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Abstract

Mixed integer Gomory cuts have become an integral part of state-of-the-art software for
solving mixed integer linear programming problems. Therefore, improvements in the perfor-
mance of these cutting planes can be of great practical value. In this paper we present a simple
and fast heuristic for improving the coefficients on the continuous variables in the mixed integer
Gomory cuts. This is motivated by the fact that, in a mixed integer Gomory cut, the coefficient
of an integer variable lies between 0 and 1, whereas for a continuous variable, there is no upper
bound. The heuristic tries to reduce the coefficients of the continuous variables. We call the
resulting cuts reduce-and-split cuts. We found that, on several test problems, reduce-and-split
cuts can substantially enhance the performance of a branch-and-bound algorithm.

Keywords: Integer programming, mixed integer programming, cutting plane, split cut, mixed
integer Gomory cut, reduce-and-split cut

1 Introduction

Many management problems can be formulated as mixed integer linear programs (MILP). The
diversity of applications is well represented in MIPLIB 3.0 [8], an electronically available library
of MILP’s: airline crew scheduling, telecommunication network design, electricity generation, and
many others. Other recent application areas include combinatorial auctions (CombineNet), finan-
cial engineering (Axioma) and sports scheduling such as for the National Football League (Optimal
Planning Solutions) and Major League Baseball (The Sports Scheduling Group), just to cite a few.

MILP formulations have become more practical recently due to great improvements in com-
mercial software (Xpress and Cplex are currently two of the best). Indeed, MILP’s that would
have required years of computing time 15 years ago can be solved in seconds today: The speedup
factor is roughly 1000 for linear programming algorithms, 100 for integer programming algorithms
and 1000 for hardware (desktop computers) for an overall speedup of 100 million (see Bixby, Gu,
Rothberg and Wunderling [9] for a detailed study). Despite these spectacular improvements, there
is need for greater speedups in several application areas (such as combinatorial auctions and sports
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scheduling, for instance). There is potential for further gains in integer programming algorithms.
The purpose of this paper is to propose such an improvement.

The best current software packages for solving MILP’s use a combination of techniques, in-
cluding enumeration (branch-and-bound) and several types of cutting planes. The idea of solving
mixed integer linear programs using cutting planes dates back to the work of Gomory [18] in the
late fifties and early sixties. Mixed Integer Gomory cuts (MIG cuts) fell out of favor in the late
sixties, but were revived in the nineties (Balas, Ceria, Cornuéjols and Natraj [5]). Today, MIG
cuts play a major role in state-of-the-art software for solving MILP’s (Bixby, Gu, Rothberg and
Wunderling [9]), accounting for much of the speedup in integer programming algorithms beyond
the improvements in linear programming mentioned above. Therefore any improvement in the
performance of these cuts can be of great practical value.

In this paper, we exploit the fact that MIG cuts are split cuts (Balas [2], Cook, Kannan and
Schrijver [12] and Nemhauser and Wolsey [21]) to improve their performance. Any split cut can be
derived from a basis of the linear programming relaxation and a disjunction (Andersen, Cornuéjols
and Li [1]). To improve a MIG cut, we try to improve the disjunction while keeping the basis
fixed. This can be viewed as a natural counterpart of the work of Balas and Perregaard [7], where
they improve the cut by modifying the basis while keeping the disjunction fixed. Their procedure
generates lift-and-project cuts [4] and it has been implemented recently in the software package
Xpress. Other strengthening procedures were proposed by Ceria, Cornuéjols and Dawande [11] and
by Eckstein and Nediak [17].

What do we mean by “improving” a MIG cut? This question is essentially the same as the
question of how to measure cut quality. A possible measure is the distance cut off, i.e. the Eu-
clidean distance between the cut and the point it is designed to cut off. In this paper, we present
a closed form formula for the distance cut off by a split cut. Furthermore, we analyze the factors
that determine this measure. We find that an important factor is the size of the coefficients of
the continuous variables in the cut. This is used to design an algorithm for modifying the MIG
cuts to generate another set of split cuts with reduced coefficients on the continuous variables. We
call these cuts reduce-and-split cuts. We applied reduce-and-split cuts to a set of test problems
from MIPLIB 3.0 [8], a standard library of test problems for mixed integer linear programming.
On several test problems, these cuts drastically reduce the number of nodes in the search tree in a
cut-and-branch framework.

Consider the Mixed Integer Linear Program (MILP):

(MILP) min{cT x : Ax = b, x ≥ 0n, xj integer for j ∈ NI},

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and NI ⊆ N := {1, 2, . . . , n}. WLOG assume A is of full row

rank. The linear programming problem obtained from MILP by dropping the integrality conditions
on xj for j ∈ NI is denoted LP. The sets PI and P denote the feasible solutions to MILP and LP
respectively. A basis matrix for LP is an m × m invertible submatrix of A. A basis for LP is an
m-subset B of N such that the submatrix of A induced by B is a basis matrix.

An important concept for cut generation is that of a disjunction (see Balas [3]). In fact, any
MILP can be formulated as a linear program in which the feasible solutions have to satisfy a set of
disjunctions. An important special case is the split disjunction D(π, π0) of the form πT x ≤ π0 ∨
πT x ≥ π0 + 1, where (π, π0) ∈ Z

n+1 and πj = 0 for j /∈ NI . Here “∨” denotes the “or” operator,
which requires that x satisfies either πT x ≤ π0 or πT x ≥ π0 + 1. Clearly any feasible solution to
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MILP has to satisfy every split disjunction. Split disjunctions can therefore be used to generate
cutting planes that cut off points of P violating D(π, π0). The set of all split disjunctions is denoted
by Π := {D(π, π0) : (π, π0) ∈ Z

n+1 and πj = 0 for j /∈ NI}.
Let D(π, π0) ∈ Π be an arbitrary split disjunction, and let FD(π,π0) denote the set of points in

R
n that satisfy this disjunction. Clearly any inequality that is valid for the points in P ∩FD(π,π0) is

also valid for Conv (P ∩FD(π,π0)), where Conv (P ∩FD(π,π0)) denotes the convex hull of P ∩FD(π,π0).
A split inequality is an inequality that is valid for Conv (P ∩ FD(π,π0)) for some split disjunction
D(π, π0). The set of points in P that satisfy all split inequalities is called the split closure of MILP,
and is defined by:

SC :=
⋂

D(π,π0)∈Π

Conv (P ∩ FD(π,π0)).

Any split inequality is equal to or dominated by a split cut derived from a basis B and a split
disjunction D(π, π0) (Andersen, Cornuéjols and Li [1]). Also, any MIG cut can be viewed as a split
cut (Balas [2] and Nemhauser and Wolsey [21]). This means that, given any MIG cut, there exists
D(πG, πG

0 ) ∈ Π and a basis B such that the split cut derived from D(πG, πG
0 ) and B is the given

MIG cut. We use this relationship to improve the performance of MIG cuts.
The remainder of this paper is organized as follows. In Sect. 2, we present the theoretical

foundation for our algorithm. In particular, we derive a closed form formula for the distance cut
off by a split cut, i.e. a formula that, given any split disjunction D(π, π0) ∈ Π and a basis B,
outputs the distance cut off d(B, π, π0) by the split cut derived from D(π, π0) and B. In Sect. 3,
we use the theory presented in Sect. 2 to design an algorithm for generating cutting planes that
improve the MIG cuts on the continuous variables. In Sect. 4, we present our experiments to test
the performance of these cutting planes. We incorporate the cuts into the commercial code CPLEX
[15]. The resulting algorithm is tested on MIPLIB 3.0 [8].

2 Theoretical foundation

This section contains the theoretical foundation for the cut generator we have developed. Through-
out this section, B denotes an arbitrary basis of LP. The basis B is not required to be feasible. The
outline of the section is as follows. In Sect. 2.1, we introduce the conic polyhedron associated with
the basis B. In Sect. 2.2, we demonstrate how a split cut can be derived from a split disjunction
and B. In Sect. 2.3, we derive a closed form formula for the distance cut off by a split cut. Split
cuts derived from bases of LP are also known as intersection cuts (Balas [2]). In Sect. 2.4, we show
that the strengthening procedure introduced by Balas and Jeroslow [6] can be re-interpreted as a
modification procedure for the underlying split disjunction. In Sect. 2.5, we demonstrate that any
MIG cut can be obtained as an intersection cut by choosing the disjunction appropriately (Gomory
[18] and Balas [2]). In Sect. 2.6, we demonstrate the equivalence between split cuts and MIG cuts
generated from integer combinations of the rows of the simplex tableau.

2.1 The conic polyhedron associated with a basis

A key concept for the theory presented here is the idea of relaxing the linear programming relaxation
of MILP by dropping constraints. Specifically, the relaxations we use can be derived from bases
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of LP. Let J := N \ B index the non-basic variables. The conic polyhedron associated with B is
given by:

P (B) :={x ∈ R
n : Ax = b and xj ≥ 0 for j ∈ J}. (1)

The set P (B) is the relaxation of P obtained by deleting the non-negativity constraints on the
basic variables. Observe that P (B) is a translate of a polyhedral cone. Specifically, we may write
P (B) = C + x̄, where C is the polyhedral cone C := {x ∈ R

n : Ax = 0 and xj ≥ 0 for j ∈ J},
and x̄ solves the system Ax = b and xj = 0 for j ∈ J . The vector x̄ ∈ R

n is known as the basic
solution corresponding to the basis B.

The extreme rays of the polyhedral cone C can be obtained as follows. Observe that, since the
columns of A indexed by B are linearly independent, we can solve the system Ax = b in terms of
the basic variables:

x̄i =xi +
∑

j∈J

āijxj , i ∈ B. (2)

The above system is known as the simplex tableau. The extreme rays of C can be obtained from
the coefficients of the simplex tableau as follows. Given j ∈ J , define the vector r j :

rj
k :=







−ākj if k ∈ B,
1 if k = j,
0 otherwise.

(3)

The conic polyhedron P (B) can then be written as P (B) = x̄+ Cone ({rj}j∈J), where Cone ({rj}j∈J)

denotes the polyhedral cone generated by the vectors {rj}j∈J . Observe that, since there are |B| = m
basic variables, there are |J | = n − m non-basic variables. It follows that P (B) has exactly n − m
extreme rays.

2.2 Intersection cuts and split cuts

We now derive the intersection cut introduced by Balas [2]. Let D(π, π0) be an arbitrary split
disjunction. Assume x̄ violates the disjunction D(π, π0), and define ε(π, π0) := πT x̄ − π0 to be the
amount by which x̄ violates the first term of the disjunction D(π, π0). Since π0 < πT x̄ < π0 + 1,
we have 0 < ε(π, π0) < 1. Also, for j ∈ J , define scalars:

αj(π, π0) :=











− ε(π,π0)
πT rj if πT rj < 0,

1−ε(π,π0)
πT rj if πT rj > 0,

+∞ otherwise.

(4)

The interpretation of the numbers αj(π, π0) for j ∈ J is the following. Let xj(α) := x̄+αrj , where
α ∈ R+, denote the half-line starting in x̄ in the direction rj. The value αj(π, π0) is the smallest
value of α ∈ R+ such that xj(α) satisfies the disjunction D(π, π0). In other words, the point
xj(αj(π, π0)) is the intersection of the half-line starting in x̄ in direction rj with the hyperplane
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Figure 1: Deriving the intersection cut from a conic polyhedron

πT x = π0 or the hyperplane πT x = π0 + 1. Note that αj(π, π0) = +∞ when the direction rj is
parallel to the hyperplane πT x = π0. Given the numbers αj(π, π0) for j ∈ J , the intersection cut
associated with B and D(π, π0) is given by:

∑

j∈J

xj

αj(π, π0)
≥ 1. (5)

The validity of this inequality for the set of points in P (B) that satisfy the disjunction D(π, π0)
was proven by Balas [2]. In fact, the intersection cut gives a complete description of the set of
points in P (B) that satisfy the disjunction D(π, π0), i.e. we have:

Conv (P (B) ∩ FD(π,π0)) = {x ∈ P (B) : (5)}.

Figure 1 gives an example of a conic polyhedron with two extreme rays (|J | = 2). The split
disjunction D(π, π0) splits the conic polyhedron into the two disjoint shaded parts. Observe that
the two points that determine the intersection cut are the first points that satisfy the disjunction
D(π, π0) when traveling from x̄ in the directions r1 and r2.

In a recent paper [1], we showed that intersection cuts are sufficient for describing the split
closure of MILP. Let B∗ denote the set of all bases of LP. We have:

SC =
⋂

B∈B∗

⋂

D(π,π0)∈Π

Conv (P (B) ∩ FD(π,π0)).

However, it is NP-hard to optimize a linear function over SC, even when P is a conic polyhedron
[10], [13].
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2.3 The distance cut off

In this section, we give a closed form formula for the Euclidian distance cut off by an intersection
cut derived from a split disjunction D(π, π0) and a basis B, i.e. the distance between x̄ and the
hyperplane defined by (5). Let d(B, π, π0) denote the distance cut off by this cut. We have:

Lemma 1 Let B be a basis of LP, let x̄ be the corresponding basic solution, and let D(π, π0) be a
split disjunction violated by x̄. The distance cut off by the split cut derived from B and D(π, π0)
satisfies:

(d(B, π, π0))
2 =

1
∑

j∈J
1

(αj(π,π0))2
(6)

Proof. Let γT x ≥ 1, where γ ∈ R
n, denote the intersection cut (5) derived from B and the disjunc-

tion D(π, π0). Then γj = 0 for j ∈ N \ J , γj = 1
αj(π,π0) for j ∈ J and γT x̄ = 0. Since γ is a normal

vector to the intersection cut (5), it follows that d(B, π, π0) satisfies γT (x̄ + d(B, π, π0)
γ

‖γ‖
2

) = 1.

Isolating d(B, π, π0) in this expression gives the formula. 2

The above formula gives a direct relationship between the coefficients in the intersection cut (5)
and the distance cut off. This relationship is part of the motivation for the algorithm we develop
in Sect. 3, where we fix the basis B of the linear programming relaxation, and attempt to improve
the coefficients of the continuous variables in the MIG cuts.

2.4 Strengthening

The idea of cut strengthening is produce another cut that cuts off more of P . Such a strengthening
procedure was introduced by Balas and Jeroslow [6] for split cuts.

Given a non-basic integer variable xk, consider replacing D(π, π0) with D(πk(δ), πk
0 (δ)) of the

form πk(δ) = π + δek and πk
0 (δ) = b (πk(δ))T x̄c, where δ ∈ Z and ek is the kth unit vector in R

n.
In other words, we are considering modifying π on the kth component. Naturally, we assume that
the disjunction D(π, π0) is violated, so that π0 = bπT x̄c.

Observe that, since k is non-basic, we have (πk(δ))T x̄ = πT x̄ and πk
0 (δ) = π0 for every integer

δ. This means that ε(π, π0) := πT x̄− π0 = (πk(δ))T x̄− πk
0 (δ) = ε(πk(δ), πk

0 (δ)) for every integer δ.
The following lemma shows that there is an optimal integer δ given by a closed form formula, i.e.
a value of δ that gives the strongest split cut among the ones derived from the basis B and split
disjunctions of the form D(πk(δ), π0), where δ ∈ Z:

Lemma 2 Let B be a basis of LP, and let x̄ be the corresponding basic solution. Also, let D(π, π0)
be a split disjunction violated by x̄, and let xk be a non-basic integer constrained variable. Define
disjunctions D(πk(δ), π0) by πk(δ) = π + δek for δ ∈ Z, and let δ∗ be defined as:

δ∗ :=

{

−bπT rkc, if dπT rke − πT rk > ε(π, π0) and
−dπT rke, if dπT rke − πT rk ≤ ε(π, π0).

(7)

Then the split cut derived from the disjunction D(πk(δ∗), π0) and B dominates the split cut derived
from the disjunction D(π(δ), π0) and B for every integer δ.
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Proof. Observe that, since xk is non-basic, we have (πk(δ))T rj = πT rj for every δ ∈ Z and every
j ∈ J \ {k}. Using (4), it follows that, for any δ ∈ Z, the intersection cut derived from D(πk(δ), π0)
and B only differs from the intersection cut derived from D(π, π0) and B in the coefficient on xk.
Hence, to finish the proof, we only need to prove that δ∗ maximizes αk(π

k(δ), π0). Observe that,
since rk

k = 1, we have (πk(δ))T rk = (π + δek)T rk = πT rk + δ. Therefore, we may write:

αk(π
k(δ), π0) :=











− ε(π,π0)
πT rk+δ

if πT rk + δ < 0,
1−ε(π,π0)
πT rk+δ

if πT rk + δ > 0,

+∞ otherwise.

(8)

Clearly αk(π
k(δ), π0) is maximized by either δf := −bπT rkc or δc := −dπT rke. Now we have

αk(π
k(δc), π0) < αk(π

k(δf ), π0) ⇐⇒ dπT rke−πT rk

ε(π,π0)
> πT rk−bπT rkc

1−ε(π,π0)
⇐⇒ dπT rke−πT rk > ε(π, π0).2

A split disjunction, for which the strengthening step (7) does not lead to a stronger split cut for
any non-basic integer constrained variable xk, is called a strengthened split disjunction. Lemma 2
implies that, for a split disjunction D(π, π0), it suffices to know the values of π on the components
corresponding to basic variables. For each non-basic integer constrained variable xk, the best value
of πk can be computed using (7).

Lemma 2 also implies that the coefficient 1
αk(π,π0)

on a non-basic integer constrained variable

xk is in the interval [0, 1] in a strengthened split cut. This is because, for a strengthened split
disjunction D(π, π0), and a non-basic integer constrained variable xk, (7) gives πT rk ∈ [−1, 1],
which implies 1

αk(π,π0)
∈ [0, 1]. Since the basic integer constrained variables do not appear in a split

cut, this demonstrates that the coefficient of any integer constrained variable in a strengthened
split cut is in the interval [0, 1].

2.5 Mixed integer Gomory cuts as split cuts

We now demonstrate that the mixed integer Gomory cuts that can be obtained from the simplex
tableau (2) associated with B can also be obtained as intersection cuts by using (5) with an
appropriate choice of the disjunction D(π, π0). This was first shown by Balas [2].

First we derive the MIG cut. Let
∑

j∈N gjxj = d be an arbitrary equality satisfied by every
feasible solution to MILP. Define f0 := d − bdc to be the fractionality of d, and let fj := gj − bgjc
denote the fractionality of gj for j ∈ NI . Gomory [18] showed that the following inequality is also
satisfied by every feasible solution of MILP:

∑

j∈NI :fj≤f0

fj

f0
xj +

∑

j∈NI :fj>f0

(1 − fj)

(1 − f0)
xj +

∑

j∈N\NI :gj≥0

gj

f0
xj −

∑

j∈N\NI :gj<0

gj

(1 − f0)
xj ≥ 1. (9)

Now consider the special case where equality
∑

j∈N gjxj = d is a row of the simplex tableau
(2). In this case, let xi be a basic integer constrained variable such that x̄i is fractional. We have
d = x̄i and gj = āij for j ∈ J , gi = 1, and gj = 0 for j ∈ B \ {i}. The MIG cut is given by:
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∑

j∈J∩NI :fj≤f0

fj

f0
xj +

∑

j∈J∩NI :fj>f0

(1 − fj)

(1 − f0)
xj +

∑

j∈J\NI :gj≥0

āij

f0
xj −

∑

j∈J\NI :gj<0

āij

(1 − f0)
xj ≥ 1.

The following lemma shows that this cut can be obtained from (5) by choosing an appropriate
disjunction D(π, π0):

Lemma 3 Let B be a basis of LP, and let x̄ be the corresponding basic solution. Also, let xi be
a basic integer constrained variable, and suppose x̄i is fractional. The MIG cut obtained from the
row of the simplex tableau, in which xi is basic, is given by the inequality

∑

j∈J
xj

αj(πi,πi
0
)
≥ 1, where

πi
0 := bx̄ic, and for j ∈ NI :

πi
j :=















bāijc if j ∈ J and fj ≤ f0,
dāije if j ∈ J and fj > f0,
1 if j = i and
0 otherwise.

(10)

Alternatively, the MIG cut can be obtained by first computing the intersection cut associated with the
disjunction D(ei, π

i
0), and then applying the strengthening (7) on the non-basic integer constrained

variables.

Proof. Let us compute αj(π
i, πi

0) for the above disjunction using formula (4), where j ∈ J . We
have:

ε(π, π0) = (πi)T x̄ − πi
0 = x̄i − bx̄ic = f0.

Using (3) and (10), we get

(πi)T rj = πi
ir

j
i − πi

jr
j
j =







−fj if j ∈ NI and fj ≤ f0,
1 − fj if j ∈ NI and fj > f0,
−āij if j ∈ J \ NI .

(11)

Now αj(π
i, πi

0) follows from formula (4). This yields the MIG cut as claimed in the first part
of the lemma. The second part of the lemma follows from Lemma 2, i.e. the disjunction given by
(10) can be obtained from (7) by strengthening the disjunction D(ei, π

i
0). 2

2.6 Split cuts, MIG cuts and the simplex tableau

We now give an alternative derivation of split cuts in terms of the simplex tableau. The starting
point is the set of rows of the simplex tableau in which the basic variables are integer constrained:
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x̄i =xi +
∑

j∈J

āijxj , i ∈ B ∩ NI , (12)

Furthermore, for every non-basic integer constrained variable, we have the following trivial equation:

0 =xj − xj, j ∈ J ∩ NI . (13)

Now, let D(π, π0) be an arbitrary split disjunction that is violated by x̄. For every k ∈ NI , put
a weight of πk on the corresponding equation, and sum all equations together. This gives:

πT x̄ = πT x −
∑

j∈J

(πT rj)xj .

The MIG cut derived from the above equation using (9) is exactly the same as the intersection
cut (5) obtained from the disjunction D(π, π0). Note that the coefficients of the continuous variables
xj, j ∈ J\NI , in this MIG cut are proportional to |πT rj|. For example, when π = kei, computational
experiments in [14] showed that the MIG cut tended to deteriorate with increasing values of the
integer k when J \ NI 6= ∅. This is mainly because of the increase in |πT rj| for j ∈ J \ NI . In the
next section we present an algorithm for generating weights π that reduce |πT rj| for j ∈ J \ NI .

Note that (π, π0) ∈ Z
n+1 and πT x̄ /∈ Z in the above discussion. Why do we not allow (π, π0) to

be nonintegral? The reason is that the resulting MIG inequality would not be a cut for the point
x̄ in general, since the MIG inequality might have nonzero coefficients on the basic variables.

3 Reducing the coefficients of the continuous variables in MIG

cuts

In this section, we develop an algorithm that starts with the MIG cuts obtained from the optimal
simplex tableau of LP, and then generates another set of split cuts that have better coefficients on
the continuous variables.

For a basis B, let J I := J∩NI denote the set of non-basic variables that are integer constrained,
and JC := J \ NI the set of those that are continuous. For each integer constrained basic variable
xi, where i ∈ B∩NI , such that x̄i is fractional, a split disjunction D(πi, πi

0) generates the MIG cut
associated with xi (see Lemma 3):

∑

j∈J

xj

αj(πi, πi
0)

≥ 1.

Also, for every i ∈ B ∩ NI for which x̄i is integer, consider the disjunction D(πi, πi
0), where

πi = ei and πi
0 = x̄i, and ei is the ith unit vector in R

n. Observe that this disjunction is not
violated, and there is no corresponding split cut. We refer to these |B ∩ NI | disjunctions as MIG
disjunctions and we let ΠG := {D(πi, πi

0)}i∈B∩NI
.
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3.1 Motivation

Is it possible to generate a new set of disjunctions, starting from the MIG disjunctions, that give
stronger split cuts? To answer this question, we need to consider the delicate issue of how to
measure the quality of a split cut. As mentioned in the introduction, an often used measure for cut
quality is the distance cut off, i.e. the Euclidean distance between the hyperplane of the cut and
the point that the cut is designed to cut off (see [4]). In Sect. 2.3, we showed that the distance cut
off d(B, π, π0) satisfies the formula:

(d(B, π, π0))
2 =

1
∑

j∈J
1

(αj(π,π0))2

.

Recall that 1
αj(π,π0)

for j ∈ J is the coefficient of the non-basic variable xj in the split cut derived

from the basis B and the disjunction D(π, π0). Therefore it is natural to aim at split disjunctions
D(π, π0) that increase the values of αj(π, π0) for j ∈ J . In the following, we analyze the factors
that determine the size of αj(π, π0). Due to Lemma 2 in Sect. 2.4 on strengthening, we can assume
that D(π, π0) is a strengthened split disjunction.

First suppose that xj is integer constrained. Since D(π, π0) is a strengthened split disjunction,
this implies 1

αj(π,π0)
∈ [0, 1] no matter how the disjunction D(π, π0) is chosen. We do not attempt

to increase these values of αj(π, π0).
On the other hand, if xj is continuous, there is no upper bound on 1

αj(π,π0)
. It therefore seems

natural to try to modify the MIG disjunctions so as to increase the value of αj(π, π0) for j ∈ JC .
Recall that these values are given by:

αj(π, π0) :=











− ε(π,π0)
πT rj if πT rj < 0,

1−ε(π,π0)
πT rj if πT rj > 0,

+∞ otherwise.

(14)

Thus αj(π, π0) depends on πT rj, i.e. how orthogonal π is to the extreme ray rj, and on ε(π, π0),
i.e. how much x̄ violates the split disjunction D(π, π0).

We try to increase the values αj(π, π0) for j ∈ JC by finding disjunctions D(π, π0) such that
the values |πT rj| are small for j ∈ JC . Although the value of ε(π, π0) is important in determining
the size of αj(π, π0), we found this parameter hard to control. We have therefore treated it as a
random noise.

The details of the reduction algorithm are discussed in the following sections. In Sect. 3.2, we
describe the reduction algorithm as a modification routine for split disjunctions. In Sect. 3.3, we
give another description of the reduction algorithm in terms of row operations of a certain matrix
D. Our implementation of the reduction algorithm is discussed in Sect. 3.4. In Sect. 3.5 we prove
a desirable property on the angles between the reduced rows of D.

3.2 The reduction algorithm: modifying the underlying split disjunctions

The algorithm has two parts:

(a) Modifying the MIG disjunctions in ΠG to obtain another set of split disjunctions that give
split cuts with “better” coefficients on the continuous variables.

10



(b) Strengthening the split disjunctions obtained in (a) on the non-basic integer constrained
variables.

Observe that for a given split disjunction D(π, π0), the coefficient on a continuous variable in
the split cut derived from D(π, π0) and B does not depend on the components of π corresponding
to non-basic variables, i.e. πT rj =

∑

k∈B πkr
j
k. This is because rj

k = 0 when xj is continuous and
xk is integer constrained (see (3) of Sect. 2.1). Therefore, in part (a) of the algorithm, we can
simplify the MIG disjunctions and work with the simple split disjunctions ΠS := {D(π̄i, π̄i

0)}i∈B∩NI
,

where π̄i = ei and π̄i
0 = bx̄ic. The set ΠS consists of the disjunctions xi ≤ bx̄ic ∨ xi ≥ dx̄ie for

i ∈ B ∩ NI . The simple split disjunctions agree with the MIG disjunctions on the basic variables.
Lemma 2 shows that the MIG disjunctions in ΠG can be obtained from the disjunctions in ΠS by
strengthening.

We now describe part (a) of the reduction algorithm. Part (b) consists of applying Lemma 2
of Sect. 2.4 to the disjunctions obtained in (a). Let Π̄ denote the current set of split disjunctions
(where initially Π̄ = ΠS). In every iteration, a split disjunction D(π, π0) in the current set Π̄ is
considered and the algorithm tries to replace it with an improved split disjunction.

For our algorithm to be fast, we have adapted the following simple idea. To improve the
disjunction D(π, π0), we use another disjunction D(π′, π′

0) ∈ Π̄, distinct from D(π, π0), and we
consider disjunctions D(π(δ), π0(δ)) of the form π(δ) = π + δπ′ and π0(δ) = b(π(δ))T x̄c, where
δ ∈ Z. If there exists δ ∈ Z such that the disjunction D(π(δ), π0(δ)) is “better” than the disjunction
D(π, π0), the disjunction D(π, π0) is replaced by D(π(δ), π0(δ)) in Π̄.

The criterion for a “better” disjunction is the following. We find δ ∈ Z that minimizes the
following quantity:

f(δ) :=
∑

j∈JC

((π(δ))T rj)2.

Since f is a quadratic convex function in δ, this minimization problem can be solved optimally by
rounding. Specifically, we have f(δ) = g(π)+δ2g(π′)+2δh(π, π′), where g(π) :=

∑

j∈JC (πT rj)2 and

h(π, π′) :=
∑

j∈JC
((π′)T rj)(πT rj). The optimal solution is either δ∗ = b−h(π,π′)

g(π′) c or δ∗ = d−h(π,π′)
g(π′) e.

If f(δ∗) < f(0) =
∑

j∈JC (πT rj)2, the algorithm replaces the disjunction D(π, π0) by the disjunction

D(π(δ∗), π0(δ
∗)) in Π̄. This step is then iterated with new disjunctions D(π, π0) and D(π′, π′

0) until
a stopping criterion is reached. We discuss the stopping criterion later.

3.3 The reduction algorithm in terms of row operations

We now give a description of the reduction algorithm in terms of row operations on a submatrix
of the simplex tableau Ā := (āij). Let BI := B ∩ NI denote the basic variables that are integer
constrained. Consider the rows of the simplex tableau corresponding to these integer constrained
basic variables:

x̄i =xi +
∑

j∈JI

āijxj +
∑

j∈JC

āijxj, i ∈ BI , (15)

11



where we have separated the non-basic integer constrained variables (J I) from the non-basic con-
tinuous variables (JC). Observe that the system (15) can be re-written in terms of the simple split
disjunctions ΠS = {D(π̄i, π̄i

0)}i∈BI introduced in the previous section:

(π̄i)T x̄ =(π̄i)T x −
∑

j∈JI

((π̄i)T rj)xj −
∑

j∈JC

((π̄i)T rj)xj , i ∈ BI . (16)

Now consider the operation of adding δ times one disjunction D(π̄ l, π̄l
0) ∈ ΠS to another dis-

junction D(π̄k, π̄k
0 ) ∈ ΠS , where k, l ∈ BI and δ ∈ Z. The new disjunction D(π(δ), π0(δ)) is then

given by π(δ) = π̄k + δπ̄l and π0(δ) = b(π(δ))T x̄c. Now, if we add δ times the lth row of (16) to the
kth row of (16), we obtain:

(π̄i)T x̄ =(π̄i)T x −
∑

j∈JI

((π̄i)T rj)xj −
∑

j∈JC

((π̄i)T rj)xj , i ∈ BI \ {k}, (17)

(π(δ))T x̄ =(π(δ))T x −
∑

j∈JI

((π(δ))T rj)xj −
∑

j∈JC

((π(δ))T rj)xj . (18)

Observe that the system (17)-(18) is of the same form as the system (16). Also, the part of
the systems (16) and (17)-(18) corresponding to the continuous variables (J C) contains all the
information needed to evaluate the function f(δ) =

∑

j∈JC ((π(δ))T rj)2 introduced in Sect. 3.2.
It follows that the reduction algorithm can be implemented as an algorithm that performs

row operations on a matrix derived from the simplex tableau. Specifically, this matrix contains the
coefficients of the continuous variables in the rows in which the basic variable is integer constrained.
We now describe the reduction algorithm in this way.

WLOG we assume BI = {1, 2, . . . , |BI |} and JC = {1, 2, . . . , |JC |} (this is just a permutation

of the rows and columns of the simplex tableau). Construct the matrix D ∈ R
|BI |×|JC | by defining

dij := āij , i.e. dij is the coefficient on the continuous variable xj in the row of the simplex tableau
where the integer constrained variable xi is basic. Let the vector di. denote the ith row of D.

In every iteration of the algorithm, we consider adding an integer multiple of one row of D to
another row of D. Suppose we are considering adding a multiple of the lth row of D to the kth row
of D. The problem we solve is:

min{||dk. + δdl.||
2
2 : δ ∈ Z}.

As in Sect. 3.2, the optimal solution δ∗ to this problem is either b−
dT

k.
dl.

||dl.||
2

2

c or d−
dT

k.
dl.

||dl.||
2

2

e. If δ∗

satisfies ||dk. + δ∗dl.||
2
2 < ||dk.||

2
2, the algorithm updates the kth row of D to dk. := dk. + δ∗dl..

The example of Figure 2 demonstrates how the algorithm works. In the example, the vector d1.

is reduced by simply subtracting two times d2.. Observe that the final vectors are more orthogonal
than the initial vectors.

3.4 Implementation of the reduction algorithm

We now discuss the implementation details of the reduction algorithm.
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d 2 .

d 1 .

(a) Two vectors d1. and d2.

d 2 .

d 1 .

d 2 .−2d 1 . d 2 .−2
d 2 .−2

(b) Intermediate vectors

d 2 .

d 1 . d 2 .−2

(c) Final vectors

Figure 2: Using d2. to reduce d1.

We first discuss the amount of work that has to be performed in each iteration. Given the matrix
D, which we extract from the optimal simplex tableau, we first compute a |B I | × |BI | matrix of
inner product between every pair dk., dl. of rows of the matrix D, where k, l ∈ BI . Observe that
this matrix also contains the norm of each of the rows of D on the diagonal. This gives all the
information needed to compute δ∗ for pairs k, l ∈ BI . Recall that, for k, l ∈ BI , δ∗ is given by

either b−
dT

k.
dl.

||dl.||
2

2

c or d−
dT

k.
dl.

||dl.||
2

2

e. Once an improvement has been found, i.e. if k, l ∈ BI is such that δ∗

satisfies ||dk. + δ∗dl.||
2
2 < ||dk.||

2
2, we simply update the matrix of inner products. If d̃k. := dk. + δ∗dl.

improves dk., i.e. if ||d̃k.||2 < ||dk.||2, the expression d̃T
k.di. = dT

k.di. + dT
l. di.δ

∗ provides an update
formula for the matrix of inner products.

We next discuss the sequence in which we consider pairs of rows of the matrix D for reduction.
The algorithm first computes the reduction that can be obtained from each pair of rows dk., dl.

of D. A sorted stack is maintained that contains those pairs of rows that give a reduction. In
every iteration, the algorithm chooses the pair that gives the largest reduction. This process is
then iterated.

The method, as described above, does not necessarily converge. To achieve convergence, we
made the following adjustments. First, we introduced a tolerance for what is considered the zero
vector. In our experiments, we treat any vector with norm less than ε := 10−5 as the zero vector,
and we therefore do not use such a vector to reduce other vectors. The second tolerance we introduce
is on what is considered a reduction. In our experiments, given any vector d, and an improved

version of d, say d̃, i.e. we have ||d̃||2 < ||d||2, we consider d reduced if ||d̃||2
||d||2

< ρ := 0.95. With these
modifications, the algorithm converges because it keeps a fixed number of vectors and the norm of
each vector can only be reduced a finite number of times by a factor ρ until it reaches ε.

The algorithm, as described above, can be implemented into a very fast reduction algorithm.
The reduction algorithm did not use more than a few seconds on any problem in our computational
experiment.

We summarize the algorithm:
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Solve the LP relaxation and initialize D.

(a) Iterative Step: For each pair of rows dk., dl. of D with norm at least ε, compute
δ∗ and d̃k.. Choose the pair that gives the largest reduction. If this reduction is
better than ρ, replace dk. by d̃k. in D and repeat the Iterative Step. Otherwise,
generate the set Π̄ of disjunctions.

(b) Strengthen each disjunction D(π, π0) ∈ Π̄ by using Lemma 2 of Sect. 2.4 and
compute the corresponding cuts using 5.

3.5 Angle between the reduced vectors

An important property of the above algorithm is that it leads to vectors di. that are fairly orthogonal,
like in the basis reduction algorithm of Lenstra, Lenstra and Lovász [20]. We now address this issue.

Lemma 4 Let i, k ∈ BI be two nonzero rows of the matrix D. Then either:

(i) di. can be used to reduce the size of dk. or

(ii) dk. can be used to reduce the size of di. or

(iii) The angle between di. and dk. is between 60◦ and 120◦.

Proof. Assume that neither (i) nor (ii) hold. Since di. can not be reduced by using dk., we have
||di. + δdk.||

2
2 ≥ ||di.||

2
2 for all integers δ. In particular, for δ = −1 and δ = 1, we get ||di. − dk.||

2
2 ≥

||di.||
2
2 and ||di. + dk.||

2
2 ≥ ||di.||

2
2. This implies that − 1

2 ≤
dT

i.dk.

||dk.||
2

2

≤ 1
2 and similarly − 1

2 ≤
dT

i.dk.

||di.||22
≤

1
2 . Thus − 1

2 ≤
dT

i.dk.

||di.||2||dk.||2
≤ 1

2 , which implies (iii) since, given two non-zero vectors di. and dk., the
quantity:

dT
i.dk.

||di.||2||dk.||2
is the cosine of the angle between the vectors di. and dk.. 2

Lemma 4 demonstrates that the matrix D obtained at termination of the reduction algorithm
has rows that are relatively orthogonal. Since the entries in matrix D are directly related to the
coefficients in the split cuts that we generate, these cuts are likely to cut in directions that are also
relatively orthogonal in the space of the continuous variables.

4 Computational results

We implemented the algorithm described in Sect. 3, and tested it on the problems in MIPLIB 3.0

[8]. These instances are available on the website www.caam.rice.edu/˜bixby/miplib/miplib.html.
We used CPLEX 8.0 [15] to solve the LP and MILP problems.

We have included most problems available in MIPLIB 3.0. Some problems were excluded
because they were too large for our experiments (dano3mip, fast0507, mod011, mkc, nw04
and rentacar). We also excluded three problems because they are too easy (mitre, mod010
and air03).
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4.1 Performance of the reduction algorithm

We first discuss the performance of the reduction algorithm and investigate properties of
the cutting planes it produces. The cutting planes obtained from the reduction algorithm
are called Reduce-and-Split cuts (R & S cuts) in the remainder of the paper. It is possible
that some (or all) of the R & S cuts are MIG cuts. In particular, this happens when the
reduction algorithm does not change the coefficients on the continuous variables in a row of
the simplex tableau from which a MIG cut is derived.

Table 1 contains statistics obtained when applying the reduction algorithm to the simplex
tableau associated with the optimal basis to the LP relaxation. We have excluded problems
air04, air05, bell5, enigma, harp2, khb05250 and modglob from this table. For these prob-
lems, the reduction algorithm did not produce any new cutting planes. This happens when
either: (i) there are no continuous variables, (ii) the coefficients of the continuous variables
are all zero, or (iii) the reduction algorithm cannot reduce the nonzero coefficients of the
continuous variables. If a problem has inequality constraints, we treat the slack and surplus
variables as continuous variables whose coefficients can potentially be reduced even if the
problem is a pure integer program in the original variables.

As described earlier, our reduction algorithm first constructs a matrix D after which each
row of D is iteratively replaced by a new row that has smaller size. We computed the size
of the original matrix D, measured by the sum of the squared norms of the rows of D, and
also the size of the matrix D′ obtained at the termination of the reduction algorithm. The
ratio between these two measures is recorded in the column of Table 1 headed “Reduction
ratio”. For 70% of the problems, our algorithm reduces the measure by a factor greater than
two, and for 40% the reduction factor is greater than ten.

We now examine whether the reduction algorithm actually achieves reductions in the co-
efficients of the continuous variables. Increases in the coefficients on the continuous variables
can happen, because the reduction algorithm does not consider the value ε(π, π0). For every
MIG cut obtained from the optimal basis of the LP relaxation, we computed the average
coefficient on a continuous variable:

1

|JC |

∑

j∈JC

1

α(π, π0)
.

These values were then averaged over all MIG cuts. This gives the average coefficient on
a continuous variable in the MIG cuts. We also computed the average coefficient on a
continuous variable in the new cutting planes, i.e. those R & S cuts that are not MIG cuts.
The column of Table 1 headed “Average coeff ratio (C)” contains the ratio between these two
numbers. On most problems, our algorithm gives a significant decrease in the coefficients
of the continuous variables. There are problems, however, where this does not happen. On
problem gt2, for instance, the average coefficient of the continuous variables in the new R &
S cuts is 63.88 times higher than in the MIG cuts even though the size of the matrix D was
reduced to 0.88 times the original size.

We also investigated the properties of the R & S cuts on the integer constrained variables.
We computed the average coefficient of an integer constrained variable for every MIG cut:
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1

|JI |

∑

j∈JI

1

α(π, π0)
.

We then averaged these numbers over all MIG cuts to get the average coefficient of an integer
constrained variable in the MIG cuts. We compared this number to the average coefficient
of an integer constrained variable in those R & S cuts that are not MIG cuts. The ratio
between these two numbers is recorded in the column of Table 1 headed “AVG coeff ratio
(I)”. For seven problems (egout, fixnet6, pp08a, qiu, stein27, stein45 and vpm1), all of the
integer constrained variables are basic, which means that there are no integer constrained
variables in the cuts. As can be seen from this column, the reduction algorithm often leads
to an increase in the average coefficient of an integer constrained variable.

We now attempt to explain this increase. Our hypothesis is that the simplex tableau
can contain many integer values. If the coefficient on an integer constrained variable in the
simplex tableau is integer, the variable will not appear in the MIG cut that can be derived
from this row of the simplex tableau. By taking integer combinations of the rows of the
simplex tableau, it is likely that more fractional values are created. Most of the problems
in MIPLIB 3.0 are described with matrices A that are sparse, i.e. many entries are equal to
zero. Also, the non-zero coefficients of the matrix A are often integers. It seems likely that
these properties can give a simplex tableau that has many integer entries.

To test our hypothesis, we computed the average non-zero coefficient on an integer con-
strained variable in the MIG cuts. This value was then compared with the average non-zero
coefficient of an integer constrained variable in those R & S cuts that are not MIG cuts. The
ratio between these two numbers is recorded in the column of Table 1 headed “Average nz
coeff ratio (I)”. Most of the numbers in this column are close to 1.00, and the average of all
the numbers in the column is 1.015. We conclude that the non-zero coefficients of integer
constrained variables are very similar in MIG and R & S cuts.

We observed that the number of integer values in the simplex tableau tends to decrease
as cuts are added. After a few rounds of cutting planes have been added to the formulation,
we found that the R & S and MIG cuts have a similar number of nonzero coefficients on the
integer constrained variables.

In conclusion, our reduction algorithm often produces cuts that have much better coeffi-
cients on the continuous variables than the MIG cuts. However the coefficients do get worse
on 20% of the problems. As for the coefficients of the integer constrained variables, they are
mostly unaffected by the reduction algorithm but they can also get worse when the simplex
tableau happens to contain a large number of integer values. We deal with these issues in
the next section, where we design a cutting plane algorithm that tries to use the best R &
S cuts.

4.2 Performance of the reduce-and-split cuts

We now test the performance of the R & S cuts in solving MILP’s. We test whether replacing
the MIG cuts with the R & S cuts gives a better cutting plane algorithm. We also design a
hybrid cutting plane algorithm that attempts to use the best cuts of both classes.
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Reduc- Average Average Average Reduc- Average Average Average

Problem tion coeff coeff nz coeff Problem tion coeff coeff nz coeff

ratio ratio (C) ratio (I) ratio (I) ratio ratio (C) ratio (I) ratio (I)

10teams 0.07 0.04 0.91 0.98 misc06 0.35 0.20 1.07 0.70

arki001 0.00 0.02 6.54 2.36 misc07 0.09 0.15 1.04 1.02

bell3a 0.00 0.01 5.12 1.02 mod008 0.48 0.22 0.93 0.92

blend2 0.44 0.25 1.60 1.18 noswot 0.47 0.59 4.96 1.18

cap6000 0.94 0.02 1.07 1.07 p0033 0.01 0.84 1.81 1.14

danoint 0.26 2.79 0.86 0.86 p0201 0.13 0.09 1.23 1.00

dcmulti 0.45 0.92 1.32 1.41 p0282 0.22 1.35 2.33 1.95

dsbmip 0.01 0.09 2.15 1.17 p0548 0.00 0.02 1.49 0.63

egout 0.77 6.16 - - p2756 0.83 10.28 8.81 1.08

fiber 0.18 0.21 2.27 0.76 pk1 0.26 0.57 1.03 1.01

fixnet6 0.55 1.06 - - pp08a 0.74 0.46 - -

flugpl 0.41 0.44 0.71 0.71 pp08acuts 0.56 0.22 1.07 0.76

gen 0.00 0.01 1.03 0.70 qiu 0.04 1.00 - -

gesa2 0.05 0.49 1.59 0.96 qnet1 0.02 0.00 0.97 0.87

gesa2o 0.04 0.16 1.47 1.05 qnet1o 0.82 0.00 3.81 1.20

gesa3 0.03 2.26 1.65 1.07 rgn 0.05 0.13 0.54 0.92

gesa3o 0.03 0.13 1.07 0.74 rout 0.16 0.03 1.48 1.15

gt2 0.88 63.88 3.57 0.84 set1ch 0.82 0.07 10.92 1.21

lseu 0.13 0.53 1.18 0.88 seymour 0.06 0.01 0.96 0.79

markshare1 0.61 1.33 0.98 0.98 stein27 0.19 0.37 - -

markshare2 0.94 1.06 0.88 0.88 stein45 0.01 0.08 - -

mas74 0.00 0.02 0.76 0.76 swath 0.09 0.00 1.36 0.98

mas76 0.00 0.00 0.76 0.76 vpm1 0.84 0.20 - -

misc03 0.08 0.24 1.00 1.00 vpm2 0.66 1.53 0.62 0.97

Table 1: Performance of the reduction algorithm
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We compare three different cutting plane algorithms to strengthen the initial MILP for-
mulation. In the first algorithm, we add 20 rounds of R & S cuts to the formulation. Each
round consists of all R & S cuts that can be generated by applying the reduction algorithm
to the current optimal basis. The LP obtained by adding these cuts is solved again to get a
new optimal basis from which the next round of cuts is then generated. We call this cutting
plane algorithm the R & S algorithm.

In the second cutting plane algorithm, we add the MIG cuts generated from the current
optimal basis in each round of the cutting-plane algorithm. The algorithm is stopped when
exactly the same number of cutting planes has been generated as were generated by the R
& S algorithm. We call this cutting plane algorithm the MIG algorithm. In the last round
of the MIG algorithm, we choose the MIG cuts that have the largest distance cut off. In all
other rounds, we add all the MIG cuts that can be generated.

The third cutting plane algorithm uses both the MIG cuts and the R & S cuts. The
algorithm tries to use the best of the MIG and R & S cuts while still adding roughly the
same number of cuts in every round as the other two algorithms. We call this algorithm
the hybrid algorithm. A typical iteration of this cutting plane algorithm can be described as
follows. Let nf denote the number of integer constrained variables that are fractional in the
current optimal solution x̄. The MIG algorithm would generate nf cutting planes, and add
them to the formulation. In the hybrid algorithm, we choose nf cuts among the MIG and
R & S cuts that have the largest distance cut off relative to x̄. The cuts chosen are then
added to the formulation, and the LP is re-optimized. As with the MIG algorithm, we stop
the hybrid algorithm when exactly the same number of cutting planes has been added to
the formulation as was generated by the R & S algorithm. In the last round of the hybrid
algorithm, we choose the cuts (MIG or R & S cuts) that have the largest distance cut off.

We maintain a “cut pool”, i.e. after each round of the cutting plane algorithm, we move
inactive cuts into the cut pool for later use. Therefore, in every round, in addition to the
new cuts that are generated from the optimal basis, we also add cutting planes from the cut
pool that are violated again. Duplicate cuts arise when the reduction algorithm does not
change a MIG cut. We deal with this issue by simply removing duplicate cutting planes,
and duplicate cuts are not counted.

The cutting planes are generated from the values in an optimal simplex tableau, which
are subject to numerical inaccuracies. Therefore, any split cut dT x ≥ 1 generated is modified
to dT x ≥ 1− ε. We use ε = 10−10 in our implementation. We found that, with this choice of
ε, the optimum solution was never cut off by the split cuts that we generated on all the test
problems. An interesting research question is to develop a theory of the precision needed to
guarantee that cuts are valid, but this is beyond the scope of this paper.

We tested the cutting planes in a cut-and-branch framework. After the cutting plane
algorithm terminates, we add all cutting planes generated to the formulation and then solve
with a branch-and-bound algorithm. The reason for adding the entire cut pool is to achieve
a measure of the strength of all the cuts generated rather than just those that happen to be
active at the end of the cutting plane algorithm. The branch-and-bound method is simulated
with CPLEX’s branch-and-cut algorithm with the options “no cuts”, “no heuristic”, “strong
branching”, and the optimal value of the MILP provided. Strong branching and providing
the optimal value tend to keep the size of the branch-and-bound trees to a minimum. These

18



choices are meant to reduce the variability in the number of nodes in the branch-and-bound
tree due to uncontrollable factors, thus providing a more meaningful comparison between
MIG, R & S and hybrid cuts.

Some problems in the MIPLIB 3.0 problem set are very difficult, requiring a prohibitive
number of nodes in the branch-and-bound tree. We excluded those problems from this part
of our experiments (arki001, danoint, harp2, markshare1, markshare2, mkc, noswot, set1ch,
seymour and swath).

Table 2 contains the “best cases”, where we observed a significant improvement in solution
time or enumeration by using either the R & S or hybrid cuts over the MIG algorithm. The
abbreviations “MIG”, “R & S” and “Hybr” refer to the MIG, R & S and hybrid cutting
plane algorithms respectively. The columns headed “Nodes MIG”, “Nodes R & S” and
“Nodes hybrid” contain the number of nodes in the branch-and-bound search tree in each
case. The columns headed “Time MIG”, “Time R & S” and “Time Hybr” contains the total
time used to solve the problems (in seconds), including the time needed to generate the cuts.
The column headed “Num Cuts” contains the number of cuts generated. As mentioned,
we designed the three cutting plane algorithms so that the same number of cuts is used.
Therefore, any difference in the performance of the three cutting plane algorithms is due to
the difference in the quality of the cuts, but not in their number.

One possible measure of the quality of cuts is the number of nodes in the resulting
branch-and-bound tree. Another is the gap closed by the cuts. The integrality gap for an
MILP is the difference between the objective values of the LP relaxation and the MILP. By
improving the LP relaxation using cutting planes, one can improve the integrality gap. The
gap closed is the fraction of the original integrality gap that is closed by strengthening the
formulation. The columns headed “Gap MIG”, “Gap R & S” and “Gap Hybr” of Table 2
give the gap closed (in percentage) by the three cutting plane algorithms.

The problems dsbmip, flugpl and rgn were completely solved with the R & S algorithm
while some enumeration was needed by the MIG algorithm. On problems bell5, gesa2o,
pp08a, pp08acuts, rgn, and vpm1, the R & S cuts lead to a decrease in the solution time by
more than a factor of ten. On the remaining problems, the improvement achieved was still
very significant. Observe that, on all of the problems in Table 2, either the R & S algorithm
or the hybrid algorithm closed the largest amount of integrality gap. The problems dsbmip
and enigma do not have any integrality gap.

Table 3 contains the remainder of the problems listed in MIPLIB 3.0 [8]. On those
problems, we did not see a substantial difference in the three approaches. On some problems
the R & S cuts lead to smaller computing times, while on other problems they lead to larger
computing times. It is interesting to observe that the MIG algorithm was clearly better only
on the problem fixnet6. This indicates that the R & S cuts are better than the MIG cuts on
average.

In many cases where the R & S cuts lead to more nodes than the MIG cutting plane
algorithm, the amount of enumeration is very small. For such problems, the branching
strategy, i.e. the way CPLEX decides to create subproblems, becomes important for the
actual number of nodes, whereas the strength of the cutting planes is less significant. One
would expect this to happen in those cases where the MIG cuts are already doing quite well.
In such cases, the time spent on creating the R & S cuts is wasted.
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Problem Nodes Nodes Nodes Time Time Time Gap Gap Gap Num
MIG R & S Hybr MIG R & S Hybr MIG R & S Hybr Cuts

bell5 786808 868 1135 1826 1.72 2.06 91.47 90.05 94.60 337
dsbmip 20 0 15 3.77 2.60 2.70 - - - 60
enigma 795 494 414 2.52 1.79 1.65 - - - 56
flugpl 184 0 60 0.06 0.01 0.01 14.07 100.00 90.73 35
gesa2 743 116 97 86.10 56.75 44.96 46.14 96.78 98.13 1086
gesa2o 9145 75 37 1365 45.62 32.91 91.68 98.12 97.56 1060
mod008 1409 82 216 11.21 0.83 1.54 46.61 88.99 85.13 201
modglob 838528 306647 330135 559241 193649 224478 74.17 71.63 77.12 1124
p0033 159 297 35 0.22 0.46 0.10 72.44 79.27 88.48 199
p0201 163 111 65 24.10 25.88 8.10 52.25 74.93 50.92 312
pp08a 7467 745 1890 2486 290 737 83.12 91.99 91.62 754

pp08acuts 12347 1943 1010 5890 989 462 61.12 75.88 81.36 831
rgn 874 0 109 1.19 0.04 0.13 15.45 100.00 87.49 42

vpm1 7132 1 17 47.79 6.12 4.67 43.67 98.47 74.89 254
vpm2 38946 8073 4254 5479 1518 779 41.45 61.40 66.84 753

Table 2: The best cases

In conclusion, the Reduce-and-Split cuts improve the MIG cuts on average. On several
problems, the Reduce-and-Split cuts lead to a significant decrease in solution time and
amount of enumeration. A good cutting plane strategy is to use the Reduce-and-Split cuts
in conjunction with the MIG cuts.

With regard to future work, the following two directions are worth investigating.
(1) Our reduction method may be adapted to improving the general 2-slope and 3-slope

cuts developed by Gomory and Johnson [19]. These cuts, like the MIG cuts, have coefficients
of the continuous variables that are linear functions of the tableau entries. Tableau row
reduction may improve these cuts too.

(2) Following Balas and Perregaard [7] one may explore infeasible bases of the LP re-
laxation to improve split cuts. In this paper we improved the disjunction. It is still an
open question to optimize simultaneously the basis and the disjunction to construct stronger
Reduce-and-Split cuts.
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