicts the fact that B is Ps-connected. Hence, no two of the three nodes x,y, z
belong to the same Fg.

Therefore, we only need to consider the following two cases by Lemma 9.

Case 1 B contains the graph in Fig.8(a) plus z adjacent to 5 and y. That is, {5,y, 2}
induces a triangle.

By Theorem 2 applied to the Ps(6,3,4,1,5,2), z cannot be adjacent to 1, 2 or 3. By
Theorem 2 applied to the Ps(6,y,4,1,x1,2), z cannot be adjacent to 4, 6 or x;. But now
the Ps(6,3,21,2,5, z) plus node y contradicts Lemma 4.

Case 2 B contains the graph in Fig.8(b) plus z adjacent to 4 and y. That is, {4,y, 2}
induces a triangle.

By Theorem 2 applied to the Fs(6,3,4,1,5,2), z cannot be adjacent to 1, 2 or 3. By
Theorem 2 applied to the Ps(1,5,y,6,3,x1), z cannot be adjacent to 5, 6 or x1. But now
the Ps(z,v,6,3,21,2) plus node 4 contradicts Lemma 4. |

Progf of Theorem 3: By Lemma 11, B is bipartite. Suppose B is not a connected component
of G. By Lemma 10, any node y in G \ B that has a neighbor in B is universal for
V(B). Therefore, N(z) U {z} is a star cutset of G for any node z in V(B), since S =
V(B)

(B)\ (N(z) U {z}) is nonempty, and y and S are in distinct connected components of
G\ (N(x)U{x}). This completes the proof. O
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