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Preface

The integer programming models known as set packing and set cov-
ering have a wide range of applications, such as pattern recognition,
plant location and airline crew scheduling. Sometimes, due to the spe-
cial structure of the constraint matrix, the natural linear programming
relaxation yields an optimal solution that is integer, thus solving the
problem. Sometimes, both the linear programming relaxation and its
dual have integer optimal solutions. Under which conditions do such
integrality properties hold? This question is of both theoretical and
practical interest. Min-max theorems, polyhedral combinatorics and
graph theory all come together in this rich area of discrete mathemat-
ics. In addition to min-max and polyhedral results, some of the deepest
results in this area come in two flavors: “excluded minor” results and
“decomposition” results. In these notes, we present several of these
beautiful results. Three chapters cover min-max and polyhedral re-
sults. The next four cover excluded minor results. In the last three, we
present decomposition results. We hope that these notes will encourage
research on the many intriguing open questions that still remain. In
particular, we state 18 conjectures. For each of these conjectures, we
offer $5000 as an incentive for the first correct solution or refutation
before December 2020.
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Chapter 1

Clutters

A clutter C is a pair (V,E), where V is a finite set and E is a family of
subsets of V none of which is included in another. The elements of V
are the vertices of C and those of E are the edges . For example, a simple
graph (V, E) (no multiple edges or loops) is a clutter. We refer to West
[208] for definitions in graph theory. In a clutter, a matching is a set of
pairwise disjoint edges. A transversal is a set of vertices that intersects
all the edges. A clutter is said to pack if the maximum cardinality
of a matching equals the minimum cardinality of a transversal. This
terminology is due to Seymour 1977. Many min-max theorems in graph
theory can be rephrased by saying that a clutter packs. We give three
examples. The first is König’s theorem.

Theorem 1.1 (König [130]) In a bipartite graph, the maximum cardi-
nality of a matching equals the minimum cardinality of a transversal.

As a second example, let s and t be distinct nodes of a graph G.
Menger’s theorem states that the maximum number of pairwise edge-
disjoint st-paths in G equals the minimum number of edges in an st-cut
(see West [208] Theorem 4.2.18). Let C1 be the clutter whose vertices
are the edges of G and whose edges are the st-paths of G (Following
West’s terminology [208], paths and cycles have no repeated nodes).
We call C1 the clutter of st-paths. Its transversals are the st-cuts. Thus
Menger’s theorem states that the clutter of st-paths packs.

Interestingly, some difficult results and famous conjectures can be
rephrased by saying that certain clutters pack. As a third example,
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8 CHAPTER 1. CLUTTERS

consider the four color theorem [2] stating that every planar graph is
4-colorable. Tait [190] showed that this theorem is equivalent to the fol-
lowing statement: Every simple 2-connected cubic planar graph G is 3-
edge-colorable (see West [208] Theorem 7.3.3). Let C2 = (V (C2), E(C2))
be the clutter whose vertices are the maximal matchings of G and whose
edges are indexed by the edges of G, with Se ∈ E(C2) if and only if
Se = {M ∈ V (C2) : e ∈ M}. In these notes, a maximal set in a given
family refers to an inclusion-maximal set, whereas a maximum set refers
to a set of maximum cardinality. We make the same distinction between
minimal and minimum. We leave it as an exercise to check that, in a
cubic graph, C2 packs if and only if G is 3-edge-colorable. Therefore,
the four color theorem is equivalent to stating that C2 packs for sim-
ple 2-connected cubic planar graphs. The smallest simple 2-connected
cubic graph that is not 3-edge-colorable is the Petersen graph (see Fig-
ure 1.1). Tutte [203] conjectured that every simple 2-connected cubic
graph that is not 3-edge-colorable (i.e. C2 does not pack) is contractible
to the Petersen graph. (Graph G is contractible to graph H if H can be
obtained from G by a sequence of edge contractions and edge deletions.
Contracting edge e = uv is the operation of replacing u and v by a
single node whose incident edges are the edges other than e that were
incident to u or v. Deleting e is the operation of removing e from the
graph.) Since the Petersen graph is not planar, the four color theorem
is a special case of Tutte’s conjecture. Tutte’s conjecture was proved
recently by Robertson, Sanders, Seymour and Thomas ([165], [169],
[170]). A more general conjecture of Conforti and Johnson [55] is still
open (see Section 1.3.5). This indicates that a full understanding of the
clutters that pack must be extremely difficult. More restricted notions
are amenable to beautiful theories, while still containing rich classes
of examples. In this chapter, we introduce several such concepts and
examples.

Exercise 1.2 In a cubic graph G, show that C2 packs if and only if G
is 3-edge-colorable.
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Figure 1.1: The Petersen graph.

1.1 MFMC Property and Idealness

We define a clutter C to be a family E(C) of subsets of a finite ground
set V (C) with the property that S1 6⊆ S2 for all distinct S1, S2 ∈ E(C).
V (C) is called the set of vertices and E(C) the set of edges of C. A
clutter is trivial if it has no edge or if it has the empty set as unique
edge. Clutters are also called Sperner families in the literature.

Given a nontrivial clutter C, we define M(C) to be a 0,1 matrix
whose columns are indexed by V (C), whose rows are indexed by E(C)
and where mij = 1 if and only if the vertex corresponding to column j
belongs to the edge corresponding to row i. In other words, the rows of
M(C) are the characteristic vectors of the sets in E(C). Note that the
definition of M(C) is unique up to permutation of rows and permutation
of columns. Furthermore, M(C) contains no dominating row, since C
is a clutter (A vector r ∈ F is said to be dominating if there exists
v ∈ F distinct from r such that r ≥ v). A 0,1 matrix containing no
dominating rows is called a clutter matrix. Given any 0,1 clutter matrix
M , let C(M) denote the clutter such that M(C(M)) = M .

Let M 6= 0 be a 0,1 clutter matrix and consider the following pair
of dual linear programs.

min{wx : x ≥ 0, Mx ≥ 1} (1.1)
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= max{y1 : y ≥ 0, yM ≤ w} (1.2)

Here x and 1 are column vectors while w and y are row vectors. 1
denotes a vector all of whose components are equal to 1.

Definition 1.3 Clutter C(M) packs if both (1.1) and (1.2) have opti-
mal solution vectors x and y that are integral when w = 1.

Definition 1.4 Clutter C(M) has the packing property if both (1.1)
and (1.2) have optimal solution vectors x and y that are integral for all
vectors w with components equal to 0, 1 or +∞.

Definition 1.5 Clutter C(M) has the Max Flow Min Cut property (or
MFMC property) if both (1.1) and (1.2) have optimal solution vectors
x and y that are integral for all nonnegative integral vectors w.

Clearly, the MFMC property for a clutter implies the packing prop-
erty which itself implies that the clutter packs. Conforti and Cornuéjols
[41] conjectured that, in fact, the MFMC property and the packing
property are identical. This conjecture is still open.

Conjecture 1.6 A clutter has the MFMC property if and only if it has
the packing property.

Definition 1.7 Clutter C(M) is ideal if (1.1) has an optimal solution
vector x that is integral for all w ≥ 0.

The notion of idealness is also known as the width-length property
(Lehman [133]), the weak Max Flow Min Cut property (Seymour [183])
or the Q+-MFMC property (Schrijver [172]). It is easy to show that
the MFMC property implies idealness. Indeed, if (1.1) has an optimal
solution vector x for all nonnegative integral vectors w, then (1.1) has
an optimal solution x for all nonnegative rational vectors w and, since
the rationals are dense in the reals, for all w ≥ 0. In fact, the packing
property implies idealness.

Theorem 1.8 If a clutter has the packing property, then it is ideal.

This follows from a result of Lehman [133] that we will prove in Chap-
ter 4 (see Theorem 4.1 and Exercise 4.8).
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Figure 1.2: Classes of clutters.
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Exercise 1.9 Let Q6 =




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1


, C2

3 =




1 1 0
0 1 1
1 0 1




and C2
4 =




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


. For an m×n 0,1 matrix M , let M+ denote

the m× (n+1) matrix obtained from M by adding the column vector 1.
Find which of the clutters C(Q6), C(Q+

6 ), C(C2
3), C(C2+

3 ), C(C2
4) pack,

which have the packing property, which have the MFMC property and
which are ideal. See Figure 1.2 for a hint.

Clearly, C(M) is ideal if and only if P = {x ≥ 0 : Mx ≥ 1}
is an integral polyhedron, that is, P has only integral extreme points.
Equivalently, C is ideal if and only if

x(S) ≥ 1 for all S ∈ E(C)

x ≥ 0

is an integral polyhedron, where x(S) denotes
∑

i∈S xi.

A linear system Ax ≥ b is Totally Dual Integral (TDI) if the linear
program min{wx : Ax ≥ b} has an integral optimal dual solution y
for every integral w for which the linear program has a finite optimum.
Edmonds and Giles [81] showed that, if Ax ≥ b is TDI and b is integral,
then P = {x : Ax ≥ b} is an integral polyhedron. The interested
reader can find the proof of the Edmonds-Giles theorem in Schrijver
[173] pages 310–311, or Nemhauser and Wolsey [146] pages 536–537. It
follows that C(M) has the MFMC property if and only if (1.2) has an
optimal integral solution y for all nonnegative integral vectors w.

Definition 1.10 Let k be a positive integer. Clutter C(M) has the
1/k -MFMC property if it is ideal and, for all nonnegative integral
vectors w, the linear program (1.2) has an optimal solution vector y
such that ky is integral.

When k = 1, this definition reduces to the MFMC property. If
C(M) has the 1/k-MFMC property, then it also has the 1/q-MFMC
property for every integer q that is a multiple of k.
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For convenience, we say that trivial clutters have all the above prop-
erties: MFMC, ideal, etc.

The min-max equation (1.1)=(1.2) has a close max-min relative

max{wx : x ≥ 0, Mx ≤ 1}
= min{y1 : y ≥ 0, yM ≥ w}

discussed in Chapter 3.

1.2 Blocker

The blocker b(C) of a clutter C is the clutter with V (C) as vertex set
and the minimal transversals of C as edge set. That is, E(b(C)) consists
of the minimal members of {B ⊆ V (C) : |B ∩A| ≥ 1 for all A ∈ E(C)}.
In other words, the rows of M(b(C)) are the minimal 0,1 vectors xT

such that x belongs to the polyhedron {x ≥ 0 : M(C)x ≥ 1}.

Example 1.11 Let G be a graph and s, t be distinct nodes of G. If C
is the clutter of st-paths, then b(C) is the clutter of minimal st-cuts.

Exercise 1.12 Show that the blocker of a trivial clutter is a trivial
clutter.

Edmonds and Fulkerson [80] observed that b(b(C)) = C. Before
proving this property, we make the following remark.

Remark 1.13 Let H and K be two clutters defined on the same vertex
set. If

(i) every edge of H contains an edge of K and
(ii) every edge of K contains an edge of H,

then H = K.

Exercise 1.14 Prove Remark 1.13.

Theorem 1.15 If C is a clutter, then b(b(C)) = C.
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Proof: Let A be an edge of C. The definition of b(C) implies that
|A∩B| ≥ 1, for every edge B of b(C). So A is a transversal of b(C), i.e.
A contains an edge of b(b(C)).

Now let A be an edge of b(b(C)). We claim that A contains an edge
of C. Suppose otherwise. Then V (C) − A is a transversal of C and
therefore it contains an edge B of b(C). But then A∩B = ∅ contradicts
the fact that A is an edge of b(b(C)). So the claim holds.

Now the theorem follows from Remark 1.13. 2

Two 0,1 matrices of the form M(C) and M(b(C)) are said to form a
blocking pair. The next theorem is an important result due to Lehman
[132]. It states that, for a blocking pair A,B of 0,1 matrices, the poly-
hedron P defined by

Ax ≥ 1 (1.3)

x ≥ 0 (1.4)

is integral if and only if the polyhedron Q defined by

Bx ≥ 1 (1.5)

x ≥ 0 (1.6)

is integral. The proof of this result uses the following remark.

Remark 1.16
(i) The rows of B are exactly the 0,1 extreme points of P .
(ii) If an extreme point x of P satisfies xT ≥ λT B where λi ≥ 0 and∑

λi = 1, then x is a 0,1 extreme point of P .

Proof: (i) follows from the fact that the rows of B are the minimal 0,1
vectors in P .

To prove (ii), note that x is an extreme point of PI = {χ : χT ≥
λT B where λi ≥ 0 and

∑
λi = 1} for otherwise x would be a convex

combination of distinct x1, x2 ∈ PI and, since PI ⊆ P , this would
contradict the assumption that x is an extreme point of P . Now (ii)
follows by observing that the extreme points of PI are exactly the rows
of B. 2
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Theorem 1.17 (Lehman [132]) A clutter is ideal if and only if its
blocker is.

Proof: By Theorem 1.15, it suffices to show that if P defined by (1.3)-
(1.4) is integral, then Q defined by (1.5)-(1.6) is also integral.

Let a be an arbitrary extreme point of Q. By (1.5), Ba ≥ 1, i.e.
aT x ≥ 1 is satisfied by every x such that xT is a row of B. Since P
is an integral polyhedron, it follows from Remark 1.16(i) that aT x ≥ 1
is satisfied by all the extreme points of P . By (1.6), a ≥ 0. Therefore
aT x ≥ 1 is satisfied by all points in P . Furthermore, aT x = 1 for some
x ∈ P . Now, by linear programming duality, we have

1 = min{aT x : x ∈ P} = max{λT1 : λT A ≤ aT , λ ≥ 0}.

Therefore, by Remark 1.16(ii) applied to Q, a is a 0,1 extreme point of
Q. 2

Exercise 1.18 Let Q6 denote the 4 × 6 incidence matrix of triangles
versus edges of K4. Describe the blocker of C(Q6). Is it ideal? Does it
pack? Does it have the MFMC property? Compare with the properties
of Q6 found in Exercise 1.9.

1.3 Examples

1.3.1 st-Cuts and st-Paths

Consider a digraph (N, A) with s, t ∈ N . Let C be the clutter where
V (C) = A and E(C) is the family of st-paths.

For any arc capacities w ∈ ZA
+ , the Ford-Fulkerson theorem [84]

states that (1.1) and (1.2) both have optimal solutions that are integral:
(1.1) is the min cut problem and (1.2) is the max flow problem (a flow
y is a multiset of st-paths such that each arc a ∈ A belongs to at most
wa st-paths of y. A max flow is a flow containing the maximum number
of st-paths). Using the terminology introduced in Definition 1.5, the
Ford-Fulkerson theorem states that the clutter C of st-paths has the
MFMC property.
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Theorem 1.19 (Ford-Fulkerson [84]) The clutter C of st-paths has the
MFMC property.

This result implies that C is ideal and therefore the polyhedron

{x ∈ RA
+ : x(P ) ≥ 1 for all st-paths P}

is integral. Its extreme points are the minimal st-cuts. In the remain-
der, it will be convenient to refer to minimal st-cuts simply as st-cuts.

As a consequence of Lehman’s theorem (Theorem 1.17), the clutter
of st-cuts is also ideal, i.e. the polyhedron

{x ∈ RA
+ : x(C) ≥ 1 for all st-cuts C}

is integral. So, minimizing a nonnegative linear function over this poly-
hedron solves the shortest st-path problem. We leave it as an exercise
to show that the clutter of st-cuts has the MFMC property.

Exercise 1.20 Show that the clutter of st-cuts packs by using graph
theoretic arguments. Then show that the clutter of st-cuts has the
MFMC property.

In a network, the product of the minimum number of edges in an st-
path by the minimum number of edges in an st-cut is at most equal to
the total number of edges in the network. This width-length inequality
can be generalized to any nonnegative edge lengths `e and widths we:
the minimum length of an st-path times the minimum width of an
st-cut is at most equal to the scalar product `T w. This width-length
inequality was observed by Moore and Shannon [145] and Duffin [78].
A length and a width can be defined for any clutter and its blocker.
Interestingly, Lehman [132] showed that the width-length inequality
can be used as a characterization of idealness.

Theorem 1.21 (Width-length inequality, Lehman [132]) For a clutter
C and its blocker b(C), the following statements are equivalent.

• C and b(C) are ideal;

• min{w(C) : C ∈ E(C)} ×min{`(D) : D ∈ E(b(C))} ≤ wT ` for
all `, w ∈ Rn

+.
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Proof: Let A = M(C) and B = M(b(C)) be the blocking pair of 0,1
matrices associated with C and b(C) respectively.

First we show that if C and b(C) are ideal then, for all `, w ∈ Rn
+,

αβ ≤ wT ` where α ≡ min{w(C) : C ∈ E(C)} and β ≡ min{`(D) :
D ∈ E(b(C))}.

If α = 0 or β = 0, then this clearly holds.
If α > 0 and β > 0, we can assume w.l.o.g. that α = β = 1

by scaling ` and w. So Aw ≥ 1, i.e. w belongs to the polyhedron
P ≡ {x ≥ 0, Ax ≥ 1}. Therefore w is greater than or equal to a
convex combination of the extreme points of P , which are the rows of
B by Remark 1.16(i) since P is an integral polyhedron. It follows that
wT ≥ λT B where λ ≥ 0 and

∑
i λi = 1. Similarly, one shows that

`T ≥ µT A where µ ≥ 0 and
∑

i µi = 1. Since BAT ≥ J , where J
denotes the matrix of all 1’s, it follows that

wT ` ≥ λT BAT µ ≥ λT Jµ = 1 = αβ

Now we prove the converse. Let C be a nontrivial clutter and let
w be any extreme point of P ≡ {x ≥ 0 : Ax ≥ 1}. Since Aw ≥ 1,
it follows that min{w(C) : C ∈ E(C)} ≥ 1. For any point z in
Q ≡ {z ≥ 0 : Bz ≥ 1}, we also have min{z(D) : D ∈ E(b(C))} ≥ 1.
Using the hypothesis, it follows that wT z ≥ 1 is satisfied by all points
z in Q. Furthermore, equality holds for at least one z ∈ Q. Now, by
linear programming duality,

1 = min{wT z : z ∈ Q} = max{µT1 : µT B ≤ wT , µ ≥ 0}.

It follows from Remark 1.16(ii) that w is a 0,1 extreme point of P .
Therefore, C is ideal. By Theorem 1.17, b(C) is also ideal. 2

1.3.2 Two-Commodity Flows

Let G be an undirected graph and let {s1, t1} and {s2, t2} be two pairs
of nodes of G with s1 6= t1 and s2 6= t2. A two-commodity cut is a
minimal set of edges separating each of the pairs {s1, t1} and {s2, t2}.
A two-commodity path is an s1t1-path or an s2t2-path.

For any edge capacities w ∈ R
E(G)
+ , Hu [126] showed that a minimum

capacity two-commodity cut can be obtained by solving the linear pro-
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gram (1.1), where M is the incidence matrix of two-commodity paths
versus edges.

Theorem 1.22 (Hu [126]) The clutter of two-commodity paths is ideal.

This theorem states that the polyhedron

x(P ) ≥ 1 for all two-commodity paths P

xe ≥ 0 for all e ∈ E(G)

is integral. Using Lehman’s theorem (Theorem 1.17), the clutter of
two-commodity cuts is ideal.

The clutters of two-commodity paths and of two-commodity cuts
do not pack, but both have the 1/2-MFMC property (Hu [126] and
Seymour [184], respectively).

For more than two commodities, the clutter of multicommodity
paths is not always ideal but conditions on the graph G and the source-
sink pairs {s1, t1}, . . . , {sk, tk} have been obtained under which it is
ideal. See Papernov [159], Okamura and Seymour [151], Lomonosov
[135] and Frank [85] for examples.

1.3.3 r-Cuts and r-Arborescences

Consider a connected digraph (N,A) with r ∈ N and nonnegative
integer arc lengths `a for a ∈ A. An r-arborescence is a minimal arc
set that contains an rv-dipath for every v ∈ N . It follows that an
r-arborescence contains |N | − 1 arcs forming a spanning tree and each
node of N−{r} is entered by exactly one arc. The minimal transversals
of the clutter of r-arborescences are called r-cuts.

Theorem 1.23 (Fulkerson [91]) The clutter of r-cuts has the MFMC
property, i.e. the minimum length of an r-arborescence is equal to the
maximum number of r-cuts such that each a ∈ A is contained in at
most `a of them.

In other words, both sides of the linear programming duality relation

min {∑a∈A `axa : x(C) ≥ 1 for all r-cuts C
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xa ≥ 0}
= max {∑C r-cut yC :

∑

C3a

yC ≤ `a for all a ∈ A

yC ≥ 0}
have integral optimal solutions x and y.

Theorem 1.24 (Edmonds [79]) The clutter of r-arborescences has the
MFMC property.

In other words, both sides of the linear programming duality relation

min {∑a∈A `axa : x(B) ≥ 1 for all r-arborescences B

xa ≥ 0}
= max {∑

B r-arborescence yB :
∑

B3a

yB ≤ `a for all a ∈ A

yB ≥ 0}
have integral optimal solutions x and y. The fact that the minimization
problem has an integral optimal solution x follows from Theorems 1.17
and 1.23, but the fact that the dual also does cannot be deduced from
these theorems.

1.3.4 Dicuts and Dijoins

Let (N,A) be a digraph. An arc set C ⊆ A is called a dicut if there
exists a nonempty node set S ⊂ N such that (S, N − S) = C and
(N −S, S) = ∅ where (S1, S2) denotes the set of arcs ij with i ∈ S1 and
j ∈ S2, and C is minimal with this property. A dijoin is a minimal arc
set intersecting every dicut.

Theorem 1.25 (Lucchesi-Younger [141]) The clutter of dicuts has the
MFMC property.

By Lehman’s theorem, it follows that the clutter of dijoins is ideal.
However, Schrijver [171] showed by an example that the clutter of di-
joins does not always have the MFMC property. Two additional exam-
ples are given in [63].

Conjecture 1.26 (Woodall [210]) The clutter of dijoins packs.
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1.3.5 T -Cuts and T -Joins

Let G be an undirected graph and T ⊆ V (G) a node set of even cardi-
nality. Such a pair (G, T ) is called a graft. An edge set J ⊆ E(G) is a
T -join if it induces an acyclic graph where the odd nodes coincide with
T . The minimal transversals of the clutter of T -joins are called T -cuts.
For disjoint node sets S1, S2, let (S1, S2) denote the set of edges with
one endnode in S1 and the other in S2. T -cuts are edge sets of the form
(S, V (G)− S) where |T ∩ S| is odd.

When T = {s, t}, the T -joins are the st-paths of G and the T -cuts
are the st-cuts.

When T = V (G), the T -joins of size |V (G)|/2 are the perfect match-
ings of G.

Theorem 1.27 (Edmonds-Johnson [82]) The clutter of T -cuts is ideal.

Hence, the polyhedron

x(C) ≥ 1 for all T -cuts C

xe ≥ 0 for all e ∈ E(G)

is integral.
The Edmonds-Johnson theorem together with Lehman’s theorem

(Theorem 1.17) implies that the clutter of T -joins is also ideal. Hence
the polyhedron

x(J) ≥ 1 for all T -joins J

xe ≥ 0 for all e ∈ E(G)

is integral.
The clutter of T -cuts does not pack, but it has the 1/2-MFMC

property (Seymour [188]). The clutter of T -joins does not have the
1/2-MFMC property (there is an example requiring multiplication by
4 to get an integer dual), but it may have the 1/4-MFMC property
(open problem). Seymour [185] showed that the 1/4-MFMC property
would follow from a conjecture of Fulkerson, namely Conjecture 1.32
mentioned later in this chapter. Another intriguing conjecture is the
following. In a graph G, a postman set is a T -join where T coincides
with the odd degree nodes of G.
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Conjecture 1.28 (Conforti and Johnson [55]) The clutter of postman
sets packs in graphs not contractible to the Petersen graph.

If true, this implies the four color theorem (see Exercise 1.31)!
We discuss T -cuts and T -joins in greater detail in Chapter 2.

1.3.6 Odd Cycles in Graphs

Let G be an undirected graph and C the clutter of odd cycles, i.e.
V (C) = E(G) and E(C) is the family of odd cycles in G (viewed as
edge sets). Seymour [183] characterized exactly when the clutter of
odd cycles has the MFMC property and Guenin [110] characterized
exactly when it is ideal. These results are described in Chapter 5 in
the more general context of signed graphs.

1.3.7 Edge Coloring of Graphs

In a simple graph G, consider the clutter C whose vertices are the
maximal matchings of G and whose edges are indexed by the edges of
G, with Se ∈ E(C) being the set of maximal matchings that contain
edge e. The problem

χ
′
(G) = min{1x : M(C)x ≥ 1, x ≥ 0 integral} (1.7)

is that of finding the edge-chromatic number of G. The dual problem

max{y1 : yM(C) ≤ 1, y ≥ 0 integral}
is that of finding a maximum number of edges in G no two of which
belong to the same matching. This equals the maximum degree ∆(G),
except in the trivial case where ∆(G) = 2 and G contains a triangle.
By Vizing’s theorem [205], χ

′
(G) and ∆(G) differ by at most one. It

is NP-complete to decide whether χ
′
(G) = ∆(G) or ∆(G) + 1 (Holyer

[123]). For the Petersen graph, χ
′
(G) = 4 > ∆(G) = 3. The following

conjecture of Tutte [203] was proved recently.

Theorem 1.29 (Robertson, Sanders, Seymour, Thomas [165], [169],
[170]) Every 2-connected cubic graph that is not contractible to the Pe-
tersen graph is 3-edge-colorable.
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The Petersen graph is nonplanar. So, by specializing the above
theorem to planar graphs, we get the following corollary.

Theorem 1.30 (Appel and Haken [2]. See also [164]) Every 2-connected
cubic planar graph is 3-edge-colorable.

This is equivalent to the famous 4-color theorem for planar maps,
as shown by Tait [190] over a century ago. In fact, Tait mistakenly
believed that he had settled the 4-color conjecture because he thought
that every 2-connected cubic planar graph is Hamiltonian (which would
imply Theorem 1.30). Tutte [200] found a counterexample over sixty
years later!

Exercise 1.31 Show that Conjecture 1.28 implies Theorem 1.29 and
therefore the 4-color theorem.

Let χ
′
2(G) = min{1x : M(C)x ≥ 1, x ≥ 0, 2x integral}. (1.8)

For the Petersen graph, it is easy to check that χ
′
2(G) = 3.

Conjecture 1.32 (Fulkerson [89]) For every 2-connected cubic graph,
χ
′
2(G) = 3.

Seymour [185] showed that Fulkerson’s conjecture holds if one re-
laxes the condition x ≥ 0 in (1.8).

1.3.8 Feedback Vertex Set

Given a digraph D = (V, A), a vertex set S ⊆ V is called a feedback
vertex set if V (C)∩S 6= ∅ for every directed cycle C. Let C denote the
clutter with V (C) = V and E(C) the family of minimal directed cycles
(viewed as sets of vertices). Then a feedback vertex set is a transversal
of C. Guenin and Thomas [113] characterize the digraphs D for which
C packs for every subdigraph H of D. Cai, Deng and Zang [23] and [24]
consider the feedback vertex set problem in tournaments and bipartite
tournaments respectively. A tournament is an orientation of a complete
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graph. A bipartite tournament is an orientation of a complete bipartite
graph. In the first case, C consists of the directed triangles in D and,
in the second case, C consists of the directed squares (check this). Cai,
Deng and Zang [23], [24] characterize the tournaments and bipartite
tournaments D for which C has the MFMC property.

Recently, Ding and Zang [77] solved a similar problem on undirected
graphs. They characterized in terms of forbidden subgraphs the graphs
G for which the clutter C of cycles has the MFMC property. Here
V (C) ≡ V (G) and E(C) is the family of cycles of G viewed as sets of
vertices.

1.4 Deletion, Contraction and Minor

Let C be a clutter. For j ∈ V (C), the contraction C/j and deletion
C \ j are clutters defined as follows: both have V (C) − {j} as vertex
set, E(C/j) is the set of minimal members of {S − {j} : S ∈ E(C)}
and E(C \ j) = {S ∈ E(C) : j 6∈ S}.

Exercise 1.33 Given an undirected graph G, consider the clutter C
whose vertices are the edges of G and whose edges are the cycles of
G (viewed as edge sets). Describe C\j and C/j. Relate to the graph-
theoretic notions of edge deletion and edge contraction in G.

Contractions and deletions of distinct vertices of C can be performed
sequentially, and it is easy to show that the result does not depend on
the order.

Proposition 1.34 For a clutter C and distinct vertices j1, j2,

(i) (C\j1)\j2 = (C\j2)\j1

(ii) (C/j1)/j2 = (C/j2)/j1

(iii) (C\j1)/j2 = (C/j2)\j1

Proof: Use the definitions of contraction and deletion! 2
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Contracting j ∈ V (C) corresponds to setting xj = 0 in the set
covering constraints Mx ≥ 1 of (1.1) since column j is removed from
M as well as the resulting dominating rows. Deleting j corresponds to
setting xj = 1 since column j is removed from M as well as all the rows
with a 1 in column j.

A clutter D obtained from C by a sequence of deletions and con-
tractions is a minor of C. For disjoint subsets V1 and V2 of V (C), we let
C/V1\V2 denote the minor obtained from C by contracting all vertices
in V1 and deleting all vertices in V2. If V1 6= ∅ or V2 6= ∅, the minor is
proper.

Proposition 1.35 For a clutter C and U ⊂ V (C),

(i) b(C\U) = b(C)/U

(ii) b(C/U) = b(C)\U

Proof: Use the definitions of contraction, deletion and blocker! 2

Proposition 1.36 (Seymour [183]) If a clutter C has the MFMC prop-
erty, then so do all its minors.

Proof: Trivial clutters have the MFMC property. So let C ′ =
C/V1\V2 be a nontrivial minor of C. It suffices to show that, for every

w′ ∈ Z
V (C′)
+ ,

max{y1 : y ≥ 0, yM(C ′) ≤ w′} (1.9)

has an integral optimal solution. Since b(C ′) is nontrivial (Exercise 1.12),
τ = min{w′(B′) : B′ ∈ E(b(C ′))} is well defined. Define w by

wj = w′
j for j ∈ V (C ′)

wj = τ for j ∈ V1

wj = 0 for j ∈ V2.

If B is an edge of b(C) and B∩V1 6= ∅, then w(B) ≥ τ . On the other
hand, if B ∩ V1 = ∅, then, by Proposition 1.35, b(C ′) = b(C) \ V1/V2

and therefore B contains an edge B′ of b(C ′) and w(B) ≥ w′(B′) ≥ τ .
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Furthermore, there exists B with w(B) = τ . Since C has the MFMC
property, it follows that

max{y1 : y ≥ 0, yM(C) ≤ w}

has an integral optimal solution y∗ with function value τ . y∗ can be
used to construct a solution y∗∗ of (1.9) with function value τ as follows.
Start with y∗∗ = 0. Let A be an edge of C such that y∗A > 0. The fact
that wj = 0 for j ∈ V2 implies that A ∩ V2 = ∅. Hence A contains an
edge A′ of C ′. Increase y∗∗A′ by y∗A. Repeat for each A such that y∗A > 0.
2

Similarly, one may prove the following result.

Proposition 1.37 If a clutter is ideal, then so are all its minors.

Exercise 1.38 Prove Proposition 1.37.

Corollary 1.39 Let M be a 0,1 matrix. The following are equivalent.

• The polyhedron {x ≥ 0 : Mx ≥ 1} is integral.

• The polytope {0 ≤ x ≤ 1 : Mx ≥ 1} is integral.

Propositions 1.36 and 1.37 suggest the following concepts.

Definition 1.40 A clutter is minimally non MFMC if it does not have
the MFMC property but all its proper minors do.

A clutter is minimally nonideal if it is not ideal but all its proper
minors are.

A clutter is minimally nonpacking if it does not pack but all its
proper minors do.

Properties of these clutters are investigated in Chapters 4 and 5.
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Chapter 2

T -Cuts and T -Joins

Consider a connected graph G with nonnegative edge weights we, for
e ∈ E(G). The Chinese Postman Problem consists in finding a min-
imum weight closed walk going through each edge at least once (the
edges of the graph represent streets where mail must be delivered and
we is the length of the street). Equivalently, the postman must find a
minimum weight set of edges J ⊆ E(G) such that J ∪E(G) induces an
Eulerian graph, i.e. J induces a graph the odd degree nodes of which
coincide with the odd degree nodes of G. Since w ≥ 0, we can assume
w.l.o.g. that J is acyclic. Such an edge set J is called a postman set.

The problem is generalized as follows. Let G be a graph and T a
node set of G of even cardinality. An edge set J of G is called a T -join
if it induces an acyclic graph the odd degree nodes of which coincide
with T . For disjoint node sets S1, S2, let (S1, S2) denote the set of edges
with one endnode in S1 and the other in S2. A T -cut is a minimal edge
set of the form (S, V (G) − S) where S is a set of nodes with |T ∩ S|
odd. Clearly every T -cut intersects every T -join.

Edmonds and Johnson [82] considered the problem of finding a min-
imum weight T -join. One way to solve this problem is to reduce it to
the perfect matching problem in a complete graph Kp, where p = |T |.
Namely, compute the lengths of shortest paths in G between all pairs of
nodes in T , use these values as edge weights in Kp and find a minimum
weight perfect matching in Kp. The union of the corresponding paths
in G is a minimum weight T -join. There is another way to solve the
minimum weight T -join problem: Edmonds and Johnson gave a direct

27
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primal-dual algorithm and, as a by-product, obtained that the clutter
of T -cuts is ideal.

Theorem 2.1 (Edmonds-Johnson [82])

The polyhedron

x(C) ≥ 1 for all T − cuts C (2.1)

xe ≥ 0 for all e ∈ E(G). (2.2)

is integral.

In the next section, we give a non-algorithmic proof of this theorem
suggested by Pulleyblank [162].

The clutter of T -cuts does not pack, but Seymour [188] showed that
it has the 1/2-MFMC property. In Section 2.2, we prove Seymour’s
result, following a short argument of Sebö [174] and Conforti [39].

As we have seen in Chapter 1, clutters come in pairs: To each
clutter C, we can associate its blocker b(C) whose edges are the minimal
transversals of C. Lehman [132] showed that C is ideal if and only if
b(C) is ideal (Theorem 1.17). The Edmonds-Johnson theorem together
with Lehman’s theorem implies that the clutter of T -joins is also ideal,
i.e. the polyhedron

x(J) ≥ 1 for all T − joins J

xe ≥ 0 for all e ∈ E(G).

is integral. The clutter of T -joins does not pack in general. In Sec-
tion 2.3, we present two special cases where it does.

2.1 Proof of the Edmonds-Johnson Theo-

rem

First, we prove the following lemma. For v ∈ V (G), let δ(v) denote the
set of edges incident with v. A star is a tree where one node is adjacent
to all the other nodes.
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Lemma 2.2 Let x̃ be an extreme point of the polyhedron

x(δ(v)) ≥ 1 for all v ∈ T (2.3)

xe ≥ 0 for all e ∈ E(G). (2.4)

The connected components of the graph G̃ induced by the edges such
that x̃e > 0 are either

(i) odd cycles with nodes in T and edges x̃e = 1/2, or

(ii) stars with nodes in T , except possibly the center, and edges x̃e = 1.

Proof: Every connected component C of G̃ is either a tree or con-
tains a unique cycle, since the number of edges in C is at most the
number of inequalities (2.3) that hold with equality.

Assume first that C contains a unique cycle. Then (2.3) holds with
equality for all nodes of C, which are therefore in T . Now C is a cycle
since, otherwise, C has a pendant edge e with x̃e = 1 and therefore
C is disconnected, a contradiction. If C is an even cycle, then by
alternately increasing and decreasing x̃ around the cycle by a small ε
(−ε respectively), x̃ can be written as a convex combination of two
points satisfying (2.3) and (2.4). So (i) must hold.

Assume now that C is a tree. Then (2.3) holds with equality for at
least |V (C)| − 1 nodes of C. In particular, it holds with equality for at
least one node of degree one. Since C is connected, this implies that C
is a star and (ii) holds. 2

Proof Theorem 2.1: In order to prove the theorem, it suffices to
show that every extreme point x̃ of the polyhedron (2.1)–(2.2) is the
incidence vector of a T -join. We proceed by induction on the number
of nodes of G.

Suppose first that x̃ is an extreme point of the polyhedron (2.3)–
(2.4). Consider a connected component of the graph G̃ induced by the
edges such that x̃e > 0 and let S be its node set. Since x̃(S, V (G)−S) =
0, it follows from (2.1) that S contains an even number of nodes of T .
By Lemma 2.2, G̃ contains no odd cycle, showing that x̃ is an integral
vector. Furthermore, x̃ is the incidence vector of a T -join since, by
Lemma 2.2 again, the component of G̃ induced by S is a star and
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|S ∩ T | even implies that the center is in T if and only if the star has
an odd number of edges.

Assume now that x̃ is not an extreme point of the polyhedron (2.3)–
(2.4). Then there is some T -cut C = (V1, V2) with |V1| ≥ 2 and |V2| ≥ 2
such that

x̃(C) = 1.

Let G1 = (V1 ∪ {v2}, E1) be the graph obtained from G by contracting
V2 to a single node v2. Similarly, G2 = (V2 ∪ {v1}, E2) is the graph
obtained from G by contracting V1 to a single node v1. The new nodes
v1, v2 belong to T . For i = 1, 2, let x̃i be the restriction of x̃ to Ei.
Since every T -cut of Gi is also a T -cut of G, it follows by induction
that x̃i is greater than or equal to a convex combination of incidence
vectors of T -joins of Gi. Let Ti be this set of T -joins. Each T -join in
Ti has exactly one edge incident with vi. Since x̃1 and x̃2 coincide on
the edges of C, it follows that the T -joins of T1 can be combined with
those of T2 to form T -joins of G and that x̃ is greater than or equal to
a convex combination of incidence vectors of T -joins of G. Since x̃ is
an extreme point, it is the incidence vector of a T -join. 2

We have just proved that the clutter of T -cuts is ideal. It does
not have the MFMC property in general graphs. However Seymour
proved that it does in bipartite graphs. Seymour also showed that, in a
general graph, if the edge weights we are integral and their sum is even
in every cycle, then the dual variables can be chosen to be integral in
an optimum solution. We prove these results in the next section.

2.2 Packing T -Cuts

2.2.1 Theorems of Seymour and Lovász

The purpose of this section is to prove the following theorems.

Theorem 2.3 (Seymour [188]) In a bipartite graph, the clutter of T -
cuts packs, i.e. the minimum cardinality of a T -join equals the maxi-
mum number of disjoint T -cuts.



2.2. PACKING T -CUTS 31

Theorem 2.4 (Lovász [138]) In a graph, the clutter of T -cuts has the
1/2-MFMC property.

Exercise 2.5 Consider the complete graph K4 on four nodes and let
|T | = 4. Show that there are exactly seven T -joins. Describe the T -cuts.
Do you see any relation with Q6 (see Exercise 1.18 for the definition of
Q6)?

We give a proof of Theorem 2.3 based on ideas of Sebö [174] and
Conforti [39].

Given a graph G and a T -join J , let GJ be the weighted graph
obtained by assigning weights −1 to the edges of J and +1 to all the
other edges.

Remark 2.6
(i) J is a minimum T -join if and only if GJ has no negative cycle.
(ii) If J is a minimum T -join and C is a 0-weight cycle in GJ , then

J∆C is a minimum T -join.

Proof of Theorem 2.3: The result is trivial for |T | = 0, so assume
|T | ≥ 2. The proof is by induction on the number of nodes of the
bipartite graph G. Let J be a minimum T -join chosen so that its
longest path Q ⊆ J is longest possible among all minimum T -joins.
Since J is acyclic, the endnodes of Q have degree 1 in J , so both are
in T . Let u be an endnode of Q and let x be the neighbor of u in Q.
Since J is minimum, GJ has no negative cycle. We claim that every 0-
weight cycle of GJ that contains node u also contains edge ux. Suppose
otherwise. If C contains some other node of Q, then Q ∪ C contains
a negative cycle (check this!), a contradiction to J being a minimum
T -join. If u is the unique node of Q in C, then J∆C is a minimum
T -join (by Remark 2.6) with a longer path than Q, a contradiction to
our choice of J . So the claim holds and, since G is bipartite,

(*) every cycle that contains node u but not edge ux has weight at
least 2 in GJ .

Let U be the node set comprising u and its neighbors in G. Let
G∗ be the bipartite graph obtained from G by contracting U into a
single node u∗. If |U ∩ T | is even, set T ∗ = T \ U and if |U ∩ T |, set
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T ∗ = (T \ U) ∪ {u∗}. Let J∗ = J ∩ E(G∗). Then J∗ is a T ∗-join of G∗

and, by (*) the graph G∗
J∗ has no negative cycle. So J∗ is a minimum

T ∗-join of G∗ by Remark 2.6.
Now, by induction, G∗ has |J∗| disjoint T ∗-cuts. Since δ(v) is a

T -cut of G disjoint from them, G has |J∗| + 1 = |J | disjoint T -cuts.
Since G can have at most |J | disjoint T -cuts, the theorem holds. 2

This result implies the following theorem of Lovász [138].

Theorem 2.7 In a graph G, the minimum cardinality of a T -join is
equal to one half of the maximum cardinality of a set of T -cuts such
that no edge belongs to more than two T -cuts in the set.

Proof: Subdivide each edge of G by a new node and apply Theo-
rem 2.3. 2

Exercise 2.8 Prove Theorem 2.4 using Theorem 2.7.

Another useful consequence of Theorem 2.3 is the following result
of Seymour [188].

Definition 2.9 Let G be a graph and let w ∈ Z
E(G)
+ . The even cycle

property holds if, in every cycle of G, the sum of the weights is even.

Theorem 2.10 (Seymour [188]) Assume graph G and weight vector

w ∈ Z
E(G)
+ satisfy the even cycle property. Then the minimum weight

of a T -join equals the maximum number of T -cuts such that no edge e
belongs to more than we of these T -cuts.

Proof: If we > 0, subdivide edge e into we edges, each of weight
1. If we = 0, contract edge e and consider the resulting node as being
in T if exactly one of the endnodes of e in G belongs to T . Now the
theorem follows from Theorem 2.3. 2

The next result follows from a difficult theorem of Seymour on bi-
nary clutters with the MFMC property (Theorem 5.30). A graph G
can be T -contracted to K4 if its node set V can be partitioned into
{V1, V2, V3, V4} so that each Vi induces a connected graph containing an
odd number of nodes of T and, for each i 6= j, there is an edge with
endnodes in Vi and Vj.
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Theorem 2.11 In a graph that cannot be T -contracted to K4, the clut-
ter of T -cuts has the MFMC property.

2.2.2 More Min Max Results

Theorem 2.4 can be strengthened as follows. For any node set X,
denote by qT (X) the number of connected components of G \ X that
contain an odd number of nodes of T .

Theorem 2.12 (Frank, Sebö, Tardos [86]) In a graph G, the mini-
mum cardinality of a T -join is equal to 1

2
max{∑i qT (Vi)}, where the

maximum is taken over all partitions {V1, . . . , V`} of V .

This theorem can be used to prove Tutte’s theorem on perfect
matchings.

Theorem 2.13 (Tutte [201]) A graph contains no perfect matching if
and only if there exists a node set X such that G \X contains at least
|X|+ 1 components of odd cardinality.

Proof: (Frank and Szigeti [87]) Apply Theorem 2.12 with the choice
T = V . Note that in this case, qT (X) is the number of components of
odd cardinality in G\X. If there is no perfect matching, the minimum
cardinality of a T -join is larger than 1

2
|V |. By Theorem 2.12, there is

a partition {V1, . . . , V`} of V such that 1
2

∑
i qT (Vi) > 1

2
|V |. Therefore,

there must be a subscript i such that qT (Vi) > |Vi|, that is, the number
of components of G \ Vi with odd cardinality is larger than |Vi|, as
required. 2

Sebö proved yet another min-max theorem concerning T -joins. A
multicut is an edge set whose removal disconnects G into two or more
connected components. If each of these connected components contains
an odd number of nodes of T , the multicut is called a T -border. Clearly,
the number k of connected components in a T -border is even. The value
of the T -border B is defined to be val(B) = k

2
.

Theorem 2.14 (Sebö [175]) In a graph G, the minimum cardinality
of a T -join is equal to max{∑i val(Bi)}, where the maximum is taken
over all edge disjoint borders {B1, . . . , B`}.
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2.3 Packing T -Joins

The following conjecture is open.

Conjecture 2.15 The clutter of T -joins has the 1/4-MFMC property.

By contrast, characterizing when the clutter of T -joins has the
MFMC property is settled. This is because T -joins form a binary clut-
ter. So the answer follows from Seymour’s characterization [183] of the
binary clutters with the MFMC property (Theorem 5.30).

A graft (G, T ) is a graph together with a node set T of even cardi-
nality. A minor of a graft is obtained by performing a sequence of edge
deletions and edge contractions where, in contracting edge uv into node
w, we put w in T if exactly one of the nodes u, v was in T . An odd-K2,3

is the graft consisting of the complete bipartite graph K2,3 and a set
T of four nodes containing all three nodes of degree two and exactly
one of the nodes of degree three. Seymour’s theorem [183] implies the
following.

Theorem 2.16 In a graft without odd-K2,3 minor, the clutter of T -
joins has the MFMC-property.

Codato, Conforti and Serafini [36] gave a direct graphical proof of
this result.

Conforti and Johnson [55] conjectured that the clutter of postman
sets packs in graphs noncontractible to the Petersen graph (Conjec-
ture 1.28). They were able to show the following result. A 4-wheel W4

is a graph on five nodes where four of the nodes induce a hole H and
the fifth node is adjacent to all the nodes of H. A graph contractible
to a 4-wheel is said to have a 4-wheel minor. Graphs without 4-wheel
minors are planar, by Kuratowski’s theorem and the observation that
K5 and K3,3 are contractible to a 4-wheel.

Theorem 2.17 (Conforti and Johnson [55]) In a graph without 4-wheel
minors, the clutter of postman sets has the MFMC property.



Chapter 3

Perfect Graphs and Matrices

Chapter 1 discussed the min-max equation (1.1)=(1.2). In this chapter,
we consider the max-min equation

max{wx : x ≥ 0, Mx ≤ 1}
= min{y1 : y ≥ 0, yM ≥ w}.

A 0, 1 matrix M with no column of zeroes is perfect if the polytope
P = {x ≥ 0 : Mx ≤ 1} is integral, i.e. all the extreme points of
P are 0,1 vectors. When M is perfect, the linear program max{wx :
x ≥ 0, Mx ≤ 1} has an integral optimal solution x for all w ∈ Rn.
Therefore, the set packing problem max{wx : Mx ≤ 1, x ∈ {0, 1}n} is
solvable in polynomial time. By contrast, for a general 0,1 matrix M ,
the set packing problem is NP-hard [94].

Edmonds and Giles [81] observed that, when a linear system Ax ≤
b, x ≥ 0 is TDI and b is integral, the polyhedron {x : Ax ≤ b, x ≥ 0}
is integral. The converse is not true in general. But it is true when A
is a 0,1 matrix and b = 1, as shown by Lovász.

Theorem 3.1 (Lovász [136]) For a 0,1 matrix M with no column of
zeroes, the following statements are equivalent:

(i) the linear system Mx ≤ 1, x ≥ 0 is TDI,

(ii) the matrix M is perfect,

35
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(iii) max {wx : Mx ≤ 1, x ≥ 0} has an integral optimal solution x
for all w ∈ {0, 1}n.

Clearly (i) implies (ii) implies (iii), where the first implication is the
Edmonds-Giles property and the second follows from the definition of
perfection. What is surprising is that (iii) implies (i) and, in fact, that
(ii) implies (i). In this chapter, we prove Lovász’s theorem. The proof
uses a combination of graph theoretic and polyhedral arguments.

A graph is perfect if, in every node induced subgraph, the chromatic
number equals the size of a largest clique. The concept of perfection is
due to Berge [5]. The clique-node matrix of a graph is a 0,1 matrix M
in which entry mij is 1 if and only if node j belongs to maximal clique
i. Chvátal [30] established the following connection between perfect
graphs and perfect matrices: A 0,1 clutter matrix with no column of
zeroes is perfect if and only if it is the clique-node matrix of a perfect
graph. A major open question is to characterize the graphs that are
not perfect but all their proper node induced subgraphs are. These
graphs are called minimally imperfect. A hole is a chordless cycle of
length greater than three and it is odd if it contains an odd number of
edges. Berge’s [5] strong perfect graph conjecture states that odd holes
and their complements are the only minimally imperfect graphs. This
conjecture, made in 1960, is still open but it is known that minimally
imperfect graphs are partitionable (see Section 3.4) and numerous prop-
erties of partitionable graphs are known.

3.1 The Perfect Graph Theorem

In this chapter, all graphs are simple. In a graph G, a clique is a set of
pairwise adjacent nodes. The clique number ω(G) is the size of a largest
clique in G. The chromatic number χ(G) is the smallest number of
colors for the nodes so that adjacent nodes have distinct colors. Clearly,
χ(G) ≥ ω(G), since every node of a clique has a different color.

Definition 3.2 A graph G is perfect if χ(G′) = ω(G′) for every node
induced subgraph G′ of G.

Berge [5] conjectured and Lovász [136] proved that, if a graph G is
perfect, then the complement Ḡ is also perfect. (The complement Ḡ is
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the graph having the same node set as G and having an edge between
nodes i and j if and only if G does not.) This result is known as the
perfect graph theorem. Lovász’s proof, which we give in this section,
is polyhedral. In Section 3.4 we give a nonpolyhedral proof due to
Gasparyan [95].

Lemma 3.3 (The Replication Lemma) Let G be a perfect graph and
v ∈ V (G). Create a new node v′ and join it to v and to all the neighbors
of v. Then the resulting graph G′ is perfect.

Proof: It suffices to show χ(G′) = ω(G′) since, for induced sub-
graphs, the proof follows similarly. We distinguish two cases.

Case 1: Suppose v is contained in some maximum clique of G. Then
ω(G′) = ω(G)+1. This implies χ(G′) ≤ ω(G′), since at most one
new color is needed in G′. Clearly χ(G′) = ω(G′) follows.

Case 2: Now suppose v is not contained in any maximum clique of
G. Consider any coloring of G with ω(G) colors and let A be the
color class containing v. Then, ω(G\(A−{v})) = ω(G)−1, since
every maximum clique in G meets A− {v}. By the perfection of
G, the graph G \ (A− {v}) can be colored with ω(G)− 1 colors.
Using one additional color for the nodes (A − {v}) ∪ {v′}, we
obtain a coloring of G′ with ω(G) colors. 2

The next theorem includes results of Fulkerson [89], Lovász [136]
and Chvátal [30]. A stable set of G is a set of pairwise nonadjacent
nodes. The stability number α(G) is the size of a largest stable set in
G.

Theorem 3.4 For a graph G, the following are equivalent.

(i) G is perfect;

(ii) the polytope P (G) = {x ∈ R
V (G)
+ : x(K) ≤ 1 for all cliques K} is

integral, i.e. its extreme points are exactly the incidence vectors
of the stable sets in G;

(iii) Ḡ is perfect.
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Proof: It suffices to show (i) ⇒ (ii) ⇒ (iii), since G = G gives (iii)
⇒ (i).

(i) ⇒ (ii): Let x ∈ P (G) be a rational vector. To prove (ii) we show
that x is a convex combination of incidence vectors of stable sets in G.
There exists a positive integer N such that y = Nx is an integral vector.
Let Yi be disjoint sets such that |Yi| = yi, for i ∈ V (G). Construct the
graph G′ with node set ∪i∈V (G)Yi by joining every node of Yi to every
node of Yj whenever i = j or ij ∈ E(G). This graph G′ arises from G
by deleting and replicating nodes repeatedly and hence, by Lemma 3.3,
G′ is perfect.

Let K ′ be a maximum clique in G′ and let K = {i ∈ V (G) : K ′∩Yi 6=
∅}. Then K is a clique and

ω(G′) = |K ′| ≤ ∑

i∈K

|Yi| = y(K) = Nx(K) ≤ N (3.1)

where the last inequality follows from x ∈ P (G). Therefore G′ can
be colored with colors 1, . . . , N . Let At = {i ∈ V (G) : Yi has a node
with color t}. Clearly, At is a stable set of G. Let xAt be its incidence
vector. Now y =

∑N
t=1 xAt follows by noting that each i ∈ V (G) occurs

in exactly |Yi| = yi of the sets At, since Yi induces a clique and hence
its nodes have different colors. Therefore x = 1

N

∑N
t=1 xAt .

(ii)⇒ (iii): It is easy to see that property (ii) is inherited by induced
subgraphs, and therefore it suffices to show that χ(Ḡ) = ω(Ḡ). The
proof is by induction on |V (G)|. Consider the face F of P (G) defined
by the hyperplane x(V (G)) = α(G). There is a facet of P (G) of the
form x(K) ≤ 1 containing F , where K is a clique. Since K meets all
the maximum stable sets of G, it follows that α(G \K) = α(G)− 1, or
equivalently ω(Ḡ \K) = ω(Ḡ)− 1. By the induction hypothesis, Ḡ \K
can be colored with ω(Ḡ) − 1 colors. Using a new color for the nodes
in K, we obtain an ω(Ḡ)-coloring of Ḡ. 2

Exercise 3.5 Let G be a perfect graph. Use the replication lemma to
show that the linear system

x(S) ≤ 1 for all stable sets S

x ≥ 0
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is totally dual integral.

Exercise 3.6 Let G be a perfect graph. Use the perfect graph theorem
and the previous exercise to show that the linear system

x(K) ≤ 1 for all cliques K

x ≥ 0

is totally dual integral.

3.2 Perfect Matrices

Definition 3.7 A 0, 1 matrix M with no column of zeroes is perfect if
the polytope P (M) = {x ∈ Rn

+ : Mx ≤ 1} has only integral vertices.

Clearly, dominated rows do not affect this definition, so we assume
in this section that M is a 0,1 clutter matrix. Chvátal [30] showed that
M is a perfect matrix if and only if it is the clique-node matrix of a
perfect graph.

Definition 3.8 The clique-node matrix of a graph G is a 0, 1 matrix
whose columns are indexed by the nodes of G and whose rows are the
incidence vectors of the maximal cliques of G.

Let J be the square matrix all of whose entries are 1 and let I be
the identity matrix.

Theorem 3.9 Let M be a 0,1 clutter matrix with no column of zeroes.
The following statements are equivalent:

(i) M is a clique-node matrix;

(ii) If




0 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1


 is a submatrix of M , say with columns

j1, . . . , jp, then M contains a row i such that mijk
= 1 for k =

1, . . . , p;
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(iii) If J − I is a p× p submatrix of M , where p ≥ 3, then M contains
a row i such that mij = 1 for every column j of J − I.

Proof: (i) ⇒ (ii): In the graph G with clique-node matrix M , the
nodes j1, . . . , jp are pairwise adjacent and therefore they form a clique.
So, a row i as claimed in (ii) must exist.

(ii) ⇒ (iii): The first three rows of J − I satisfy the condition in
(ii). Therefore, there exists a row i such that mij = 1 for every column
j of J − I.

(iii) ⇒ (i): Assume that (i) does not hold. We show that (iii) does
not hold. Let G(M) be the graph having a node for each column of M
and an edge between nodes j and k if M has a row i with mij = mik = 1.
Since (i) does not hold, there exists a clique K of G(M) such that, for
every row i, K 6⊆ Ni ≡ {j : mij = 1}. Choose K to be minimal with
this property. Then, for each j ∈ K, there exists a distinct row ij such
that K ∩ Nij = K − {j}. This yields a J − I submatrix of M which
contradicts (iii). 2

Statement (ii) in the above theorem and the next corollary were
noted by Conforti [38].

Corollary 3.10 There exists a polynomial algorithm to check whether
a 0,1 matrix is a clique-node matrix.

Proof: By Theorem 3.9(ii), one only needs to check every triplet of
rows. 2

Theorem 3.11 Let M be a 0,1 clutter matrix with no column of zeroes.
Then M is a perfect matrix if and only if it is the clique-node matrix
of a perfect graph.

Proof: If M is not a clique-node matrix, then Theorem 3.9 implies
the existence of a p × p submatrix J − I, p ≥ 3. It is easy to see that
xj = 1/(p − 1) if j is a column of J − I, 0 otherwise, is a vertex of
P (M). Therefore M is not perfect. Conversely, let M be the clique-
node matrix of a pefect graph. Theorem 3.4(ii) implies that M is a
perfect matrix. 2
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Corollary 3.12 Let M be a 0, 1 matrix with no column of zeroes. The
polytope P (M) = {x ∈ Rn

+ : Mx ≤ 1} is integral if and only if the
linear system {x ≥ 0, Mx ≤ 1} is TDI.

Exercise 3.13 Prove Corollary 3.12 using Exercise 3.6.

This shows (ii) ⇔ (i) in Theorem 3.1.

3.3 Antiblocker

Let C be a clutter. The antiblocker of C, denoted by a(C) is the clutter
such that V (a(C)) ≡ V (C) and E(a(C)) is the set of maximal members
of {S ⊆ V (C) : |S ∩ T | ≤ 1 for all T ∈ E(C)}.

Remark 3.14 For a clutter C, let G(C) be the graph with node set V (C)
where two nodes are adjacent if and only if they are both contained in
some edge of C. Then a(C) is the family of maximal stable sets of G(C).

Exercise 3.15 Prove Remark 3.14.

In contrast to Proposition 1.15 stating that b(b(C)) = C, in general
a(a(C)) 6= C as shown by the following example.

Exercise 3.16 Let M = J − I and let C ≡ C(M) be the corresponding
clutter. Find a(C) and a(a(C)).

Theorem 3.17 a(a(C)) = C if and only if C is the clutter of maximal
cliques of G(C).

Exercise 3.18 Prove Theorem 3.17 using Theorem 3.9, Remark 3.14
and Exercise 3.16.

Exercise 3.19 Let C be a clutter. Show that if M(C) is perfect, then
a(a(C)) = C.
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3.4 Minimally Imperfect Graphs

Definition 3.20 A graph is minimally imperfect if it is not perfect but
every proper node induced subgraph is.

It follows from the perfect graph theorem (Theorem 3.4) that if
G is minimally imperfect, then the complement Ḡ is also minimally
imperfect. A hole is a chordless cycle of length at least 4. A hole is odd
if it contains an odd number of edges. It is easy to check that an odd
hole is minimally imperfect. Odd holes and their complements (the odd
antiholes) are the only known minimally imperfect graphs. Berge [5]
proposed the following conjecture, known as the strong perfect graph
conjecture.

Conjecture 3.21 (Strong Perfect Graph Conjecture) (Berge [5])
The only minimally imperfect graphs are the odd holes and the odd
antiholes.

Chvátal [32] proposed a weaker conjecture, called the skew partition
conjecture as a first step towards proving Berge’s strong perfect graph
conjecture. A graph has a skew partition if its nodes can be partitioned
into four nonempty sets A,B, C, D such that there are all possible edges
between A and B and no edges from C to D. It is easy to verify that
odd holes and odd antiholes do not have a skew partition. Therefore
Conjecture 3.21 implies the following.

Conjecture 3.22 (Skew Partition Conjecture) (Chvátal [32])
No minimally imperfect graph has a skew partition.

In the remainder of this section, we present several known properties
of minimally imperfect graphs.

Definition 3.23 Let α and ω be integers greater than one. A graph
G is called an (α, ω)-graph (or partitionable graph) if G has exactly
n = αω + 1 nodes and, for each node v ∈ V , G \ v can be partitioned
into both α cliques of size ω and ω stable sets of size α.

Remark 3.24 If G is an (α, ω)-graph, then α and ω are the stability
number and clique number of G.
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Exercise 3.25 Prove Remark 3.24.

An example of an (α, ω)-graph is the (α, ω)-web Wαω constructed
as follows: V (Wαω) = {v0, · · · , vαω} and nodes vi, vj are adjacent if and
only if i− j ∈ {−ω + 1, . . . ,−1, 1, . . . , ω − 1} (mod αω + 1).

Theorem 3.26 (Lovász [137]) If G is minimally imperfect, then G is
an (α, ω)-graph.

We give a proof of this result due to Gasparyan [95]. The proof uses
a result of Bridges and Ryser [19]:

Theorem 3.27 Let Y and Z be n × n 0,1 matrices such that Y Z =
J − I. Then

(i) each row and column of Y has the same number r of ones, each
row and column of Z has the same number s of ones, with rs =
n− 1,

(ii) Y Z = ZY ;

(iii) For each j = 1, . . . , n, there exist s rows of Y that sum up to
1− ej where ej denotes the jth unit row vector.

Proof: It is straightforward to check that (J − I)−1 = 1
n−1

J − I. Hence

Y Z = J − I ⇒ Y Z(
1

n− 1
J − I) = I ⇒ Z(

1

n− 1
J − I)Y = I

i.e. ZY =
1

n− 1
ZJY − I =

1

n− 1
srT − I

where s ≡Z1 and r ≡Y T1.
It follows that, for each i and j, n − 1 divides risj. On the other

hand, the trace of the matrix ZY is equal to the trace of Y Z, which
is 0. As ZY is a nonnegative matrix, it follows that it has 0’s in its
main diagonal. Hence risi = n− 1 for all i. Now consider distinct i, j.
Since risi = rjsj = n− 1 and n− 1 divides risj, it follows that ri = rj

and si = sj. Therefore, all columns of Z have the same sum s and all
rows of Y have the same sum r. Furthermore, ZY = J − I and, by
symmetry, all columns of Y have the same sum and all rows of Z have
the same sum. (iii) follows from Y T ZT = J − I. 2
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Proof of Theorem 3.26: Let G be a minimally imperfect graph with
n nodes. Let α = α(G) and ω = ω(G). Then G satisfies

ω = χ(G\v) for every node v ∈ V

and ω = ω(G\S) for every stable set S ⊆ V.

Let A0 be an α-stable set of G. Fix an ω-coloring of each of the α
graphs G\s for s ∈ A0, let A1, . . . , Aαω be the stable sets occuring as
a color-class in one of these colorings and let A := {A0, A1, . . . , Aαω}.
Let A be the corresponding stable set versus node incidence matrix.
Define B := {B0, B1, . . . , Bαω} where Bi is an ω-clique of G\Ai. Let B
be the corresponding clique versus node incidence matrix.

Claim: Every ω-clique of G intersects all but one of the stables sets
in A.

Proof: Let S1, . . . , Sω be any ω-coloring of G\ v. Since any ω-clique
C of G has at most one node in each Si, C intersects all Si’s if v 6∈ C
and all but one if v ∈ C. Since C has at most one node in A0, the claim
follows.

In particular, it follows that ABT = J − I. By Theorem 3.27(i)
n = αω+1 and by Theorem 3.27(iii) the nodes of G\j can be partitioned
into ω stable sets of size α and the nodes of G \ j can be partitioned
into α cliques of size ω. So G is an (α, ω)-graph. 2

It follows from the definition of a partitionable graph that its com-
plement is also partitionable. Therefore Theorem 3.26 implies the per-
fect graph theorem.

Corollary 3.28 (Perfect Graph Theorem) (Lovász [136])
G is perfect if and only if Ḡ is perfect.

Exercise 3.29 Prove the Perfect Graph Theorem using Theorem 3.26.

Let Ck and Sk denote respectively the clutters of k-cliques and k-
stable sets of G. Sk and Ck are respectively the incidence matrices
of k-stable sets versus nodes and k-cliques versus nodes of G. Using
Theorem 3.26, Padberg [154] proved that a minimally imperfect graph
G has exactly n maximum cliques and n maximum stable sets, and that
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the rows of Sα and Cω can be permuted so that SαC
T
ω = J − I. Bland

et al. [17] proved that the statement remains true for (α, ω)-graphs
and Chvátal et al. [34] observed that the converse is also true. These
results are included in the next theorem.

Theorem 3.30 Let G be a graph with n nodes and let α > 1, ω > 1
be integers. The following are equivalent:

1) G is an (α, ω)-graph.

2) α = α(G) and, for every node v ∈ V and stable set S ⊆ V,
ω = ω(G\S) = χ(G\v).

3) Sα and Cω are n× n matrices and their rows can be permuted so
that SαC

T
ω = J − I.

Proof: 1)⇒2) : Let G be an (α, ω)-graph. It follows from the definition
that, for every node v ∈ V , χ(G\v) = ω. By Remark 3.24, ω(G) = ω,
so 2) holds when S = ∅. Now assume S 6= ∅ and let x ∈ S. Consider
a partition of G\x into α cliques of size ω. As |S| ≤ α, it follows that
one of the cliques of size ω of this partition is disjoint from S. Hence,
ω(G\S) = ω.

2)⇒3) : This follows from the proof of Theorem 3.26. Indeed, this
proof shows that if G satisfies 2), then ABT = J − I. Now, as A
is nonsingular, it follows that for each i, Ax = 1 − ei has a unique
solution. Hence B = Cω by the Claim in the proof of Theorem 3.26.
As A0 is an arbitrary α-stable set and B is nonsingular, it follows that
A = Sα. Thus SαC

T
ω = J − I.

3)⇒1) : By Theorem 3.27, n = αω + 1, there are α cliques of size
ω that partition the nodes of G\vj and there are ω stable sets of size
α that partition the nodes of G\vj. 2

A 0,1 matrix M with no column of zeroes is minimally imperfect if
it is not perfect but all its column submatrices are.

Theorem 3.31 (Padberg [154]) Let M be a minimally imperfect 0,1
matrix. Then it has a non-singular row submatrix M̄ with exactly r
ones in every row and column. Moreover, rows of M not in M̄ have at
most r − 1 ones.
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Proof: If M is not a clique-node matrix, the result follows from Theo-
rems 3.9(iii).

If M is the clique-node matrix of a graph G, then G is minimally im-
perfect by Theorem 3.11. Now G has exactly |V (G)| maximum cliques
by Theorems 3.26 and 3.30 3). 2

Corollary 3.32 Let M be a 0, 1 matrix with no column of zeroes. The
polytope P (M) = {x ∈ Rn

+ : Mx ≤ 1} is integral if and only if
max{wx : x ∈ P (M)} has an integral optimal solution for all w ∈
{0, 1}n.

This is surprising since, in general, we need integral optimal solu-
tions for all w ∈ Zn to conclude that a polytope is integral.

Exercise 3.33 Prove Corollary 3.32.

This proves (iii) ⇔ (ii) in Theorem 3.1.

Next, we prove properties of partitionable graphs following [45]. A
graph G has a star cutset if there exists a node set S consisting of a
node and some of its neighbors such that G \ S is disconnected.

Theorem 3.34 An (α, ω)-graph G with n nodes has the following prop-
erties:

1) [154][17] G has exactly n ω-cliques and n α-stable sets, which
can be indexed as C1, . . . , Cn and S1, . . . , Sn, so that Ci ∩ Sj is
empty if and only if i = j. We say that Si and Ci are mates.

2) [154][17] Every v ∈ V belongs to exactly α α-stable sets and their
intersection contains no other node.

3) [154][17] For every v ∈ V, G \ v has a unique ω-coloring and its
color classes are the α-stable sets that are mates of the ω-cliques
containing v.

4) [34] If e ∈ E(G) does not belong to any ω-clique, then G \ e is an
(α, ω)-graph.
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5) [199] Let Gω be the intersection graph of all the ω-cliques of G.
Then Gω is an (α, ω)-graph.

6) [17] Let S1, S2 be two α-stable sets. Then the graph induced by
S1∆S2 is connected.

7) [32] G contains no star cutset.

8) [177] Any proper induced subgraph H of G with ω(H) = ω has at
most |V (H)| − ω + 1 ω-cliques.

9) [177] Let (V1, V2) be a partition of V (G) such that both V1 and V2

contain at least one ω-clique. Then the number of ω-cliques that
intersect both V1 and V2 is at least 2ω − 2.

10) [177] G is (2ω − 2)-node connected.

11) [143] e ∈ E(G) belongs to ω−1 ω-cliques if and only if α(G\e) >
α.

Proof: 1) follows from Theorem 3.30 3).
2) follows Theorem 3.27 and Theorem 3.30 3).
3) From Theorem 3.27 and Theorem 3.30 3), we have that ST

αCω is a
0,1 matrix. Hence if two ω-cliques intersect, their mates are disjoint and
viceversa. It follows that the mates of ω-cliques containing v partition
G \ v. To show that this partition is unique, just notice that there
is a one-to-one correspondence between ω-colorings of G \ v and 0,1
solutions of ST

αx = 1− ev. As Sα is non-singular, it follows that G \ v
has a unique ω-coloring.

4) follows from the definition of (α, ω)-graphs.
5) It follows from 2) that CT

ω and ST
α are respectively the ω-cliques

versus nodes and α-stable sets versus nodes incidence matrices of Gω.
So 5) follows from Theorem 3.30 3).

6) Suppose the graph G(S1∆S2) is disconnected and let S ⊂ S1∆S2

induce one of its connected components. For i = 1, 2, let S ′i = S ∩ Si

and S ′′i = Si − S ′i. Then S ′ = S ′1 ∪ S ′′2 and S ′′ = S ′2 ∪ S ′′1 are stable sets
of G. As |S ′| + |S ′′| = 2α, it follows that S ′ and S ′′ are α-stable sets.
Let C1 be the mate of S1. Then C1 meets both S ′ and S ′′. As C1 is
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disjoint from S1, it follows that C1 meets both S ′2 and S ′′2 . But this is
a contradiction, as S ′2 ∪ S ′′2 = S2 is a stable set.

7) Let U, V1, V2 be a partition of V such that U is a star cutset of
G and V1 induces a connected component of G \ U . Let G1 and G2 be
the graphs induced by U ∪V1 and U ∪V2 respectively, and let u ∈ U be
adjacent to all the nodes in U . Finally, let Si be the color class of an
ω-coloring of Gi containing u, where i ∈ {1, 2}. Then Si meets all the
ω-cliques of Gi, i.e. ω(G\ {S1 ∪ S2}) < ω. On the other hand, S1 ∪ S2

is a stable set, a contradiction to Theorem 3.30 2).

8) Let S = {S1, . . . , Sω} be the color classes of an ω-coloring of H.
Then CST = J , where C denotes the incidence matrix of maximum
cliques versus nodes of H. Since Cω has full column rank, C also has
full column rank. As rk(S) = ω and rk(J) = 1, it follows from linear
algebra that |C| = rk(C) ≤ |V (H)| − ω + 1.

We leave the proofs of 9) and 10) as an exercise.
11) If e = uv belongs to ω − 1 ω-cliques C1, . . . , Cω−1 then, by 2),

there exist an ω-clique C0 containing u but not v and an ω-clique Cω

containing v but not u. Let S0, . . . , Sω be their mates. By 3), each of
S0, . . . , Sω−1 and S1, . . . , Sω covers αω nodes. Since n = αω +1, S0 and
Sω have α − 1 nodes in common and therefore their union is a stable
set of G \ e. Conversely, let S be an (α + 1)-stable set of G \ e and let
e = uv. S − {u} and S − {v} are α-stable sets of G. So, by 1), all the
ω-cliques containing u also contain v, except for the mate of S − {u}.
By 3), there are ω − 1 such ω-cliques. 2

Exercise 3.35 Prove 9) and 10) in Theorem 3.34. Hint: Show that 8)
implies 9). Then show that 2) plus 9) imply 10).

Note that Theorem 3.34 7) is a special case of the Skew Partition
Conjecture: indeed, a star cutset is a skew partition A,B, C, D where
A or B has cardinality one.



Chapter 4

Ideal Matrices

A 0, 1 clutter matrix A is ideal if the polyhedron Q(A) ≡ {x ≥ 0 :
Ax ≥ 1} is integral. Ideal matrices give rise to set covering problems
that can be solved as linear programs, for all objective functions.

This concept was introduced by Lehman under the name of width-
length property. Lehman [132] showed that ideal 0,1 matrices always
come in pairs (Theorem 1.17: A is ideal if and only if its blocker b(A)
is ideal) and that the width-length inequality is in fact a characteriza-
tion of idealness (Theorem 1.21). Another important result of Lehman
about ideal 0,1 matrices is the following.

Theorem 4.1 (Lehman [133]) For a 0,1 matrix A, the following state-
ments are equivalent:

(i) the matrix A is ideal,

(ii) min {wx : Ax ≥ 1, x ≥ 0} has an integral optimal solution x
for all w ∈ {0, 1, +∞}n.

The fact that (i) implies (ii) is an immediate consequence of the
definition of idealness. The difficult part of Lehman’s theorem is that
(ii) implies (i). The main purpose of this chapter is to prove this result.
This is done by studying properties of minimally nonideal matrices.

4.1 Minimally Nonideal Matrices

A 0,1 clutter matrix A is minimally nonideal (mni) if

49
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(i) Q(A) ≡ {x ≥ 0 : Ax ≥ 1} is not an integral polyhedron,

(ii) For every i = 1, . . . , n, both Q(A)∩{x : xi = 0} and Q(A)∩{x :
xi = 1} are integral polyhedra.

If A is mni, the clutter C(A) is also called mni. Equivalently, a
clutter C is mni if it is not ideal but all its proper minors are ideal.

For t ≥ 2 integer, let Jt denote the clutter with t + 1 vertices
and edges corresponding, respectively, to the points and lines of the
finite degenerate projective plane. Namely, V (Jt) ≡ {0, . . . , t}, and
E(Jt) ≡ {{1, . . . , t}, {0, 1}, {0, 2}, . . . , {0, t}}.

Exercise 4.2 Show that Jt is minimally nonideal.

A matrix A is isomorphic to a matrix B if B can be obtained from
A by a permutation of rows and a permutation of columns.

Let J denote a square matrix all of whose entries are 1’s, and let
I be the identity matrix. Given a mni matrix A, let x̄ be an extreme
point of the polyhedron Q(A) ≡ {x ≥ 0 : Ax ≥ 1} with fractional
components. The maximum row submatrix Ā of A such that Āx̄ = 1 is
called a core of A. So A has one core for each fractional extreme point
of Q(A).

Theorem 4.3 (Lehman [133]) Let A be a mni matrix and B = b(A).
Then

(i) A has a unique core Ā and B has a unique core B̄;

(ii) Ā and B̄ are square matrices;

(iii) Either A is isomorphic to M(Jt), t ≥ 2, or the rows of Ā and B̄
can be permuted so that

ĀB̄T = J + dI

for some positive integer d.
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Lehman’s proof of this theorem is rather terse. Seymour [189], Pad-
berg [157] and Gasparyan, Preissmann and Sebö [96] give more acces-
sible presentations of Lehman’s proof. In the next section, we present
a proof of Lehman’s theorem following Padberg’s polyhedral point of
view.

Bridges and Ryser [19] studied square matrices Y , Z that satisfy
the matrix equation Y Z = J + dI.

Theorem 4.4 (Bridges and Ryser [19]) Let Y and Z be n × n 0,1
matrices such that Y Z = J + dI for some positive integer d. Then

(i) each row and column of Y has the same number r of ones, each
row and column of Z has the same number s of ones with rs =
n + d,

(ii) Y Z = ZY ,

(iii) For each j = 1, . . . , n, there exist s rows of Y that sum up to
1 + dej, where ej denotes the jth unit row vector. This set of s
rows is given by the jth row of Z viewed as a characteristic vector.

Proof: It is straightforward to check that (J +dI)−1 = 1
d
I− 1

d(n+d)
J .

Hence

Y Z = J +dI ⇒ Y Z(
1

d
I− 1

d(n + d)
J) = I ⇒ Z(

1

d
I− 1

d(n + d)
J)Y = I

i.e. ZY =
1

n + d
ZJY + dI =

1

n + d
srT + dI

where s ≡Z1 and r ≡Y T1.
It follows that, for each i and j, n + d divides risj. On the other

hand, the trace of the matrix ZY is equal to the trace of Y Z, which is
n(d+1). This implies 1

n+d
(
∑n

1 siri) = n and, since si > 0 and ri > 0, we
have risi = n + d. Now consider distinct i, j. Since risi = rjsj = n + d
and n + d divides risj and rjsi, it follows that ri = rj and si = sj.
Therefore, all columns of Z have the same sum s and all rows of Y
have the same sum r. Furthermore, ZY = J + dI and, by symmetry,
all columns of Y have the same sum and all rows of Z have the same
sum. (iii) follows from Y T ZT = J + dI. 2

Theorems 4.3 and 4.4 have the following consequence.
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Corollary 4.5 Let A be a mni matrix nonisomorphic to M(Jt). Then
it has a non-singular row submatrix Ā with exactly r ones in every row
and column. Moreover, rows of A not in Ā have at least r + 1 ones.

This implies the next result, which is a restatement of Theorem 4.1.

Corollary 4.6 Let A be a 0, 1 matrix. The polyhedron Q(A) = {x ∈
Rn

+ : Ax ≥ 1} is integral if and only if min{wx : x ∈ Q(A)} has an
integral optimal solution for all w ∈ {0, 1,∞}n.

Note the similarity with Corollary 3.32.

Exercise 4.7 Prove Corollary 4.6 from Theorem 4.3 and Corollary 4.5.

Exercise 4.8 Prove Theorem 1.8 from Corollary 4.6.

4.1.1 Proof of Lehman’s Theorem

Let A be an m×n mni matrix, x̄ a fractional extreme point of Q(A) ≡
{x ∈ Rn

+ : Ax ≥ 1} and Ā a core of A. That is, Ā is the maximal row
submatrix of A such that Āx̄ = 1. For simplicity of notation, assume
that Ā corresponds to the first p rows of A, i.e. the entries of Ā are aij

for i = 1, . . . , p and j = 1, . . . , n. Since A is mni, every component of
x̄ is nonzero. Therefore p ≥ n and Ā has no row or column containing
only 0’s or only 1’s.

The following easy result will be applied to the bipartite represen-
tation G of the 0,1 matrix J − Ā where J denotes the p× n matrix of
all 1’s, namely ij is an edge of G if and only if aij = 0, for 1 ≤ i ≤ p
and 1 ≤ j ≤ n. Let d(u) denote the degree of node u.

Lemma 4.9 (de Bruijn and Erdös [71]) Let (I ∪ J,E) be a bipartite
graph with no isolated node. If |I| ≥ |J | and d(i) ≥ d(j) for all i ∈ I,
j ∈ J such that ij ∈ E, then |I| = |J | and d(i) = d(j) for all i ∈ I,
j ∈ J such that ij ∈ E.

Proof:
|I| =

∑
i∈I(

∑
j∈N(i)

1
d(i)

) ≤ ∑
i∈I

∑
j∈N(i)

1
d(j)

=
∑

j∈J

∑
i∈N(j)

1
d(j)

= |J |.
Now the hypothesis |I| ≥ |J | implies that equality holds throughout.
So |I| = |J | and d(i) = d(j) for all i ∈ I, j ∈ J such that ij ∈ E. 2

The key to proving Lehman’s theorem is the following lemma.
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Lemma 4.10 p = n and, if aij = 0 for 1 ≤ i, j ≤ n, then row i and
column j of Ā have the same number of ones.

Proof: Let xj be defined by

xj
k = { x̄k if k 6= j

1 if k = j

and let Fj be the face of Q(A) ∩ {xj = 1} of smallest dimension that
contains xj. Since A is mni, Fj is an integral polyhedron. The proof
of the lemma will follow unexpectedly from computing the dimension
of Fj.

The point xj lies at the intersection of the hyperplanes in Āx = 1
such that akj = 0 (at least n−∑p

k=1 akj such hyperplanes are indepen-
dent since Ā has rank n) and of the hyperplane xj = 1 (independent of
the previous hyperplanes). It follows that

dim(Fj) ≤ n− (n−
p∑

k=1

akj + 1) =
p∑

k=1

akj − 1

Choose a row ai of Ā such that aij = 0. Since xj ∈ Fj, it is greater
than or equal to a convex combination of extreme points b` of Fj, say
xj ≥ ∑t

`=1 γ`b
`, where γ > 0 and

∑
γ` = 1.

1 = aixj ≥
t∑

`=1

γ`a
ib` ≥ 1 (4.1)

Therefore, equality must hold throughout. In particular aib` = 1 for
` = 1, . . . , t. Since b` is a 0,1 vector, it has exactly one nonzero entry
in the set of columns k where aik = 1. Another consequence of the fact
that equality holds in (4.1) is that xj

k =
∑t

`=1 γ`b
`
k for every k where

aik = 1. Now, since xj
k > 0 for all k, it follows that Fj contains at least∑n

k=1 aik linearly independent points b`, i.e.

dim(Fj) ≥
n∑

k=1

aik − 1.

Therefore,
∑n

k=1 aik ≤ ∑p
k=1 akj for all i, j such that aij = 0.
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Now Lemma 4.9 applied to the bipartite representation of J − Ā
implies that p = n and

n∑

k=1

aik =
n∑

k=1

akj for all i, j such that aij = 0.

2

Lemma 4.11 x̄ has exactly n adjacent extreme points in Q(A), all
with 0,1 coordinates.

Proof: By Lemma 4.10, exactly n inequalities of Ax̄ ≥ 1 are tight,
namely Āx̄ = 1. In the polyhedron Q(A), an edge adjacent to x̄ is
defined by n − 1 of the n equalities in Āx = 1. Moving along such an
edge from x̄, at least one of the coordinates decreases. Since Q(A) ∈
Rn

+, this implies that x̄ has exactly n adjacent extreme points on Q(A).
Suppose x̄ has a fractional adjacent extreme point x̄′. Since A is mni,
0 < x̄′j < 1 for all j. Let Ā′ be the n × n nonsingular submatrix of A
such that Ā′x̄′ = 1. Since x̄ and x̄′ are adjacent on Q(A), Ā and Ā′

differ in only one row. W.l.o.g. assume that Ā′ corresponds to rows 2
to n + 1. Since A contains no dominating row, there exists j such that
a1j = 0 and an+1,j = 1. Since Ā′ cannot contain a column with only
1’s, aij = 0 for some 2 ≤ i ≤ n. But now, Lemma 4.9 is contradicted
with row i and column j in either Ā or Ā′. 2

Lemma 4.11 has the following implication. Let B̄ denote the n× n
0,1 matrix whose rows are the extreme points of Q(A) adjacent to x̄.
By Remark 1.16(i), B̄ is a submatrix of B. By Lemma 4.11, B̄ satisfies
the matrix equation

ĀB̄T = J + D

where J is the matrix of all 1’s and D is a diagonal matrix with positive
diagonal entries d1, . . . , dn.

Lemma 4.12 Either

(i) Ā = B̄ are isomorphic to M(Jt), for t ≥ 2, or

(ii) D = dI, where d is a positive integer.
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Proof: Consider the bipartite representation G of the 0,1 matrix J− Ā.

Case 1: G is connected.

Then it follows from Lemma 4.10 that

∑

k

aik =
∑

k

akj for all i, j. (4.2)

Let α denote this common row and column sum.

(n + d1, . . . , n + dn) = 1T (J + D) = 1T ĀB̄T = (1T Ā)B̄T = α1T B̄T

Since there is at most one d, 1 ≤ d < α, such that n + d is a multiple
of α, all di must be equal to d, i.e. D = dI.

Case 2: G is disconnected.

Let q ≥ 2 denote the number of connected components in G and let

Ā =




K1 1
. . .

1 Kq


 where Kt are 0,1 matrices, for t = 1, . . . , q. It

follows from Lemma 4.10 that the matrices Kt are square and
∑

k aik =∑
k akj = αt in each Kt.

Suppose first that Ā has no row with n − 1 ones. Then every Kt

has at least two rows and columns. We claim that, for every j, k, there
exist i, l such that aij = aik = alj = alk = 1. The claim is true if q ≥ 3
or if q = 2 and j, k are in the same component (simply take two rows
i, l from a different component). So suppose q = 2, column j is in K1

and column k is in K2. Since no two rows are identical, we must have
α1 ≥ 1, i.e. aij = 1 for some row i of K1. Similarly, alk = 1 for some
row l of K2. The claim follows.

For each row b of B̄, the vector ĀbT has an entry greater than or
equal to 2, so there exist two columns j, k such that bj = bk = 1.
By the claim, there exist rows ai and al of Ā such that aib

T ≥ 2 and
alb

T ≥ 2, contradicting the fact that ĀbT has exactly one entry greater
than 1.

Therefore Ā has a row with n− 1 ones. Now it is routine to check
that Ā is isomorphic to M(Jt), for t ≥ 2. 2
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Exercise 4.13 Let Ā and B̄ be n×n 0,1 matrices and assume Ā has a
row with n−1 ones. Show that, up to permutation of rows and columns,
Ā = B̄ = M(Jt) is the only solution to ĀB̄T = J + D when D > 0 is
a diagonal matrix.

To complete the proof of Theorem 4.3, it only remains to show that
the core Ā is unique and that B̄ is a core of B and is unique.

If Ā = M(Jt) for some t ≥ 2, then the fact that A has no dominated
rows implies that A = Ā. Thus B = B̄ = M(Jt). So, the theorem holds
in this case.

If ĀB̄T = J + dI for some positive integer d, then, by Theorem 4.4,
all rows of Ā contain r ones. Therefore, x̄j = 1

r
, for j = 1, . . . , n.

The feasibility of x̄ implies that all rows of A have at least r ones,
and Lemma 4.10 implies that exactly n rows of A have r ones. Now
Q(A) cannot have a fractional extreme point x̄′ distinct from x̄, since
the above argument applies to x̄′ as well. Therefore A has a unique
core Ā. Since x̄ has exactly n neighbors in Q(A) and they all have s
components equal to one, the inequality

∑n
1 xi ≥ s is valid for the 0,1

points in Q(A). This shows that every row of B has at least s ones and
exactly n rows of B have s ones. Since B is mni, B̄ is the unique core
of B. 2

4.1.2 Examples of mni Clutters

Let Zn = {0, . . . , n − 1}. We define addition of elements in Zn to be
addition modulo n. Let k ≤ n − 1 be a positive integer. For each
i ∈ Zn, let Ci denote the subset {i, i + 1, . . . , i + k − 1} of Zn. Define
the circulant clutter Ck

n by V (Ck
n) ≡ Zn and E(Ck

n) ≡ {C0, . . . , Cn−1}.

Lehman [132] gave three infinite classes of minimally nonideal clut-
ters: C2

n, n ≥ 3 odd, their blockers, and the degenerate projective planes
Jn, n ≥ 2.

Conjecture 4.14 (Cornuéjols and Novick [65]) There exists n0 such

that, for n ≥ n0, all mni matrices have a core isomorphic to C2
n, C

n+1
2

n

for n ≥ 3 odd, or Jn, for n ≥ 2.
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However, there exist several known “small” mni matrices that do
not belong to any of the above classes. For example, Lehman [132]
noted that F7 is mni. F7 is the clutter with 7 vertices and 7 edges
corresponding to points and lines of the Fano plane (finite projective
geometry on 7 points):

M(F7) =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1




Exercise 4.15 Show that F7 is mni. Show that b(F7) = F7.

Let K5 denote the complete graph on five nodes and let OK5 denote
the clutter whose vertices are the edges of K5 and whose edges are
the odd cycles of K5 (the triangles and the pentagons). Seymour [183]
noted that OK5 , b(OK5), and C2

9 with the extra edge {3, 6, 9} are mni.

Exercise 4.16 Show that OK5 is mni.

Ding [75] found the following mni clutter: V (D8) ≡ {1, . . . , 8},
E(D8) ≡ {{1, 2, 6}, {2, 3, 5}, {3, 4, 8}, {4, 5, 7}, {2, 5, 6}, {1, 6, 7}, {4, 7, 8},
{1, 3, 8}}.

Cornuéjols and Novick [65] characterized the mni circulant clutters
Ck

n. They showed that the following ten clutters are the only mni Ck
n

for k ≥ 3:

C3
5 , C3

8 , C3
11, C3

14, C3
17, C4

7 , C4
11, C5

9 , C6
11, C7

13.

Independently, Qi [163] discovered C5
9 and C6

11 and Ding [75] discovered
C3

8 .
Let TK5 denote the clutter whose vertices are the edges of K5 and

whose edges are the triangles of K5 (interestingly, M(TK5) is also the
node-node adjacency matrix of the Petersen graph). It can be shown
that TK5 , core(b(TK5)) and their blockers are mni. Often, when a mni
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clutter H has the property that core(H) and core(b(H)) are also mni,
many more mni clutters can be constructed from H and from b(H), see
[65]. For example, Cornuéjols and Novick [65] have constructed more
than one thousand mni clutters from TK5 . More results can be found
in [149].

Exercise 4.17 Let T ′ be the clutter obtained from TK5 as follows.
V (T ′) = V (TK5) and E(T ′) = E(TK5) ∪ {P} where P denotes a set
of 5 edges of K5 that form a pentagon. Show that T ′ is minimally
nonideal.

Lütolf and Margot [142] designed a computer program that enu-
merates possible cores of minimally nonideal matrices. It first enu-
merates the square 0,1 matrices Y , Z that satisfy the matrix equation
Y Z = J + dI, and then checks that the covering polyhedron has a
unique fractional extreme point. Lütolf and Margot [142] enumerated
all square mni matrices of dimension at most 12×12 and found 20 such
matrices (previously, only 15 were known); they found 13 new square
mni matrices of dimensions 14×14 and 17×17; and they found 38 new
nonsquare mni matrices with 11, 14 and 17 columns with nonisomor-
phic cores. The overwhelming majority of these examples have d = 1:
Only three cores with d = 2 are known (namely F7, TK5 and the core
of its blocker) and none with d ≥ 3.

Theorem 4.18 (Cornuéjols, Guenin, Margot [64]) Let A be a mni ma-
trix nonisomorphic to M(Jt), t ≥ 2. If A is minimally nonpacking,
then d = 1.

Conjecture 4.19 ([64]) Let A be a mni matrix nonisomorphic to M(Jt),
t ≥ 2. Then A is minimally nonpacking if and only if d = 1.

Using a computer program, this conjecture was verified for all known
minimally nonideal matrices with n ≤ 14.

Proof of Theorem 4.18: We show that, if C 6= Jt is a mni clutter
with d > 1 (i.e. rs > n + 1 using the notation of Theorem 4.4), then C
is not minimally nonpacking.
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Let L be an edge of C̄ ≡ core(C) and let U be the unique edge of
core(b(C)) such that |L ∩ U | > 1 (U is called the mate of L). Let i be
any vertex in L ∩ U and let I = (L− U) ∪ {i}.

Claim 1: Every transversal of C \ I has cardinality at least s− 1.

Proof: It suffices to show that every transversal of C̄ \ I has car-
dinality at least s − 1. Suppose there exists a transversal T of C̄ \ I
with |T | ≤ s − 2. Let j be any vertex in U − {i}. By Theorem 4.4
(iii), L is among the s edges of C̄ that intersect only in column j. Since
I ⊆ L−{j}, there are s−1 edges of C̄ \I that intersect only in column j.
Therefore, |T | ≤ s− 2 implies j ∈ T . By symmetry among the vertices
of U − {i}, it follows that U − {i} ⊆ T . So in particular |T | ≥ s− 1, a
contradiction. This proves Claim 1.

Suppose C\I packs. Then it follows from Claim 1 that C\I contains
s− 1 disjoint edges L1, . . . , Ls−1.

Claim 2: None of L1, . . . , Ls−1 are edges of C̄.

Proof: Suppose that L1 ∈ E(C̄) and let U1 be its mate. Then
U1 − (I ∪ L1) contains an edge T in b(C)/(I ∪ L1). By assumption
q = rs− n + 1 ≥ 3. Thus

|T | ≤ |U1 − L1| = |U1| − q = s− q ≤ s− 3

By Proposition 1.35, T is a transversal of C\(I∪L1). But L2, . . . , Ls−1

are disjoint edges of C \ (I ∪L1), which implies that every tranversal of
C \ (I ∪ L1) has cardinality at least s− 2, a contradiction. This proves
Claim 2.

By Corollary 4.5, the edges L1, . . . , Ls−1 have cardinality at least
r + 1. Moreover they do not intersect I. Therefore we must have:

(r + 1)(s− 1) ≤ n− |I| = rs− q + 1− (r − q + 1) = rs− r

Thus s ≤ 1, a contradiction. 2

4.2 Ideal Minimally Nonpacking Clutters

Minimally nonpacking clutters are either ideal or minimally nonideal.
This follows from Theorem 1.8. Theorem 4.18 above discussed the
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minimally nonideal case. In this section, we discuss the ideal case. Q6

is such an example, as seen in Exercise 1.9.
A clutter is binary if its edges have an odd intersection with its

minimal transversals. Seymour [183] showed that Q6 is the only ideal
minimally nonpacking binary clutter. However, there are ideal mini-
mally nonpacking clutters that are not binary, such as




1 1 0 1 0 1 0
1 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 1 1 0 0 1
1 0 1 1 0 1 0
0 1 1 0 1 0 1




.

Note that, for this clutter, the minimum size of a transversal is 2. Other
examples can be found in [64] but none is known with a minimum
transversal of size greater than 2. Interestingly, all ideal minimally
nonpacking clutters with a transversal of size 2 share strong structural
properties with Q6. A clutter C has the Q6-property if M(C) has 4 rows
such that every column restricted to this set of rows contains two 0’s
and two 1’s and each such 6 possible 0,1 vectors occurs at least once.

Theorem 4.20 (Cornuéjols, Guenin, Margot [64]) Every ideal mini-
mally nonpacking clutter with a transversal of size 2 has the Q6-property.

Conjecture 4.21 [64] Every ideal minimally nonpacking clutter has a
transversal of size 2.

It is proved in [64] that this conjecture would imply Conjecture 1.6.
Conjecture 1.6 can be reformulated in a form similar to Theorem 4.1.

Conjecture 4.22 (Conforti and Cornuéjols [41])
For a 0,1 matrix A, the following statements are equivalent:

(i) the matrix A has the MFMC property,

(ii) min {wx : Ax ≥ 1, x ≥ 0} has an integral optimal dual solution
y for all w ∈ {0, 1, +∞}n.
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Exercise 4.23 Show that this conjecture is equivalent to Conjecture 1.6.

Another equivalent conjecture is similar to Lovász’s replication lemma
(Lemma 3.3).

Conjecture 4.24 (Replication Conjecture) [41] If C and all its mi-
nors pack, then for any j ∈ V (C), the following clutter Cj packs.

V (Cj) = V (C) ∪ {j′}
E(Cj) = E(C) ∪ {A− {j} ∪ {j′} : A ∈ E(C) and A 3 j}.

Remark 4.25 Cj packs if and only if min{wx : M(C)x ≥ 1, x ∈
{0, 1}n} = max{y1 : yM(C) ≤ w, y ∈ Zm

+ }, for the vector w with
wj = 2 and wi = 1 for i 6= j.

Exercise 4.26 Prove Remark 4.25.

Exercise 4.27 Show that Conjecture 4.24 is equivalent to Conjecture
4.22.

4.3 Clutters such that τ2(C) < τ1(C)

Let C be a clutter and let M = M(C) be the associated 0,1 matrix. Let
k be a positive integer and let

τk(C) = min{1x : x ≥ 0, Mx ≥ 1, kx integral} (4.3)

νk(C) = max{y1 : y ≥ 0, yM ≤ 1, ky integral}. (4.4)

Clearly, C packs if and only if τ1(C) = ν1(C) and, for any clutter
C, there exists k large enough such that τk(C) = νk(C), since the LP’s
(4.3) and (4.4) have rational optimum solutions.

Theorem 4.28 (Ding [76]) If C is a minor-minimal clutter such that
τ2(C) < τ1(C), then either

(i) C has a Jk minor, for k ≥ 2, or
(ii) core(C) = C2

2k−1, for k ≥ 2.
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A clutter is diadic if |A∩B| ≤ 2 for all A ∈ E(C) and B ∈ E(b(C)).

Theorem 4.29 (Ding [76]) If C is a minor-minimal diadic clutter such
that τ2(C) < τ1(C), then C = C2

2k−1 or b(Ck
2k−1), for k ≥ 2.

Conjecture 1.6 (and, equivalently, Conjectures 4.22 and 4.24) holds
for diadic clutters.

Theorem 4.30 [64] If C is a diadic clutter, then C has the MFMC
property if and only if C has the packing property.



Chapter 5

Odd Cycles in Graphs

In this chapter, we consider the clutter C of odd cycles in a graph
G. Seymour [183] characterized exactly the graphs for which C has
the MFMC property and Guenin [110] characterized exactly when C is
ideal.

For edge weights w ∈ R
E(G)
+ , consider the minimization problem

(1.1). Recall that an integral solution to (1.1) is the incidence vector
of a transversal T of C. Since T intersects all odd cycles, E(G) − T
induces a bipartite graph. Therefore, a minimal transversal T of C is
the complement of a cut (W, W̄ ). In particular, when C is ideal, (1.1)
finds a cut of maximum weight in G, i.e. (1.1) solves the famous max
cut problem.

5.1 Planar Graphs

Orlova and Dorfman [152] showed that the clutter C of odd cycles is
ideal when G is planar.

Theorem 5.1 (Orlova and Dorfman [152]) In a planar graph, the clut-
ter of odd cycles is ideal.

Proof: Let G be a planar graph and D its dual. The bounded faces of
G form a cycle basis. Thus any odd cycle of G is a symmetric difference
of faces, an odd number of which are odd faces. Faces of G correspond
to nodes of D. Let T be the set of odd degree nodes of D. An odd cycle
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of G corresponds to an edge set of D of the form (W, W̄ ) where W ∩ T
has odd cardinality, i.e. a T -cut of D. The clutter of T -cuts in D is
ideal by the Edmonds-Johnson theorem (Theorem 2.1) and therefore
so is the clutter of odd cycles in G. 2

When G = K5, the complete graph on 5 nodes, the clutter C of odd
cycles is not ideal since xj = 1

3
for j = 1, . . . , 10 is a fractional extreme

point of the polyhedron {x ∈ R10 : M(C)x ≥ 1} (we leave this as an
exercise).

Exercise 5.2 Show that, when G = K5, the clutter of odd cycles is not
ideal.

Barahona [3] observed that Theorem 5.1 has the following general-
ization.

Theorem 5.3 In a graph not contractible to K5, the clutter of odd
cycles is ideal.

This follows from a famous theorem of Wagner [207] stating that
any edge-maximal graph not contractible to K5 can be constructed
recursively by pasting plane triangulations and copies of V8 along K3’s
and K2’s, where V8 is the cycle v1, v2, . . . , v8, v1 with chords vivi+4 for
i = 1, 2, 3, 4 (see Diestel [73] Theorem 8.3.4).

Exercise 5.4 Prove that the odd cycle clutter of V8 is ideal.

Is there a converse to Barahona’s theorem? In particular, is it true
that, if the clutter of odd cycles is ideal in a graph G, then G is not
contractible to K5? The answer to the second question is no. For
example, insert a node of degree 2 on every edge of K5. The graph
is now bipartite and the clutter of odd cycles has become the trivial
clutter, which is ideal! The difficulty is that contraction of an edge
changes odd cycles into even cycles and vice versa. To get a converse
to Barahona’s theorem, one needs to redefine contraction appropriately.
It is convenient to work in the more general context of signed graphs.
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5.2 Signed Graphs

Consider a graph G and a subset S of its edges. The pair (G,S) is
called a signed graph, and S is called the signature of G. The edges
in S are called odd edges. We say that a subset of edges of G is odd
(resp. even) if it contains an odd (resp. even) number of edges in S.
In particular we will talk about odd cycles of (G,S).

Consider a signed graph (G,S) and let C be any cut of G. Since
C intersects every cycle with even parity, it follows that (G,S) and
(G,S4C) have the same set of odd cycles (where 4 denotes the sym-
metric difference of two sets). We call the operation which consists of
replacing S by S4C a signature-exchange.

In a signed graph (G,S), deleting an edge means removing it from
the graph. Contracting an edge e means first doing a signature-exchange
if necessary so that the edge e is even, i.e. e 6∈ S, and then removing
the edge and identifying its endnodes.

Let C and D be disjoint edge sets. One can readily verify that all
the signed graphs obtained by deleting the edges in D and contracting
the edges in C are identical (up to signature-exchanges), no matter in
which order the contractions and deletions are performed. A signed
graph obtained from (G, S) by a sequence of contractions and deletions
and signature-exchanges is called a minor of (G,S).

Exercise 5.5 Let C denote the clutter of odd cycles in a signed graph
(G,S). Show that every minor of C is the clutter of odd cycles in a
signed graph (G′, S ′) obtained as a minor of (G,S).

A signed complete graph K5 on five nodes is called an odd-K5 if all
its edges are odd. Recently, Guenin proved the following theorem.

Theorem 5.6 (Guenin [110]) The clutter of odd cycles of a signed
graph (G,S) is ideal if and only if (G,S) has no odd-K5 minor.

A clutter is binary (see Section 5.4) if its edges and its minimal
transversals intersect in an odd number of vertices. The clutter of odd
cycles in a signed graph is a binary clutter. Theorem 5.6 is a special
case of a famous conjecture of Seymour [183], [187] (Conjecture 5.26)
on ideal binary clutters. In [183], Seymour characterized the binary
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clutters that have the MFMC property. Specialized to the clutter of
odd cycles, this theorem is the following.

Theorem 5.7 (Seymour [183]) The clutter of odd cycles of a signed
graph (G,S) has the MFMC property if and only if (G, S) has no odd-
K4 minor.

Exercise 5.8 Prove the following direction of Theorem 5.7: If the clut-
ter of odd cycles has the MFMC property in a signed graph G, then G
has no odd-K4 minor.

Exercise 5.9 Prove the following direction of Theorem 5.6: If the clut-
ter of odd cycles is ideal in a signed graph G, then G has no odd-K5

minor.

5.3 Proof Outline of Guenin’s Theorem

One direction of Guenin’s theorem is easy (Exercise 5.9). For the con-
verse we need two lemmas on mni binary clutters. Observe at the outset
that Jt is not binary. Denote the core of a mni clutter A by Ā.

Lemma 5.10 Let A be a mni binary clutter and C1, C2 ∈ E(Ā). If
C ⊆ C1 ∪ C2 and C ∈ E(A) then either C = C1 or C = C2.

Proof: Let r denote the cardinality of the edges in E(Ā).

Case 1 |C| = r.
It follows from Corollary 4.5 that C ∈ E(Ā). Let U be the mate
of C and d = |C ∩U | ≥ 2. Since A is binary, d must be odd. So
in particular d ≥ 3. Since C ⊆ C1∪C2, we must have |U∩C1| > 1
or |U ∩ C2| > 1. This implies that U is the mate of C1 or C2,
i.e. that C = C1 or C = C2.

Case 2 |C| > r.
Let T = C4C14C2. Since every minimal transversal U has an
odd intersection with C, C1 and C2, we have T∩U 6= ∅. Therefore
T contains an odd cycle. Now

|T | = |C4C14C2| ≤ |C1|+ |C2| − |C| < r,

a contradiction. 2
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For example, in an odd-K5, Lemma 5.10 says that if an odd cycle
C has edges contained in the union of two triangles, then C is one of
these two triangles.

Lemma 5.11 Let A be a mni binary clutter and B its blocker. For
any e ∈ V (A) there exist C1, C2, C3 ∈ E(Ā) and U1, U2, U3 ∈ E(B̄)
such that

(i) C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 = {e}
(ii) U1 ∩ U2 = U1 ∩ U3 = U2 ∩ U3 = {e}
(iii) Ci ∩ Uj = {e} if i 6= j and |Ci ∩ Uj| = d ≥ 3 if i = j.

(iv) For all ei ∈ Ui and ej ∈ Uj, there exists C ∈ E(A) with C ∩Ui =
{ei} and C ∩ Uj = {ej}.

Proof: By Theorem 4.4(iii) there exist s edges C1, . . . , Cs ∈ E(A) such
that C1 − {e}, . . . , Cs − {e} are disjoint. Moreover, exactly d = rs −
n + 1 ≥ 2 of these edges, say C1, . . . , Cd, contain vertex e. As A is
binary, d ≥ 3. This proves (i). Let U1, U2, U3 be the mates of C1, C2

and C3. Note that (iii) is immediate. (ii) can be derived from Theorem
4.3 and Theorem 4.4(iii) (we omit the proof). Let us prove (iv). Let
T = Ui ∪ Uj − {ei, ej}. Since A is binary, so is its blocker B. By
Lemma 5.10, there is no U ∈ E(B) with U ⊆ T . Thus V (A) − T
intersects every edge of B. Since b(B) = A (Theorem 1.15), it follows
that V (A)−T contains an edge C of A. But C∩Ui 6= ∅ and C∩Uj 6= ∅.
Thus, by construction, C ∩ Ui = {ei} and C ∩ Uj = {ej}. 2

Let A be the clutter of odd cycles of a signed graph (G,S) and
assume that A is mni. To prove Theorem 5.6, it suffices to show that
(G,S) is equal (up to signature-exchanges) to an odd-K5. Let B =
b(A). Recall that A and B are binary. Let e be any edge of G, and let
C1, C2, C3 be the odd cycles of (G,S) given in Lemma 5.11. We know
that these cycles intersect exactly in edge e. Let w, w′ be the endnodes
of e.

Lemma 5.12 The only nodes common to more than one of C1, C2, C3

are the endnodes of e.
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Proof: Suppose, for instance, that C1 and C2 have a node t in common
distinct from w and w′. Let P (resp. P ′) be the path in C1− e from w
(resp. w′) to t. Let Q (resp. Q′) be the path in C2 − e from w (resp.
w′) to t. Because of signature-exchanges, we may assume that e is odd
and that paths P, P ′ are both even. If Q is odd, then P ∪ Q contains
an odd cycle. If Q is even, then P ′ ∪ Q ∪ {e} contains an odd cycle.
Both cases contradict Lemma 5.10. 2

Lemma 5.12 implies that we may assume (after a sequence of signature-
exchanges) that e is the only odd edge in C1, C2 and C3. Let U1, U2, U3

be the sets of edges of G given in Lemma 5.11. The cycle C1 has at
least two edges, distinct from e, in common with U1. Choose such an
edge e1 ∈ (C1 ∩ U1) − e with endnodes t1, t

′
1 such that the path P in-

cluded in C1 − e from w to t1 contains exactly one edge of U1 namely
e1 (possibly relabeling the endpoints of e1). Similarly, we define edges
e2, e3 and nodes t2, t3 for C2, C3. Note that t1, t2, t3 are distinct from
the endnodes w,w′ of e.

Lemma 5.13 There are odd paths Pij with endnodes ti, tj for each
i, j ∈ {1, 2, 3} and i 6= j.

Proof: By Lemma 5.11(iv), there is a an odd cycle C with C ∩ U1 =
{e1}, C∩U2 = {e2} and e 6∈ C. The cycle C can be written as {e1, e2}∪
Q ∪Q′ where Q and Q′ are paths disjoint from U1 and U2. Since C is
odd and all edges in C1 ∪ C2 ∪ C3 − e are even, exactly one of Q or Q′

is odd (say Q is odd). We leave it as an exercice to check that if the
endnodes of Q are not t1 and t2 then (G,S) contains an odd cycle C ′

disjoint from either U1 or U2. But this is a contradiction as C ∈ E(A)
and U1, U2 ∈ E(B). 2

Exercise 5.14 Complete the proof of Lemma 5.13.

Suppose all internal nodes of the paths P12, P13, P23 have degree
two. Then do a signature-exchange using the cut where one of the
shores consists of w,w′. By a sequence of contractions, replace every
odd path, with internal nodes of degree two, by a single odd edge. The
resulting graph is an odd-K5. The hardest part of the proof deals with
the case where P12, P23 and P31 are not node disjoint. See [110] for the
proof in this case.
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5.4 Binary Clutters

A clutter is binary if its edges and its minimal transversals intersect in
an odd number of vertices. It follows from the definition that a clutter
is binary if and only if its blocker is binary. An equivalent formulation
is given by Lehman.

Proposition 5.15 (Lehman [131], see also Seymour [181]) A clutter
C is binary if and only if, for any three edges S1, S2, S3 of C, the set
S14S24S3 contains an edge of C.
Proof: Let C be a binary clutter and S = S14S24S3 where S1, S2, S3 ∈
E(C). Since every minimal transversal T has an odd intersection with
S1, S2 and S3, we have S ∩ T 6= ∅. Therefore S contains an edge of C.

Conversely, assume that for any three edges S1, S2, S3 of C, the set
S14S24S3 contains an edge of C. We leave it as an exercise to show
that, for any odd number of edges S1, . . . , Sk of C, the set S14 . . .4Sk

contains an edge of C. Now consider any S ∈ E(C), T ∈ E(b(C))
and let S ∩ T = {x1, . . . , xk}. Since T − xi is not a transversal of C,
there exists an edge Si of C such that T ∩ Si = {xi}. It follows that
T ∩(S4S14 . . .4Sk) = ∅. Therefore S4S14 . . .4Sk does not contain
an edge of C. It follows that k is odd. 2

Exercise 5.16 Let C be a clutter such that, for any three edges S1, S2, S3,
the set S14S24S3 contains an edge of C. Show that, for any odd num-
ber of edges S1, . . . , Sk of C, the set S14 . . .4Sk contains an edge of
C.
Exercise 5.17 Show that, in a signed graph, the clutter of odd cycles
is binary.

Let P4 be the clutter with four vertices and the following three
edges: E(P4) = {{1, 2}, {2, 3}, {3, 4}}.
Exercise 5.18 Show that neither P4 nor Jt is a binary clutter, for
t ≥ 2.

Theorem 5.19 (Seymour [181]) C is a binary clutter if and only if C
has no minor P4 or Jt, for t ≥ 2.
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The following clutters (and their blockers!) are examples of binary
clutters.

Example 5.20 The clutter of st-paths in a graph.

Example 5.21 The clutter of two-commodity paths in a graph.

Example 5.22 The clutter of T -joins in a graft (G, T ).

Example 5.23 The clutter of odd cycles in a signed graph.

We present two more examples.

st-T -Cuts

Recently, Goemans and Ramakrishnan [105] introduced a generaliza-
tion of st-cuts, T -cuts and two-commodity cuts as follows. In a graph
G, let s, t be two distinct nodes and let T be a node set of even cardi-
nality. An st-T -cut is a T -cut (W, W̄ ) where W contains exactly one
of s or t. The st-cut clutter is obtained when T = {s, t}, the T -cut
clutter is obtained when t is an isolated node and the two-commodity
cut clutter is obtained when T = {s′, t′}.

Exercise 5.24 Show that the clutter of st-T -cuts is binary.

Odd st-Walks

Guenin [112] considers the following generalization of the odd cycle
clutter. Let (G,S) be a signed graph and let s, t be two nodes of G.
A subset of edges of G is an odd st-walk if it is an odd st-path or the
union of an even st-path P and an odd cycle C where P and C share
at most one node. The odd cycle clutter is obtained when s = t.

Exercise 5.25 Show that the clutter of odd st-walks is binary.
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5.4.1 Seymour’s Conjecture

Recall that F7 denotes the clutter with 7 vertices and 7 edges corre-
sponding to points and lines of the Fano plane (finite projective geom-
etry on 7 points). It is easy to verify that F7 is binary, mni and that
b(F7) = F7 (see Exercises 4.15 and 5.27).

Let K5 denote the complete graph on five nodes. We let OK5 denote
the binary clutter whose vertices are the edges of K5 and whose edges
are the odd cycles of K5. So OK5 has 10 edges of cardinality three and
12 edges of cardinality five. OK5 is binary and mni. It follows that
b(OK5) is binary and mni (see Exercises 4.16 and 5.27).

Conjecture 5.26 (Seymour [183]) A binary clutter is ideal if and only
if it contains no F7, OK5 or b(OK5) minor.

Exercise 5.27 Show that F7 and OK5 are binary clutters.

Theorems 5.6 is a special case of Seymour’s conjecture since one can
verify that neither F7 nor b(OK5) is an odd cycle clutter of a signed
graph.

Similarly Theorems 1.22 and 2.1 are special cases of Seymour’s con-
jecture since F7, OK5 and b(OK5) are neither T -join nor two-commodity
cut clutters.

One can also check that OK5 is not an st-T -cut clutter and that
b(OK5) is not an odd-st-walk clutter. Recently, Guenin proved two
more cases of Seymour’s conjecture.

Theorem 5.28 (Guenin [112]) A clutter of odd st-walks is ideal if and
only if it has no F7 or OK5 minor.

Theorem 5.29 (Guenin [112]) A clutter of st-T -cuts is ideal if and
only if it has no F7 or b(OK5) minor.

Theorem 5.28 implies Theorem 5.6 and Theorem 5.29 implies The-
orems 1.22 and 2.1.
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5.4.2 Seymour’s MFMC Theorem

Denote by Q6 the clutter with six vertices and the following four edges:

E(Q6) = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.

Q6 is the clutter of triangles of K4. It is easy to check that Q6 is a
binary clutter but does not have the MFMC property (Exercises 5.17
and 1.9).

Theorem 5.30 (Seymour [183]) A binary clutter has the MFMC prop-
erty if and only if it does not have a Q6 minor.

Specializing Seymour’s max-flow min-cut theorem (Theorem 5.30)
to the above examples of binary clutters, we get graph theoretic re-
sults. Theorems 2.11, 2.16 and 5.7 are three such results that have
been mentioned already.



Chapter 6

0,±1 Matrices and Integral
Polyhedra

The concepts of perfect and of ideal 0,1 matrices can be extended to
0,±1 matrices. Given a 0,±1 matrix A, denote by n(A) the column
vector whose ith component is the number of -1’s in the ith row of
matrix A. A 0,±1 matrix A is perfect if the polytope {x : Ax ≤
1 − n(A), 0 ≤ x ≤ 1} is integral. Similarly, a 0,±1 matrix A is ideal
if the polytope {x : Ax ≥ 1− n(A), 0 ≤ x ≤ 1} is integral. A matrix
is totally unimodular if every square submatrix has determinant equal
to 0,±1. In particular, all entries are 0,±1. A milestone result in the
study of integral polyhedra, due to Hoffman and Kruskal [122], is that
the following statements are equivalent for an integral matrix A.

• The polyhedron {x ≥ 0 : Ax ≤ b} is integral for each integral
vector b,

• A is totally unimodular.

We prove this in Section 6.1. It follows from this result that a totally
unimodular matrix is both perfect and ideal.

A 0,±1 matrix is balanced if, in every square submatrix with exactly
two nonzero entries per row and per column, the sum of the entries is a
multiple of four. The class of balanced 0,±1 matrices properly includes
totally unimodular 0,±1 matrices. See Figure 6.1.

In Section 6.2, we will prove the following equivalence.
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PERFECT

UNIMODULAR

IDEALBALANCED

TOTALLY

Figure 6.1: Classes of 0,±1 matrices.

Theorem 6.1 (Conforti and Cornuéjols [42])
Let A be a 0,±1 matrix. Then the following statements are equiva-

lent.

(i) the matrix A is balanced,

(ii) every submatrix of A is perfect,

(iii) every submatrix of A is ideal.

It is well known that several problems in propositional logic, such
as SAT, MAXSAT and logical inference, can be written as integer pro-
grams of the form

min{cx : Ax ≥ 1− n(A), x ∈ {0, 1}n}.
These problems are NP-hard in general but they can be solved in

polytime by linear programming when the corresponding 0,±1 matrix
A is ideal. In fact, in this case, SAT and logical inference can be solved
very fast by unit resolution [43]. This is discussed in Section 6.3.

6.1 Totally Unimodular Matrices

A matrix is totally unimodular if all its square submatrices have a
determinant equal to 0, +1 or -1. In particular, all entries of a totally
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unimodular matrix must be equal to 0, +1 or -1. The following result
shows that this concept is important in integer programming. We follow
the proof of Veinott and Dantzig [204]

Theorem 6.2 (Hoffman and Kruskal [122]) A 0,±1 matrix A is totally
unimodular if and only if {x ∈ Rn

+ : Ax ≤ b} is an integral polyhedron
for every integral vector b.

Proof: First, assume that A is totally unimodular and let x̄ be an
extreme point of {x ∈ Rn

+ : Ax ≤ b} for some integral vector b. Then
x̄ is the solution of a linear system of n equations Dx = d, where D is
nonsingular, taken from the inequalities x ≥ 0, Ax ≤ b that are tight
at x̄. Since A is totally unimodular and b is integral, it follows from
Cramer’s rule that x̄ is integral.

Conversely, let A be an m × n integral matrix and assume that
{x ∈ Rn

+ : Ax ≤ b} has integral extreme points for every integral vector
b. To prove that A is totally unimodular, we consider a nonsingular
square submatrix A′ of A, we complete it into an m ×m nonsingular
submatrix B of (A, Im) by using the columns of Im that have 0’s in
the rows of A′, and we show that det B = ±1. Let βj be the jth
column of B−1, let y be an integral vector such that y + βj ≥ 0 and let
z = y + βj. Then Bz = By + ej where ej denotes the jth unit vector.
So, the point x̄ defined by x̄j = zj when j is a column of B and x̄j = 0
otherwise is an extreme point of {x ∈ Rn

+ : Ax ≤ b} for b = By+ej. By
assumption, it follows that z is integral. So βj = z − y is integral and
therefore B−1 is an integral matrix. Since B is also an integral matrix
and (det B)(det B−1) = 1, it follows that det B = ±1. 2

Several elegant characterizations of total unimodularity are known.
We present those of Ghouila-Houri [104] and Camion [26]. We follow
Padberg’s presentation of the proofs [156]. A 0,±1 matrix A has an
equitable bicoloring if its columns can be partitioned into blue columns
and red columns so that, for every row of A, the sum of the entries in
the blue columns differs from the sum of the entries in the red columns
by at most one.

Theorem 6.3 (Ghouila-Houri [104]) A 0,±1 matrix A is totally uni-
modular if and only if every submatrix of A has an equitable bicoloring.
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Proof: Assume A is totally unimodular and, for any submatrix B of A,
define the polytope

P = {x : 0 ≤ x ≤ 1, b1
2
B1c ≤ Bx ≤ d1

2
B1e}.

The definition of total unimodularity implies that (B,−B, I) is totally
unimodular. So P is an integral polytope by the Hoffman-Kruskal
theorem (Theorem 6.2). Since P is nonempty (indeed (1

2
, . . . , 1

2
) ∈ P ),

it follows that P contains a 0,1 point x̄. Now, an equitable bicoloring
is obtained by coloring red the columns j where x̄j = 1 and blue those
where x̄j = 0.

Now we prove the converse. Assume that every submatrix of A has
an equitable bicoloring. To show that every k × k submatrix of A has
a determinant equal to 0,±1, we use induction on k. The result holds
for k = 1. Suppose it is true for k ≥ 1 and let B be a nonsingular
(k +1)× (k +1) submatrix of A. Let d = det B. Expressing the entries
of B−1 using cofactors, it follows from the induction hypothesis that
each entry of the matrix dB−1 equals 0,±1. Let β be the first column of
dB−1 and let q = B|β|. Note that qi is even for i = 2, . . . , k+1. Suppose
that q1 is also even. Then the equitable bicoloring assumption, applied
to the column submatrix of B with columns j such that βj 6= 0, implies
that there exists a 0,±1 vector y 6= 0 such that By = 0, contradicting
the nonsingularity of B. So q1 is odd. Now the equitable bicoloring
assumption implies that there exists a 0,±1 vector y such that By = e1,
the first unit vector. Since Bβ = de1, it follows that β = dy. Now,
since β 6= 0 has 0,±1 entries, it follows that d = ±1. 2

Exercise 6.4 Let A be a totally unimodular matrix. Show that, if A
has an even number of nonzero entries in each row and column, then
the sum of the entries of A is a multiple of 4. [Hint: Use Theorem 6.3.]

Theorem 6.5 (Camion [26]) A 0,±1 matrix A is totally unimodular if
and only if, in every submatrix with an even number of nonzero entries
per row and per column, the sum of the entries is a multiple of four.

Proof: This result follows from Exercise 6.4 and the next theorem. 2
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A 0,±1 matrix A is minimally non-totally unimodular if it is not
totally unimodular, but every proper submatrix has that property.
Clearly, if a 0,±1 matrix is not totally unimodular, then it contains
a minimally non-totally unimodular submatrix.

Theorem 6.6 (Camion [27] and Gomory (cited in [27])) Let A be a
0,±1 minimally non-totally unimodular matrix. Then A is square,
det(A) = ±2, and A−1 has only ±1

2
entries. Furthermore, each row

and each column of A has an even number of nonzeroes and the sum of
all entries in A equals 2 modulo 4.

Proof: Clearly A is square, say n × n. If n = 2, then indeed, det A =
±2. Now assume n ≥ 3. Since A is nonsingular, it contains an (n −
2) × (n − 2) nonsingular submatrix B. Let A =

(
B C
D E

)
and U =

(
B−1 0

−DB−1 I

)
. Then det U = ±1 and UA =

(
I B−1C
0 E −DB−1C

)
.

We claim that the 2 × 2 matrix E − DB−1C has all entries equal to
0,±1. Suppose to the contrary that E−DB−1C has an entry different
from 0,±1 in row i and column j. Denoting the corresponding entry
of E by eij, the corresponding column of C by cj and row of D by di,

(
B−1 0

−diB−1 1

) (
B cj

di eij

)
=

(
I B−1cj

0 eij − diB−1cj

)

and consequently A has an (n − 1) × (n − 1) submatrix with a deter-
minant different from 0,±1, a contradiction.

Consequently, det A = ±det UA = ±det(E −DB−1C) = ±2.
So, every entry of A−1 is equal to 0,±1

2
. If α denotes a column

of A−1 with at least one 0 component, then, applying Ghouila-Houri’s
theorem to the column submatrix of A with columns j such that αj 6= 0,
it follows from A|α| ≡ 0 (mod 2) that there exists a 0,±1 vector y 6= 0
such that Ay = 0, contradicting the nonsingularity of A. So A−1 has
only ±1

2
entries.

This property and the fact that AA−1 and A−1A are integral, imply
that A has an even number of nonzero entries in each row and column.

Finally, let α denote a column of A−1 and S = {i : αi = +1
2
} and

S̄ = {i : αi = −1
2
}. Let k denote the sum of all entries in the columns
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of A indexed by S̄. Since Aα is a unit vector, the sum of all entries in
the columns of A indexed by S equals k + 2. Since every column of A
has an even number of nonzero entries, k is even, say k = 2p for some
integer p. Therefore, the sum of all entries in A equals 4p + 2. 2

In Figure 6.2, we give the bipartite representations of four minimally
non totally unimodular 0,1 matrices.

Figure 6.2: Bipartite representations of four minimally non totally uni-
modular 0,1 matrices

Exercise 6.7 Show that a 0,±1 matrix A is totally unimodular if and
only if all its square submatrices with an even number of nonzero entries
in each row and column are singular.
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Exercise 6.8 Let A be a 0,±1 matrix with exactly two nonzero entries
in each row and column, such that no proper submatrix of A has this
property. Show that A is singular if and only if the sum of its entries
is a multiple of 4.

A 0,±1 matrix with exactly two nonzero entries in each row and
column, such that no proper submatrix has this property, is called a hole
matrix. It is a balanced hole matrix if the sum of the entries is a multiple
of 4 and it is unbalanced otherwise. Minimally non-totally unimodular
matrices are either unbalanced hole matrices or they are balanced 0,±1
matrices. Padberg [156] conjectured that, for every minimally non-
totally unimodular matrix A, there exists a linear transformation R
that preserves total unimodularity such that RA is an unbalanced hole
matrix. This conjecture is not correct (see [66]), but the following
related question is open. Is it true that, for any minimally non-totally
unimodular matrix A, there exists a totally unimodular matrix R such
that RA is an unbalanced hole matrix?

By Theorem 6.6, the inverse of a minimally non-totally unimodular
matrix is of the form

A−1 =
1

2

(
−1 1T

1 2U − J

)

up to multiplying rows and columns by -1, where U is a 0,1 matrix and
J is the matrix filled with 1’s. The matrix U has interesting properties.
Truemper [191] showed that U is totally unimodular. Furthermore,
several matrices derived from U must also be totally unimodular since
A remains totally unimodular when multiplying rows or columns by
-1. The row i complement of a 0,1 matrix B is derived from B by the
following operation: for each column j such that bij = 1, replace bkj by
1 − bkj for each k 6= i. The column j complement operation is defined
similarly. A 0,1 matrix B is complement totally unimodular if B and
all matrices derivable from B by a sequence of row and column comple-
ment operations are totally unimodular. Truemper showed that the 0,1
matrix U in A−1 above is complement totally unimodular. Conversely,
any nonsingular complement totally unimodular matrix U gives rise to
a valid A−1. This result is expressed in terms of A as follows.



80CHAPTER 6. 0,±1 MATRICES AND INTEGRAL POLYHEDRA

Theorem 6.9 (Truemper [191]) Let U be a square nonsingular com-
plement totally unimodular matrix. Then the matrix

A =

(
1T U−11− 2 1T U−1

U−11 U−1

)

is a minimally non-totally unimodular matrix. Moreover, every 0,±1
minimally non-totally unimodular matrix A can be constructed this way,
up to multiplying rows or columns by -1.

Exercise 6.10 Prove Theorem 6.6 using Theorem 6.9.

Truemper [191] (see also [194]) showed that a minimally non-totally
unimodular matrix has a row or column that contains exactly two
nonzero entries.

6.2 Balanced Matrices

A 0, 1 matrix is balanced if it does not contain a square submatrix of
odd order with two ones per row and per column. This notion was
introduced by Berge [6].

Conjecture 6.11 (Conforti and Rao [57]) If a 0,1 matrix is balanced,
there exists a sequence in which its 1’s can be turned into 0’s, one at a
time, so that all intermediate matrices are balanced.

Berge [7] showed that, if A is balanced, then both the packing poly-
tope {x ≥ 0 : Ax ≤ 1} and the covering polyhedron {x ≥ 0 : Ax ≥ 1}
are integral. (The proof will be given, see Theorem 6.16 below.) It
follows that, if A is balanced, the linear system x ≥ 0, Ax ≤ 1 is TDI
(recall Corollary 3.12). Fulkerson, Hoffman and Oppenheim [92] also
showed that, if A is balanced, then the linear system x ≥ 0, Ax ≥ 1 is
TDI (see Theorem 6.17 below).

Balanced 0,1 matrices can also be viewed as a natural generalization
of bipartite graphs. This is the motivation that led Berge to introduce
the notion of balancedness. This point of view is developed in Section
6.2.3. Further results on balanced 0,1 matrices can be found in [9], [10],
[11], [47], [69]. See [46] for a survey.
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Several of these results can be extended to 0,±1 matrices. A 0,±1
matrix is balanced if, in every square submatrix with exactly two nonzero
entries per row and per column, the sum of the entries is a multiple
of 4. This notion was introduced by Truemper [192] and it generalizes
that of balanced 0, 1 matrix. Furthermore, every totally unimodular
matrix is a balanced 0,±1 matrix. Using terminology introduced in
the previous section, a 0,±1 matrix is balanced if and only if it does
not contain an unbalanced hole submatrix.

6.2.1 Integral Polytopes

Given a 0,±1 matrix A, let n(A) be the column vector whose ith com-
ponent is the number of −1’s in the ith row of matrix A. The generalized
set covering polytope is Q(A) = {x ∈ Rn : Ax ≥ 1−n(A), 0 ≤ x ≤ 1}.
First, we consider the generalized set partitioning polytope {x ∈ Rn :
Ax = 1− n(A), 0 ≤ x ≤ 1}.

Theorem 6.12 (Conforti and Cornuéjols [43]) If A is a balanced 0,±1
matrix, then the polytope P (A) = {x ∈ Rn : Ax = 1− n(A), 0 ≤ x ≤
1} is an integral polytope.

Proof: Assume that A contradicts the theorem and has the smallest size
(number of rows plus number of columns). Then P (A) is nonempty.
Let x̄ be a fractional extreme point of P (A). By the minimality of A,
0 < x̄j < 1 for all j. It follows that A is square and nonsingular.

Let a1, . . . , an denote the row vectors of A and let Ai be the (n−1)×n
submatrix of A obtained by removing row ai. Then x̄ belongs to a face
of dimension 1 of the polytope P (Ai) = {x ∈ Rn : Aix = 1−n(Ai), 0 ≤
x ≤ 1}. So,

x̄ = λxS + (1− λ)xT

where xS, xT are extreme points of P (Ai). W.l.o.g. aixS < 1 − ni(A)
and aixT > 1− ni(A). By the minimality of A, all the extreme points
of P (Ai) have 0, 1 components.

Let S = {j : xS
j = 1} and T = {j : xT

j = 1}. Since 0 < x̄j < 1 for
all j, S∩T = ∅ and |S∪T | = n. Let k be any row of Ai. Since both xS

and xT satisfy akx = 1 − n(ak), it follows that row k contains exactly
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two nonzero entries. Applying this argument to two different matrices
Ai, it follows that every row of A contains exactly two nonzero entries.

If A has a column j with only one nonzero entry akj, remove column
j and row k. Since A is nonsingular, the resulting matrix is also non-
singular. Repeating this process, we get a square nonsingular matrix
B of order at least 2, with exactly two nonzero entries in each row and
column. Exercise 6.8, which is routine, implies that B is not balanced.
Therefore A is not balanced. 2

Theorem 6.13 Let A be a balanced 0,±1 matrix with rows ai, i ∈ S,
and let S1, S2, S3 be a partition of S. Then

R(A) = {x ∈ Rn : aix ≥ 1− n(ai) for i ∈ S1,

aix = 1− n(ai) for i ∈ S2,

aix ≤ 1− n(ai) for i ∈ S3,

0 ≤ x ≤ 1}

is an integral polytope.

Proof: If x̄ is an extreme point of R(A), it is an extreme point of
the polytope obtained from R(A) by deleting the inequalities that are
not satisfied with equality by x̄. By Theorem 6.12, every extreme point
of this polytope has 0, 1 components. 2

Corollary 6.14 If A is a balanced 0,±1 matrix, the generalized set
covering polytope with constraint matrix A is an integral polytope.

Berge showed that every balanced 0, 1 matrix is perfect.

Exercise 6.15 Prove that every balanced 0,1 matrix is perfect, using
Theorem 6.13.

The next theorem gives three equivalent characterizations of bal-
anced 0, 1 matrices.

Theorem 6.16 (Berge [7], Fulkerson, Hoffman, Oppenheim [92]) Let
A be a 0, 1 matrix. Then the following statements are equivalent:
(i) A is balanced.
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(ii) Every submatrix of A is perfect.
(iii) Every submatrix of A is ideal.
(iv) For each submatrix B of A, the set partitioning polytope {x : Bx =
1, x ≥ 0} is integral.

Proof: This result is a corollary of Theorem 6.13. 2

6.2.2 Total Dual Integrality

Theorem 6.17 (Fulkerson, Hoffman, Oppenheim [92]) Let A =




A1

A2

A3




be a balanced 0, 1 matrix. Then the linear system





A1x ≥ 1
A2x ≤ 1
A3x = 1

x ≥ 0

is TDI.

Exercise 6.18 Use Theorem 6.17 to prove the following result of Berge
and Las Vergnas [13], which generalizes König’s theorem (Theorem 1.1).
If M is a balanced clutter matrix, then the maximum number of disjoint
edges in C(M) equals the minimum cardinality of a transversal.

Theorem 6.17 and the Edmonds-Giles theorem imply Theorem 6.16.
In this section, we prove the following more general result.

Theorem 6.19 (Conforti, Cornuéjols [42]) Let A =




A1

A2

A3


 be a bal-

anced 0,±1 matrix. Then the linear system





A1x ≥ 1− n(A1)
A2x ≤ 1− n(A2)
A3x = 1− n(A3)

0 ≤ x ≤ 1

is TDI.
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The following transformation of a 0,±1 matrix A into a 0, 1 matrix
B is often seen in the literature: to every column aj of A, j = 1, . . . , p,
associate two columns of B, say bP

j and bN
j , where bP

ij = 1 if aij = 1,
0 otherwise, and bN

ij = 1 if aij = −1, 0 otherwise. Let D be the 0, 1
matrix with p rows and 2p columns dP

j and dN
j such that dP

jj = dN
jj = 1

and dP
ij = dN

ij = 0 for i 6= j.

Given a 0,±1 matrix A =




A1

A2

A3


 and the associated 0, 1 matrix

B =




B1

B2

B3


, define the following linear systems:





A1x ≥ 1− n(A1)
A2x ≤ 1− n(A2)
A3x = 1− n(A3)

0 ≤ x ≤ 1,

(6.1)

and





B1y ≥ 1
B2y ≤ 1
B3y = 1
Dy = 1

y ≥ 0.

(6.2)

The vector x ∈ Rp satisfies (6.1) if and only if the vector (yP , yN) =
(x,1−x) satisfies (6.2). Hence the polytope defined by (6.1) is integral
if and only if the polytope defined by (6.2) is integral. We show that,
if A is a balanced 0,±1 matrix, then both (6.1) and (6.2) are TDI.

Lemma 6.20 If A =




A1

A2

A3


 is a balanced 0,±1 matrix, the corre-

sponding system (6.2) is TDI.

Proof: The proof is by induction on the number m of rows of B.
Let c = (cP , cN) ∈ Z2p denote an integral vector and R1, R2, R3 the
index sets of the rows of B1, B2, B3 respectively. The dual of min {cy :
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y satisfies (6.2)} is the linear program

max
∑m

i=1 ui +
∑p

j=1 vj

uB +vD ≤ c
ui ≥ 0, i ∈ R1

ui ≤ 0, i ∈ R2.

(6.3)

Since vj only appears in two of the constraints uB + vD ≤ c and
no constraint contains vj and vk, it follows that any optimal solution
to (6.3) satisfies

vj = min (cP
j −

m∑

i=1

bP
ijui, cN

j −
m∑

i=1

bN
ij ui). (6.4)

Let (ū, v̄) be an optimal solution of (6.3). If ū is integral, then so is v̄
by (6.4) and we are done. So assume that ū` is fractional. Let b` be the
corresponding row of B and let B` be the matrix obtained from B by
removing row b`. By induction on the number of rows of B, the system
(6.2) associated with B` is TDI. Hence the system

max
∑

i 6=` ui +
∑p

j=1 vj

u`B` +vD ≤ c− bū`cb`

ui ≥ 0, i ∈ R1 \ {`}
ui ≤ 0, i ∈ R2 \ {`}

(6.5)

has an integral optimal solution (ũ, ṽ). Since (ū1, . . . , ū`−1, ū`+1, . . . , ūm, v̄1, . . . , v̄p)
is a feasible solution to (6.5) and Theorem 6.13 shows that

∑m
i=1 ūi +∑p

j=1 v̄j is an integer number,

∑

i6=`

ũi +
p∑

j=1

ṽj ≥ d∑
i6=`

ūi +
p∑

j=1

v̄je =
m∑

i=1

ūi +
p∑

j=1

v̄j − bū`c.

Therefore the vector (u∗, v∗) = (ũ1, . . . , ũ`−1, bū`c, ũ`+1, . . . , ũm, ṽ1, . . . , ṽp)
is integral, is feasible to (6.3) and has an objective function value not
smaller than (ū, v̄), proving that the system (6.2) is TDI. 2

Proof of Theorem 6.19: Let R1, R2, R3 be the index sets of the
rows of A1, A2, A3. By Lemma 6.20, the linear system (6.2) associated
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with (6.1) is TDI. Let d ∈ Rp be any integral vector. The dual of
min {dx : x satisfies (6.1)} is the linear program

max w(1− n(A)) −t1
wA −t ≤ d
wi ≥ 0, i ∈ R1

wi ≤ 0, i ∈ R2

t ≥ 0.

(6.6)

For every feasible solution (ū, v̄) of (6.3) with c = (cP , cN) = (d, 0),
we construct a feasible solution (w̄, t̄) of (6.6) with the same objective
function value as follows:

w̄ = ū

t̄j =

{
0 if v̄j = −∑

i b
N
ij ūi∑

i b
P
ijūi −∑

i b
N
ij ūi − dj if v̄j = dj −∑

i b
P
ijūi.

(6.7)

When the vector (ū, v̄) is integral, the above transformation yields an
integral vector (w̄, t̄). Therefore (6.6) has an integral optimal solution
and the linear system (6.1) is TDI. 2

Exercise 6.21 Give an example showing that Theorem 6.19 does not
hold when the upper bound x ≤ 1 is dropped from the linear system.

6.2.3 A Bicoloring Theorem

Berge [6] introduced the following notion. A 0, 1 matrix is bicolorable
if its columns can be partitioned into blue and red columns in such a
way that every row with two or more 1′s contains a 1 in a blue column
and a 1 in a red column.

Theorem 6.22 (Berge [6]) A 0, 1 matrix A is balanced if and only if
every submatrix of A is bicolorable.

We prove this result in a more general form (Theorem 6.26). A
0,±1 matrix A is bicolorable if its columns can be partitioned into blue
columns and red columns in such a way that every row with two or more
nonzero entries either contains two entries of opposite sign in columns
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of the same color, or contains two entries of the same sign in columns of
different colors. For a 0, 1 matrix, this definition coincides with Berge’s
definition. Clearly, if a 0,±1 matrix has an equitable bicoloring as
defined by Ghouila-Houri, then it is bicolorable. Recall that equitable
bicolorings can be used to characterize totally unimodular matrices
(Theorem 6.3).

Proposition 6.23 (Heller, Tompkins [120]) Let A be a 0,±1 matrix
with at most two nonzero entries per row. A is totally unimodular if
and only if A is bicolorable.

Exercise 6.24 Prove Proposition 6.23.

Exercise 6.25 Show that a 0,±1 matrix with at most two nonzero
entries per row is balanced if and only if it is totally unimodular.

So Proposition 6.23 shows that a 0,±1 matrix with at most two
nonzero entries per row is balanced if and only if it is bicolorable. The
following theorem extends Theorem 6.22 to 0,±1 matrices and Propo-
sition 6.23 to matrices with more than two nonzero entries per row.

Theorem 6.26 (Conforti, Cornuéjols [42]) A 0,±1 matrix A is bal-
anced if and only if every submatrix of A is bicolorable.

Proof: Assume first that A is balanced and let B be any submatrix of
A. Remove from B any row with fewer than two nonzero entries. Since
B is balanced, so is the matrix (B,−B). It follows from Corollary 6.14
that

Bx ≥ 1− n(B)

−Bx ≥ 1− n(−B) (6.8)

0 ≤ x ≤ 1

is an integral polytope. Since it is nonempty (the vector (1/2, . . . , 1/2)
is a solution), it contains a 0,1 point x̄. Color a column j of B red if
x̄j = 1 and blue otherwise. By (6.8), this is a valid bicoloring of B.

Conversely, assume that A is not balanced. Then A contains an
unbalanced hole matrix B and by Proposition 6.23, B is not bicolorable.
2
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Cameron and Edmonds [25] observed that the following simple al-
gorithm finds a valid bicoloring of a balanced matrix.

Algorithm

Input: A 0,±1 matrix A.

Output: A bicoloring of A or a proof that the matrix A is not balanced.

Stop if all columns are colored or if some row is incorrectly colored.
Otherwise, color a new column red or blue as follows.

If no row of A forces the color of a column, arbitrarily color one of
the uncolored columns.

If some row of A forces the color of a column, color this column
accordingly.

When the algorithm fails to find a bicoloring, the sequence of forc-
ings that resulted in an incorrectly colored row identifies a unbalanced
hole submatrix of A. The algorithm may find a correct bicoloring even

when A is not balanced. For example, if A =




1 1 1 0
1 1 0 1
1 0 1 1


, the algo-

rithm may color the first two columns blue and the last two red, which
is a correct bicoloring of A. For this reason, the algorithm cannot be
used as a recognition of balancedness.

6.3 Perfect and Ideal 0,±1 Matrices

A 0,±1 matrix A is perfect if its fractional generalized set packing poly-
tope P (A) = {x : Ax ≤ 1− n(A), 0 ≤ x ≤ 1} is integral. Similarly, a
0,±1 matrix A is ideal if its fractional generalized set covering polytope
Q(A) = {x : Ax ≥ 1− n(A), 0 ≤ x ≤ 1} is integral.

6.3.1 Relation to Perfect and Ideal 0,1 Matrices

Hooker [125] was the first to relate idealness of a 0,±1 matrix to that
of a family of 0,1 matrices. A similar result for perfection was obtained
in [44]. These results were strengthened by Guenin [109] and by Boros,
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Čepek [18] for perfection, and by Nobili, Sassano [148] for idealness.
The key tool for these results is the following:

Given a 0,±1 matrix A, let P and R be 0, 1 matrices of the same
dimension as A, with entries pij = 1 if and only if aij = 1, and rij = 1
if and only if aij = −1. The matrix

DA =

(
P R
I I

)
,

is the 0, 1 extension of A. Note that the transformation x+ = x and
x− = 1 − x maps every vector x in P (A) into a vector in {(x+, x−) ≥
0 : Px+ + Rx− ≤ 1, x+ + x− = 1} and every vector x in Q(A) into
a vector in {(x+, x−) ≥ 0 : Px+ + Rx− ≥ 1, x+ + x− = 1}. So P (A)
and Q(A) are respectively the faces of P (DA) and Q(DA), obtained by
setting the inequalites x+ + x− ≤ 1 and x+ + x− ≥ 1 at equality.

Given a 0,±1 matrix A, let a1 and a2 be two rows of A, such that
there is one index k such that a1

ka
2
k = −1 and, for all j 6= k, a1

ja
2
j = 0.

A disjoint implication of A is the 0,±1 vector a1 + a2. The matrix A+

obtained by recursively adding all disjoint implications and removing
all dominated rows (in the packing case) or dominating rows (in the
covering case) is called the disjoint completion of A.

Theorem 6.27 (Nobili, Sassano [148]) Let A be a 0,±1 matrix. Then
A is ideal if and only if the 0,1 matrix DA+ is ideal.

Furthermore A is ideal if and only if min{cx : x ∈ Q(A)} has an
integer optimum for every vector c ∈ {0,±1,±∞}n.

Theorem 6.28 (Guenin [109]) If A is a 0,±1 matrix, where P (A) is
not contained in any of the hyperplanes {x : xj = 0} or {x : xj = 1},
then A is perfect if and only if the 0, 1 matrix DA+ is perfect.

Theorem 6.29 (Guenin [109]) A 0,±1 matrix A is perfect if and only
if max{cx : x ∈ P (A)} admits an integral optimal solution for every
c ∈ {0,±1}n. Moreover, if A is perfect, the linear system Ax ≤ 1 −
n(A), 0 ≤ x ≤ 1 is TDI.

This is the natural extension of the Lovász’s theorem for perfect 0, 1
matrices.
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6.3.2 Propositional Logic

In propositional logic, a boolean variable xj can take the value true or
false. For a set of boolean variables x1, . . . , xj, . . . , xn, a truth assign-
ment is an assignment of ”true” or ”false” to each boolean variable.
A literal is a boolean variable xj or its negation ¬xj. A clause is a
disjunction of literals and is satisfied by a given truth assignment if at
least one of its literals is true.

A survey of the connections between propositional logic and integer
programming can be found in Hooker [124], Truemper [196] or Chandru
and Hooker [29].

A truth assignment satisfies the set S of clauses
∨

j∈Pi

xj ∨ (
∨

j∈Ni

¬xj) for all i ∈ S

if and only if the corresponding 0, 1 vector satisfies the system of in-
equalities ∑

j∈Pi

xj −
∑

j∈Ni

xj ≥ 1− |Ni| for all i ∈ S.

The above system of inequalities is of the form

Ax ≥ 1− n(A). (6.9)

In [43], we consider three classical problems in logic. Given a set S
of clauses, the satisfiability problem (SAT) consists in finding a truth
assignment that satisfies all the clauses in S or show that none exists.
Equivalently, SAT consists in finding a 0, 1 solution x to (6.9) or show
that none exists.

Given a set S of clauses and a weight vector w whose components are
indexed by the clauses in S, the weighted maximum satisfiability prob-
lem (MAXSAT) consists in finding a truth assignment that maximizes
the total weight of the satisfied clauses. MAXSAT can be formulated
as the integer program

min
∑m

i=1 wisi

Ax + s ≥ 1− n(A)
x ∈ {0, 1}n, s ∈ {0, 1}m.
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Given a set S of clauses (the premises) and a clause C (the con-
clusion), logical inference in propositional logic consists of deciding
whether every truth assignment that satisfies all the clauses in S also
satisfies the conclusion C.

To the clause C, using transformation (6.9), we associate an in-
equality

cx ≥ 1− n(c),

where c is a 0, +1,−1 vector. Therefore C cannot be deduced from S
if and only if the integer program

min {cx : Ax ≥ 1− n(A), x ∈ {0, 1}n} (6.10)

has a solution with value −n(c).
The above three problems are NP-hard in general but SAT and

logical inference can be solved efficiently for Horn clauses, clauses with
at most two literals and several related classes [28],[193]. MAXSAT
remains NP-hard for Horn clauses with at most two literals [98]. A set
S of clauses is ideal (balanced respectively) if the corresponding 0,±1
matrix A defined in (6.9) is ideal (balanced respectively). If S is ideal,
it follows from the definition that the satisfiability and logical inference
problems can be solved by linear programming. The following theorem
is an immediate consequence of Corollary 6.14.

Theorem 6.30 Let S be a balanced set of clauses. Then the satisfiabil-
ity, MAXSAT and logical inference problems can be solved in polynomial
time by linear programming.

This has consequences for probabilistic logic as defined by Nilsson
[147]. Being able to solve MAXSAT in polynomial time provides a poly-
nomial time separation algorithm for probabilistic logic via the ellipsoid
method, as observed by Georgakopoulos, Kavvadias and Papadimitriou
[98]. Hence probabilistic logic is solvable in polynomial time for bal-
anced sets of clauses.

Remark 6.31 Let S be an ideal set of clauses. If every clause of S
contains more than one literal then, for every boolean variable xj, there
exist at least two truth assignments satisfying S, one in which xj is true
and one in which xj is false.
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Proof: Since the point xj = 1/2, j = 1, . . . , n belongs to the polytope
Q(A) = {x : Ax ≥ 1−n(A), 0 ≤ x ≤ 1} and Q(A) is an integral poly-
tope, then the above point can be expressed as a convex combination
of 0, 1 vectors in Q(A). Clearly, for every index j, there exists a 0, 1
vector in the convex combination with xj = 0 and another with xj = 1.
2

Let S be an ideal set of clauses. A consequence of Remark 6.31 is
that the satisfiability problem can be solved more efficiently than by
general linear programming.

Theorem 6.32 (Conforti, Cornuéjols [43]) Let S be an ideal set of
clauses. Then S is satisfiable if and only if a recursive application of
the following procedure stops with an empty set of clauses.

Recursive Step
If S = ∅, then S is satisfiable.
If S contains a clause C with a single literal (unit clause), set the

corresponding boolean variable xj so that C is satisfied. Eliminate from
S all clauses that become satisfied and remove xj from all the other
clauses. If a clause becomes empty, then S is not satisfiable (unit res-
olution).

If every clause in S contains at least two literals, choose any boolean
variable xj appearing in a clause of S and add to S an arbitrary clause
xj or ¬xj.

Exercise 6.33 Modify the above algorithm in order to solve the logical
inference problem when S is an ideal set of clauses.

For balanced (or ideal) sets of clauses, it is an open problem to solve
the MAXSAT problem in polynomial time by a direct method, without
appealing to polynomial time algorithms for general linear program-
ming.

6.3.3 Bigraphs and Perfect 0,±1 Matrices

This section follows [48]. An inequality ax ≤ 1− n(a) of a generalized
set packing problem can be written as

∑
i∈P xi+

∑
i∈N(1−xi) ≤ 1, where

P is the set of indices i where ai = 1 and N is the set of indices where
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ai = −1. Therefore the set of 0, 1 solutions of the above inequality is
exactly the set of 0, 1 solutions of the following system of 2-variable
boolean inequalities:

xi + xj ≤ 1, for all i, j ∈ P

xi + xj ≥ 1, for all i, j ∈ N

xi ≤ xj, for all i ∈ P, j ∈ N

Therefore, if A is a 0,±1 matrix, the set of 0, 1 vectors in the gen-
eralized set packing polytope P (A) ≡ {x ≥ 0 : Ax ≤ 1− n(A)} is also
the set of 0, 1 solutions of a system of 2-variable boolean inequalities
(S2BI).

We can model these inequalities with a bigraph B = (V ; P, N,M)
where the set of nodes V represents the variables, edges in P represent
the inequalities of the first type and have two + signs at their ends,
edges in N represent the inequalities of the second type and have two
− signs at their ends and edges in M represent the inequalities of the
third type and have a + in correspondence to the endnode i and a −
sign for endnode j. So the characteristic vector of S ⊆ V is a solution
of a S2BI if and only if S is a stable set of the graph B = (V ; P, ∅, ∅), a
node cover of the graph B = (V ; ∅, N, ∅) and satisfies the precedences
of B = (V ; ∅, ∅,M).

Note that a S2BI may imply additional 2-variable boolean inequal-
ities. For example, the inequalities xi + xj ≤ 1 and xk ≤ xj imply
the inequality xi + xk ≤ 1. In terms of the bigraph, these inequalities
corresponds to additional edges. We define the transitive closure of a
S2BI as the set of boolean constraints satisfied by the 0, 1 solutions of
the original system. A S2BI is closed if it coincides with its transitive
closure.

Also, a S2BI may fix the value of a variable to 0 or 1, or to the value
of another variable. A S2BI is reduced if no variable is fixed to 0 or to
1, no two variables are identically equal and no pair of variables sum
to 1. When a S2BI is not reduced, some variables may be eliminated.

Johnson and Padberg [128] show how to compute the closure of a
S2BI and to test whether a S2BI is reducible. (This is also known in
the context of boolean optimization).



94CHAPTER 6. 0,±1 MATRICES AND INTEGRAL POLYHEDRA

A biclique K in a bigraph is a subset of mutually adjacent nodes
such that no two edges of K meet the same endnode with distinct signs.
So the nodes of K are partitioned in K+ and K−, according to the signs
of the edges of K. The inequality:

∑

i∈K+

xi +
∑

i∈K−
(1− xi) ≤ 1

is clearly valid for the 0, 1 vectors in a S2BI. Johnson and Padberg show
that it is facet-inducing for the convex hull of 0, 1 solutions of S2BI if
and only if K is a maximal biclique.

Johnson and Padberg define a bigraph with set of maximal bicliques
K to be perfect if both the linear program

max {bx : 0 ≤ x ≤ 1,
∑

i∈K+

xi +
∑

i∈K−
(1− xi) ≤ 1 for all K ∈ K}

and its dual admit optimal solutions that are integral whenever b is a
0,±1-valued vector.

Bidirecting the edges of an undirected graph G means assigning +
or − signs to the endnodes of each edge. G is biperfect if every bigraph
that is closed and reduced and is obtained by bidirecting the edges of
G, is perfect. Sewell [179] proved the following results, conjectured by
Johnson and Padberg [128] ten years earlier.

Theorem 6.34 (Sewell [179]) A graph is biperfect if and only if it is
perfect.

Theorem 6.35 (Sewell [179]) Let G be a graph. If there exists a bidi-
rection of the edges of G that gives a closed, reduced bigraph that is
perfect, then G is perfect.

Ikebe and Tamura [127] and Li [134] give another, independent,
proof of these theorems. Since bidirecting the edges of a graph with
+, + at their endnodes gives a closed and reduced bigraph, every biper-
fect graph is perfect. Therefore Theorem 6.35 implies Theorem 6.34.



Chapter 7

Signing 0,1 Matrices to be
TU or Balanced

A 0, 1 matrix is regular if its nonzero entries can be signed +1 or -1
so that the resulting matrix is totally unimodular. A result of Camion
[27] shows that this signing is unique up to changing signs in rows or
columns. So the recognition of totally unimodular matrices reduces
to that of regular matrices. Similarly, a 0, 1 matrix is balanceable if its
nonzero entries can be signed +1 or -1 so that the resulting 0,±1 matrix
is balanced. In this lecture, we present Tutte’s characterization [202] of
regular matrices and Truemper’s characterization [192] of balanceable
matrices.

7.1 Camion’s Signing Algorithm

A 0, 1 matrix is regular (or signable to be totally unimodular) if its
nonzero entries can be signed +1 or -1 in such a way that the resulting
0,±1 matrix is totally unimodular.

Camion [26] observed that the signing of a regular matrix into a
totally unimodular matrix is unique up to multiplying rows or columns
by −1. Furthermore there is a simple algorithm to obtain the signing.
Therefore, although our primary interest is in total unimodularity, it
is convenient to work with regular matrices, i.e. with the pattern of
zero/nonzero entries, without being concerned with the signs of the

95
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nonzero entries. We present Camion’s result next.
Let A be a 0,±1 matrix and let A′ be obtained from A by multi-

plying a set S of rows and columns by −1. A is totally unimodular if
and only if A′ is. Note that, in the bipartite representation of A, this
corresponds to switching signs on all edges of the cut (S, S̄). Now let
R be a 0,1 matrix and B(R) is its bipartite representation. Since every
edge of a maximal forest F of B(R) is contained in a cut that does not
contain any other edge of F , it follows that if R is regular, there exists
a totally unimodular signing of R in which the edges of F have any
specified (arbitrary) signing.

This implies that, if a 0,1 matrix A is regular, one can produce a
totally unimodular signing of A as follows.

CAMION’S SIGNING ALGORITHM

Input: A regular 0,1 matrix and its bipartite representation G, a
maximal forest F and an arbitrary signing of the edges of F .

Output: The unique totally unimodular signing of G such that the
edges of F are signed as specified in the input.

Index the edges of G e1, . . . , en, so that the edges of F come first, and
every edge ej, j ≥ |F | + 1, together with edges having smaller indices,
closes a chordless cycle Hj of G. For j = |F |+1, . . . , n, sign ej so that
Hj is totally unimodular.

The fact that there exists an indexing of the edges of G as required
in the signing algorithm follows from the following observation. For
j ≥ |F |+ 1, we can select ej so that the path connecting the endnodes
of ej in the subgraph (V (G), {e1, . . . , ej−1}) is shortest possible. The
chordless cycle Hj identified this way is also a chordless cycle in G.
This forces the signing of ej, since all the other edges of Hj are signed
already (recall Exercise 6.8). So, once the (arbitrary) signing of F has
been chosen, the signing of G is unique.

Exercise 7.1 Is the following matrix regular?



1 1 0 1
1 0 1 1
0 1 1 1
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Assume that we have an algorithm to check regularity. Then, given a
signed bipartite graph G, we can check whether G is totally unimodular
as follows. Let G′ be an unsigned copy of G. Test whether G′ is regular.
If it is not, then G is not totally unimodular. Otherwise, let F be a
maximal forest of G′. Run the signing algorithm on G′ with the edges
of F signed as they are in G. Then G is totally unimodular if and only
if the signing of G′ coincides with the signing of G.

7.2 Pivoting

Consider the classical operation of pivoting on a nonzero entry a of a
matrix A in compact form, i.e. the rows of A index the basic variables
and the columns the nonbasic. Pivoting on a 6= 0 consists of replacing
the matrix

A =

(
a y
x D

)
by Ã =

(
1/a y/a

−x/a D − xy/a

)

where x is a column vector, y is a row vector and D is a matrix. Note
that, by pivoting on the entry 1/a in the matrix Ã, the initial matrix
A is restored.

Exercise 7.2 Let A be a 0,±1 matrix. Show that all the matrices
obtained from A by pivoting are 0,±1 matrices if and only if A contains
no 2× 2 unbalanced submatrix.

Remark 7.3 In linear programming textbooks, pivoting is usually de-
fined with respect to the full tableau R = (I, A) rather than the compact
form A. The identity matrix I defines the basic columns. In this con-
text, pivoting on aij 6= 0 means performing elementary row operations
on R that transform each row rk into rk + λkr

i so that the jth column
of A becomes the unit vector ei. Permuting this column with the ith col-
umn of I, which has become nonbasic, the matrix (I, A) becomes (I, Ã).
It is easy to check that this matrix Ã corresponds to the above definition
of pivoting.

Exercise 7.4 Show that, if A is a square 0,±1 matrix, then det(A) =
±det(D − xy/a).
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Proposition 7.5 Ã is totally unimodular if and only if A is.

Proof: A =

(
a y
x D

)
is totally unimodular if and only if B =

(
1 a y
0 x D

)
is. Similarly, Ã =

(
1/a y/a

−x/a D − xy/a

)
is totally uni-

modular if and only if B̃ =

(
1/a 1 y/a

−x/a 0 D − xy/a

)
is. To prove the

proposition, it suffices to show that, if B is totally unimodular, then
so is B̃. Consider a square submatrix M̃ of B̃ and the corresponding
matrix M of B (i.e. with same set of rows and columns). If M̃ contains
row 1, then det(M̃) = det(M) since B̃ is obtained from B by elemen-
tary row operations involving row 1. If M̃ does not contain row 1 but
contains column 2, then det(M̃) = 0. Finally, if M̃ contains neither
row 1 nor column 2, then let Ñ be obtained from M̃ by adding this
row and column. Since Ñ contains a unit column, det(Ñ) = det(M̃).
Now, since Ñ contains row 1, det(Ñ) = det(N), where N is the cor-
responding matrix of B. It follows that det(M̃) = det(N). So, in all
three cases, det(M̃) = 0,±1 if and only if B is totally unimodular. 2

Corollary 7.6 If A is a k×k minimally non totally unimodular 0,±1
matrix where k ≥ 3, then the submatrix D − xy/a of Ã is also a mini-
mally non totally unimodular 0,±1 matrix.

Proof: If A is an unbalanced hole, then D−xy/a is also an unbalanced
hole and the corollary holds. Assume now that A is balanced. By
Exercise 7.2, Ã is a 0,±1 matrix and by Exercise 7.4, D − xy/a is not
totally unimodular. However, by Proposition 7.5, any proper submatrix
of D − xy/a is totally unimodular, since it is obtained from a proper
submatrix of A by pivoting. 2

The pivoting operation can be performed over any field. Here, we
will consider pivoting over GF(2). In this case, the pivoting operation
consists of replacing the matrix

A =

(
1 y
x D

)
by Ã =

(
1 y
x D + xy

)
.
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Exercise 7.7 Let B(A) be the bipartite representation of A and e = uv
be the edge corresponding to the pivot element. Show that the bipartite
representation B(Ã) of Ã is obtained from B(A) by complementing the
edges between N(u)− {v} and N(v)− {u}.

Proposition 7.5 implies the following result.

Corollary 7.8 If A is a regular 0, 1 matrix, then any matrix Ã obtained
from A by a sequence of pivots over GF(2) is regular.

Exercise 7.9 Prove Corollary 7.8.

7.3 Tutte’s Theorem

Denote the matrix of Exercise 7.1 by R(F7).

Theorem 7.10 (Tutte [202]) A 0,1 matrix A is regular if and only if
it cannot be transformed to R(F7) by applying the following operations:

• pivoting over GF(2),

• deleting rows or columns,

• permuting rows or columns,

• taking the transpose matrix.

Tutte’s original proof [202] is complicated. We present here a short
proof due to Gerards [99]. For a 0, 1 matrix A, let B(A) be the bipartite
graph whose nodes correspond to the rows and columns of A and where
ij is an edge of B(A) if and only if the entry aij of A equals 1. We say
that the bipartite graph B(A) is regular if A is regular.

We will use the following observation, which follows from Exer-
cise 7.7.

Proposition 7.11 Let A′ be obtained from a 0, 1 matrix A by pivoting.
If B(A) is a connected graph, then so is B(A′).
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Proof of Theorem 7.10: (Gerards [99]) The necessity is easy since
R(F7) is not regular and the operations in the statement of the theorem
all preserve regularity. So it remains to prove sufficiency.

Suppose A is a 0,1 matrix that is not regular. We may assume that
each proper submatrix of A is regular. It then follows that B(A) is
a connected graph. Since B(A) is not regular, it is not a path or a
circuit. Let T be a spanning tree of B(A) which is not a path and let
u, v be two leaves of T in the same side of the bipartition, say both
correspond to columns of A. Let x and y denote these two columns.
Clearly, B(A)\{u, v} is connected. Let N be the corresponding matrix.
By assumption, (x, N) and (y, N) are regular. The two corresponding
signed matrices being uniquely defined, up to switching signs on rows
or columns, we can assume that N is signed in the same way in both.
Let the signed matrices be (x′, N ′) and (y′, N ′) respectively. Then

• B(N) is connected.

• Both matrices (x′N ′) and (y′N ′) are totally unimodular.

Both of these properties are preserved by pivoting on nonzero ele-
ments of N ′. Now pivot on nonzero entries of N ′ in such a way that the
smallest square submatrix of A′ with determinant distinct from 0, +1
or −1 is as small as possible. Such a submatrix M must be a 2x2
matrix. (If not, pivot on a nonzero entry of M which belongs to N ′.
Then, by Exercise 7.4, we get a contradiction to the choice of M .) Since
(x′N ′) and (y′N ′) are totally unimodular, M must be a submatrix of

(x′y′). Furthermore, M =

(
1 1
1 −1

)
after possibly multiplying rows

and columns of A′ by −1. In the remainder, we assume w.l.o.g. that A′

denotes the matrix after pivoting, i.e. it contains the above submatrix
M .

Denote by s and t the nodes of B(N) which correspond to the rows
of M , and consider a chordless path P from s to t in B(N). The path
P cannot have length 2 since this would imply a 2x2 submatrix with
determinant ±2 in (x′N ′) or (y′N ′), contradicting the fact that these
matrices are totally unimodular. Now assume the path P has length
6 or more, say P = s, e1, v1, e2, v2, e3, . . . , v2k−1, e2k, t, where k ≥ 3 and
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v1, v3, . . . , v2k−1 are column nodes, v2, . . . , v2k−2 are row nodes. Then
pivot on the nonzero entry of A′ corresponding to e3. The only entry
that is modified in the submatrix of N ′ induced by rows v2, . . . , v2k−2

and columns v1, v3, . . . , v2k−1 is the entry in row v4 and column v1,
which was 0 before pivoting and becomes nonzero. Now delete row v2

and column v3. In the new graph, there is still a chordless path from
s to t but its length has decreased by 2. So we can assume w.l.o.g.
that P has length 4. Its nodes together with nodes u and v induce the
following submatrix of A′




1 1 0 1
1 −1 1 0
α β 1 1




after permuting rows and columns and multiplying columns 3 and 4,
and rows 2 and 3 by −1 if necessary. It is still the case that removing
either of the first two columns yields a totally unimodular matrix. This
implies α = 1 and β = 0. Hence A can be transformed to R(F7). 2

Gerards [101] used Tutte’s theorem to characterize the undirected
graphs that admit an edge orientation such that, going around any
circuit in the graph, the number of forward edges minus the number of
backward edges is equal to 0,±1.

Geelen [97] obtained a generalization of Tutte’s theorem. He charac-
terized the symmetric 0,±1 matrices in which all principal submatrices
have 0,±1 determinants.

7.4 Truemper’s Theorem

A 0,1 matrix A is balanceable if its nonzero entries can be signed +1 or
-1 in such a way that the resulting 0,±1 matrix is balanced. Camion’s
signing algorithm (Section 7.1) can be used to find such a signing if one
exists:

Theorem 7.12 If the input matrix is a balanceable 0,1 matrix, Camion’s
signing algorithm produces a balanced 0,±1 matrix. Furthermore this
signing is unique up to switching signs on rows and columns.
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Exercise 7.13 Prove Theorem 7.12, using the arguments of Section 7.1.

Corollary 7.14 Every balanced signing of a regular matrix is totally
unimodular.

As a consequence of Theorem 7.12, one can check balancedness of
a 0,±1 matrix in polytime if and only if one can check balanceability
of a 0,1 matrix in polytime.

In a bipartite graph, a wheel (H, v) consists of a hole H and a node
v having at least three neighbors in H. The wheel (H, v) is odd if v has
an odd number of neighbors in H. A 3-path configuration is an induced
subgraph consisting of three internally node-disjoint paths connecting
two nonadjacent nodes u and v and containing no edge other than those
of the paths. If u and v are in opposite sides of the bipartition, i.e. the
three paths have an odd number of edges, the 3-path configuration is
called a 3-odd-path configuration. In Figure 7.1, solid lines represent
edges and dotted lines represent paths with at least one edge.

uH

v

v

Figure 7.1: An odd wheel and a 3-odd-path configuration

Both a 3-odd-path configuration and an odd wheel have the follow-
ing properties: each edge belongs to exactly two holes and the total
number of edges is odd. Therefore in any signing, the sum of the labels
of all holes is equal to 2 mod 4. This implies that at least one of the
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holes is not balanced, showing that neither 3-odd-path configurations
nor odd wheels are balanceable. These are in fact the only minimal bi-
partite graphs that are not balanceable, as a consequence of a theorem
of Truemper [194].

Theorem 7.15 ( Truemper [194]) A bipartite graph is balanceable if
and only if it does not contain an odd wheel or a 3-odd-path configura-
tion as an induced subgraph.

7.4.1 Proof of Truemper’s Theorem

In this section, we prove Theorem 7.15 following Conforti, Gerards and
Kapoor [54].

For a connected bipartite graph G that contains a clique cutset Kt

with t nodes, let G′
1, . . . , G

′
n be the connected components of G\Kt. The

blocks of G are the subgraphs Gi induced by V (G′
i)∪Kt for i = 1, . . . , n.

Lemma 7.16 If a connected bipartite graph G contains a K1 or K2

cutset, then G is balanceable if and only if each block is balanceable.

Proof: This follows from Camion’s signing algorithm: if the cutset is a
K1 cutset, choose an arbitrary spanning tree F , and if it is a K2 = {u, v}
cutset, let uv be in F . Then signing the blocks separately gives the same
result as signing G. Since each hole of G occurs in exactly one of the
blocks, the signing is balanced in each block if and only if it is balanced
in G. 2

So, in the remainder of the proof, we assume w.l.o.g. that G is a
connected bipartite graph with no K1 or K2 cutset.

Lemma 7.17 Let H be a hole of G. If G 6= H, then H is contained
in a 3-path configuration or a wheel of G.

Proof: Choose two nonadjacent nodes u and w in H and a uw-path
P = u, x, . . . , z, w whose intermediate nodes are in G \H such that P
is as short as possible. Such a pair of nodes u,w exists since G 6= H
and G has no K1 or K2 cutset. If x = z, then H is contained in a
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3-path configuration or a wheel. So assume x 6= z. By our choice of P ,
u is the only neighbor of x in H and w is the only neighbor of z in H.

Let Y be the set of nodes in V (H) − {u,w} that have a neighbor
in P . If Y is empty, H is contained in a 3-path configuration. So
assume Y is nonempty. By the minimality of P , the nodes of Y are
pairwise adjacent and they are adjacent to u and w. This implies that
Y contains a single node y and that y is adjacent to u and w. But then
V (H) ∪ V (P ) induces a wheel with center y. 2

For e ∈ E(G), let Ge denote the graph with a node vH for each hole
H of G containing e and an edge vHi

vHj
if and only if there exists a

wheel or a 3-path configuration containing both holes Hi and Hj.

Lemma 7.18 Ge is a connected graph.

Proof: Suppose not. Let e = uw. Choose two holes H1 and H2 of G
with vH1 and vH2 in different connected components of Ge, with the
minimum distance d(H1, H2) in G\{u, v} between V (H1)−{u,w} and
V (H2)−{u,w} and, subject to this, with the smallest |V (H1)∪V (H2)|.

Let T be a shortest path from V (H1)− {u, v} to V (H2)− {u, v} in
G \ {u, v}. Note that T is just a node of V (H1) ∩ V (H2) \ {u, v} when
this set is nonempty. The graph G′ induced by the nodes in H1, H2 and
T has no K1 or K2 cutset. By Lemma 7.17, H1 is contained in a 3-path
configuration or a wheel of G′. Since each edge of a 3-path configuration
or a wheel belongs to two holes, there exists a hole H3 6= H1 containing
edge e in G′. Since vH1 and vH3 are adjacent in Ge, it follows that vH2

and vH3 are in different components of Ge. Furthermore, d(H2, H3) = 0.
By the choice of H1, H2, this implies d(H1, H2) = 0 and therefore G′ is
induced by V (H1)∪V (H2). Since H3 6= H1, V (H2)∪V (H3) is properly
contained in V (H1)∪V (H2), contradicting the choice of H1 and H2. 2

Proof of Theorem 7.15: We showed already that odd wheels and 3-
odd-path configurations are not balanceable. It remains to show that,
conversely, if G contains no odd wheel or 3-odd-path configuration, then
G is balanceable. Suppose G is a counterexample with the smallest
number of nodes. By Lemma 7.16, G is connected and has no K1 or K2

cutset. Let e = uv be an edge of G. Since G\{u, v} is connected, there
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exists a spanning tree F of G where u and v are leaves. Arbitrarily
sign F and use Camion’s signing algorithm in G \ {u} and G \ {v}. By
the minimality of G, these two graphs are balanceable and therefore
Camion’s algorithm yields a unique signing of all the edges except e.
Furthermore, all holes not going through edge e are balanced. Since G
is not balanceable, any signing of e yields some holes going through e
that are balanced and some that are not. By Lemma 7.18, there exists
a wheel or a 3-path configuration C containing an unbalanced hole H1

and a balanced hole H2 both going through edge e. Now we use the fact
that each edge of C belongs to exactly two holes of C. Since the holes
of C distinct from H1 and H2 do not go through e, they are balanced.
Furthermore, applying the above fact to all edges of C, the sum of
all labels in C is 1 mod 2, which implies that C has an odd number
of edges. Thus C is an odd wheel or a 3-odd-path configuration, a
contradiction. 2

7.4.2 Another Proof of Tutte’s Theorem

Truemper [194] showed how to derive Tutte’s theorem from Theo-
rem 7.15. Conforti, Gerards and Kapoor [54] give a simpler derivation
based on the following result.

Lemma 7.19 Every nonregular 0,1 matrix can be GF (2)-pivoted into
a nonbalanceable matrix.

Proof: Let M be a nonregular 0, 1 matrix and let A be a smallest
nonregular matrix obtained from M through a sequence of pivots and
deletion of rows and columns. We will show that A is not balance-
able. Suppose the contrary and let B be a balanced signing of A. By
Corollary 7.14, B is minimally non totally unimodular. Pivot B on a
nonzero entry, say in row i and column j, and let B̃ be the resulting
matrix. Let Ã be the matrix obtained from A by GF (2)-pivoting in
row i and column j. B̃ is a signing of Ã. By Corollary 7.6, the matrix
C̃ obtained from B̃ by removing row i and column j is minimally non
totally unimodular and, by our choice of A, the corresponding subma-
trix C of Ã is regular. By Corollary 7.14, this implies that C̃ is not
balanced, and therefore it is an unbalanced hole matrix. The bipartite



106CHAPTER 7. SIGNING 0,1 MATRICES TO BE TU OR BALANCED

representation G of Ã is a hole H plus two adjacent nodes i and j with
neighbors in H. Since B is minimally non-totally unimodular, nodes i
and j have even degree in G by Theorem 6.6 and Exercise 7.7. Thus
i and j have an odd number of neighbors in H. Since G contains no
odd wheel, i and j each have one neighbor in H. Since G is not a
3-odd-path configuration, these two neighbors are adjacent. But then
A is regular, a contradiction. 2

Now Tutte’s theorem follows from the observation that 3-odd-path
configurations and odd wheels can be GF (2)-pivoted into graphs that
contain the odd wheel (H6, v) where H6 is the hole of length 6 and v
has degree 3. This wheel is the bipartite representation of the matrix
R(F7). We leave this as an exercise.

Exercise 7.20 Show that a 3-odd-path configuration and an odd wheel
can be GF (2)-pivoted into a graph that contains (H6, v) as an induced
subgraph.



Chapter 8

Decomposition by k-Sum

In this chapter, we discuss Seymour’s decomposition theorem for reg-
ular matrices [186], the Tseng-Truemper decomposition theorem for
binary clutters with the MFMC property [198] and results of Novick-
Sebö [150] and Cornuéjols-Guenin [61] on ideal binary clutters. We
adopt a matroidal point of view. See Oxley’s excellent textbook [153]
on matroid theory for background material.

8.1 Binary Matroids

A matroid M is defined by a finite ground set V (M) and a family
E(M) of subsets of V (M), called independent sets, with the following
properties.

(i) ∅ ∈ E(M),

(ii) If A ∈ E(M) and B ⊆ A, then B ∈ E(M),

(iii) If A,B ∈ E(M) and |A| > |B|, then there exists a ∈ A \ B such
that B ∪ {a} ∈ E(M).

A typical example is obtained by taking V (M) to be a finite set of
vectors over some field and E(M) the subsets of linearly independent
vectors.

107
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Two matroids M1 and M2 are isomorphic if there is a bijection ψ
between V (M1) and V (M2) such that A is an independent set in M1 if
and only if ψ(A) is an independent set in M2.

A base is a maximal independent set and a circuit is a minimal
dependent set. By (iii), all bases have the same cardinality. A circuit
that contains only one element is called a loop.

Example 8.1 A matroid M is graphic if there exists a graph G such
that V (M) is the set of edges of G and E(M) is the family of acyclic
subsets of edges of G. It is easy to verify that the bases of M are the
maximal forests of G and the circuits of M are the cycles of G.

Exercise 8.2 Show that, if X is an independent set in a matroid and
X ∪ {y} is not, then X ∪ {y} contains a unique circuit.

Exercise 8.3 Let x, y, z be elements of a matroid M . Show that, if M
has a circuit containing x, y and a circuit containing x, z, then M has
a circuit containing y, z.

In a binary matroid M , the elements V (M) can be identified with
0, 1 vectors, say v1, v2, . . . , vn, and the independent sets are the subsets
of these vectors that are linearly independent over GF (2). The matrix
whose columns are the vectors v1, v2, . . . , vn is called a binary represen-
tation of M . We will discuss the connection between binary matroids
and binary clutters in Section 8.3.1.

Exercise 8.4 Show that graphic matroids are binary. [Hint: Use the
node/edge incidence matrix as a binary representation of M .]

Let X ⊂ V (M) be a base of M . The partial representation of M
with respect to X is the 0, 1 matrix R(M) with rows indexed by the
elements of X, columns indexed by the elements of Y ≡ V (M) \ X,
and rxy = 1 iff x belongs to the unique circuit contained in X ∪ {y}.
Note that if R(M) is a partial representation of a binary matroid M ,
then the matrix (I, R(M)) is a binary representation of M .

Exercise 8.5 Show that one can always go from one partial represen-
tation of a binary matroid to another by using GF (2)-pivoting and row



8.1. BINARY MATROIDS 109

and column permutations. [Hint: Show that pivoting on rxy = 1 yields
a partial representation with respect to the base X ′ obtained from X by
exchanging x and y.]

A binary matroid is regular if its partial representations are regular
matrices (If one partial representation is regular, then all of them are
by Exercise 8.5 and Corollary 7.8). Graphic matroids are regular (see
Oxley [153] Proposition 5.1.3 for the proof).

Example 8.6 The Fano matroid F7 has the following binary represen-
tation. 


1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1




A partial representation of F7 is obtained by removing the identity ma-
trix. It is the matrix R(F7) defined in the previous chapter. Therefore,
the Fano matroid is not regular by Exercise 7.1.

Let R(M) be a partial representation of a binary matroid M . The
transpose matrix R(M)T is a partial representation of the dual matroid
M∗. The prefix co will refer to the dual matroid. For example, the
circuits of M∗ are called cocircuits of M and the dual of a graphic
matroid is called a cographic matroid.

Example 8.7 The dual Fano matroid F ∗
7 has the following partial rep-

resentation. 


1 1 0
1 0 1
0 1 1
1 1 1




It is not regular (see Example 8.6).

The following characterizations of binary matroids will be useful.

Theorem 8.8 The following statements are equivalent for a matroid
M :

(i) M is binary.
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(ii) If C is a circuit and C∗ is a cocircuit, then |C ∩ C∗| is even.

(iii) The symmetric difference of any set of circuits is a disjoint union
of circuits.

(iv) If X is a base and C is a circuit, then C = 4i∈C−XCi where Ci

denotes the unique circuit in X ∪ {i}.
Proof: See Oxley [153] Theorem 9.1.2. 2

Let M be a binary matroid. Consider the binary representation
(I, R(M)T ) of its dual M∗. It follows from the definition of R(M) that
the rows of (I, R(M)T ) are incidence vectors of circuits of M and, by
Theorem 8.8(iv), every circuit C of M is of the form C = C14 . . .4Ck,
where C1, . . . , Ck correspond to rows of (I, R(M)T ).

Let M be a binary matroid and R(M) a partial representation of M .
Any submatrix of R(M) is a partial representation of a binary matroid
M ′. A matroid M ′ obtained from M in this way is called a minor of M .
For i ∈ V (M) and a partial representation R(M) where i appears as a
column, the deletion minor M ′ = M \ i is obtained by removing column
i in R(M). For i ∈ V (M) and a partial representation R(M) where
i appears as a row, the contraction minor M ′ = M/i is obtained by
removing row i. Deletions, contractions and minors can be defined for
general matroids (see Oxley [153]) but we need not concern ourselves
with this here.

Exercise 8.9 Let G be a graph and let M(G) be the associated graphic
matroid. Let M ′ be a minor of M(G). Show that M ′ is a graphic
matroid. Let G′ be the associated graph. How is G′ obtained from G?

Tutte’s theorem proved in the previous chapter (Theorem 7.10)
states that a binary matroid is regular if and only if it has no mi-
nor isomorphic to F7 or F ∗

7 . Tutte [202] proved a theorem with the
same flavor for graphic matroids.

The graphic matroid M(K3,3) associated with the complete bipar-

tite graph K3,3 has partial representation




1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 1 1




. Similarly,
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1 0 0 1 1 0
1 1 0 0 0 1
0 1 1 0 1 0
0 0 1 1 0 1


 is a partial representation of the graphic ma-

troid M(K5) associated with the complete graph K5. The dual ma-
troids M∗(K3,3) and M∗(K5) are cographic by definition. But neither
M∗(K3,3) nor M∗(K5) is graphic.

Exercise 8.10 Show that neither M∗(K3,3) nor M∗(K5) is graphic.

Theorem 8.11 (Tutte [202]) A regular matroid is graphic if and only
if it has no minor isomorphic to M∗(K3,3) or M∗(K5).

We refer the reader to the proof of Gerards [102].

Efficient polynomial algorithms have been developed to recognize
when a binary matroid (given by a partial representation) is graphic
(see, for example, Bixby and Cunningham [15]).

8.2 Decomposition of Regular Matroids

Let M be a matroid. The rank r(U) of a set U ⊆ V (M) is the maximum
cardinality of an independent set contained in U . Let k be a positive
integer. A k-separation of M is a partition (U1, U2) of V (M) such that
|U1| ≥ k, |U2| ≥ k and r(U1) + r(U2) ≤ r(V (M)) + k− 1. The matroid
M is k-connected if it has no (k − 1)-separation. The k-separation is
strict if |U1| > k, |U2| > k.

Proposition 8.12 A matroid is 2-connected if and only if, for every
pair of elements, there is a circuit containing both.

Proof: See Oxley [153] Proposition 4.1.4. 2

Exercise 8.13 Let G be a graph. Relate the notion of 2-connectivity in
the graphic matroid associated with G to the notion of graph connectivity
in G.



112 CHAPTER 8. DECOMPOSITION BY K-SUM

Let us interpret the notion of k-separation of M in terms of its
partial representations. Consider a k-separation (U1, U2) where the
rank condition holds with equality, i.e. r(U1)+r(U2) = r(V (M))+k−1.
Let X2 be a maximal independent subset of U2. Then enlarge X2 by a
subset X1 of U1 to a base of M . The partial representation matrix B
of M with respect to the base X1 ∪X2 is of the form

B =
X1

X2

(
B1 0
D B2

)

where the sum of the number of rows and number of columns of Bi is
at least k, for i = 1, 2 and the rank of D over GF(2) is equal to k − 1.

Exercise 8.14 Show that the sum of the number of rows and number
of columns of Bi is at least k, for i = 1, 2 and the rank of D over GF(2)
is equal to k − 1. [Hint: Use the binary representation.]

When k = 1, then D = 0 and the matrices B1 and B2 are the
components of a 1-sum decomposition of B. The reverse operation
which produces B from B1 and B2 is called 1-sum composition.

Exercise 8.15 Let C(M) denote the clutter matrix whose rows are the
incidence vectors of the circuits of M . Show that M has a 1-separation
if and only if C(M) is of the form

C(M) =

(
C1 0
0 C2

)

i.e. C(M) has a block diagonal structure (after permutation of rows
and of columns).

When k = 2, B is the following matrix, where J denotes a matrix
of all 1’s.

B =




B1 0
0 J
0 0

B2




We want to extract from B two submatrices that contain B1 and B2,
respectively, and that also contain enough information from D to re-
construct B. Clearly the knowledge of one nonzero row of D appended
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to B1 and one nonzero column of D appended to B2 will suffice. A

2-sum decomposition of B consists of such matrices B1 =

(
B1

0 1

)
and

B2 =

(
1
0

B2

)
. The reverse operation which produces B from B1

and B2 is called 2-sum composition.

When k = 3, consider a strict 3-separation of M , say (U1, U2),
where |U1|, |U2| ≥ 4 and assume that M does not have a 1- or 2-
separation. Then it can be shown that M has a partial representation

B =

(
B1 0
D B2

)
where

• D =


 D1

1 0
0 1

D12 D2


 and every row of D is 0 or is identical to

one of the first two rows of D or to their sum over GF(2),

• B1 contains a row whose entries are equal to 1 in the last two
columns,

• B2 contains a column whose entries are equal to 1 in the first two
rows.

A 3-sum decomposition of B consists of

B1 =




B1 0

D1
1 0
0 1

1
1


 and B2 =




1 1 0

1 0
0 1
D2

B2




.

The reverse operation which produces B from B1 and B2 is called 3-sum
composition.

Exercise 8.16 Any 1-, 2-, or 3-sum composition of two regular ma-
troids is regular.
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Seymour [186] showed that a converse exists, namely any regular
matroid can be 1-, 2-, or 3-sum decomposed into graphic and cographic
matroids and copies of a 10-element matroid called R10. This binary
matroid R10 has two distinct partial representations (up to permutation
of rows and columns):




1 0 0 1 1
1 1 0 0 1
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1




and




1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1




.

Exercise 8.17 Show that R10 is a regular matroid.

Theorem 8.18 ( Seymour [186]) Every regular matroid can be decom-
posed into graphic matroids, cographic matroids and matroids isomor-
phic to R10 by repeated 1-, 2- and 3-sum decompositions.

8.2.1 Proof Outline

An important ingredient in Seymour’s proof of Theorem 8.18 is the
Splitter Theorem [186]. Let C be a class of binary matroids closed
under isomorphism and the taking of minors. A 3-connected matroid
M ∈ C with at least six elements is a splitter of C if every matroid
N ∈ C containing M as a proper minor has a 2-separation. A single-
element extension of a matroid M is the inverse operation of deletion,
namely it is a matroid N with elements V (M) ∪ {e} such that M is
obtained from N by deleting e. If N∗ is a single-element extension of
M∗, then N is called a single-element coextension of M . The graph
consisting of a chordless cycle with k nodes and an additional node
adjacent to all k nodes of the cycle is the wheel Wk.

Theorem 8.19 (Splitter Theorem) Let C be a class of binary ma-
troids closed under isomorphism and the taking of minors. Let M be
a 3-connected matroid in C with at least six elements. Assume M is
not the graphic matroid of a wheel Wk. Then M is a splitter of C if
and only if C does not contain a 3-connected single-element extension
or coextension of M .



8.2. DECOMPOSITION OF REGULAR MATROIDS 115

Using the splitter theorem, it is routine to verify the following result
(recall the definitions at the end of Section 8.1).

Theorem 8.20 The graphic matroid M(K5) is a splitter of the regular
matroids with no minor isomorphic to M(K3,3).

A certain 12-element matroid R12 plays a central role in Seymour’s
proof of Theorem 8.18. A partial representation of R12 is




1 0 1 1 0 0
0 1 1 1 0 0
1 0 1 0 1 1
0 1 0 1 1 1
1 0 1 0 1 0
0 1 0 1 0 1




.

Theorem 8.21 Let M be a 3-connected regular matroid with a mi-
nor isomorphic to M(K3,3). Assume that M is neither graphic nor
cographic but that every proper minor of M is graphic or cographic.
Then M is isomorphic to R10 or R12.

Proof: See [186] or [195] for this proof. 2

Theorems 8.11, 8.20 and 8.21 imply the following result.

Theorem 8.22 A 3-connected regular matroid is graphic or cographic
if and only if it has no minor isomorphic to R10 or R12.

Proof: The necessity follows by checking that R10 and R12 are nei-
ther graphic nor cographic. To prove the sufficiency, assume M is
3-connected regular but not graphic or cographic. Since M is not co-
graphic, M has a minor isomorphic to M(K5) or M(K3,3), by Tutte’s
theorem (Theorem 8.11). This implies that M must have a M(K3,3)
minor, since otherwise M has a 2-separation by Theorem 8.20, contra-
dicting the assumption that M is 3-connected. Now, by Theorem 8.21,
M contains a minor isomorphic to R10 or R12. 2

Theorem 8.23 The matroid R10 is a splitter of the class of regular
matroids.
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Proof: A routine application of Theorem 8.19. 2

Theorem 8.24 Let M be a regular matroid with an R12 minor. Then
R12 has a 3-separation that induces a 3-separation of M .

Proof: See [186] or [195] for this proof. 2

Theorems 8.22, 8.23 and 8.24 imply Seymour’s decomposition the-
orem for regular matroids (Theorem 8.18).

We close this section with another consequence of the Splitter The-
orem (see Oxley [153] Proposition 11.2.3 for a proof).

Theorem 8.25 ( Seymour [187]) Let M be a 3-connected binary ma-
troid with no F ∗

7 minor. Then M is regular or M = F7.

8.2.2 Recognition Algorithm

Theorem 8.18 can be used to recognize in polynomial time whether a
0,1 matrix is regular. Indeed, 1-, 2- and 3-separations can be found
in polynomial time (see Truemper [195] Section 8.4), one can show
that the total number of matrices generated by repeated 1-, 2- and
3-sum decompositions is linear, and R10, graphic and cographic matri-
ces can be recognized in polynomial time (see, for example, Truemper
[195] Section 10.6). Thus regularity can be checked in polynomial time.
Therefore, through Camion’s signing algorithm, one can check in poly-
nomial time whether a 0,±1 matrix is totally unimodular. See also
Chapter 20 in Schrijver’s book [173]. Note that no polynomial recog-
nition algorithm for total unimodularity was known before Seymour’s
decomposition approach.

8.3 Binary Clutters

8.3.1 Relation to Binary Matroids

Let M be a binary matroid and S ⊆ V (M) a subset of its elements.
The pair (M, S) is called a signed matroid , and S is called the signature
of M . We say that a circuit C of M is odd (resp. even) if |C ∩ S| is
odd (resp. even).
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Proposition 8.26 The odd circuits of a signed matroid form a binary
clutter.

Proof: Consider a signed matroid (M, S) and let C1, C2, C3 be three
odd circuits. Since S intersects each of C1, C2, C3 with odd parity, so
does L = C14C24C3. By Theorem 8.8(iii), L is a disjoint union of
circuits. One of these circuits must be odd since |L ∩ S| is odd. The
result now follows from Proposition 5.15. 2

Let M be a binary matroid. Any nontrivial binary clutter obtained
as the odd circuit clutter of the signed matroid (M, S), for some S, is
called a source of M . Any nontrivial binary clutter H such that every
circuit of M is of the form T14T2, for T1, T2 ∈ E(H), is called a lift of
M . One can show that a lift of M is the blocker of a source of M∗.

Exercise 8.27 Show that the binary matroid F7 has three sources and
one lift.

Exercise 8.28 Show that b(OK5) is a source of the binary matroid R10.

In a binary matroid, any circuit C and cocircuit D have an even
intersection (Theorem 8.8(ii)). So, if D is a cocircuit, then (M, S) and
(M, S4D) have exactly the same odd circuits.

Remark 8.29 Let (M, S) be a signed matroid and H the clutter of its
odd circuits.

• H \ e is the clutter of odd circuits of the signed matroid (M \
e, S − {e}).

• If e 6∈ S, then H/e is the clutter of odd circuits of the signed
matroid (M/e, S).

• If e ∈ S is not a loop of M , then H/e is the clutter of odd cir-
cuits of the signed matroid (M/e, S4D) where D is any cocircuit
containing e.

• If e ∈ S is a loop of M , then H/e is a trivial clutter.
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Given a nontrivial binary clutter H, the minimal sets in E(H) ∪
{T14T2 : T1, T2 ∈ E(H)} form the circuits of a binary matroid u(H).
This binary matroid is called the up matroid of H. Since H is binary,
the minimal transversals of H intersect with odd parity exactly the
circuits of u(H) that are edges of H. It follows that H is the clutter
of odd circuits of the signed matroid (u(H), S) where S is any minimal
transversal of H. Moreover, this representation is essentially unique
(see for example [61]):

Proposition 8.30 Let (M,S) and (M ′, S ′) be signed matroids that
have the same clutter of odd circuits H. If M is a 2-connected ma-
troid and H is a nontrivial clutter, then M = M ′ = u(H).

To prove this, we use the following result of Lehman [131] (see Oxley
[153] Theorem 4.3.2 or Exercise 9 of Section 9.3).

Theorem 8.31 (Lehman [131]) Let t be an element of a 2-connected
binary matroid M . The circuits of M not containing t are of the form
C14C2 where C1 and C2 are circuits of M containing t.

Proof of Proposition 8.30: Let N be the binary matroid with ele-
ments V (M) ∪ {t} and circuits Γ = C when C is an even circuit of
(M, S) and Γ = C ∪ {t} when C is an odd circuit of (M, S). Define
N ′ similarly from (M ′, S ′). Since H is nontrivial, at least one circuit
of N contains t and some x 6= t. Since M is 2-connected, for every
pair of elements in V (M), there is a circuit of M containing both by
Proposition 8.12. So for x and any v ∈ V (N), there is a circuit of N
containing both. By Exercise 8.3 it follows that, for any pair of ele-
ments in V (N), there is a circuit containing both. So N is 2-connected
by Proposition 8.12. Furthermore, every v ∈ V (H) belongs to an edge
of H. So N ′ is 2-connected as well. By Theorem 8.31, a 2-connected
matroid is uniquely determined by the set of circuits containing any
fixed element. In particular, N and N ′ are uniquely determined by
the circuits containing t. This implies N = N ′. Since M = N/t and
M ′ = N ′/t, it follows that M = M ′ = u(H). 2

Proposition 8.32 (Novick and Sebö [150])
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A binary clutter H is the odd cycle clutter of a signed graph if and
only if u(H) is a graphic matroid.

A binary clutter H is the T -cut clutter of a graft if and only if u(H)
is a cographic matroid.

The next result relates the minors of the matroid u(H) to the minors
of the clutter H. For a clutter H and v 6∈ V (H), the clutter H+ has
vertex set V (H) ∪ {v} and edge set {A ∪ {v} : A ∈ E(H)}.

Theorem 8.33 (Cornuéjols-Guenin [61]) Let H be a nontrivial binary
clutter such that its up matroid u(H) is 2-connected, and let N be a
2-connected binary matroid. Then u(H) has N as a minor if and only
if H has H1 or H+

2 as a minor, where H1 is a source of N and H2 is
a lift of N .

To prove this, we use the following result of Brylawski [20] and
Seymour [182] (see Oxley [153] Proposition 4.3.6).

Theorem 8.34 (Brylawski [20], Seymour [182]) Let M be a 2-connected
matroid and N a 2-connected minor of M . For any i ∈ V (M)−V (N),
at least one of M \ i or M/i is 2-connected and has N as a minor.

Proof of Theorem 8.33: H is the clutter of odd circuits of the signed
matroid (M,S) where M = u(H) and S is a minimal transversal of H.

Suppose first that H has a minor H1 that is a source of N . Then
H1 is nontrivial and it follows from Remark 8.29 that H1 is the clutter
of odd circuits of a signed matroid (N ′, S ′) where N ′ is a minor of
M . Since H1 is nontrivial and N is 2-connected, N = N ′ = u(H1) by
Proposition 8.30. So N is a minor of M .

Suppose now that H has a minor H+
2 where H2 is a lift of N . Let

t be the vertex of V (H+
2 ) − V (H2). Since H+

2 is a nontrivial minor of
H, it is the clutter of odd circuits of a signed matroid (N ′, S ′) where
N ′ is a minor of M . Since u(H+

2 ) is 2-connected, N ′ = u(H+
2 ) by

Proposition 8.30. So N ′ is 2-connected. Therefore, by Theorem 8.31
and the definition of lift, N = N ′ \ t. So N is a minor of M .

Now we prove the converse. Suppose that M has N as minor and
does not satisfy the theorem. Let H be such a counterexample with
smallest number of vertices. Clearly, N is a proper minor of M as



120 CHAPTER 8. DECOMPOSITION BY K-SUM

otherwise u(H) = N , i.e. H is a source of N . By Theorem 8.34, for
every i ∈ V (M)− V (N), one of M \ i and M/i is 2-connected and has
N as a minor. Suppose first that M/i is 2-connected and has an N
minor. Since M is 2-connected, i is not a loop of M and therefore H/i
is nontrivial by Remark 8.29, a contradiction to the choice of H with
smallest number of vertices. Thus, for every i ∈ V (M)−V (N), M \ i is
2-connected and has an N minor. By minimality, H\ i must be trivial.
It follows from Remark 8.29 that all odd circuits of (M, S) use i. As
M = u(H), even circuits of M do not use i.

We claim that V (M)− V (N) = {i}. Suppose not and let j 6= i be
an element of V (M) − V (N). The set of circuits of (M, S) using j is
exactly the set of odd circuits. It follows that the elements i, j must
be in series in M . But then M \ i is not connected, a contradiction.

Therefore V (M) − V (N) = {i} and M \ i = N . As the circuits of
(M, S) using i are exactly the odd circuits of (M, S), it follows that
column i of H consists of all 1’s, i.e. H = H+

2 . By Theorem 8.31
applied to i and M , every circuit of N is of the form T14T2 where
T1, T2 ∈ E(H2). So H2 is a lift of N . 2

There is another important connection between binary matroids and
binary clutters. Given a matroid M and an element ` of the matroid,
port `(M) is the clutter whose vertices are the elements of the matroid
distinct from ` and whose edges are the sets C−{`} where C is a circuit
of M containing `. If M is a binary matroid, then `(M) is a binary
clutter. Conversely, every binary clutter can be obtained as the port of
a binary matroid (Lehman [131]).

Exercise 8.35 Let G be a graph and let ` = st be one of its edges.
If M denotes the graphic matroid associated with G, describe the port
`(M).

Exercise 8.36 Let M be a binary matroid such that its port `(M) is
a nontrivial clutter. Show that `(M) is a source of M/` and a lift of
M \ `.



8.3. BINARY CLUTTERS 121

8.3.2 The MFMC Property

This section can be viewed as an extension of Seymour’s decomposition
theory for regular matroids.

Tutte [202] showed that a binary matroid is regular if and only if
it does not have a minor isomorphic to F7 or F ∗

7 (Theorem 7.10), and
Seymour [186] showed that a regular matroid has a k-separation, for
k ≤ 3, or is graphic, cographic or R10 (Theorem 8.18).

Exercise 8.37 Show that ports of regular matroids have the MFMC
property.

Tseng and Truemper extend Seymour’s k-separation theorem to
nonregular matroids that have a port with the MFMC property.

Theorem 8.38 (Tseng-Truemper [198]) Let M be a 3-connected bi-
nary nonregular matroid with distinguished element `. Assume `(M)
has the MFMC property and M 6= F7. Then M has a 3-separation.

Bixby and Rajan [16] give a shorter proof of this theorem.

8.3.3 Idealness

A binary clutter H has a k-separation if u(H) has a k-separation, i.e.
there exists a partition (U1, U2) of V (H) such that |U1| ≥ k, |U2| ≥ k
and r(U1) + r(U2) ≤ r(V (H)) + k − 1. The k-separation is strict if
|U1| > k, |U2| > k. The binary clutter H is k-connected if it has no
(k−1)-separation. It is internally k-connected if it has no strict (k−1)-
separation.

Theorem 8.39 [61] Minimally nonideal binary clutters are 3-connected.

Exercise 8.40 Show that the minimally nonideal binary clutter F7 is
not 4-connected.

Theorem 8.41 [61] Minimally nonideal binary clutters are internally
4-connected.
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Conjecture 8.42 Minimally nonideal binary clutters are internally 5-
connected.

Let Q6 be the clutter where V (Q6) is the set of edges of K4 and
E(Q6) the set of triangles of K4. The next result proves Seymour’s
conjecture (Conjecture 5.26) for the class of clutters that do not have
Q+

6 or b(Q6)
+ as a minor.

Theorem 8.43 (Cornuéjols-Guenin [61]) A binary clutter is ideal if it
does not have F7, OK5, b(OK5), Q+

6 , or b(Q6)
+ as a minor.

Proof: It suffices to show that every mni clutter H contains one of the
minors in the statement of the theorem.

Claim 1: The result holds if u(H) has no F ∗
7 minor.

Proof of Claim 1: When u(H) = R10, then H is one of the sources
of R10. We leave it as an exercise to show that R10 has 6 sources. One
such source is b(OK5) (see Exercise 8.28) and the other five are ideal.

When u(H) is graphic, then H is ideal if and only if H has no
OK5 minor, by Proposition 8.32 of Novick-Sebö and Guenin’s theorem
(Theorem 5.6).

When u(H) is cographic, then H is ideal, by Proposition 8.32 of
Novick-Sebö and the Edmonds-Johnson theorem (Theorem 2.1).

By the connectivity results (Theorems 8.39 and 8.41), u(H) is 3-
connected and internally 4-connected. So, by Seymour’s theorem (The-
orem 8.18), the result holds when u(H) is a regular matroid.

Now consider the case when u(H) is not regular. Another theorem
of Seymour (Theorem 8.25) shows that u(H) = F7. So H is a source
of F7. It was shown in Exercise 8.27 that F7 has three sources. Two
of these sources are ideal and the third is the clutter F7. So the result
holds.

Claim 2: The result holds if u(H) has an F ∗
7 minor.

Proof of Claim 2: By Theorem 8.33, u(H) has an F ∗
7 minor if and

only if H has H1 or H+
2 as a minor, where H1 is a source of F ∗

7 and H2

is a lift of F ∗
7 . It follows from Exercise 8.27 that F ∗

7 has one source and
three lifts. The source is Q+

6 , which is one of the excluded minors in the
statement of the theorem. For the three lifts H2 of F ∗

7 , one can check
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that H+
2 contains F7, Q+

6 and b(Q6)
+ as minors, respectively, which are

excluded minors in the statement of the theorem. 2

The class of clutters of T -cuts is closed under minor taking. More-
over, it is not hard to check that none of the five excluded minors of
Theorem 8.43 are clutters of T -cuts. Thus Theorem 8.43 implies that
clutters of T -cuts are ideal, and thus that their blocker, the clutters of
T -joins are ideal. Hence Theorem 8.43 implies the Edmonds-Johnson
theorem (Theorem 2.1). Similarly, the class of clutters of odd circuits is
closed under minor taking. Moreover, it can be shown that OK5 is the
only clutter of odd circuits among the five excluded minors. It follows
that Theorem 8.43 also implies Guenin’s theorem (Theorem 5.6). Note,
however, that the proof of Theorem 8.43 uses these two results.
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Chapter 9

Decomposition of Balanced
Matrices

In this chapter, we present a polynomial time recognition algorithm
for balanced 0,1 matrices. By contrast, no polynomial recognition al-
gorithm is known for perfection or for idealness. The algorithm de-
composes a balanced matrix into totally unimodular matrices. The
decomposition result is best explained in terms of graphs. Given a
0, 1 matrix A, the bipartite representation of A is the bipartite graph
G = (V r ∪V c, E) having a node in V r for every row of A, a node in V c

for every column of A and an edge ij joining nodes i ∈ V r and j ∈ V c

if and only if the entry aij of A equals 1. If A is balanced (totally
unimodular resp.), the bipartite graph G is said to be balanced (totally
unimodular resp.).

A double star is a tree where at most two nodes have degree greater
than one. A node set S is a double star cutset of G if G \ S has more
connected components than G and S induces a double star.

Theorem 9.1 (Conforti, Cornuéjols and Rao [51]) If a bipartite graph
is balanced but not totally unimodular, then it has a double star cutset.

This theorem can be used to recognize whether a bipartite graph
G is balanced. The recognition algorithm recursively decomposes the
graph until no double star cutset exists. Then each of the final blocks
is checked for total unimodularity. For this approach to work in poly-
nomial time, we need three properties: (i) the presence of a double star
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cutset should be detectable in polytime, (ii) the blocks of the decompo-
sition should be balanced if and only if the original graph is balanced,
and (iii) the total number of blocks generated in the algorithm should
be polynomial. We discuss these issues in Section 9.1. Our exposition
follows [51].

In Section 9.2, we outline the proof of Theorem 9.1. Finally, in
Section 9.3, we present the generalization of this work to balanced 0,±1
matrices by Conforti, Cornuéjols, Kapoor and Vušković [49].

9.1 Recognition Algorithm for Balanced

0,1 Matrices

Given a connected bipartite graph G, let S be a node set such that G\S
is disconnected. Let G′

1, . . . , G
′
k denote the connected components of

G \ S. The blocks of the decomposition of G by S are the graphs Gi

induced by V (G′
i) ∪ S.

A difficulty with double star cutsets is that this natural definition
of blocks does not satisfy Property (ii) stated in the introduction: un-
balanced holes can be broken during the decomposition (give an ex-
ample!). To deal with this problem, the first step of the algorithm
is a preprocessing step, referred to as “cleaning”, guaranteeing that a
smallest unbalanced hole (if one exists) is never broken. This cleaning
step relies on properties studied in the next section.

9.1.1 Smallest Unbalanced Holes

Let G be a bipartite graph that is not balanced and let H∗ be a smallest
unbalanced hole in G. We first study properties of nodes u ∈ V (G) −
V (H∗) with more than one neighbor in V (H∗). Such nodes are said to
be strongly adjacent to H∗. Node u is odd-strongly adjacent if u has an
odd number greater than one of neighbors in H∗, and it is even-strongly
adjacent if it has an even number greater than one of neighbors in H∗.

Let Ar(H∗) and Ac(H∗) contain the odd-strongly adjacent nodes to
H∗ that belong to V r and V c respectively. The following properties
were proven by Conforti and Rao in [58].
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Property 9.2 There exists a node xr ∈ V r∩V (H∗) adjacent to all the
nodes in Ac(H∗). There exists a node xc ∈ V c ∩ V (H∗) adjacent to all
the nodes in Ar(H∗).

Exercise 9.3 Prove Property 9.2

Two nodes of G that have exactly the same neighbors in a subgraph
K of G are said to be twins with respect to K. When K is clear from
the context, such nodes are simply said to be twins.

Property 9.4 Every even-strongly adjacent node to H∗ is a twin of a
node in H∗

Exercise 9.5 Prove Property 9.4

The above properties were used in [59] to design a polytime algo-
rithm to test whether a linear bipartite graph is balanced (a bipartite
graph is linear if it contains no 4-cycle). To test balancedness in gen-
eral, we need the following additional properties of strongly adjacent
nodes of H∗. Let N(v) denote the set of neighbors of v.

Definition 9.6 A tent τ(H, u, v) is a subgraph of G induced by a hole
H and two adjacent nodes u and v that are even-strongly adjacent to
H with the following property:

The nodes of H can be partitioned into two subpaths containing the
nodes in N(u) ∩ V (H) and N(v) ∩ V (H) respectively.

A tent τ(H, u, v) is referred to as a tent containing H. We now
study properties of a tent τ(H∗, u, v) containing a smallest unbalanced
hole H∗. By Property 9.4, both u and v are twins of nodes of H. We
assume throughout that the first node, say u, in the definition of a tent
τ(H, u, v) belongs to V r and that the second node, say v, belongs to
V c. We use the notation of Figure 9.1, where nodes u1, u0, u2, v1, v0, v2

are encountered in this order when traversing H∗.

Lemma 9.7 Let H∗ be a smallest unbalanced hole and τ(H∗, u, v) be a
tent containing it. At least one of the two sets N(v0)∪N(u1), N(v0)∪
N(u2) contains Ar(H∗). At least one of the two sets N(u0) ∪ N(v1),
N(u0) ∪N(v2) contains Ac(H∗).
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H∗

u

v

v1

v0
v2

u1
u0

u2

Figure 9.1: Tent

Proof: By symmetry, we only need to prove the first statement. Sup-
pose v0 is not adjacent to a node w ∈ Ar(H∗). Consider the hole H∗

1

obtained from H∗ by replacing v0 with node v. Now w is not adjacent
to v, for otherwise w is even-strongly adjacent to H∗

1 , violating Property
9.4. Therefore, w is in Ar(H∗

1 ). Node u is in Ar(H∗
1 ) and has neighbors

u1, u2 and v in H∗
1 . By Property 9.2, all nodes in Ar(H∗

1 ) have a com-
mon neighbor in H∗

1 . So it follows that this common neighbor must be
u1 or u2. 2

Lemma 9.8 Let H∗ be a smallest unbalanced hole and τ(H∗, u, v),
τ(H∗, w, y) two tents containing H∗, where w1, w2 are the neighbors
of w and y1, y2 are the neighbors of y in H∗. Let w0 and y0 be the
common neighbors in H∗ of w1, w2 and y1, y2 respectively. Then at
least one of the following properties holds:

• Nodes u1 and u2 coincide with w1 and w2.

• Nodes v1 and v2 coincide with y1 and y2.

• Nodes u0 and y are adjacent.

• Nodes v0 and w are adjacent.
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Proof: Suppose the contrary. Then u, v, w, y are all distinct nodes
and one of the following two cases occurs. The edges of H∗ can be
partitioned in two paths P1, P2 with common endnodes so that either
(Case 1:) P1 contains u1, u2, v1, v2 and P2 contains w1, w2, y1, y2 or
(Case 2:) P1 contains u1, u2, y1, y2 and P2 contains v1, v2, w1, w2.

Suppose u and y are adjacent and consider the hole H∗
wy contained

in V (H∗) ∪ {w, y}, containing w, y, u1, u2. Then (H∗
wy, u) is an odd

wheel (recall the definition given in Section 7.4) and all the holes of
(H∗

wy, u) are smaller than H∗. Since one of them is unbalanced, we
have a contradiction to the minimality of H∗. By symmetry, w and v
are nonadjacent as well.

In Case 1, consider the hole H∗
vwy contained in V (H∗) ∪ {v, w, y},

containing v, w, y, u1, u2. Then (H∗
vwy, u) is an odd wheel and all

the holes of (H∗
vwy, u) are smaller than H∗, a contradiction. In Case 2,

nodes u and y are connected by a 3-odd-path configuration. The three
holes in this 3-odd-path configuration are smaller than H∗ and at least
one of them is unbalanced. 2

9.1.2 Recognition Algorithm

In this section, we give an algorithm to test whether a bipartite graph
is balanced.

Definition 9.9 A hole H is said to be clean in G if the following three
conditions hold:

(i) No node is odd-strongly adjacent to H.

(ii) Every even-strongly adjacent node is a twin of a node in H.

(iii) There is no tent containing H.

A wheel (H, v) is a hole H together with a node v 6∈ V (H) with at
least three neighbors in H. A subpath of H having two nodes of N(v)∩
V (H) as endnodes and only nodes of V (H) − N(v) as intermediate
nodes is called a sector of (H, v). A short 3-wheel is a wheel with three
sectors, at least two of which have length 2.
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A node u in a bipartite graph G is said to be dominated if there
exists a node v, distinct from u, such that N(u) ⊆ N(v). A bipartite
graph G is said to be undominated if G contains no dominated nodes.

RECOGNITION ALGORITHM

Input: A bipartite graph G.
Output: G is identified as balanced or not balanced.

Step 1 Apply Procedure 1 to check whether G contains a short
3-wheel. If so, G is not balanced, otherwise go to Step 2.

Step 2 Apply Procedure 2 to create at most |V r|4|V c|4 induced
subgraphs G1, . . . , Gp such that, if G is not balanced, at least one of
the induced subgraphs created, say Gt, contains an unbalanced hole H∗

that is clean in Gt.
Step 3 Apply Procedure 3 to each of the graphs G1, . . . , Gp to

decompose them into undominated induced subgraphs B1, . . . , Bs that
do not contain a double star cutset. While decomposing a graph with a
double star cutset N(u)∪N(v), Procedure 3 also checks for the existence
of a 3-odd-path configuration containing nodes u and v and nodes in
two distinct connected components resulting from the decomposition.
If such a configuration is found, then G is not balanced, otherwise go
to Step 4.

Step 4 Test whether all the blocks B1, . . . , Bs are totally unimod-
ular. If so, G is balanced, otherwise G is not balanced.

An algorithm to test whether a bipartite graph is totally unimodular
can be found in [173]. See Section 8.2.2 for a brief description. In the
remainder of this section, we describe the procedures used in Steps 1
to 3.

Short 3-Wheels

PROCEDURE 1, for identifying whether G contains a short 3-wheel,
can be described as follows: Let C = a1, a2, a3, a4, a5, a6, a1 be a 6-cycle
of G having unique chord a2a5. If a1 and a3 are in the same connected
component of G \ (N(a2) ∪N(a4) ∪N(a5) ∪N(a6)− {a1, a3}), or if a4

and a6 are in the same connected component of G \ (N(a1) ∪N(a2) ∪
N(a3)∪N(a5)−{a4, a6}), then a short 3-wheel containing C is identified.
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Otherwise G has no short 3-wheel containing C. Perform such a test
for all 6-cycles of G with a unique chord.

The complexity of this procedure is of order O(|V r|4|V c|4).

Clean Unbalanced Holes

Next we show how to create at most |V r|4|V c|4 induced subgraphs of G
such that, if G is not balanced, one of these subgraphs, say Gt, contains
a smallest unbalanced hole of G that is clean in Gt.

Given a graph F and nodes i, j, k, l of F that induce the chordless
path i, j, k, l, we define Fijkl to be the induced subgraph obtained from
F by removing the nodes in N(j) ∪N(k)− {i, j, k, l}.

PROCEDURE 2
Input: A bipartite graph G.
Output: A family L = G1, . . . , Gp, where p ≤ |V r|4|V c|4, of in-

duced subgraphs of G such that if G is not balanced, then a smallest
unbalanced hole H∗ in G appears in one of the subgraphs Gt ∈ L and
H∗ is clean in Gt.

Step 1 Let L∗ = {Gijkl : nodes i, j, k, l of G induce the chordless
path i, j, k, l}

Step 2 Let L = {Qwxyz : the graph Q is in L∗ and nodes w, x, y, z
of Q induce the chordless path w, x, y, z}.

We now prove the validity of Procedure 2.

Lemma 9.10 If G is not balanced, then a smallest unbalanced hole H∗

in G appears in one of the subgraphs Gt ∈ L and H∗ is clean in Gt.

Proof: Let H∗ be any smallest unbalanced hole in G. Choose two
induced paths u1, u0, u2, u3 and v1, v0, v2, v3 on H∗ as follows:

• If no tent contains H∗: Ar(H∗) ⊆ N(u0) and Ac(H∗) ⊆ N(v0).
(This choice is possible by Property 9.2.)

• If some tent τ(H∗, u, v) contains H∗: {u1, u2} = N(u) ∩ V (H∗)
and {v1, v2} = N(v) ∩ V (H∗). By Lemma 9.7, we can index ui,
i = 1, 2, so that Ar(H∗) ⊆ N(v0) ∪ N(u2) and we can index vi,
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i = 1, 2, so that Ac(H∗) ⊆ N(u0) ∪ N(v2). By Lemma 9.8, for
every tent τ(H∗, w, y) containing H∗, w or y is adjacent to one of
the nodes in {u0, u2, v0, v2}.

So (Gu1u0u2u3)v1v0v2v3 belongs to L, it contains H∗, it has no tent that
contains H∗, and H∗ has no odd strongly adjacent node. Furthermore,
by Proposition 9.4, the even-strongly adjacent node to H∗ are twins of
nodes in H∗. 2

Double Star Cutset Decompositions

We describe a procedure to decompose a bipartite graph G into blocks
that are induced subgraphs of G and do not have a double star cutset.

Definition 9.11 Let H be a hole in a graph. Then C(H) = {Hi | Hi

is a hole that can be obtained from H by a sequence of holes H =
H0, H1, . . . , Hi, where |V (Hj)− V (Hj−1)| = 1, for j = 1, 2, . . . , i}.

Lemma 9.12 Let G be a bipartite graph that is not balanced and con-
tains no short 3-wheel. If H is a clean smallest unbalanced hole in G,
then every hole Hi in C(H) is clean in G, |Hi| = |H| and C(Hi) = C(H).

Proof: Let H = H0, H1, . . . , Hi be a sequence of holes as in Defini-
tion 9.11. It suffices to show the lemma for H1. Since Ar(H)∪Ac(H) =
∅, by Property 9.4, H1 has been obtained from H = x1, x2, x3, . . . , xn, x1

by substituting one node, say x3, with its twin y3. We assume w.l.o.g.
that x3, y3 ∈ V r. So |H1| = |H| and C(H1) = C(H).

Assume Ar(H1) ∪ Ac(H1) 6= ∅. Since H is clean, then H must
contain a twin yi of xi in V c, where yi is adjacent to y3 but not to x3.
Now τ(H, y3, yi) is a tent, a contradiction to the assumption that H is
clean, and this proves that H1 satisfies (i) of Definition 9.9.

The fact that H is clean shows that H1 satisfies (ii) of Definition
9.9.

Finally, assume H1 contains a tent τ(H1, x, y), where x ∈ V r. Then
x3 6= x, else y ∈ Ar(H). So x is a twin of a node in H and y is
adjacent to y3. We can assume that x1 is the unique neighbor of y in
H. Now let xi be the neighbor of x with lowest index and let C =
x1, x2, x3 . . . , xi, x, y, x1. The neighbors of y3 in C are y, x2, x4 and
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(C, y3) is a short 3-wheel. This proves that H1 satisfies (iii) of Definition
9.9. 2

A double star cutset S of G is full if S contains two adjacent nodes
u, v and all their neighbors, i.e. S = N(u) ∪ N(v). One can check
in polynomial time whether a graph contains a full double star cutset:
simply check whether G \ (N(u) ∪N(v)) is connected for every pair of
adjacent nodes u, v.

Lemma 9.13 If an undominated bipartite graph G has a double star
cutset, then it has a full double star cutset.

Exercise 9.14 Prove Lemma 9.13.

PROCEDURE 3
Input: A bipartite graph F not containing a short 3-wheel.
Output: Either a 3-odd-path configuration of F , or a list of undom-

inated induced subgraphs F ∗
1 , . . . , F ∗

q of F where q ≤ |V c(F )|2|V r(F )|2
with the following properties:

• The graphs F ∗
1 , . . . , F ∗

q do not contain a double star cutset.

• If the input graph F is not balanced and contains a smallest
unbalanced hole H that is clean in F , then one of the graphs in
the list, say F ∗

i , contains a smallest unbalanced hole H∗ in C(H)
that is clean in F ∗

i .

Step 1 Delete dominated nodes in F until F becomes undomi-
nated. Let M = {F}, T = ∅.

Step 2 If M is empty, stop. Otherwise remove a graph R from
M. If R has no full double star cutset, add R to T and repeat Step 2.
Otherwise, let S = N(u) ∪N(v) be a full double star cutset of R. Let
R′

1, . . . , R
′
l be the connected components of R \S and let R1, . . . , Rl be

the corresponding blocks, that is Ri is the graph induced by V (R′
i)∪S.

Go to Step 3.
Step 3 Consider every pair of nonadjacent nodes up and vq adjacent

to u and v respectively. If there exist two distinct connected compo-
nents of R \ S that each contain neighbors of up and neighbors of vq,
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there is a 3-odd-path configuration between up and vq and F is not
balanced. Otherwise go to Step 4.

Step 4 From each block Ri, remove dominated nodes until the
resulting graph R∗

i becomes undominated. Add to M all the graphs
R∗

i that contain at least one chordless path of length 3. Go to Step 2.

Lemma 9.15 Let F be a bipartite graph that does not contain a short
3-wheel and let H be a smallest unbalanced hole that is clean in F .

If Procedure 3, when applied to F , does not detect a 3-odd-path
configuration in Step 3, then one of the graphs F ∗

i , obtained as ouput
of Procedure 3, contains an unbalanced hole H∗ in C(H).

Proof: It suffices to show that, if H is clean in R ∈M, then one of the
blocks R∗

i obtained from R contains an unbalanced hole H∗ in C(H)
that is clean in R∗

i .
Let N(u)∪N(v) be the full double star cutset of R, used to decom-

pose R in Procedure 3. Let R′
1, . . . , R

′
l be the connected components

of R \ (N(u) ∪N(v)) and R1, . . . , Rl be the corresponding blocks. We
first show that if no 3-odd-path configuration is detected in Step 3, an
unbalanced hole H∗ ∈ C(H) is contained in some block Ri.

Choose H∗ ∈ C(H) such that V (H∗)∩{u, v} is maximal. By Lemma
9.12, H∗ is clean in R, so u is either in H∗ or has at most one neighbor
in H∗ and the same holds for v.

Let W be the subgraph induced by V (H∗) − (N(u) ∪ N(v)). We
have three possibilities for W :

(i) If H∗ contains no neighbor of u and v, then W = H∗.
(ii) If both u and v have a single neighbor u1 and v1 in H∗ and u1,

v1 are nonadjacent, then W consists of two paths.
(iii) In all the remaining cases, it is easy to check that W consists

of a single path.
If H∗ does not belong to any of the blocks R1, . . . , Rl, the graph W

must be disconnected and have a component in, say, R′
i and another

in, say, R′
j. So (ii) holds. Let u1 and v1 be the neighbors of u and v in

H∗. Then V (W ) ∪ {u, v} induces a 3-odd-path configuration from u1

to v1 which is detected in Step 3 of the algorithm.
So, at the end of Step 3, one block Ri contains H∗ and, by Lemma

9.12, H∗ ∈ C(H) is clean in Ri. Since H∗ is clean, the graph R∗
i ,
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obtained from Ri by removing dominated nodes, contains a hole H∗∗ ∈
C(H∗) = C(H), where possibly H∗ = H∗∗. 2

Lemma 9.16 The number of graphs F ∗
1 , . . . , F ∗

q produced by Procedure
3 applied to F is bounded by |V r(F )|2|V c(F )|2. So is the number of
double star cutsets used by Procedure 3.

Proof: Let N(u) ∪ N(v) be a full double star cutset of R ∈ M used
in Procedure 3. Let R′

1, . . . , R
′
l be the connected components of R \

(N(u) ∪ N(v)) and let R∗
1, . . . , R

∗
l be the corresponding undominated

blocks.

Claim 1 No two distinct undominated blocks contain the same
chordless path of length 3.

Proof of Claim 1: Suppose by contradiction that a chordless path
P = a, b, c, d belongs to two distinct undominated blocks R∗

i and R∗
j .

Then, in R, we have {a, b, c, d} ⊆ N(u) ∪N(v).
Node u is distinct from a and d for otherwise a and d are adjacent

and P is not a chordless path. By symmetry, v is also distinct from a
and d. Since both R∗

i and R∗
j are undominated, both nodes a and d

have at least one neighbor in both the connected components R′
i and

R′
j. Now Step 3 of Procedure 3 detects a 3-odd-path configuration.

This completes the proof of Claim 1.

Claim 2 The graph R contains at least one chordless path of length
3 that is not contained in any of the undominated blocks R∗

i .

Proof of Claim 2: Each of the connected components R′
1, . . . , R

′
l

must contain at least two nodes, since R is an undominated graph. At
least one node in R′

i must be adjacent in R to a node in N(u) ∪N(v).
Assume w.l.o.g. that node pi in R′

i is adjacent to a neighbor of v in R,
say vi.

Suppose now no node in R′
i is adjacent to a node in N(u). Then the

nodes in N(u)−{v} are dominated by v. Thus, the undominated block
R∗

i does not contain any neighbor of u except v. This in turn implies
that node u is dominated by vi. Thus u would have been deleted from
R∗

i . Now P = pi, vi, v, u is a chordless path of length 3 in R but P is
not in any of the undominated blocks R∗

1, . . . , R
∗
l .
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So a node in R′
i must be adjacent to a node that is a neighbor of u in

R, say ui. Repeating the same argument for j = 1, . . . , t, it follows that
each connected component R′

j contains a node, say wj, that is adjacent
in R to a node uj ∈ N(u). Suppose now uj has a neighbor, say g in a
connected component R′

k, distinct from R′
j. Let q be a neighbor of g in

R′
k. Then P = q, g, uj, wj is a chordless path of length 3 contained in

R but not in any of the undominated blocks R∗
1, . . . , R

∗
l . Suppose now

that uj does not have any neighbor in R′
k, k 6= j. Then, in Step 4 of

Procedure 3, node uj is deleted from the undominated block R∗
k. Now

the path wk, uk, u, uj is a chordless path of length 3 contained in R but
not in any of the undominated blocks R∗

1, . . . , R
∗
l . This completes the

proof of Claim 2.

The lemma is obviously true if, after Step 1 has been applied, F
does not have a full double star cutset. Now assume a full double star
cutset exists. Every undominated block that is added to the list M
in Step 4 of Procedure 3 contains a chordless path of length 3. Hence
every undominated block that is added to the list T in Step 2 contains
a chordless path of length 3. By Claim 1, the same chordless path
of length 3 is not in any other undominated block that is added to
the list T . So the number of graphs in the list F ∗

1 , . . . , F ∗
q is at most

equal to the number of paths of length 3 in F , which is bounded by
|V r(F )|2|V c(F )|2. By Claim 2, it follows that the number of full double
star cutsets used to decompose the graph F with Procedure 3 is at most
|V r(F )|2|V c(F )|2. 2

Validity of the Algorithm

Theorem 9.17 The running time of the recognition algorithm is poly-
nomial in the size of the input graph G, and the algorithm correctly
identifies G as balanced or not.

Proof: The recognition algorithm described in Section 9.1.2 applies first
Procedures 1, 2 and 3. The running time of each of these procedures has
been shown to be polytime. Finally, in Step 4, the algorithm checks
whether each of the (polynomially many) blocks is totally unimodu-
lar. Total unimodularity can be checked in polytime [173]. Hence the
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running time of the recognition algorithm described in Section 9.1.2 is
polynomial.

Suppose G is balanced. Then G does not contain a short 3-wheel
or a 3-odd-path configuration. All the induced subgraphs of G are bal-
anced, so the graphs produced by Procedures 2 and 3 are balanced.
Now, by Theorem 9.1, every graph in the list B1, . . . , Bs is totally uni-
modular. Then Step 4 of the algorithm identifies G as balanced.

Suppose G is not balanced. If G contains a short 3-wheel, Step
1 of the algorithm identifies G as not balanced. Suppose G does not
contain a short 3-wheel. Clearly G contains a smallest unbalanced
hole. By Lemma 9.10, one of the induced subgraphs, say Gi, of G, in
the list produced by Procedure 2 contains a smallest unbalanced hole
H∗ that is clean in Gi. Now Gi is one of the graphs considered for
double star cutset decompositions by Procedure 3. By Lemma 9.15,
Procedure 3 either detects a 3-odd-path configuration or one of the
undominated blocks, say Bj, in the final list produced by Procedure 3
contains an unbalanced hole in the family C(H∗). In the former case
G is correctly identified as not balanced. In the latter case, Bj is not
totally unimodular and Step 4 of the algorithm identifies G as not
balanced. 2

9.2 Proof Outline of the Decomposition

Theorem

9.2.1 Even Wheels

A wheel (H, v) is even if v has an even number (≥ 4) of neighbors
in H. The proof of Theorem 9.1 involves two major cases depending
on whether or not the graph contains an even wheel as an induced
subgraph.

Theorem 9.18 If a balanced bipartite graph G contains an even wheel
as an induced subgraph, then G has a double star cutset.

Given an even wheel (H, v), a subpath of H having two nodes of
N(v)∩ V (H) as endnodes and only nodes of V (H)−N(v) as interme-
diate nodes is called a sector of (H, v). Two sectors are adjacent if they
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have a common endnode. We paint the nodes of V (H)−N(v) with two
colors, say blue and green, in such a way that nodes of V (H) − N(v)
have the same color if they are in the same sector, and have distinct
colors if they are in adjacent sectors. The nodes of N(v) ∩ V (H) are
left unpainted.

The proof of Theorem 9.18 involves two intermediate results about
strongly adjacent nodes u to an even wheel (H, v). The first (Lemma 9.19)
discusses the case when u and v are in opposite sides of the bipartition.
The second (Lemma 9.20) discusses the case when u and v are on the
same side.

Lemma 9.19 Let (H, v) be an even wheel of a balanced bipartite graph
G. Let u be a node in the opposite side of the bipartition as v such
that u is not adjacent to v and u has neighbors in at least two distinct
sectors of H. Then u has exactly two neighbors in H and they belong
to sectors of the same color.

Proof: The proof uses the fact that a balanced bipartite graph can-
not contain an odd wheel nor a 3-odd-path configuration (recall The-
orem 7.15). Assume that node u has neighbors in at least three dif-
ferent sectors, say Si, Sj, Sk. If none of these sectors is adjacent to
the other two, then there exist three unpainted nodes vi, vj, vk, such
that vi ∈ V (Si) − (V (Sj) ∪ V (Sk)), vj ∈ V (Sj) − (V (Si) ∪ V (Sk)),
vk ∈ V (Sk) − (V (Si) ∪ V (Sj)). This implies the existence of a 3-odd-
path configuration from u to v where each of the nodes vi, vj, vk belongs
to a distinct path of the 3-odd-path configuration. If H has four sec-
tors each containing neighbors of u, then each sector has exactly one
neighbor of u (otherwise there is a 3-odd-path configuration from u to
v). But now the graph induced by two adjacent sectors and u con-
tains an odd wheel or a 3-odd-path configuration. So u has neighbors
in exactly three sectors and one of them is adjacent to the other two,
say Sj is adjacent to both Si and Sk. Let vi be the unpainted node
in V (Si) ∩ V (Sj) and vk the unpainted node in V (Sj) ∩ V (Sk). Then,
there is a 3-odd-path configuration from u to v unless node u has a
unique neighbor ui in Si adjacent to vi and a unique neighbor uk in
Sk adjacent to vk, i.e. u, ui, vi, v, vk, uk, u is a 6-hole, a contradiction to
balancedness.
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So u has neighbors in at most two sectors of the wheel, say Sj and
Sk. If these two sectors are adjacent, let vi be their common endnode
and vj, vk the other endnodes of Sj and Sk respectively. Let H ′ be the
hole obtained from H by replacing V (Sj)∪ V (Sk) by the shortest path
in V (Sj) ∪ V (Sk) ∪ {u} − {vi}. The wheel (H ′, v) is an odd wheel. So
the sectors Sj and Sk are not adjacent.

If u has three neighbors or more on H, say two or more in Sj and at
least one in Sk, then denote by vj and vj−1 the endnodes of Sj and by vk

one of the endnodes of Sk. There exists a 3-odd-path configuration from
u to v where each of the nodes vj, vj−1, and vk belongs to a different
path. Therefore u has only two neighbors in H, say uj ∈ V (Sj) and
uk ∈ V (Sk). Let C1 and C2 be the holes formed by the node u and
the two ujuk-subpaths of H, respectively. In order for both (C1, v) and
(C2, v) to be even wheels, the sectors Sj and Sk must be of the same
color. 2

This proof gives a flavor of the arguments used in [51]. We state
the next results without proofs, referring the reader to [51] for details.

An even wheel (H, v) is small if no even wheel of G contains strictly
fewer nodes. Let T (H, v) denote the set of nodes u such that at least
two neighbors of u in H are adjacent to v and no sector of (H, v) entirely
contains all the neighbors of u in H.

Lemma 9.20 Let (H, v) be a small even wheel in a balanced bipartite
graph. If u is in the same side of the bipartition as v and u is adjacent
to both a blue and a green node, then u belongs to T (H, v).

The two above lemmas show that every node of G that is adjacent
to a blue node and a green node in a small even wheel (H, v) belongs
to N(v) ∪ T (H, v). This result has the following generalization.

Lemma 9.21 Let (H, v) be a small even wheel in a balanced bipartite
graph. Then every path connecting a blue node to a green node of (H, v)
contains a node in N(v) ∪ T (H, v).

Now Theorem 9.18 follows from the following result.
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Lemma 9.22 Let (H, v) be a small even wheel in a balanced bipartite
graph. Then v has a neighbor y on H adjacent to all the nodes in
T (H, v).

Indeed, Lemmas 9.21 and 9.22 imply that N(v) ∪N(y) is a double
star cutset in G. So Theorem 9.1 holds when G contains an even wheel.
The most difficult part of the proof is to show that Theorem 9.1 also
holds when G contains no even wheel. We refer the reader to [51].

9.2.2 A Conjecture

Double star cutset decompositions are not balancedness preserving and
this heavily affects the running time of the algorithm for recognizing
whether a 0, 1 matrix is balanced (Section 9.1). It would be useful to
strengthen Theorem 9.1 so that a balancedness preserving operation is
used for the decomposition. Such a result is not known even for linear
balanced bipartite graphs [58], and it may very well be that no such
strengthening of Theorem 9.1 is possible. Theorem 9.1 can be refined
by replacing double star cutsets by extended star cutsets, a concept
introduced in [51], but this does not help in improving the complexity
of the recognition algorithm. A further refinement may be possible, as
follows.

A biclique is a complete bipartite graph where the two sides of the
bipartition are both nonempty. The question arises whether Theorem
9.1 can be strengthened by showing that every balanced graph that is
not totally unimodular has a biclique cutset.

The graph in Figure 9.2 shows that this is not always the case.
More generally, define an infinite family of graphs as follows. Let H be
a hole where nodes u1, . . . , up, v1, . . . , vq, w1, . . . , wp, x1, . . . , xq appear
in this order when traversing H, but are not necessarily adjacent. Let
Y = {y1, . . . , yp} and Z = {z1, . . . , zq} be two node sets having empty
intersection with V (H) and inducing a biclique KY Z . Node yi is adja-
cent to ui and wi for 1 ≤ i ≤ p. Node zi is adjacent to vi and xi for
1 ≤ i ≤ q. Any balanced graph of this form for p, q ≥ 2 is called a Wpq.
For all values of p, q ≥ 2, the graph Wpq is not totally unimodular and
has no biclique cutset.
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Figure 9.2: W22

A graph G has a 2-join if its node set can be partitioned into V1,
V2 in such a way that, for each i = 1, 2, Vi contains disjoint nonempty
node sets Ai and Bi such that every node of A1 is adjacent to every
node of A2, every node of B1 is adjacent to every node of B2 and there
are no other adjacencies between V1 and V2. Furthermore, for i = 1, 2,
Vi contains at least one path from Ai to Bi, and if Ai and Bi are both
of cardinality 1, then the graph induced by Vi is not a chordless path.

Conjecture 9.23 (Conforti, Cornuéjols, Rao [51]) If G is a balanced
graph that is not totally unimodular, then G is either a Wpq or has a
biclique cutset or a 2-join.

9.3 Balanced 0,±1 Matrices

In this section, we state a decomposition theorem for balanced 0,±1
matrices and outline a polynomial recognition algorithm [49].

Consider the following question: given a 0, 1 matrix, is it possible
to turn some of the 1’s into −1’s in order to obtain a balanced 0,±1
matrix? Camion’s signing algorithm, which we studied in Chapter 7,
gives the answer: this signing is essentially unique and easy to find. A
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0, 1 matrix for which such a signing exists is called a balanceable matrix.
So, in effect, the problem of recognizing whether a given 0,±1 matrix
is balanced is equivalent to the problem of recognizing whether a 0, 1
matrix is balanceable.

9.3.1 Decomposition Theorem

2-Join and 6-Join

A 2-join was defined in Section 9.2.2. A bipartite graph G has a
6-join if its node set can be partitioned into V1, V2 so that V1 contains
three disjoint nonempty node sets A1, A3, A5, and V2 contains three
disjoint nonempty node sets A2, A4, A6 such that, for i = 1, . . . , 6, every
node in Ai is adjacent to every node in Ai−1 ∪ Ai+1 (indices are taken
modulo 6), and these are the only edges in the subgraph A induced by
the node set ∪6

i=1Ai. Furthermore, the only adjacencies between V1 and
V2 are the edges of E(A) and |Vi| ≥ 4 for i = 1, 2.

Basic Classes of Graphs

A bipartite graph is strongly balanceable if it is balanceable and
contains no cycle with exactly one chord. Strongly balanceable bipartite
graphs can be recognized in polynomial time [56]. R10 is the balanceable
bipartite graph defined by the cycle x1, . . . , x10, x1 of length 10 with
chords xixi+5, 1 ≤ i ≤ 5.

Theorem 9.24 (Conforti, Cornuéjols, Kapoor and Vušković [49]) A
connected balanceable bipartite graph that is not strongly balanceable is
either R10 or contains a 2-join, a 6-join or a double star cutset.

The key idea in the proof of Theorem 9.24 is that if a balanceable
bipartite graph G is not strongly balanceable, then an earlier result of
Conforti, Cornuéjols and Rao [51] applies, or else G contains R10 or a
connected 6-hole (to be defined next) and, in each case, Theorem 9.24
is shown to hold.

A triad consists of three internally node-disjoint paths t, . . . , u; t, . . . , v
and t, . . . , w, where t, u, v, w are distinct nodes and u, v, w belong to
the same side of the bipartition. Furthermore, the graph induced by
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the nodes of the triad contains no other edges than those of the three
paths. Nodes u, v and w are called the attachments.

A fan consists of a chordless path x, . . . , y together with a node z
adjacent to at least one node of the path, where x, y and z are distinct
nodes all belonging to the same side of the bipartition. Nodes x, y and
z are called the attachments of the fan.

A connected 6-hole Σ is a graph induced by two disjoint node sets
T (Σ) and B(Σ) such that each induces either a triad or a fan, the
attachments of B(Σ) and T (Σ) induce a 6-hole and there are no other
adjacencies between the nodes of T (Σ) and B(Σ).

Theorem 9.25 [49] A connected balanceable bipartite graph that con-
tains R10 as a proper induced subgraph has a biclique cutset.

Theorem 9.26 [49] A balanceable bipartite graph that contains a con-
nected 6-hole has a double star cutset or a 6-join.

Theorem 9.27 [51] A balanceable bipartite graph not containing R10

or a connected 6-hole as induced subgraphs either is strongly balanceable
or contains a 2-join or a double star cutset.

Now Theorem 9.24 follows from Theorems 9.25, 9.26 and 9.27.

Theorem 9.24 may have the following strengthening.

Conjecture 9.28 [49] A connected balanceable bipartite graph that is
not Wpq, R10 or strongly balanceable has a 2-join, a 6-join or a biclique
cutset.

Another direction in which Theorem 9.24 might be strengthened is
as follows.

Conjecture 9.29 [49] A balanceable bipartite graph that is not regular
has a double star cutset.
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9.3.2 Recognition Algorithm

To a 0,±1 matrix, we associate its signed bipartite representation ob-
tained by assigning a weight +1 or −1 to its edges in the natural way.
We will outline an algorithm for checking whether a signed bipartite
graph is balanced. By Theorem 9.24, a connected balanced signed bi-
partite graph is strongly balanced (no cycle has a unique chord) or is
a signed copy of R10 or it contains a 2-join, a 6-join or a double star
cutset.

Consider a connected signed bipartite graph G where S is a node
cutset or an edge cutset. We construct signed bipartite graphs, called
blocks, from the connected components of G \ S and we say that the
resulting decomposition is balancedness preserving if all the blocks are
balanced if and only if G itself is balanced. The idea of the algorithm
is to decompose G using balancedness preserving decompositions into
a polynomial number of basic blocks that can each be checked for bal-
ancedness in polynomial time.

For the 2-join and 6-join, the blocks can be defined so that the
decompositions are balancedness preserving. For the double star cutset
this is not immediately possible.

2-Join Decomposition

Let KA1A2 and KB1B2 define a 2-join of G such that neither A1∪B1

nor A2∪B2 induces a biclique. Let V1, V2 be the corresponding partition
of V (G). We construct two blocks G1 and G2 from G as follows. For
i = 1, 2, let Pi be a shortest path from Ai to Bi in G(Vi), . Define H1 to
be the graph induced by V1∪V (P2). Similarly H2 is the graph induced
by V2∪V (P1). For i = 1, 2, construct Gi from Hi as follows. Replace Pi

by a path Mi with same endnodes, with intermediate nodes of degree
two, with length 4 ≤ |E(Mi)| ≤ 5 and edge weights +1 or −1 chosen
so that the weight of Mi is congruent to the weight of Pi modulo 4.

Theorem 9.30 Let G1 and G2 be the blocks of the decomposition of the
signed bipartite graph G by a 2-join E(KA1A2) ∪ E(KB1B2). If neither
A1 ∪ B1 nor A2 ∪ B2 induces a biclique and G does not contain an
unbalanced hole of length 4, then G is balanced if and only if both G1

and G2 are balanced.
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6-Join Decomposition

Let G be a signed bipartite graph that has a 6-join E(A). Blocks
G1 and G2 of a 6-join decomposition are constructed as follows. For
i = 1, . . . , 6 let ai be any node of Ai. G1 is a subgraph of G induced
by the node set V1 ∪ {a2, a4, a6} and G2 is a subgraph of G induced by
the node set V2 ∪ {a1, a3, a5}.

Theorem 9.31 Let G1 and G2 be the blocks of the decomposition of
the signed bipartite graph G by a 6-join E(A). If G does not contain
an unbalanced hole of length 4 or 6, then G is balanced if and only if
both G1 and G2 are balanced.

Double Star Cutset Decomposition
As in the case of balanced 0,1 matrices, a “cleaning step” is used.

See [49] for details.

Theorem 9.32 In a clean signed bipartite graph containing no short
3-wheel, at least one block of a double star decomposition is clean.

This theorem guarantees that, after the cleaning step has been per-
formed, double star decompositions do not break a smallest unbalanced
hole.

Algorithm

The recognition algorithm takes a signed bipartite graph as input and
recognizes whether or not the graph is balanced. The algorithm consists
of four phases:

• Preprocessing The input graph is first checked for a short 3-
wheel. If it contains one, it is not balanced. Otherwise, a poly-
nomial number of signed subgraphs are generated, at least one of
which is clean. All of these subgraphs are balanced if and only if
the input graph is balanced.

• Double Stars The second phase consists in doing double star
decompositions, until no block contains a double star cutset.
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• 6-joins The third phase consists in doing 6-join decompositions
until no block contains a 6-join.

• 2-joins The last phase consists in doing 2-join decompositions
until no block contains a 2-join.

The 2-join and 6-join decompositions do not create any new double
star cutset in the blocks except in one case that can be dealt with
easily. Also a 2-join decomposition does not create any new 6-join in
any of the blocks. As a result when the algorithm terminates none of the
blocks created have a double star cutset, 2-join or 6-join decomposition.
By the decomposition theorem (Theorem 9.24), if the original signed
bipartite graph was balanced the blocks must be strongly balanced or
signed copies of R10. R10 is a graph with only ten nodes and so can be
checked in constant time. Checking whether a signed bipartite graph
is strongly balanced can be done in polynomial time (Conforti and Rao
[56]). The preprocessing phase and the phases of decomposition using
2-joins and 6-joins can be shown to be polynomial. For the double star
decomposition it is shown that the graph has a path with three edges
that is not present in any of the blocks. This bounds the number of
such decompositions by a polynomial in the size of the graph. Thus
the entire algorithm is polynomial time bounded.



Chapter 10

Decomposition of Perfect
Graphs

Much research has been devoted to studying classes of perfect graphs
that can be decomposed into “basic classes” using “perfection-preserving
operations”. In this chapter, we present four basic classes of perfect
graphs and several operations on graphs that preserve perfection. In
the last section, we illustrate the decomposition approach on a class of
perfect graphs called Meyniel graphs.

10.1 Basic Classes

Bipartite graphs are perfect since, for any induced subgraph H, if
ω(H) = 2, then χ(H) = 2 and if ω(H) = 1, then χ(H) = 1.

A graph L is the line graph of a graph G if V (L) = E(G) and two
nodes of L are adjacent if and only if the corresponding edges of G are
adjacent.

Theorem 10.1 Line graphs of bipartite graphs are perfect.

Proof: If L is the line graph of graph G, then χ(L) = χ′(G), where χ
denotes the chromatic number and χ′ the edge-chromatic number. Let
ω denote the clique number and ∆ the largest degree. Then ω(L) =
∆(G), except in the trivial case where ∆(G) = 2 and G contains a
triangle.

147
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If G is bipartite, χ′(G) = ∆(G) by Gupta’s theorem [116] and there-
fore χ(L) = ω(L). Since induced subgraphs of L are also line graphs of
bipartite graphs, the result follows. 2

Since bipartite graphs and line graphs of bipartite graphs are per-
fect, it follows from Lovász’s perfect graph theorem (Theorem 3.4) that
complements of bipartite graphs and of line graphs of bipartite graphs
are perfect. To summarize, in this section we have introduced four basic
classes of perfect graphs:

• bipartite graphs and their complements, and

• line graphs of bipartite graphs and their complements.

10.2 Perfection-Preserving Compositions

A composition of two graphs G1 and G2 is an operation that constructs
a third graph G where each of G1 and G2 has fewer nodes than G. We
write G = G1 ∗G2. Conversely, a graph G can be ∗-decomposed if there
exist graphs G1 and G2 such that G = G1 ∗G2. Composition ∗ is said
to preserve perfection if G1 and G2 are perfect if and only if G1 ∗G2 is
perfect.

The following compositions preserve perfection.

Union Given graphs G1 and G2 such that V (G1) ∩ V (G2) = ∅, define
G to have node set V (G1)∪V (G2) and edge set E(G1)∪E(G2).

Clique identification (Berge [8]) Let K1 and K2 be cliques of the
same cardinality in graphs G1 and G2 respectively, where |Ki| <
|V (Gi)| for i = 1, 2. Label the nodes so that V (G1) ∩ V (G2) =
K1 = K2 and define G to have node set V (G1)∪ V (G2) and edge
set E(G1) ∪ E(G2). Union is the special case of clique identi-
fication where K1 = K2 = ∅. To see that clique identification
preserves perfection, note that ω(G) = max(ω(G1), ω(G2)) and
that ω(G)-colorings of G1 and G2 can be composed into an ω(G)-
coloring of G. Finding whether a graph has a clique articulation
can be done in O(n3), where n is the number of nodes in the
graph, as shown by Whitesides [209].
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Join (Cunningham and Edmonds [68]) Let G1 and G2 be graphs, each
with at least three nodes, such that V (G1) ∩ V (G2) = ∅, and let
v1 ∈ V (G1), v2 ∈ V (G2). Denote by N(vi) the set of neighbors of
vi in Gi, for i = 1, 2. The join of G1 and G2 is the graph G with
node set (V (G1)−{v1})∪(V (G2)−{v2}) obtained from G1 \{v1}
and G2 \ {v2} by connecting all nodes in N(v1) to all nodes in
N(v2). The fact that the join preserves perfection was proved
by Bixby [14]. The proof goes as follows. Replicate node vi in
Gi a number of times equal to ω(G)− pi where pi is the size of a
largest clique in N(vi), for i = 1, 2. Since these graphs are perfect
by the replication lemma (Lemma 3.3), they can be ω(G)-colored.
Furthermore, only pi distinct colors appear on the nodes of N(vi).
This implies that these two ω-colorings can be composed into an
ω-coloring of G. Cunningham [67] gave an O(n3) algorithm to
find whether a graph has a join decomposition.

Amalgam (Burlet and Fonlupt [21]) Let K1 and K2 be cliques of
the same cardinality (possibly empty) in graphs G1 and G2 re-
spectively. Let v1 ∈ V (G1) − K1, v2 ∈ V (G2) − K2 be such
that all nodes of Ki are adjacent to all nodes of {vi} ∪ N(vi),
for i = 1, 2, where N(vi) denotes the set of neighbors of vi in
Gi. Label the nodes so that V (G1) ∩ V (G2) = K1 = K2. Fi-
nally, assume that V (Gi) − Ki has cardinality at least three for
i = 1, 2. The amalgam of G1 and G2 is the graph G with node
set (V (G1) − {v1}) ∪ (V (G2) − {v2}) obtained from G1 \ {v1}
and G2 \ {v2} by adding edges connecting all the nodes in N(v1)
to all nodes in N(v2). Note that the join is a special case of
the amalgam. Burlet and Fonlupt [21] showed that the amalgam
composition preserves perfection using a proof similar to that for
the join. Cornuéjols and Cunningham [60] gave an O(mn2) al-
gorithm to find whether a graph has an amalgam decomposition,
where n is the number of nodes and m is the number of edges.

Exercise 10.2 Show that the amalgam composition preserves per-
fection.

2-Amalgam (Cornuéjols and Cunningham [60]) A graph G has a 2-
amalgam if its node set can be partitioned into V1, V2 and K in
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such a way that, for each i = 1, 2, Vi contains disjoint nonempty
node sets Ai and Bi such that every node of A1 is adjacent to
every node of A2, every node of B1 is adjacent to every node
of B2, there are no other adjacencies between V1 and V2, the
nodes of K induce a clique and are adjacent to all the nodes in
A1 ∪ A2 ∪B1 ∪B2 and possibly other nodes of V1 ∪ V2. Also, for
i = 1, 2, Vi contains at least one path from Ai to Bi, and if Ai

and Bi are both of cardinality 1, then the graph induced by Vi

is not a chordless path. When K = ∅, the 2-amalgam is called a
2-join.

We construct two blocks G1 and G2 from G as follows. For i =
1, 2, let Pi be a shortest path from Ai to Bi in G(Vi). Define G1

to be the graph induced by V1 ∪K ∪ V (P2). Similarly G2 is the
graph induced by V2 ∪K ∪ V (P1). Conversely, given G1 and G2,
the 2-amalgam composition is the operation that constructs G
such that G1, G2 are the blocks of a 2-amalgam of G. There is
an O(m2n2) algorithm to find whether a graph has a 2-amalgam
decomposition, where n is the number of nodes and m is the
number of edges. Next we show that the 2-amalgam preserves
perfection ([60]; see also Kapoor [129] Chapter 8).

Theorem 10.3 Let G be a graph with a 2-amalgam and let G1 and G2

be the blocks of a 2-amalgam decomposition. G is perfect if and only if
G1 and G2 are perfect.

Proof: By definition, G1 and G2 are induced subgraphs of G. It follows
that, if G is perfect, so are G1 and G2. Now we prove the converse

(∗) If G1 and G2 are perfect, then so is G.

Claim 1: It suffices to prove (∗) in the case where K = ∅.
Proof of Claim 1: Assume K 6= ∅. Suppose (∗) does not hold, i.e,

G1 and G2 are perfect but G is not. Let H be a minimally imperfect
subgraph of G. Clearly H is not a subgraph of G1 or G2, so V (H) has
a nonempty intersection with both V1 and V2. Suppose H contains a
node x ∈ K. Since H does not have a star cutset by Theorem 3.34, it
follows that V (H) is contained in K ∪ A1 ∪ B1 or K ∪ A2 ∪ B2. But
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then the complement of H is a disconnected graph, a contradiction. So
H contains no node of K. Let H1 and H2 be subgraphs of G1 and G2

induced by V (G1)∩ V (H) and V (G2)∩ V (H) respectively. Graphs H1

and H2 are perfect and H is the 2-join of H1 and H2. Indeed, since
H is distinct from H1 and H2, is connected and has no join, it verifies
all the assumptions required in the definition of a 2-join. This proves
Claim 1.

In the rest of the proof, we assume that K = ∅. The proof of (∗) is
based on a coloring argument, combining colorings of the perfect graphs
G1 and G2 (Claim 3) into a coloring of G (Claim 4). To prove Claim 3,
we will use the following result.

Claim 2: Let uv be an edge in Gi such that N(u)∩N(v) = ∅. Let
G′

i be the graph obtained from Gi by duplicating node v into v′. Let
Hi be the graph obtained from G′

i by deleting edge u, v′. Gi is perfect
if and only if Hi is perfect.

Proof of Claim 2: Graph Gi is an induced subgraph of Hi. It follows
that, if Hi is perfect, then so is Gi.

Conversely, suppose Gi is perfect and Hi is not. Let H∗ be a mini-
mally imperfect subgraph of Hi. Let G∗ be the subgraph of G′

i induced
by the nodes in H∗. Since G∗ is perfect but H∗ is not, V (H∗) must
contain nodes u and v′. Also H∗ and G∗ have the same chromatic
number but the size of a maximum clique in G∗ is one greater than a
maximum clique in H∗. Therefore the maximum clique in G∗ is uvv′.
No node of N(v)− {u} is in H∗ since otherwise H∗ would also have a
clique of cardinality three. Now {v} is a clique cutset of H∗ separating
v′ from the rest of the graph, a contradiction to the assumption that
H∗ is minimally imperfect. This proves Claim 2.

Let ωi be the size of a maximum clique in Gi. Let ai and bi be the
sizes of a maximum clique in Ai and Bi respectively. In a coloring of
Gi, let C(Ai) and C(Bi) be the sets of colors used in the coloring of the
nodes in Ai and Bi respectively.

Claim 3: If Gi is a perfect graph and ω ≥ ωi, then there ex-
ists a coloring of G(Vi) with at most ω colors such that |C(Ai)| = ai,
|C(Bi)| = bi and
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(i) if Pi has an odd number of edges, then |C(Ai) ∩ C(Bi)| =
max(0, ai + bi − ω),

(ii) if Pi has an even number of edges, then |C(Ai) ∩ C(Bi)| =
min(ai, bi),

Proof of Claim 3: We consider the two cases separately.
(i) Pi has an odd number of edges.
Let Pi = x1, . . . , x2k. Duplicate node x2k into x′2k and remove edge

x2k−1x
′
2k. By Claim 2, the new graph is perfect. For i odd, 1 ≤ i < 2k,

duplicate node xi ω − ai times. For i even, 1 < i ≤ 2k − 2, duplicate
node xi ai times.

If ai + bi < ω, duplicate x2k ai times and duplicate x′2k ω − ai − bi

times. The size of a maximum clique in the new graph, say H, is ω
and H is perfect. Color H using ω colors. Note that every node of Pi

belongs to a clique of size ω. So, in the coloring, the colors that appear
in the duplicates of x2k−1 do not appear in C(Ai). But then the colors
that appear in the duplicates of x2k are precisely C(Ai). Therefore the
nodes in Bi and the duplicates of x′2k are colored using colors that do
not appear in C(Ai). Thus |C(Ai) ∩ C(Bi)| = 0.

If ai + bi ≥ ω, duplicate x2k ω − bi times and remove x′2k. The size
of a maximum clique in the new graph H is ω and H is perfect. Color
H using ω colors. Again, in the coloring, the colors that appear in the
duplicates of x2k−1 do not appear in C(Ai). These colors cannot appear
in the duplicates of x2k, so they must appear in C(Bi). So the number
of common colors in C(Ai) and C(Bi) is bi − (ω − ai) = ai + bi − ω.

(ii) Pi has an even number of edges.
Assume w.l.o.g. that ai ≤ bi. Let Pi = x1, . . . , x2k+1. For i odd,

1 ≤ i ≤ 2k− 1, duplicate node xi ω − ai times. For i even, 1 < i ≤ 2k,
duplicate node xi ai times. Finally, duplicate x2k+1 ω − bi times. The
new graph H is perfect and the size of a maximum clique in H is ω.
Color H using ω colors. The colors that appear in C(Ai) are precisely
the colors that appear in the duplicates of x2k. But then these colors
do not appear in the duplicates of x2k+1 and consequently must appear
in C(Bi). Thus |C(Ai) ∩ C(Bi)| = min(ai, bi). This proves Claim 3.

Claim 4: If G1 and G2 are perfect, then G is perfect.

Proof of Claim 4: Since G1 contains no odd hole, every chordless
path from A1 to B1 has the same parity as P1. It follows from the
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definition of 2-amalgam decomposition that P1 and P2 have the same
parity.

Let ω be the size of a maximum clique in G. We will construct a
coloring of G with ω colors. This will be sufficient to prove Claim 4
since, if Claim 4 fails, it also fails for a minimally imperfect graph G
(recall the argument in Claim 1). Clearly, ω ≥ a1 + a2 and ω ≥ b1 + b2.

(i) P1 and P2 both have an odd number of edges.
Then by Claim 3 (i), there exists a coloring of Gi with |C(Ai) ∩

C(Bi)| = max(0, ai + bi − ω). In the coloring of G1, label by 1 through
a1 the colors that occur in A1 and by ω through ω − b1 + 1 the colors
that occur in B1. In the coloring of G2, label by ω through ω − a2 + 1
the colors that occur in A2 and by 1 through b2 the colors that occur in
B2. Color G(V1) and G(V2) to conform to the colorings of G1 and G2.
If this is not a valid coloring of G, there must exist a common color
in A1 and A2 or in B1 and B2. But then either a1 ≥ ω − a2 + 1 or
b2 ≥ ω − b1 + 1, a contradiction.

(ii) P1 and P2 both have an even number of edges.
Then by Claim 3 (ii), there exists a coloring of Gi with |C(Ai) ∩

C(Bi)| = min(ai, bi). In the coloring of G1, label by 1 through a1 the
colors that occur in A1 and by 1 through b1 the colors that occur in
B1. In the coloring of G2, label by ω through ω − a2 + 1 the colors
that occur in A2 and by ω through ω − b2 + 1 the colors that occur in
B2. Color G(V1) and G(V2) to conform to the colorings of G1 and G2.
If this is not a valid coloring of G, there must exist a common color
in A1 and A2 or in B1 and B2. But then either a1 ≥ ω − a2 + 1 or
b1 ≥ ω − b2 + 1, a contradiction. 2

In addition to perfection-preserving decompositions, some decom-
positions that do not preserve perfection seem to be important in the
study of perfect graphs. This should not be surprising since a similar
situation occured in Chapter 9 for balanced matrices. For example,
Chvátal, Fonlupt, Sun and Zemirline [33] use the following decomposi-
tion.

Rosette A z-edge is any edge whose endnodes are both adjacent to a
node z. A graph G has a rosette centered at node z if the graph
obtained from G \ z by removing all z-edges is disconnected and
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the subgraph of G induced by all the neighbors of z consists of
node disjoint cliques. Note that, if G is not a clique, a rosette
is a special case of a star cutset, another important cutset in the
theory of perfect graphs (see Theorem 3.34).

Exercise 10.4 Let A be the clique-node matrix of a graph G and let
B(A) be the bipartite representation of the 0,1 matrix A. Give the
precice connection between

(i) a clique cutset in G and a star cutset in B(A),
(ii) a rosette in G and a star cutset in B(A),
(iii) a 2-amalgam with K 6= ∅ in G and a biclique cutset in B(A).
Describe the decomposition of G that corresponds to a double star

cutset in B(A).

10.3 Meyniel Graphs

Theorem 10.5 (Meyniel [144]) If, in a graph, every odd cycle of length
five or greater has at least two chords, then the graph is perfect.

A graph is called a Meyniel graph if every odd cycle of length five
or greater has at least two chords. Clearly, the definition is not a good
characterization of Meyniel graphs since we need to enumerate all the
odd cycles to know whether or not a graph is a Meyniel graph. Burlet
and Fonlupt [21] give a polynomial algorithm to recognize these graphs.
It is based on a decomposition of Meyniel graphs into basic graphs using
the amalgam decomposition recursively.

Exercise 10.6 Let G be the amalgam of G1 and G2. Show that, if G1

and G2 are Meyniel graphs, then G is a Meyniel graph.

A graph is triangulated if it contains no hole. The structure of tri-
angulated graphs is well studied, see e.g. [107] and there are efficient
recognition algorithms to test membership in this class. Clearly, trian-
gulated graphs are Meyniel graphs.

A node u is universal for a subgraph K of G \ u if u is adjacent to
every node of K. Clearly, bipartite graphs are Meyniel graphs. So are
bipartite graphs B plus a universal node for B.
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A basic Meyniel graph G is either a triangulated graph or a bipartite
graph B together with at most one universal node for B.

Theorem 10.7 (Burlet and Fonlupt [21]) If a connected Meyniel graph
is not basic, then it can be amalgam decomposed.

This theorem yields a polynomial algorithm to recognize Meyniel
graphs: Starting from G, we recursively repeat the amalgam decom-
position on each of the graphs obtained in the process until no fur-
ther amalgam decomposition exists (the resulting graphs are called the
blocks of the decomposition). Finding an amalgam decomposition in
a graph can be done in polynomial time [60]. Conforti-Gerards [53]
show that the number of blocks is linear. Finally, there is a polynomial
algorithm for recognizing whether the blocks are basic Meyniel graphs.

Exercise 10.8 Show that basic Meyniel graphs can be decomposed into
the basic classes introduced in Section 10.1 using clique cutsets and
the complement of the union operation. [Hint: Use the fact that a
triangulated graph is either a clique or contains a clique cutset.]

Theorem 10.7 was generalized to cap-free graphs [50]. A cap is a
hole together with a node adjacent to exactly two consecutive nodes in
the hole. Clearly, Meyniel graphs are cap-free, since a cap contains an
odd hole or is an odd cycle with a unique chord.

Exercise 10.9 Show that a cap-free graph is perfect if and only if it is
a Meyniel graph.

A basic cap-free graph G is either a triangulated graph or a bicon-
nected triangle-free graph B together with at most one universal node
for B.

In this section we prove the following:

Theorem 10.10 (Conforti, Cornuéjols, Kapoor, Vušković [50]) If a
connected cap-free graph is not basic, then it can be amalgam decom-
posed.

We follow the proof in [50].
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10.3.1 D-structures

Let G(S) denote the subgaph of G induced by the subset S of V .

Definition 10.11 A D-structure (C1, C2, K) of G consists of disjoint
sets of nodes C1, C2 and K, where |C1| ≥ 2, |C2| ≥ 2 and the nodes
of K induce a clique of G (possibly K is empty). Furthermore, the
subgraph G(C1) is connected and every node in C1 is universal for C2∪
K, every node in C2 is universal for C1 ∪K and there exists no node
in V − (C1 ∪ C2 ∪K) adjacent to both a node in C1 and a node in C2.

Lemma 10.12 If a cap-free graph G contains a D-structure then G
contains an amalgam decomposition.

To prove this lemma we first need to prove the following result:

Lemma 10.13 Let G(V ′) be a connected subgraph of a cap-free graph
G, |V ′| ≥ 2. Let z be a node universal for V ′ and let y be a node
that is adjacent but not universal to V ′ such that y and z are connected
by some chordless path P ′ in G(V − V ′). Then there exists a node
x ∈ V (P ′), adjacent but not universal to V ′ such that, in the subpath
P of P ′ from z to x, all the nodes in V (P )− {x} are universal for V ′.

Proof: In P ′ pick x to be the node closest to z that is adjacent but
not universal to V ′. Let P be the xz-subpath of P ′. Let x′ be the
node closest to x in P universal for V ′. If x′ is not adjacent to x, then
the subpath of P connecting x to x′, together with two adjacent nodes
u, v ∈ V ′, where v is adjacent to x and u is not adjacent to x forms a
cap. Note that since V ′ is connected, such a choice of nodes u and v is
always possible. Now let x′′ be the node of P not adjacent to V ′ closest
to x. Pick the subpath P ′′ of P containing x′′ with only the endnodes
universal for V ′. Let w be the node of V (P ) − V (P ′′) adjacent to the
endnode of P ′′ closest to x. Now P ′′ together with w and a node of V ′

adjacent to w induces a cap. 2

Proof: (Lemma 10.12) Let U be the set of nodes in V − (C1 ∪C2 ∪K)
that are adjacent to C1 and are connected to a node in C2 by a path in
G(V − (C1 ∪K)).
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Claim 1: Every node in U is universal for C1.
Proof: Assume not and let u ∈ U be connected to y ∈ C2 by a

chordless path Pu in G(V − (C1 ∪K)). Since C1 and C2 belong to a D-
structure, then the length of Pu is greater than one. By Lemma 10.13,
we may assume that all the nodes of Pu, except for u, are universal for
C1. Now the node on Pu adjacent to y has neighbors in both C1 and
C2, contradicting the definition of a D-structure. This completes the
proof of Claim 1.

Let K ′ contain the nodes in K that are not universal for U and
K ′′ = K − K ′. Define A = C1, B = C2 ∪ K ′ ∪ U . We show that
(A,B, K ′′) is an amalgam decomposition of G. Claim 1 shows that
every node in B is universal for A and by definition of K ′′, every node
in K ′′ is universal for U . Since (C1, C2, K) is a D-structure, every node
in K ′′ is universal for C1 ∪ C2 ∪K ′.

Claim 2: Let G′ be the graph obtained from G by removing all edges
with one endnode in A and the other in K ′. Then in G′(V − (C2∪K ′′∪
U)) no path connects a node of K ′ and a node of C1 = A.

Proof: Let P = k, . . . , vk, x be a chordless path connecting k ∈ K ′

and x ∈ C1 and contradicting the claim. No intermediate node of P is
adjacent to a node in C2 else, by Claim 1, vk belongs to U , contradicting
the definition of P . If P has length greater than 2, then the nodes of
P , together with any node in C2 induce a cap.

So P = k, vk, x. Since k is not universal for U , there exists a node
u ∈ U not adjacent to k. Let Pu = x1, . . . , xm be a chordless path
connecting u = x1 and a node xm ∈ C2 in G(V − (C1 ∪ K)). Let
u = u1, . . . , un = xm be the nodes of Pu that are universal for C1 with
ui closer to u than ui+1. Note that all nodes u1, . . . , un−1 belong to U .

We now show that ui cannot be adjacent to ui+1, 1 ≤ i ≤ n − 1.
Assume not and let i be the highest index such that ui and ui+1 are
adjacent. If i = n − 1, ui contradicts the definition of a D-structure.
So i < n − 1. Then the nodes in the subpath of Pu between ui+1 and
ui+2, together with ui and any node in C1 induce a cap.

Let xj be the node of smallest index adjacent to k. (Since xm is
adjacent to k, such a node exists). Since u is not adjacent to k, j > 1.
If xj is universal for C1, let xi be the node of U having largest index
i < j. Now the nodes in the subpath of Pu between xi and xj, together
with k and any node of C1 induce a cap. So xj is not universal for C1.
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Let xi be the node of V (Pu) ∩ U having largest index i < j. Now the
nodes in the subpath of Pu between xi and xj, together with k, vk and
x induce a cap. (Note that node vk is not adjacent to any node in Pu

since otherwise vk belongs to U , contradicting the assumption). This
completes the proof of Claim 2.

The following claim shows that (A,B, K ′′) is an amalgam decom-
position of G.

Claim 3: Let G′′ be obtained from G by removing all edges with
one endnode in A and the other in B. Then in G′′(V −K ′′), no path
connects a node in A and a node in B.

Proof: Let P = x1, . . . , xn be a chordless path between x1 in A and
xn in B and contradicting the claim. Claim 1 shows that if xn ∈ C2,
then x2 ∈ U , a contradiction. Claim 2 shows xn 6∈ K ′. So xn ∈ U and
let Pxn be a path connecting xn and a node in C2 in G(V − (C1 ∪K)).
Now there is a path in G(V − (C1 ∪ K)) between x2 and a node in
C2 only using nodes of V (Pxn) ∪ V (P ). So x2 must belong to U , a
contradiction. 2

10.3.2 M-structures

M-structures were first introduced by Burlet and Fonlupt [21] in their
study of Meyniel graphs.

An induced subgraph G(V1) of G is called an M-structure (multi-
partite structure) if Ḡ(V1) contains at least two connected components
each with at least two nodes. Let W1, . . . , Wk be the node sets of these
connected components. The proper subclasses of G(V1) are the sets
Wi of cardinality greater than or equal to 2. The partition of an M-
structure is denoted by (W1, . . . , Wr, K) where K is the union of all
non-proper subclasses. Note that K induces a clique in G.

Lemma 10.14 An M-structure G(V1) of G is maximal with respect to
node inclusion, if and only if there exists no node v ∈ V − V1 such that
v is universal for a proper subclass of G(V1).

Proof: Let G(V1 ∪ {u}) be an M-structure. Assume node u is not
universal for any proper subclass of G(V1). In Ḡ(V1 ∪ {u}) node u is
adjacent to at least one node in each of the proper subclasses. Thus
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there exists only one proper subclass in G(V1 ∪ {u}), contradicting the
assumption.

Conversely let node u be universal for some proper subclass Wi of
G(V1). Then Ḡ(V1 ∪ {u}) has at least two components with more than
one node, the graph induced by Wi and at least one component with
more than one node in (V1 ∪ {u})−Wi. 2

The above proof yields the following:

Corollary 10.15 Let G(V1) and G(V2) be M-structures with V1 ⊆ V2.
Let Wi and Zj be connected components of Ḡ(V1) and Ḡ(V2) respectively
having nonempty intersection. Then Wi ⊆ Zj.

Lemma 10.16 Let G(V1) be a maximal M-structure of a cap-free graph
G. Then a node in V − V1 cannot be adjacent to two proper subclasses
of G(V1).

Proof: Assume node u ∈ V − V1 is adjacent to two proper subclasses
W1 and W2 of G(V1). Since G(V1) is maximal, by Lemma 10.14 node
u is not universal for either of the classes. Also since the complement
of G(W1) is connected, there must exist a pair of nodes x1, y1 adjacent
in the complement, such that node u is adjacent to x1 but not to y1.
Similarly there must exist a pair x2, y2 in W2 such that x2, y2 are ad-
jacent in the complement and node u is adjacent to x2 but not to y2.
But now x1, x2, y1, y2 together with node u induce a cap. 2

Theorem 10.17 If G is a cap-free graph containing an M-structure
either with at least three proper subclasses, or with at least one proper
subclass which is not a stable set, then G contains an amalgam decom-
position.

Proof: If G contains a D-structure (C1, C2, K) then, by Lemma 10.12,
G contains an amalgam decomposition. So the theorem follows from
the proof of the following statement:

If G is a cap-free graph containing an M-structure either with at
least three proper subclasses, or with at least one proper subclass which
is not a stable set, then G contains a D-structure (C1, C2, K).
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Let G(V1) be an M-structure of G satisfying the above property and
G(V2) a maximal M-structure with V1 ⊆ V2.

Claim 1: The M-structure G(V2) either contains at least three
proper subclasses or contains exactly two proper subclasses not both of
which are stable sets.

Proof: If G(V1) contains a proper subclass, say Wi, which is not
a stable set, by Corollary 10.15, there exists a proper subclass, say
Zj of G(V2) such that Wi ⊆ Zj. Then Zj is not a stable set. If all
proper subclasses of G(V1) are stable sets, then G(V1) has at least
three proper subclasses say W1,W2, . . . , Wk. If G(V2) has only two
proper subclasses, say Z1, Z2, then by Corollary 10.15, we may assume
w.l.o.g. that W1 ∪W2 ⊆ Z1. Then Z1 is not a stable set, since every
node in W1 is adjacent to a node in W2. This completes the proof of
Claim 1.

Claim 2: Let G(V2) be a maximal M-structure of G with partition
(W1,W2, K), where W1 is not a stable set. Then G contains a D-
structure (C1, C2, K).

Proof: Let C1 be a connected component of G(W1) with more than
one node. Let C2 = W2. Then (C1, C2, K) is a D-structure, since by
Lemma 10.16 no node of V − V2 is adjacent to a node in C1 and a
node in C2, and |C2| ≥ 2, since W2 is a proper subclass of G(V2). This
completes the proof of Claim 2.

Claim 3: Let G(V2) be a maximal M-structure of G with at least
three proper subclasses. Then G contains a D-structure (C1, C2, K).

Proof: Let W1,W2, . . . ,Wl, l ≥ 3 be the proper subclass of G(V2)
and let K be the collection of all non-proper subclasses. Let C1 be
the nodes in two proper subclasses of G(V2), (note that G(C1) is a
connected graph), C2 be the nodes in all the other proper subclasses of
G(V2). Then (C1, C2, K) is a D-structure since |C1| ≥ 2, |C2| ≥ 2 and
Lemma 10.16 shows that the only nodes having neighbors in both C1

and C2 belong to K. So the proof of Claim 3 is complete. 2

10.3.3 Expanded Holes

An expanded hole consists of disjoint nonempty sets of nodes S1, . . . , Sn,
n ≥ 4, not all singletons, such that, for all 1 ≤ i ≤ n, the graphs G(Si)
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are connected. Furthermore, every si ∈ Si is adjacent to sj ∈ Sj, i 6= j,
if and only if j = i + 1 or j = i− 1 (modulo n).

Lemma 10.18 Let G be a cap-free graph and let H be a hole of G. If s
is a node having two adjacent neighbors in H, then either s is universal
for H or s together with H induces an expanded hole.

Proof: Let s be a node with two adjacent neighbors in H. If s has
no other neighbors on H, then s induces a cap with H. Let H =
x1, . . . , xn, x1 with node s adjacent to x1 and xn. If s is not universal
for H, and does not induce an expanded hole together with H, then let
k be the smallest index for which s is not adjacent to xk. Let l be the
smallest index such that l > k and s is adjacent to xl. Now node xk−2

(xn if k = 2) together with the hole s, xk−1, . . . , xl, s forms a cap. 2

Lemma 10.19 Let G be a cap-free graph and let S = ∪n
i=1Si, n > 4,

be a maximal expanded hole in G with respect to node inclusion. Either
G contains an M-structure with a proper subclass which is not a stable
set of G, or all nodes that are adjacent to a node in Si and a node in
Si+1 (Sn+1 = S1) for some i are universal for S and induce a clique of
G.

Proof: Let u be a node adjacent to s1 ∈ S1 and s2 ∈ S2. By applying
Lemma 10.18 to any hole that contains s1 and s2 and a node each from
the sets Sj, j > 2, we have that u is adjacent to all nodes in S−(S1∪S2),
else the maximality of S is contradicted. Now since node u is adjacent
to s1, s2 and is universal for all sets Sj, j > 2, Lemma 10.18 shows that
u is universal for S1 and S2, hence for S.

Let u and v be two nonadjacent nodes that are universal for S. Then
u, v together with s1 ∈ S1, s2 ∈ S2 and s4 ∈ S4 induces an M-structure
with proper sets W1 = {u, v} and W2 = {s1, s2, s4}. Furthermore W2

is not a stable set of G. 2

Theorem 10.20 A cap-free graph that contains an expanded hole con-
tains an amalgam decomposition.

Proof: Let S = ∪n
i=1Si be a maximal expanded hole in G. First assume

that n = 4. Then the node set S induces an M-structure with proper
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subclasses S1 ∪ S3 and S2 ∪ S4. S2 ∪ S4 is not a stable set because, say,
|S2| ≥ 2 and G(S2) is connected. Hence by Theorem 10.17 we are done.

Now assume that n > 4. By Lemma 10.12, it is sufficient to show
that G contains a D-structure (C1, C2, K). Assume w.l.o.g. that |S2| ≥
2 and let K be the set of nodes that are universal for S. Lemma 10.19
shows that K is a clique of G. Let C1 = S2 and C2 = S1 ∪ S3. Lemma
10.19 shows that every node that is adjacent to a node of C1 and a node
of C2 is universal for S and hence belongs to K. Therefore (C1, C2, K)
is a D-structure. 2

10.3.4 The Main Theorem

Now we are ready to prove Theorem 10.10, which we restate here for
convenience.

Theorem Every connected cap-free graph that does not contain an
amalgam decomposition is basic cap-free.

Proof: Assume G does not contain an amalgam decomposition and is
not a basic cap-free graph. Since G is not triangulated, G contains
a nonempty biconnected triangle-free subgraph. Let F be a maximal
node set inducing such a biconnected triangle-free subgraph.

Claim 1: Every node in V − F that has at least two neighbors in
F is universal for F .

Proof: Let u be a node in V − F having at least two neighbors in
F . The graph induced by F ∪ {u} contains a triangle u, x, y else the
maximality of F is contradicted. Let H be a hole in G(F ) containing
x and y. (H exists since, by biconnectedness, x and y belong to a cycle
and since G(F ) contains no triangle, the smallest cycle containing x
and y is a hole). Lemma 10.18 shows that either u is universal for H
or forms an expanded hole with H. Theorem 10.20 rules out the latter
possibility. Let F ′ ⊆ F be a maximal set of nodes such that G(F ′)
contains H, is biconnected and such that node u is universal for F ′. If
F 6= F ′, then since G(F ) and G(F ′) are biconnected, some z ∈ F − F ′

belongs to a hole that contains an edge of G(F ′). Let H ′ be such a
hole. By Lemma 10.18 and Theorem 10.20, node u is adjacent to all
the nodes of H ′. Let F ′′ = F ′ ∪ V (H ′). G(F ′′) is biconnected, u is
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universal for F ′′. Hence F ′′ contradicts the maximality of F ′. Hence u
is universal for F and the proof of Claim 1 is complete.

Claim 2: Let U be the set of universal nodes for F . Then the nodes
in U induce a clique of G.

Proof: Let w, z ∈ U be two nonadjacent nodes of U and let v1, . . . , vn, v1

be a hole of G(F ). Then nodes w, z together with v1, v2, v3 and v4

induce an M-structure, either with two proper subclasses not both of
which are stable if v1 and v4 are not adjacent, or with three proper
subclasses. By Theorem 10.17, G contains an amalgam decomposition.
This completes the proof of Claim 2.

Claim 3: V = F ∪ U .
Proof: Let S = V − (F ∪ U). By Claim 1, every node in S has at

most one neighbor in F . Let C be a connected component of G(S).
By maximality of F , there is at most one node in F , say y, that has a
neighbor in C. If such a node y exists, let C1, . . . , Cl be the connected
components of G(S) adjacent to y. Let V1 = C1∪ . . . Cl∪{y}, A = {y},
K = U , V2 = V − (V1 ∪ K) and B be the set of neighbors of y in F .
Then (A,B,K) is an amalgam decomposition of G, separating V1 from
V2.

If no component of G(S) is adjacent to a node of F , let V1 = U ∪S,
A = U , V2 = B = F . Then (A, B, ∅) is an amalgam decomposition of
G. This completes the proof of Claim 3.

If U contains at least two nodes, then let V1 = A = U , V2 = B = F
and (A,B, ∅) is an amalgam decomposition of G. If U contains at most
one node, then G is a basic cap-free graph. 2
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A. Rényi and V. Sós eds.), Colloq. Math. Soc. János Bolyai 4 ,
North Holland, Amsterdam (1970) 119-133.

[7] C. Berge, Balanced Matrices, Mathematical Programming 2 (1972)
19-31.

[8] C. Berge, Graphs and Hypergraphs , North Holland (1973).

[9] C. Berge, Balanced Matrices and the Property G, Mathematical
Programming Study 12 (1980) 163-175.

165



166 BIBLIOGRAPHY

[10] C. Berge, Minimax Theorems for Normal and Balanced Hyper-
graphs. A Survey, in: Topics on perfect graphs (C. Berge and V.
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[18] E.O. Boros and O. Čepek, On Perfect 0,±1 Matrices, Discrete
Mathematics 165 (1997) 81-100.

[19] W.G. Bridges and H.J. Ryser, Combinatorial Designs and Related
Systems, J. Algebra 13 (1969) 432-446.

[20] T.H. Brylawski, A Decomposition for Combinatorial Geometries,
Trans. Amer. Math. Soc. 171 (1972), 235-282.



BIBLIOGRAPHY 167

[21] M. Burlet and J. Fonlupt, Polynomial Algorithm to Recognize a
Meyniel Graph, in: Topics on Perfect Graphs (C. Berge and V.
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[86] A. Frank, A. Sebö and E. Tardos, Covering Directed and Odd
Cuts, Mathematical Programming Study 22 (1984) 99-112.

[87] A. Frank and Z. Szigeti, On Packing T -Cuts, Journal of Combi-
natorial Theory B 61 (1994) 363-371.

[88] D.R. Fulkerson, Blocking Polyhedra, in: Graph Theory and its
Applications (B. Harris ed.), Academic Press, New York (1970)
93-112.

[89] D.R. Fulkerson, Blocking and Antiblocking Pairs of Polyhedra,
Mathematical Programming 1 (1971) 168-194.

[90] D. R. Fulkerson, Anti-Blocking Polyhedra, Journal of Combinato-
rial Theory B 12 (1972) 50-71.



BIBLIOGRAPHY 173

[91] D.R. Fulkerson, Packing Rooted Directed Cuts in a Weighted Di-
rected Graph, Mathematical Programming 6 (1974) 1-13.

[92] D. R. Fulkerson, A. Hoffman and R. Oppenheim, On Balanced
Matrices, Mathematical Programming Study 1 (1974) 120-132.

[93] T. Gallai, Transitiv Orientierbare Graphen, Acta Mathematicae
Academiae Scientarum Hungaricae 18 (1967) 25-66.

[94] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman (1979).

[95] G.S. Gasparyan, Minimal Imperfect Graphs: A Simple Approach,
Combinatorica 16 (1996) 209-212.

[96] G.S. Gasparyan, M. Preissmann and A. Sebö, Imperfect and Non-
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[176] A. Sebö, A Very Short Proof of Seymour’s Theorem on t-Joins,
preprint, IMAG, Grenoble, France (1990).

[177] A. Sebő, The connectivity of minimal imperfect graphs, Journal
of Graph Theory 23 (1996) 77-85.
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twin, 127
two-commodity cut, 17
two-commodity path, 17
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