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July 7, 2022

Abstract

A filter oracle for a clutter consists of a finite set V and an oracle which, given any set X ⊆ V ,

decides in unit time whether X contains a member of the clutter. Let A2n be an algorithm that,

given any clutter C over 2n elements via a filter oracle, decides whether C is ideal. We prove that

in the worst case, A2n makes at least 2n calls to the filter oracle. Our proof uses the theory of

cuboids.

Background Let V be a finite set, and C a family of subsets of V , called members. C is a clutter

over ground set V if no member contains another one [7]. C is ideal if the set covering polyhedron{
x ∈ RV :

∑
u∈C xu ≥ 1 ∀C ∈ C;x ≥ 0

}
is integral. The terminology was coined in [5] but the no-

tion goes back to the 1960s by Lehman [8] (it took some time for the manuscript to be put in print).

An important question is the time complexity of detecting the property of idealness. Using basic

polyhedral theory, one can show easily that testing idealness belongs to co-NP. In fact, it was shown

in [6] that testing idealness is co-NP-complete, and so testing idealness is NP-hard.

Many examples of clutters from Combinatorial Optimization, such as arborescences, cuts, T -joins,

and dijoins, have exponentially many members (in the size of the ground set). For this reason, for

some problems, it may be more appropriate to work in a model where C is inputted via an oracle. More

precisely, a filter oracle for a clutter C consists of V along with an oracle which, given any set X ⊆ V ,

decides in unit time whether or not X contains a member.

In the filter oracle model, it is no longer clear that testing idealness belongs to co-NP. Using a

seminal theorem of Lehman on minimally non-ideal clutters [9], Seymour showed that testing idealness
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indeed belongs to co-NP [11]. In this brief note, we prove that in the filter oracle model, testing

idealness cannot be done in polynomial time (regardless of the “P versus NP” question).

Our result is proved by using the concept of cuboids, initiated in [3] and developed in [1], which

allows us to get an understanding of the “local geometry” of ideal clutters.

A cuboid is a clutter C whose ground set can be partitioned into pairs {ui, vi}, i ∈ [n] such that

|{ui, vi}∩C| = 1 for all i ∈ [n] andC ∈ C. C can be represented as a subset of {0, 1}n. More precisely,

for each C ∈ C, let p(C) be the point in {0, 1}n such that p(C)i = 0 iff C ∩ {ui, vi} = {ui}. Let

S := {p(C) : C ∈ C}. We call C the cuboid of S, denote by cuboid(S) := C and by C(p) the member

of C corresponding to p ∈ {0, 1}n. Note that the operator cuboid(·) takes any subset of {0, 1}n to a

cuboid. S is cube-ideal if cuboid(S) is an ideal clutter. It is known that S is cube-ideal iff the convex

hull of S can be described by 0 ≤ x ≤ 1 and inequalities of the form
∑

i∈I xi +
∑

j∈J(1 − xj) ≥ 1

for disjoint I, J ⊆ [n] [3, 1]. Thus, the set {0, 1}n is cube-ideal. Moreover, if S is cube-ideal, then so

is every restriction of it obtained by fixing coordinates to 0 or 1 (and then dropping the coordinates).

Let p ∈ {0, 1}n. The set S4p is defined as {x4p : x ∈ S}, where the second 4 denotes

coordinate-wise sum mod 2; we call S4p the twisting of S with respect to p. It can be readily seen that

twisting preserves cube-idealness. The induced clutter of S with respect to p, denoted by ind(S4p),

is the clutter over ground set [n] whose members are the inclusionwise minimal sets in {C ⊆ [n] :

χC ∈ S4p}. In particular, if p ∈ S, then ind(S4p) = {∅}. A key insight for this note is that S is

cube-ideal iff the induced clutter of S with respect to every point in {0, 1}n is ideal [1]. Consequently,

if for example S excludes a single point p of {0, 1}n, then S is cube-ideal, because ind(S4p) =

{{1}, {2}, . . . , {n}} is an ideal clutter.

The result We are almost ready to prove the main result of this note. Let n ≥ 1 be an integer, and let

Gn denote the skeleton graph of the unit hypercube [0, 1]n. Given S ⊆ {0, 1}n, if Gn[{0, 1}n−S] has

maximum degree at most 2, then S is cube-ideal. This result was first proved in [4], and further studied

in [2]. It can also be readily shown using the characterization of cube-idealness in terms of induced

clutters. The result, however, does not extend from 2 to 3. Let S3 := {e1 + e2, e2 + e3, e1 + e3, e1 +

e2 + e3} ⊆ {0, 1}3. Then S3 is not cube-ideal because its convex hull has a facet-defining inequality
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of the form x1 +x2 +x3 ≥ 2. Moreover, in G3[{0, 1}3−S3], the vertex 0 has 3 neighbours e1, e2, e3.

Theorem 1. Let A2n be an algorithm that, given any clutter C over 2n elements via a filter oracle,

decides whether or not C is ideal. Then in the worst case, A2n must make at least 2n calls to the filter

oracle.

Proof. For all p ∈ {0, 1}n and distinct i, j, k ∈ [n], let S(p:i,j,k) := {0, 1}n−{p, p4ei, p4ej , p4ek}.

Then S(p:i,j,k) is not cube-ideal as it has an S3 restriction, while every proper superset S′ of S(p:i,j,k) is

cube-ideal asGn[{0, 1}n−S′] has degree at most 2. In particular, cuboid
(
S(p:i,j,k)

)
is a non-ideal clut-

ter, while cuboid(S′) is ideal for every S′ ) S. Thus, A2n must distinguish between cuboid
(
S(p:i,j,k)

)
and cuboid(S′) for every S′ ) S. Consequently, for every point q ∈ {p, p4ei, p4ej , p4ek}, the al-

gorithm must query the set C(q) or a superset of it. In fact, for q ∈ {p, p4ei, p4ej , p4ek} − {p},

every neighbour of q inGn except for p belongs to both S(p:i,j,k) and S′, S′ ) S, so the algorithm must

query either C(q) or C(q) ∪ C(p) (note that |C(q) ∪ C(p)| = |C(q)|+ 1).

By applying the argument above to every p ∈ {0, 1}n and distinct i, j, k ∈ [n], we conclude the

following: For every q ∈ {0, 1}n and every neighbour of it p ∈ {0, 1}n in Gn, A2n must query at least

one of C(q), C(q) ∪ C(p). It can be readily checked that A2n must query at least 2n sets.

Let C be a clutter over ground set V . Let I, J be disjoint subsets of V . The minor of C obtained

after deleting I and contracting J , denoted C \ I/J , is the clutter over ground set V − (I ∪ J) whose

members are the inclusionwise minimal sets in {C − J : C ∈ C, C ∩ I = ∅}. Given a filter oracle for

C, we also have one for every minor C \ I/J [11].

Being ideal is closed under taking minor operations [10]. Two clutters are isomorphic if one can

be obtained from the other by relabeling its ground set. Denote by ∆3 any clutter isomorphic to

{{1, 2}, {2, 3}, {3, 1}}. It can be readily checked that ∆3 is the only non-ideal clutter over a ground

set of size at most three. In particular, if a clutter has a ∆3 minor, then it is non-ideal.

Let S ⊆ {0, 1}n. It can be readily seen that every induced clutter of S is a (contraction) minor

of cuboid(S). Thus, since ind(S3) = {{1, 2}, {2, 3}, {1, 3}}, cuboid(S3) has a ∆3 minor, proving

once again that S3 is not cube-ideal. It can also be readily seen that if R is a restriction of S, then

cuboid(R) is a minor of cuboid(S). Consequently, in the proof of Theorem 1, it can be readily seen
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that cuboid
(
S(p:i,j,k)

)
has a ∆3 minor, while cuboid(S′) is ideal and therefore has no ∆3 minor for

every S′ ) S. Thus, the proof also implies the following.

Theorem 2. Let D2n be an algorithm that, given any clutter C over 2n elements via a filter oracle,

decides whether or not C has a ∆3 minor. Then in the worst case, D2n must make at least 2n calls to

the filter oracle.

References
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