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Abstract. In the seventies, Balas introduced intersection cuts for a
Mixed Integer Linear Program (MILP), and showed that these cuts can
be obtained by a closed form formula from a basis of the standard lin-
ear programming relaxation. In the early nineties, Cook, Kannan and
Schrijver introduced the split closure of an MILP, and showed that the
split closure is a polyhedron. In this paper, we show that the split clo-
sure can be obtained using only intersection cuts. We give two di�erent
proofs of this result, one geometric and one algebraic. Furthermore, the
result is used to provide a new proof of the fact that the split closure
is a polyhedron. Finally, we extend the result to more general two-term
disjunctions.

1 Introduction

In the seventies, Balas showed how a cone and a disjunction can be used to
derive a cut [1] for a Mixed Integer Linear Program (MILP). In that paper, the
cone was obtained from an optimal basis to the standard linear programming
relaxation. The cut was obtained by a closed form formula and was called the
intersection cut.

Later in the seventies, Balas generalized the idea to polyhedra [2]. It was
demonstrated that, given a polyhedron, and a valid but violated disjunction, a
cut could be obtained by solving a linear program. The idea was further expanded
in the early nineties, where Cook, Kannan and Schrijver [4] studied split cuts
obtained from two-term disjunctions that are easily seen to be valid for an MILP.
The intersection of all split cuts is called the split closure of an MILP. Cook,
Kannan and Schrijver proved that the split closure of an MILP is a polyhedron.

Any basis of the constraint matrix describing the polyhedron can be used,
together with a disjunction, to derive an intersection cut, i.e. the basis used does
not have to be optimal or even feasible. A natural question is how intersection
cuts relate to disjunctive cuts obtained from polyhedra. This question was an-
swered by Balas and Perregaard [3] for the 0-1 disjunction for Mixed Binary
Linear Programs. The conclusion was that any disjunctive cut obtained from a
polyhedron and the 0-1 disjunction is identical to, or dominated by, intersection
cuts obtained from the 0-1 disjunction and bases of the constraint matrix de-
scribing the polyhedron. We generalize this result from 0-1 disjunctions to more
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general two-term disjunctions. This is the main result of this paper. We provide
two di�erent proofs, one geometric and one algebraic. A consequence is a new
proof of the fact that the split closure is a polyhedron.

We consider the Mixed Integer Linear Program (MILP):

(MILP) minfcTx : Ax � b; xj integer; j 2 NIg;

where c 2 Rn , b 2 Rm , NI � N := f1; 2; : : : ; ng and A is an m � n matrix. r
denotes the rank of A. LP is the Linear Programming problem obtained from
MILP by dropping the integrality conditions on xj , j 2 NI . PI and P denote
the sets of feasible solutions to MILP and LP respectively.M := f1; 2; : : : ;mg is
used to index the rows of A. ai:, for i 2M , denotes the ith row of A. We assume
ai: 6= 0n for all i 2M . Given S �M , r(S) denotes the rank of the sub-matrix of
A induced by the rows in S (r(M) = r). Furthermore, for S �M , the relaxation
of P obtained by dropping the constraints indexed byM nS from the description
of P , is denoted P (S), i.e. P (S) := fx 2 Rn : (ai:)

Tx � bi;8i 2 Sg (P (M) = P ).
A basis of A is an n-subset B ofM , such that the vectors ai:, i 2 B, are linearly
independent. Observe that, if r < n, A does not have bases. B�k, where k is a
positive integer, denotes the set of k-subsets S of M , such that the vectors ai:,
i 2 S, are linearly independent (B�n denotes the set of bases of A).

The most general two-term disjunction considered in this paper is an expres-
sion D of the form D1x � d1_ D2x � d2, where D1 : m1 � n, D2 : m2 � n,
d1 : m1� 1 and d2 : m2� 1. The set of points in Rn satisfying D is denoted FD .
The set conv(P \FD) is called the disjunctive set de�ned by P and D in the re-
mainder. In addition, given a subset S of the constraints, the set conv(P (S)\FD)
is called the disjunctive set de�ned by S and D. Finally, given a basis B in B�r ,
the set conv(P (B) \ FD) is called a basic disjunctive set.

An important two-term disjunction, in the context of an MILP, is the split

disjunction D(�; �0) of the form �Tx � �0 _ �Tx � �0+1, where (�; �0) 2 Zn+1

and �j = 0 for all j =2 NI . For the split disjunction, a complete description of
the basic disjunctive sets is available as follows. Given a set B in B�r , the basic
disjunctive set de�ned by B and D(�; �0) is the set of points in P (B) that satisfy
the intersection cut derived from B and D(�; �0) (Lemma 1). Let �n(NI) :=
f(�; �0) 2 Zn+1 : �j = 0; j =2 NIg. The split closure of MILP, denoted by SC, is
de�ned to be the intersection of the disjunctive sets de�ned by P and D(�; �0)
over all disjunctions (�; �0) in�

n(NI). Similarly, given S �M , SC(S), is de�ned
to be the intersection of the disjunctive sets de�ned by P (S) and D(�; �0) over
all disjunctions (�; �0) in �

n(NI). A split cut is a valid inequality for SC.
The �rst contribution in this paper is a theorem (Theorem 1) stating that

the split closure of MILP can be written as the intersection of the split closures
of the sets P (B) over all sets B in B�r . (i.e. SC =

T
B2B�r

SC(B)). We prove this

theorem by proving that the disjunctive set de�ned by P andD(�; �0), for a split
disjunction D(�; �0), can be written as the intersection of the basic disjunctive
sets (i.e. conv(P \FD(�;�0)) =

T
B2B�r

conv(P (B)\ FD(�;�0))). We provide both
a geometric and an algebraic proof of this result. The result implies that both
the disjunctive set de�ned by P and D(�; �0) and the split closure of MILP

2



can be obtained using only intersection cuts. This generalizes a result of Balas
and Perregaard showing the same result for the disjunction xj � 0 _ xj � 1
for Mixed Binary Linear Programs [3]. (In fact, in that paper, it was assumed
that r = n, whereas the theorem presented here does not have this assumption).
Furthermore, the result leads to a new proof of the fact that the split closure is
a polyhedron (Theorem 3).

The second contribution in this paper is a theorem (Theorem 6) stating that
the disjunctive set de�ned by P and a general two-term disjunction D can be
written as the intersection of disjunctive sets de�ned by D and (r + 1)-subsets
S of M (i.e. conv(P \ FD) =

T
S2C�1

conv(P (S) \ FD), where C�1 is some family

of (r + 1)-subsets of M to be de�ned later). The theorem implies that any
valid inequality for the disjunctive set de�ned by P and D is identical to, or
dominated by, inequalities derived from the disjunction D and (r+1)-subsets of
the constraints describing the polyhedron. Furthermore, in the special case where
r = n, we show that it is enough to consider a certain family C�2 of n-subsets of
the constraints describing the polyhedron.

The rest of this paper is organized as follows. In section 2, we consider basic
disjunctive sets for split disjunctions. In section 3, the characterization of the
split closure in terms of intersection cuts is presented, and a geometric argument
for the validity of the result is presented. In section 4 we give a new proof of the
fact that the split closure is a polyhedron. In section 5, we generalize the results
of section 3 to more general two-term disjunctions. We also give an example
showing that other extensions are incorrect. The arguments used in this section
are mostly algebraic. In fact, section 3 and section 5 could be read independently.

2 A complete description of the basic disjunctive set for

split disjunction

In this section, we describe the set P (B) for B in B�
r as the translate of a cone,

and use this cone together with a split disjunction to derive an intersection
cut. The intersection cut is then used to characterize the basic disjunctive set
obtained from the split disjunction.

Let B 2 B�r be arbitrary. The set P (B) was de�ned using half-spaces in the
introduction. We now give an alternative description. Let �x(B) satisfy aTi: �x(B) =
bi for all i 2 B. Furthermore, let L(B) := fx 2 Rn : aTi:x = 0;8i 2 Bg. Finally, let
ri(B), where i 2 B, be a solution to the system (ak:)

T ri(B) = 0, for k 2 B nfig,
and (ai:)

T ri(B) = �1. We have:

P (B) = �x(B) + L(B) + Cone (fri(B) : i 2 Bg); (1)

where Cone (fri(B) : i 2 Bg) := fx 2 Rn : x =
P
i2B �ir

i(B); �i � 0; i 2 Bg
denotes the cone generated by the vectors ri(B), i 2 B. Observe that the vectors
ri(B), i 2 B, are linearly independent.

Let (�; �0) 2 Zn+1. Assume that all points y in �x(B) +L(B) violate the dis-
junction D(�; �0) (Lemma 1 below shows that this is the only interesting case).
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Observe that this implies that the linear function �Tx is constant on �x(B)+L(B).
The intersection cut de�ned by B and D(�; �0) can now be described. De�ne
�(�;B) := �T �x(B) � �0 to be the amount by which the points in �x(B) + L(B)
violate the �rst term in the disjunction. Also, for i in B, de�ne:

�i(�;B) :=

8<
:
��(�;B)=(�T ri(B)) if �T ri(B) < 0;
(1� �(�;B))=(�T ri(B)) if �T ri(B) > 0;
1 otherwise.

(2)

The interpretation of the numbers �i(�;B), for i 2 B, is the following. Let
xi(�;B) := �x(B) + �ri(B), where � 2 R+ , denote the half-line starting in �x(B)
in the direction ri(B). The value �i(�;B) is the smallest value of � 2 R+ ,
such that xi(�;B) satis�es the disjunction D(�; �0), i.e. �i(�;B) = inff� � 0 :
xi(�;B) 2 FD(�;�0)g. Given the numbers �i(�;B) for i 2 B, the intersection cut
associated with B and D(�; �0) is given by:

X
i2B

(bi � aTi:x)=�i(�;B) � 1: (3)

The validity of this inequality for Conv (P (B)\FD(�;�0)) was proven by Balas
[1]. In fact, we have:

Lemma 1 Let B 2 B�r and D(�; �0) be a split disjunction, where (�; �0) 2 Zn+1.

(i) If �Tx =2]�0; �0+1[, for some x 2 �x(B)+L(B), then Conv (P (B)\FD(�;�0)) =
P (B).

(ii) If �Tx 2]�0; �0+1[, for all x 2 �x(B)+L(B), then Conv (P (B)\FD(�;�0)) =
fx 2 P (B) : (3)g.

3 Split closure characterization

In this section, we give a geometric proof of the following theorem, which char-
acterizes the split closure in terms of certain basic subsets of the constraints.

Theorem 1

SC =
\
B2B�r

SC(B): (4)

We prove this result in the following lemmas and corollaries. Let �Tx � �
and �Tx �  be inequalities, where � 2 Rn and � <  . When � 6= 0n, �

Tx � �
and �Tx �  represent two non-intersecting half-spaces. We have the following
key lemma:

Lemma 2 Assume P is full-dimensional. Then:

Conv ((P \ fx : �Tx � �g) [ (P \ fx : �Tx �  g)) =\
B2B�r

Conv ((P (B) \ fx : �Tx � �g) [ (P (B) \ fx : �Tx �  g)): (5)
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Proof. The following notation will be convenient. De�ne P1 := P\fx : �Tx � �g
and P2 := P \ fx : �Tx �  g. Furthermore, given a set B 2 B�r , let P1(B) :=
P (B) \ fx : �Tx � �g and P2(B) := P (B) \ fx : �Tx �  g.

When � = 0n, no matter what the values of � and  are, at least one of P1
and P2 is empty (Notice that we always have � <  ). If both are empty, then the
lemma holds trivially by ; = ;. If one is not empty, then Conv (P1[P2) = P and,
similarly,

T
B2B�r

Conv ((P1(B) [ P2(B)) =
T
B2B�r

P (B) = P . The last equality
is due to the assumption ai: 6= 0n for i 2 M . Therefore, we assume � 6= 0n in
the rest of the proof.

Because P � P (B) for any B 2 B�r , it is clear that Conv (P1 [ P2) �T
B2B�r

Conv ((P1(B)[P2(B)). Therefore, we only need to show the other direc-
tion of the inclusion.

Observe that it suÆces to show that any valid inequality for Conv (P1 [ P2)
is valid for Conv (P1(B) [ P2(B)) for at least one B 2 B�r . Now, let Æ

Tx � Æ0
be a valid inequality for Conv (P1 [ P2). Clearly, we can assume ÆTx � Æ0 is
facet-de�ning for Conv (P1 [P2). This is clearly true for the valid inequalities of
P , since we can always choose a B 2 B�r , by applying the techniques of linear
programming, such that the valid inequality of P is valid for P (B). So we may
assume that the inequality is valid for Conv (P1 [ P2) but not valid for P .

Case 1. P2 = ;.

Since P2 = ;, Conv (P1 [ P2) = P1 = P \ fx : �Tx � �g. Hence �Tx � � is
a valid inequality for Conv (P1 [ P2). We just want to show that it is also valid
for Conv ((P (B) \ fx : �Tx � �g) [ (P (B) \ fx : �Tx �  g)) for some B 2 B�r .
Because P2 = ; and P is full-dimensional, applying the techniques of linear
programming shows that the value ~ = maxf : P \fx : �Tx = g 6= ;g speci�es
B 2 B�r such that P (B)\fx : �Tx �  g = ; and ~ = maxf : P (B)\fx : �Tx =
g 6= ;g, where ~ <  . We have Conv ((P (B) \ fx : �Tx � �g) [ (P (B) \ fx :
�Tx �  g)) = P (B) \ fx : �Tx � �g for this particular B. Therefore, �Tx � �
is valid for Conv ((P (B) \ fx : �Tx � �g) [ (P (B) \ fx : �Tx �  g)).

Case 2. P1 and P2 are full-dimensional.

Consider an arbitrary facet F of Conv (P1[P2) which does not induce a valid
inequality for P . We are going to use the corresponding F -de�ning inequality
(half-space) and F -de�ning equality (hyperplane). Our goal is to show that the
F -de�ning inequality is valid for Conv (P (B) \ fx : �Tx � �g) [ (P (B) \ fx :
�Tx �  g)) for some B 2 B�r .

Let F1 := F \ P1 and F2 := F \ P2. Since the F -de�ning inequality is valid
for P1 and P2 but not valid for P , we can deduce F1 � fx 2 Rn j�Tx = �g and
F2 � fx 2 Rn : �Tx =  g. F is the convex combination of F1 and F2, where F1
is a k-dimensional face of P1 and F2 is an m-dimensional face of P2. Since F is
of dimension n� 1, we have 0 � k � n� 2 and n� k � 2 � m � n� 2.

The intersection of the F -de�ning hyperplane with �Tx = � (or �Tx =
 ) de�nes a (n � 2)-dimensional aÆne subspace which contains F1 (or F2).
Therefore,A� (F2) contains two aÆne subspaces S1 and S2 of dimensions n�k�2
and m � (n � k � 2) respectively, where S1 is orthogonal to A� (F1) and S2 is
parallel to A� (F1). In other words, A� (F2) can be orthogonally decomposed
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into two aÆne subspaces S1 and S2 such that S1 \ S2 has an unique point x0,
(x1�x0)T (x2�x0) = 0 for any x1 2 S1 and x2 2 S2, and for some x3 2 A� (F1)
we have fxi�x0 : xi 2 S2g � fxi�x3 : xi 2 A� (F1)g and (x1�x0)

T (x4�x3) = 0
for any x1 2 S1 and x4 2 A� (F1).

There exist n � k � 1 constraints of P such that the corresponding hy-
perplanes, together with �Tx = �, de�ne A� (F1). Let these hyperplanes be
A(n�k�1)�nx = b1. Similarly, there are n � m � 1 constraints of P such that
the corresponding hyperplanes, together with �Tx =  , de�ne A� (F2). Let
them be A(n�m�1)�nx = b2. From the discussion in the previous paragraphs,
one can easily see that the equations A(n�k�1)�nx = 0, A(n�m�1)�nx = 0 have
solution space fxi � x0 : xi 2 S2g with dimension m � (n � k � 2). Since

m � (n � k � 2) � n � [(n � m � 1) + (n � k � 1)], the matrix
�
A(n�k�1)�n

A(n�m�1)�n

�
is full row-rank. Because the rank of A is r, (n � k � 1) + (n � m � 1) � r.
This allows us to choose another r � (n � k � 1) � (n � m � 1) constraints
A[r�(n�k�1)�(n�m�1)]�nx � b3 from Ax � b, together with A(n�k�1)�nx � b1
and A(n�m�1)�nx � b2, to construct a B 2 B�r such that the F -de�ning inequal-
ity is valid for Conv (P (B) \ fx : �Tx � �g) [ (P (B) \ fx : �Tx �  g)).

Case 3. P1 6= ;, P2 6= ;, and some of P1 and P2 is not full-dimensional.
Instead of considering the inequalities �Tx � � and �Tx �  , we construct

two inequalities �Tx � � + � and �Tx �  � �, where � is an arbitrarily small
positive number satisfying � + � <  � �. Let P �1 := P \ fx : �Tx � � + �g
and P �2 := P \ fx : �Tx �  � �g. Since P1 6= ; and P2 6= ;, P �1 and P �2 are
full-dimensional polyhedra.

Because jB�r j is �nite and B and P are closed sets in Rn , by the de�nition of
the Conv operation and the result proved in Case 2, we have

T
B2B�r

Conv ((P (B) \ fx : �Tx � �g) [ (P (B) \ fx : �Tx �  g))

=
T

B2B�r

lim
�!0+

Conv ((P (B) \ fx : �Tx � � + �g) [ (P (B) \ fx : �Tx �  � �g))

= lim
�!0+

T
B2B�r

Conv ((P (B) \ fx : �Tx � � + �g) [ (P (B) \ fx : �Tx �  � �g))

= lim
�!0+

Conv ((P \ fx : �Tx � � + �g) [ (P \ fx : �Tx �  � �g))

= Conv ((P \ fx : �Tx � �g) [ (P \ fx : �Tx �  g)):

ut

From Lemma 2 we immediately have the following:

Corollary 1 Let S � Rn+2 be a set of (�; �;  ) 2 Rn+2 such that � 2 Rn and

� <  . When P is full-dimensional,

\
(�;�; )2S

Conv ((P \ fx : �Tx � �g) [ (P \ fx : �Tx �  g)) =

\
B2B�r

\
(�;�; )2S

Conv ((P (B) \ fx : �Tx � �g) [ (P (B) \ fx : �Tx �  g)): (6)

By choosing S = f(�; �0; �0 + 1) : (�; �0) 2 Zn+1g we get:
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Corollary 2 Equation (4) holds when P is full-dimensional.

Now assume that P is not full-dimensional. We �rst consider the case when
P is empty:

Lemma 3 Equation (4) holds when P is empty.

Proof. There always exist �S �M and �i 2M , where �i 62 �S, such that �S contains
�B 2 B�r and fx 2 Rn : aTi:x � bi; i 2 �Sg 6= ; and fx 2 Rn : aTi:x � bi; i 2
�S [ f�igg = ;. Actually, �S and �i can be chosen by an iterative procedure. In
iteration k (k � 0), an ik 2 Mk � M is chosen such that Mknfikg contains
a B 2 B�r , where M0 := M . If fx 2 Rn : aTi:x � bi; i 2 Mknfikgg 6= ;, then
�S := Mknfikg and �i := ik. Otherwise, let Mk+1 := Mknfikg and proceed until
�nally we obtain �S and �i. The fact that fx 2 Rn : aTi:x � bi; i 2 �Bg 6= ; for any
�B 2 B�r ensures the availability of �S and �i.

By applying the techniques of linear programming, we see that �S contains
�B� 2 B�r such that fx 2 Rn : aTi:x � bi; i 2 �B� [ f�igg = ;. It is possible to
choose ~i 2 �B� such that ~B� := ( �B�nf~ig) [ f�ig 2 B�r . Then fx 2 Rn : aTi:x �
bi; i 2 �B�g \ fx 2 Rn : aTi:x � bi; i 2 ~B�g = ;.

Because P = ;, SC = ;. SC( �B�) \ SC( ~B�) = ; follows SC( �B�) � fx 2
Rn : aTi:x � bi; i 2 �B�g, SC( ~B�) � fx 2 Rn : aTi:x � bi; i 2 ~B�g and fx 2
Rn : aTi:x � bi; i 2 �B�g \ fx 2 Rn : aTi:x � bi; i 2 ~B�g = ;. Therefore,
SC = ; = SC( �B�) \ SC( ~B�) =

T
B2B�r

SC(B). ut

In the remainder of this section, we assume that P is non-empty and not
full-dimensional. Let A� (P ) denote the aÆne hull of P . When P is not full-
dimensional, it is full-dimensional in A� (P ). Let l := dim(A� (P )) < n denote
the dimension of P . Also, M= := fi 2M : aTi:x = bi; 8x 2 Pg denotes the con-
straints describing P satis�ed with equality by all points in P . Since dim(P ) = l,
there exists a set B 2 B�n�l, such that A� (P ) = fx 2 Rn : aTi:x = bi; i 2 Bg.
S= := fB 2 B�n�l : B � M=g denotes the set of all such sets B. The following
properties are needed:

Lemma 4 Assume P is non-empty and not full-dimensional. Then:

(i) A� (P ) = P (M=).
(ii) Let i� 2M= be arbitrary. The linear program minfaTi�:x : x 2 P (M=nfi�g)g

is bounded, the optimal objective value is bi� and the set of optimal solutions

is A� (P ).
(iii) There exist B0 2 S= and i0 2M= nB0 such that A� (P ) = P (B0 [ fi0g).
(iv) Let i0 and B0 be as in (iii). There exists i00 2 B0 such that B00 := (B0nfi00g)[

fi0g 2 S= and A� (P ) = P (B0) \ P (B00).

Proof. The correctness of (i), (ii) and (iv) is easy to check. So next we just prove
(iii).

Because of (i), we have jM=j � n � l + 1. Choose i0 2 M= such that
(M=nfi0g) \ B�n�l 6= ;. So (ii) is true for i� = i0. Since (M=nfi0g) \ B�n�l 6= ;,

the optimal dual solution of minfaTi0x : aTi: � bi; i 2 M=nfi0gg speci�es a
B0 2 (M=nfi0g)\B�n�l such that minfaTi0x : aTi: � bi; i 2 B0g = bi0 with optimal

solution set A� (P ). Therefore, A� (P ) = fx 2 Rn : aTi: � bi; i 2 B0 [ fi0gg. ut
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Let B0 and B00 be as in Lemma 4. The sets B0 and B00 might not be of
cardinality r, i.e. B0 (B00) might not be a maximal subset of M such that the
vectors ai:, for i 2 B

0 (i 2 B00), are linearly independent. De�ne  := r� (n� l).
It follows that 0 �  � l. BA := fB 2 B� : B [B

0 2 B�rg (= fB 2 B� : B [B00 2
B�rg) denotes the family of -subsets B in B� such that B0 [ B (B00 [ B) is an

r-subset in B�r . Also, B
0�
r := fB 2 B�r : B � B0g and B00�r := fB 2 B�r : B � B00g

denotes the families of r-subsets in B�r containing B0 and B00 respectively. The
following is immediate from the de�nitions of BA , B

0�
r and B

00�
r :

Lemma 5 There is a one-to-one mapping from BA to B0�r, and there is a one-

to-one mapping from BA to B00�r.

We are now able to �nish the proof of Theorem 1:

Lemma 6 Equation (4) holds when P is non-empty and not full-dimensional in

Rn .

Proof. P is full-dimensional in A� (P ). If there exists (�; �0) 2 Zn+1 such that
A� (P ) is between the hyperplanes �Tx = �0 and �

Tx = �0+1 and A� (P ) does
not intersect them, then Lemma 6 is trivially true with ; = ;. Otherwise, we
only need to consider (�; �0) 2 Zn+1 such that both hyperplanes �Tx = �0 and
�Tx = �0+1 intersect A� (P ) and neither of them contains A� (P ). Denote the
set of these (�; �0) by SA.

Now we have
T

(�;�0)2Zn+1
Conv (P \FD(�;�0)) =

T
(�;�0)2SA

Conv ((P \fx 2

A� (P ) : �Tx � �0g) [ (P \ fx 2 A� (P ) : �Tx � �0 + 1g)). Applying
Corollary 1 to the aÆne subspace A� (P ), we see that the latter is equal toT
B2BA

T
(�;�0)2SA

Conv (((P (B) \ A� (P )) \ fx 2 A� (P ) : �Tx � �0g) [

((P (B) \ A� (P )) \ fx 2 A� (P ) : �Tx � �0 + 1g)). By Lemma 4(iv) and
Lemma 5, for any P (B), where B 2 BA , there always exist P ( ~B

0) and P ( ~B00),

where ~B0 2 B0�r and ~B00 2 B00�r , such that ~B0 = B0 [ B, ~B00 = B00 [ B and
P (B)\A� (P ) = P ( ~B0)\P ( ~B00). Therefore,

T
B2BA

T
(�;�0)2SA

Conv (((P (B)\

A� (P )) \ fx 2 A� (P ) : �Tx � �0g) [ ((P (B) \ A� (P )) \ fx 2 A� (P ) :
�Tx � �0 + 1g)) �

T
B2B�r

T
(�;�0)2Zn+1

Conv (P (B) \ FD(�;�0)), which impliesT
(�;�0)2Zn+1Conv (P \FD(�;�0)) �

T
B2B�r

T
(�;�0)2Zn+1Conv (P (B)\FD(�;�0)).

Because P � P (B) for any B 2 B�r , it is easy to obtain
T

(�;�0)2Zn+1
Conv (P \

FD(�;�0)) �
T
B2B�r

T
(�;�0)2Zn+1Conv (P (B) \ FD(�;�0)). The lemma is proved.

ut

Theorem 1 is implied by Corollary 2, Lemma 3 and Lemma 6. In fact, the
proofs allow us to extend Theorem 1 to arbitrary subsets of �n(NI):

Theorem 2 Assume S � �n(NI). Then:

\
(�;�0)2S

Conv (P \ FD(�;�0)) =
\
B2B�r

\
(�;�0)2S

Conv (P \ FD(�;�0)): (7)
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4 Polyhedrality of split closure

In this section, we assume A 2 Qm�n and b 2 Qn , i.e. that P is a rational
polyhedron. Cook, Kannan and Schrijver proved the following result [4]:

Theorem 3 The split closure of MILP is a polyhedron.

We will give a new proof of this result using the characterization of the split
closure obtained in the previous section. Let ~C := ~x+Cone (f~ri : i = 1; 2; : : : ; qg)
be (the translate of) a cone with apex ~x 2 Qn and q linearly independent extreme
ray vectors f~rig

q
i=1, where q � n and ~ri 2 Zn for 1 � i � q. The following lemma

plays a key role in proving Theorem 3.

Lemma 7 The split closure of ~C is a polyhedron.

Proof. Suppose that the disjunction �Tx � �0 and �
Tx � �0+1 induces a split

cut that is not valid for some part of C. Then it must be not valid for ~x either.
So we know �0 < �T ~x < �0 + 1, i.e. the point ~x is between the two hyperplanes
�Tx = �0 and �

Tx = �0 + 1.
Choose an extreme ray generated by vector ~ri and assume that the hyper-

plane �Tx = �0 intersects the extreme ray at ~x+ ~�i~ri, where ~�i > 0 (~�i = +1
is allowed). Then ~�i =

�
��T ~ri

can be easily calculated, where �T ~ri � 0, � :=

�T ~x� �0 and 0 < � < 1.
We claim that ~�i is either +1 or bounded above by 1. When �T ~ri = 0,

~�i = +1, in which case the hyperplane �Tx = �0 is parallel to the vector ~ri.
When �T ~ri < 0, 0 < ~�i < +1, which means that the hyperplane intersects
the ray at some �nite point. In this case, because � and ~ri are in Z

n, we know
��~ri � 1. Hence, ~�i =

�
��T ~ri

� � < 1.

Let ~x = (~x1; ~x2; � � � ; ~xn)T 2 Qn. Let g be the least common multiple of all
the denominators of ~x1; ~x2; � � � ; ~xn. Noticing the fact that ~�i =

�
��T ~ri

, it follows
that ~�i can be expressed as p

wg
, where p; w 2 Z+ and 0 < p < g.

By the following claim, we actually prove the lemma.
Claim. There is only a �nite number of undominated split cuts for cone C.
Proof of claim. By induction on m, the number of extreme rays of C.
When q = 1, C = fx 2 Rn : x = ~x + �1~r1; �1 � 0g. The case ~�1 = +1

does not yield a split cut, so ~�1 is bounded above by 1 for every split cut. Note
that the maximum value of ~�1 is reachable, because ~�1 has the form of p

wg

as mentioned above. Let ��x = ��0 be the hyperplane for which ~�1 reaches its
maximum. Then the split cut ��x � ��0 is an undominated split cut of C.

Assume that the claim is true for q = k < n. Let us consider the case of
q = k + 1.

Let Ci := fx 2 Rn : x = ~x +
P
j 6=i �j~rj ; �j � 0; 1 � j � k + 1; j 6= ig,

where 1 � i � k + 1. Each Ci is a polyhedral cone with apex ~x and k linearly
independent extreme rays. By induction hypothesis, there is only a �nite number
of undominated split cuts for each cone Ci. Among those points obtained by
intersecting the undominated split cuts for Ci with the extreme ray generated
by ~ri, let zi be the closest point to ~x.

9



Now we claim that any undominated split cut of C cannot intersect the
extreme ray generated by ~ri (1 � i � k +1) at a point which is closer to ~x than
zi. Otherwise, let us assume that there is an undominated split cut H of C which
intersects the extreme ray generated by ~ri at a point ~zi that is between ~x and zi.
By the de�nition of zi, the cut (when restricted to Ci) must be dominated by a
cut of Ci, say H0. Wlog, assume that the cut H0 is an undominated cut for Ci.
So H0 must intersect the extreme ray generated by ~ri at z

0
i that is not between

~x and zi. But now H0 dominates H, a contradiction to the choice of H.
We know that the intersection point of any undominated split cut with the

extreme ray of ~ri (1 � i � k + 1) is either at in�nity or between zi and ~x + ~ri.
Since ~�i =

p
wg

, there are only �nitely many points between zi and ~x + ~ri that
could be the intersections of the split cuts with the extreme ray. Therefore, we
see that the claim is true when q = k + 1. ut

Let B 2 B�r be arbitrary. From section 2 we know that P (B) can be written
as P (B) = �x(B) + L(B) + C(B), where C(B) := Cone (fri(B) : i 2 Bg) and
fri(B) : i 2 Bg � Zn are linearly independent (by scaling). The following
lemmas are straightforward:

Lemma 8 Let (�; �0) 2 Zn+1 and B 2 B�r be arbitrary. If an inequality is valid

for Conv (P (B)\FD(�;�0)) but not valid for P (B), then �T =
P
i2B �ia

T
i: , where

�i 2 R (i 2 B).

De�ne SB := f� 2 Zn : �T =
P
i2B �ia

T
i: ; �i 2 R; i 2 Bg. From Lemma 8

we have:

Lemma 9 Let B 2 B�r , (�; �0) 2 SB �Z.

(i) Assume there exists a facet F of Conv (P (B)\FD(�;�0)), which is not a facet

of P (B). Then F is unique and there exists a unique facet ~F of Conv ((�x(B)+
C(B)) \FD(�;�0)), which is not a facet of �x(B) + C(B). Furthermore F =

L(B) + ~F .
(ii) Assume there exists a facet ~F of Conv ((�x(B) + C(B)) \FD(�;�0)), which is

not a facet of �x(B)+C(B). Then ~F is unique and there exists a unique facet

F of Conv (P (B) \ FD(�;�0)), which is not a facet of P (B). Furthermore
~F = F \ (�x(B) + C(B)).

The following result is implied by Lemma 7 and Lemma 9:

Lemma 10 SC(B), where B 2 B�r , is a polyhedron.

Now, Theorem 3 follows from Theorem 1 and Lemma 10.

5 Disjunctive sets derived from polyhedra and two-term

disjunctions

In this section, two decomposition results for the set conv(P \FD) are presented.
The �rst decomposition result (Theorem 6) states that conv(P \ FD) can be

10



written as the intersection of sets conv(P (T ) \ FD) over sets T 2 C�
1 , where

C�
1 is some family of (r + 1)-subsets of M . Furthermore, in the special case

where r = n, we show that it is enough to consider r-subsets T of M . The
second result strengthens the �rst result for split disjunctions D(�; �0), and
states that the set conv(P \ FD(�;�0)) can be written as the intersection of the
sets conv(P (B) \ FD(�;�0)) for B 2 B�r . We start by proving the following:

Theorem 4 Let S �M be non-empty. If S satis�es jSj � r(S) + 2, then

conv(P (S) \ FD) =
\
i2S

conv(P (S n fig) \ FD): (8)

Furthermore, (8) remains true if r(S) = n and jSj = n+ 1.

One direction is easy to prove:

Lemma 11 Let S �M be non-empty. Then,

conv(P (S) \ FD) �
\
i2S

conv(P (S n fig) \ FD): (9)

Proof. Clearly P (S) � P (S n fig) for all i 2 S. Intersecting with FD on both
sides gives P (S) \ FD � P (S n fig) \ FD for all i 2 S. Convexifying both sides
results in Conv (P (S) \ FD) � Conv (P (S n fig) \ FD) for all i 2 S, and �nally,
since this holds for all i 2 S, the result follows. ut

The proof of the other direction involves the idea introduced by Balas [2] of
lifting the set Conv (P (S) \ FD) onto a higher dimensional space. Speci�cally,
Conv (P (S)\FD) can be described as the projection of the set, described by the
following constraints, onto the space of x-variables:

x = x1 + x2; (10)

aTi:x
1 � bi�

1; 8i 2 S; (11)

aTi:x
2 � bi�

2; 8i 2 S; (12)

�1 + �2 = 1; (13)

D1x1 � d1�1; (14)

D2x2 � d2�2; (15)

�1; �2 � 0: (16)

The description (10)-(16) can be projected onto the (x; x1; �1)-space by using
constraints (10) and (13). By doing this, we arrive at the following character-
ization of Conv (P (S) \ FD). Later, the constraints below will be used in the
formulation of an LP problem. Therefore, we have written the names of the
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corresponding dual variables next to the constraints:

��1bi + aTi:x
1 � 0; 8i 2 S; (ui) (17)

��1bi + aTi:x
1 � bi � aTi:x; 8i 2 S; (vi) (18)

�1 � 1; (w0) (19)

��1d1 +D1x1 � 0m1 ; (u0) (20)

�1d2 �D2x1 � d2 �D2x; (v0) (21)

�1 � 0: (t0) (22)

Consider now relaxing constraints (20) and (21), i.e. replacing (20) and (21)
by the following constraints:

��1d1 +D1x1 � s1m1 � 0m1 ; (u0) (23)

�1d2 �D2x1 � s1m2 � d2 �D2x; (v0) (24)

s � 0: (t1) (25)

Now, the problem of deciding whether or not a given vector x 2 Rn belongs
to Conv (P (S) \ FD) can be decided by solving the following linear program,
which will be called PLP (x; S) in the following:

max �s
s:t: (17)� (19); (22) and (23)� (25): (PLP (x; S))

Observe that PLP (x; S) is feasible if and only if x 2 P (S), and that PLP (x; S)
is always bounded above by zero. Finally, note that x 2 Conv (P (S)\FD) if and
only if PLP (x; S) is feasible and bounded, and there exists an optimal solution
in which the variable s has the value zero.

The other direction is proved with the aid of the problem PLP (x; S) and
its dual DLP (x; S). Suppose S � M , satis�es S 6= ;, jSj � r(S) + 1 and that
�x 2
T
i2S Conv (P (S n f

�ig) \ FD). Then �x 2
T
i2S P (S n fig), and since jSj � 2,

we have �x 2 P (S). Hence PLP (�x; S) is feasible and bounded if S satis�es jSj �
r(S) + 1 and �x 2

T
i2S Conv (P (S n f

�ig) \ FD). In the case where PLP (�x; S)
is feasible and bounded, (�x1; ��1; �s) denotes an optimal basic feasible solution
to PLP (�x; S) and (�u; �v; �u0; �v0; �w0; �t0; �t1) denotes a corresponding optimal basic
feasible solution to DLP (�x; S).

For u0 � 0m1 , ui � 0 for i 2 S and j 2 N , de�ne the quantities �1j (S; u; u
0) :=P

i2Suiai;j+(u
0)TD1

:j and �
1(S; u; u0) :=

P
i2Suibi+(u

0)T d1, whereD1
:j denotes

the jth column of D1. The inequality (�1(S; u; u0))Tx � �1(S; u; u0) is valid for
fx 2 P (S) : D1x � d1g. Similarly, for v0 � 0m2 , vi � 0 for i 2 S and j 2 N ,
de�ning the quantities �2j (S; v; v

0) :=
P
i2Sviai;j + (v0)TD2

:j and �
2(S; v; v0) :=P

i2Svibi + (v0)T d2, gives the inequality (�2(S; v; v0))Tx � �2(S; v; v0), which
is valid for fx 2 P (S) : D2x � d2g. With these quantities, the dual DLP (�x; S)

12



of PLP (�x; S) can be formulated as follows:

min �2(S; v; v0)� (�2(S; v; v0))T �x+ w0

s.t. �1j (S; u; u
0)� �2j (S; v; v

0) = 0; 8j 2 N; (x1j ) (26)

�2(S; v; v0)� �1(S; u; u0) + w0 � t0 = 0; (�1) (27)

1Tm1
u0 + 1Tm2

v0 + t1 = 1; (s) (28)

u0 � 0m1 ; (29)

v0 � 0m2 ; (30)

w0; t0; t1 � 0; (31)

ui; vi � 0; 8i 2 S: (32)

Lemma 12 Let S � M be arbitrary. Suppose �x 2 P (S) n Conv (P (S) \ FD).
Then �u0 6= 0m1 and �v0 6= 0m2 .

Proof. Let �x be as stated, and suppose �rst that �v0 = 0m2 . The inequality
(�2(S; �v; 0m2))

Tx � �2(S; �v; 0m2) is valid for P (S). However, since the optimal
objective value to DLP (�x; S) is negative, and �w0 � 0, we have �2(S; �v; 0m2)�
(�2(S; �v; 0m2))

T �x < 0, which contradicts the assumption that �x 2 P (S).

Now suppose �u0 = 0m1 . The inequality (�1(S; �u; 0m1))
Tx � �1(S; �u; 0m1)

is valid for P (S), but �1(S; �u; 0m1)� (�1(S; �u; 0m1))
T �x � �2(S; �v; �v0) + w0�

(�2(S; �v; �v0))T �x < 0, where we have used (20) and (21). This contradicts the
assumption that �x 2 P (S). ut

The next lemma is essential for the proof of the converse direction of Theorem
4:

Lemma 13 Let S � M , and let T � S satisfy jT j � 2. Also, suppose �x 2T
i2T Conv (P (S n fig) \ FD) and �x =2 Conv (P (S) \ FD). Then DLP (�x; S) is

feasible and bounded. Furthermore, �ui > 0 or �vi > 0 for all i 2 T .

Proof. Let S, T and �x be as stated. The fact that DLP (�x; S) is feasible and
bounded follows from the facts �x 2

T
i2T Conv (P (S n fig) � P (S) and jT j � 2.

Now, suppose �ui0 = 0 and �vi0 = 0 for some i0 2 T . Then the problem
(D0

LP (�x; S n fi
0g)), obtained from DLP (�x; S) by eliminating ui0 , vi0 and the nor-

malization constraint:

min �2(S n fi0g; v; v0)� (�2(S n fi0g; v; v0))T �x+ w0

s.t. �1j (S n fi
0g; u; u0)� �2j (S n fi

0g; v; v0) = 0; 8j 2 N; (x1j )

�2(S n fi0g; v; v0)� �1(S n fi0g; u; u0) + w0 � t0 = 0; (�1)

u0 � 0m1 ; v
0 � 0m2 ; w0; t0 � 0; ui; vi � 0; 8i 2 S n fi0g;
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is unbounded (since �x =2 Conv (P (S) \ FD)). This means that the dual of
D0
LP (�x; S n fi

0g), the problem P 0
LP (�x; S n fi

0g), is infeasible:

max 0Tnx
1 + 0�1

s.t. � �1bi + aTi:x
1 � 0; 8i 2 S n fi0g; (ui)

�1bi � aTi:x
1 � bi � aTi: �x; 8i 2 S n fi0g; (vi)

�1 � 1; (w0)

� �1d1 +D1x1 � 0m1 ; (u0)

�1d2 �D2x1 � d2 �D2�x; (v0)

�1 � 0: (t0)

However, these constraints are the conditions that must be satis�ed for �x to
be in Conv (P (S n fi0g) \ FD), which is a contradiction. ut

With the above lemmas, we are ready to prove the converse of Theorem 4:

Lemma 14 Let S � M , and suppose that either jSj � r(S) + 2 or r(S) = n
and jSj = n+ 1. Then

Conv (P (S) \ FD) �
\
i2S

Conv (P (S n fig) \ FD): (33)

Proof. Let �x 2
T
i2S Conv (P (S nfig)\FD), and suppose �x =2 Conv (P (S)\FD).

De�ne Bu := fi 2 S : ui basic g and Bv := fi 2 S : vi basic g to be the set of
basic u's and v's respectively in the solution (�u; �v; �u0; �v0; �w0; �t0; �t1) to DLP (�x; S).
From Lemma 13 and the fact that a variable with positive value, that does not
have an upper bound, is basic, it follows that (Bu [ Bv) = S.

The feasible set for the problem DLP (�x; S) is of the form fy 2 Rn
0

: Wy =
w0; y � 0n0g, where W and w0 are of suitable dimensions. The column of W
corresponding to the variable ui, i 2 S, is given by [aTi: ;�bi; 0]

T . Similarly, the
column of W corresponding to the variable vi, i 2 S, is given by [�aTi: ; bi; 0]

T .
Since for all i 2 S, either ui or vi is basic, the vectors [aTi: ;�bi]

T , i 2 S, are
linearly independent. Clearly, there can be at most r(S) + 1 of these. Hence
jSj = r(S) + 1. This excludes the case jSj � r(S) + 2, so we must have r(S) = n
and jSj = n+ 1.

The number of basic variables in the solution (�u; �v; �u0; �v0; �w0; �t0; �t1) to
DLP (�x; S) is at most n + 2, since the number of basic variables is bounded
by the number of equality constraints in DLP (�x; S). The number of basic vari-
ables among the variables ui and vi, i 2 S, is jSj = n+1. However, according to
Lemma 12, at least two of the variables in (�u0; �v0) are basic, which gives a total
of n+ 3 basic variables | a contradiction. ut

Now, we strengthen Theorem 4 for the case where jSj � r(S) + 2. Let �I(S)
be the set of constraints i 2 S for which r(S n fig) = r(S), i.e. �I(S) := fi 2 S :
r(S) = r(S n fig)g. We have:
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Theorem 5 Let S �M satisfy jSj � r(S) + 2. Then

Conv (P (S) \ FD) =
\

i2�I(S)

Conv (P (S n fig) \ FD): (34)

Like in Theorem 4, and with the same proof, one direction of Theorem 5 is
easy. For the converse, observe that jSj � r(S) + 2 implies j�I(S)j � 2. It also
implies

T
i2�I(S) Conv (P (S n fig) \ FD) � P (S). From Lemma 13, we have:

Corollary 3 Suppose jSj � r(S) + 2, �x 2
T
i2�I(S) Conv (P (S n fig) \ FD) and

�x =2 Conv (P (S) \ FD). Then �ui > 0 or �vi > 0 for all i 2 �I(S).

We can now prove the converse of Theorem 5:

Lemma 15 Let S �M satisfy jSj � r(S) + 2. Then:

Conv (P (S) \ FD) �
\

i2�I(S)

Conv (P (S n fig) \ FD): (35)

Proof. Let �x 2
T
i2�I(S) Conv (P (S n fig) \ FD), and suppose �x =2 Conv (P (S) \

FD). Observe that it suÆces to prove that the vectors [aTi: ;�bi], i 2 S, are linearly
independent, since that would contradict jSj � r(S)+2. Suppose they are linearly
dependent, and let �i 2 S satisfy [aT�i: ;�b�i] =

P
i2Snfig �i[a

T
i: ;�bi], where �i, for

i 2 S nfig, are scalars, not all zero. Suppose �rst that �i 2 S n �I(S). Then we have
a�i: 2 span(fai: : i 2 S n f�ig). However, that implies r(S) = r(S n f�ig), which is
a contradiction. Hence, we must have �i 2 �I(S) and �i = 0 for all i 2 S n �I(S).
However, according to Corollary 3, the vectors [aTi: ;�bi], i 2

�I(S), are linearly
independent. ut

Applying Theorem 5 iteratively, and Theorem 4 for sets of size n+1, we get
the following:

Theorem 6 Suppose jM j = m � r + 1. Also, de�ne C�1 := fS � M : jSj =
r+1 and r(S) = rg and C�2 := fS �M : jSj = r and (r(S) = r_r(S) = r�1)g.
We have,

Conv (P \ FD) =
\
T2C�1

Conv (P (T ) \ FD): (36)

Furthermore, if r = n,

Conv (P \ FD) =
\
T2C�2

Conv (P (T ) \ FD): (37)

The example in Figure 1 demonstrates that the assumption jSj � r(S) + 2
is necessary for (35) to hold. In this example, P has 3 constraints aTi:x � bi,
i = 1; 2; 3, and D is a two-term disjunction involving the 2 constraints D1x �
d1 and D2x � d2. C1 denotes the cone de�ned by aT1:x � b1 and aT3:x � b3,
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Fig. 1. Example of two-term disjunction

and C2 denotes the cone de�ned by aT2:x � b2 and aT3:x � b3. We clearly see
Conv (P (M) \ FD) 6=

T
i2�I(M) Conv (P (M n fig) \ FD).

The example does not exclude, however, that (35) is true for sets S satisfying
jSj = r(S) + 1 for the special case of a split disjunction. In fact, the example
suggests that it is also necessary for the disjunction to be a split disjunction. In
the following, we will prove that (35) remains valid for jSj = r(S) + 1 for the
special case of a split disjunction.

Let D(�; �0) be a split disjunction. The problem PLP (�x; S), for a split dis-
junction D(�; �0), which will be called PSLP (�x; S) in the following, is obtained
from the problem PLP (�x; S) by replacing (23) and (24) with:

��1�0 + �Tx1 � s � 0; (u0) (38)

��1(�0 + 1) + �Tx1 � s � �(�0 + 1) + �T �x: (v0) (39)

The dual of PSLP (�x; S) is the problem DS
LP (�x; S) de�ned as:
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min
X

i2S
vi(bi � aTi: �x) + w0 + v0(�T �x� (�0 + 1)) (40)

s.t.
X

i2S
ai:(ui � vi) + �(u0 + v0) = 0n; (x1) (41)

X
i2S

bi(vi � ui)� �0(u0 + v0)� v0 + w0 � t0 = 0; (�1) (42)

u0 + v0 + t1 = 1; (s) (43)

u0; v0; w0; t0; t1 � 0; (44)

ui; vi � 0; 8i 2 S: (45)

The solution (�u; �v; �u0; �v0; �w0; �t0; �t1) to D
S
LP (�x; S), for the case where jSj =

r(S) + 1, can be characterized as follows (see also Lemma 2 in [3]):

Lemma 16 Suppose jSj = r(S) + 1, �x 2
T
i2�I(S) Conv (P (S n fig) \ FD(�;�0))

and �x =2 Conv (P (S) \ FD(�;�0)). Let Bu := fi 2 S : ui basic g and Bv :=
fi 2 S : vi basic g be the set of basic u's and v's respectively in the solution

(�u; �v; �u0; �v0; �w0; �t0; �t1) to D
S
LP (�x; S). Then Bu\Bv = ;, r(S) = n, jBu[Bv j = n,

and the vectors ai:, i 2 Bu [ Bv, are linearly independent.

Proof. As mentioned earlier, the feasible set for DS
LP (�x; S) can be written as

fy 2 Rn
0

:Wy = z0; y � 0n0g, where W and z0 are of suitable dimensions.
We �rst argue that the variables w0, t0 and t1 are non-basic in the solution

(�u; �v; �u0; �v0; �w0; �t0; �t1) to D
S
LP (�x; S). t1 is clearly non-basic, since s is basic in

PSLP (�x; S). From Lemma 12 it follows that both u0 and v0 are basic. The col-
umn corresponding to u0 is [�;��0; 1] and the column corresponding to v0 is
[�;�(�0 + 1); 1]. Subtracting the column corresponding to v0 from the column
corresponding to u0 gives en+1, i.e. the (n+1)th unit vector in Rn+2 . Since this
is exactly the column corresponding to w0 and �t0, and since basic columns
must be linearly independent, it follows that w0 and t0 are both non-basic.

As argued earlier, not both vi and ui, i 2 S, can be in the basis, since their
corresponding columns in W are multiples of each other. Hence Bu \ Bv = ;.
Now, since (�u; �v; �u0; �v0; �w0; �t0; �t1) is a basic solution to DS

LP (�x; S), the solution
to the system:

X
i2Bu

ai:ui �
X

i2Bv
ai:vi + � = 0n (46)

X
i2Bv

bivi �
X

i2Bu
biui � �0 � v0 = 0 (47)

u0 + v0 = 1 (48)

is unique. The system (46)-(48) is of the formWBy = zB0 . The number of rows of
WB (and zB0 ) is n+2, and the number of columns is jBu [Bvj+2. All columns
of WB are linearly independent. If jBu [ Bvj + 2 < n + 2, multiple solutions
would exist. Hence, we must have jBu [ Bvj = n.

Now suppose the vectors ai:, i 2 Bu[Bv , are linearly dependent. Then there
exists a non-zero solution (u�; v�) to the system

P
i2Bu

ai:u
�
i�
P
i2Bv

ai:v
�
i =
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0n. De�ne the scalars ui(Æ) := �ui + Æu�i for i 2 Bu and vi(Æ) := �vi + Æv�i for
i 2 Bv , where Æ 2 R. We have that (u(Æ); v(Æ); u0; v0) satis�es (46)-(48) if and
only if u0 + v0 = 1 and �v0 + Æ(

P
i2Bv

biv
�
i�
P
i2Bu

biu
�
i ) � v0 = 0. De�ning

v0(Æ) := �v0 + Æ(
P
i2Bv

biv
�
i�
P
i2Bu

biu
�
i ) and u0(Æ) := 1 � v0(Æ), we have that

(u(Æ); v(Æ); u0(Æ); v0(Æ)) satis�es (46)-(48). Since u
�
i for i 2 Bu and v�i for i 2 Bv

are not all zero, and none of the vectors ai:, i 2M , are zero vectors, there must
exist Æ� 2 R such that (u(Æ�); v(Æ�); u0(Æ

�); v0(Æ
�)) is a di�erent solution to (46)-

(48) than (�u; �v; �u0; �v0), a contradiction. ut

From the above lemma, we immediately have the desired extension of Theo-
rem 5 for the split disjunction:

Lemma 17 Suppose S �M satis�es jSj = r(S) + 1. Then:

Conv (P (S) \ FD(�;�0)) =
\

i2�I(S)

Conv (P (S n fig) \ FD(�;�0)): (49)

Proof. Suppose �x 2
T
i2�I(S) Conv (P (S n fig)\ FD(�;�0)) and �x =2 Conv (P (S) \

FD(�;�0)). Let Bu and Bv and (�u; �v; �u0; �v0; �w0; �t0; �t1) be as in Lemma 6. We have
Bu \ Bv = ;, r(S) = n, jBu [ Bvj = n, and the vectors ai:, i 2 Bu [ Bv, are
linearly independent. Let f�ig = Sn(Bu[Bv). We can not have �i 2 �I(S), since by
Corollary 1, that would imply �u�i > 0 or �v�i > 0, which contradicts �i =2 Bu [ Bv .
Hence, we must have �i 2 S n �I(S). But that means that �i is in every basis of S,
which contradicts �i =2 Bu [ Bv. ut

From Theorem 5 and Lemma 17, we get the following:

Theorem 7

Conv (P \ FD(�;�0)) =
\
T2B�r

Conv (P (T ) \ FD(�;�0)): (50)

By intersection over all possible split disjunctions, and interchanging inter-
sections, we get Theorem 1 of section 3.
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