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Abstract

The Operations Research model known as the Set Covering Problem has a
wide range of applications. See for example the survey by Ceria, Nobili and
Sassano in Annotated Bibliographies in Combinatorial Optimization edited by
Dell’ Amico, Maffioli and Martello [16]. Sometimes, due to the special structure
of the constraint matrix, the natural linear programming relaxation yields an
optimal solution that is integer, thus solving the problem. Under which condi-
tions do such integrality properties hold? This question is of both theoretical and
practical interest. On the theoretical side, polyhedral combinatorics and graph
theory come together in this rich area of discrete mathematics. In this tutorial,
we present the state of the art and open problems on this question.

Keywords: Ideal clutter, ideal matrix, set covering, integer polyhedron, width-
length inequality, Max Flow Min Cut property.

1 Introduction

A clutter C is a family E(C) of subsets of a finite ground set V' (C) with the property
that A; € A for all distinct Ay, Ay € E(C). V(C) denotes the set of vertices and E(C)
the set of edges of C. A clutter is ideal if {x > 0: z(A) > 1 forall A € E(C)}
is an integral polyhedron, i.e. all its extreme points have 0,1 coordinates. Here z(A)
denotes Y ;c 4 ;. This concept is also known under the name of width-length property,
weak Max Flow Min Cut property or Q,-MFMC property. We prefer the term “ideal”
because it stresses the parallel with “perfection”.

A clutter is trivial if it has no edge or if it has the empty set as unique edge. Given
a nontrivial clutter C, we define M (C) to be a 0,1 matrix whose columns are indexed
by V(C), whose rows are indexed by E(C) and where M;; = 1 if and only if the vertex
corresponding to column j belongs to the edge corresponding to row 7. In other words,
the rows of M(C) are the characteristic vectors of the sets in E(C). Note that the
definition of M(C) is unique up to permutation of rows and permutation of columns.
M(C) contains no dominating row, since C is a clutter (A vector r € F is said to
be dominating if there exists v € F' distinct from r such that » > v). A 0,1 matrix
M containing no dominating rows is called a clutter matriz. Given any 0,1 clutter
matrix M, we denote by C(M) the unique clutter for which M(C(M)) = M. The 0,1
matrix M is ideal if the clutter C(M) is ideal. Clearly, C(M) is ideal if and only if
{z > 0: Mz > 1} is an integral polyhedron. In this tutorial we present the state of
the art and open problems on ideal clutters and matrices. Parts of the tutorial overlap
with [10].



1.1 Blockers

A transversal of a clutter C is a set of vertices that intersects all the edges. The blocker
b(C) of a clutter C is the clutter with V'(C) as vertex set and the minimal transversals
of C as edge set. That is, F(b(C)) consists of the minimal members of {B C V(C) :
|[BNA|>1forall Ae E(C)}. In other words, the rows of M(b(C)) are the minimal
0,1 vectors ' such that z belongs to the polyhedron P(C) = {z > 0: M(C)x > 1}.

Example 1.1 Let G be a graph and s, t be distinct nodes of G. If C is the clutter of
st-paths, then b(C) is the clutter of minimal st-cuts.

Edmonds and Fulkerson [19] observed that b(b(C)) = C. Before proving this prop-
erty, we make the following remark.

Remark 1.2 Let H and K be two clutters defined on the same vertex set. If
(i) every edge of H contains an edge of K and
(11) every edge of K contains an edge of H,

then H = K.

Theorem 1.3 If C is a clutter, then b(b(C)) = C.

Proof: Let A be an edge of C. The definition of b(C) implies that |AN B| > 1, for every
edge B of b(C). So A is a transversal of b(C), i.e. A contains an edge of b(b(C)).

Now let A be an edge of b(b(C)). We claim that A contains an edge of C. Suppose
otherwise. Then V(C) — A is a transversal of C and therefore it contains an edge B of
b(C). But then AN B = () contradicts the fact that A is an edge of b(b(C)). So the
claim holds.

Now the theorem follows from Remark 1.2. O

Two 0,1 matrices of the form M(C) and M(b(C)) are said to form a blocking pair.
The next theorem is an important result due to Lehman [35]. It states that, for a
blocking pair A, B of 0,1 matrices, the polyhedron P defined by

x>0 (2)

Arx >1 (1)

is integral if and only if the polyhedron () defined by

Bx>1 (3)
x>0 (4)

is integral. The proof of this result uses the following remark.



Remark 1.4

(i) The rows of B are exactly the 0,1 extreme points of P.

(ii) If an extreme point x of P satisfies x7 > AT B where \; > 0 and S \; = 1, then
x 1s a 0,1 extreme point of P.

Proof: (i) follows from the fact that the rows of B are the minimal 0,1 vectors in P.
To prove (ii), note that z is an extreme point of Py = {x : x¥ > A\'B where \; >

0 and Y \; = 1} for otherwise x would be a convex combination of distinct z*, 2% € Py

and, since Py C P, this would contradict the assumption that z is an extreme point

of P. Now (ii) follows by observing that the extreme points of P; are exactly the rows
of B. O

Theorem 1.5 (Lehman [35]) A clutter is ideal if and only if its blocker is.

Proof: By Theorem 1.3, it suffices to show that if P defined by (1)-(2) is integral, then
() defined by (3)-(4) is also integral.

Let a be an arbitrary extreme point of Q. By (3), Ba > 1, i.e. a’x > 1 is satisfied
by every z such that 27 is a row of B. Since P is an integral polyhedron, it follows
from Remark 1.4(i) that a’x > 1 is satisfied by all the extreme points of P. By (4),
a > 0. Therefore a’z > 1 is satisfied by all points in P. Furthermore, a’x = 1 for
some = € P. Now, by linear programming duality, we have

1 = min{a’z: z€ P} = max{\T1: \TA<a’, X\ >0}.

Therefore, by Remark 1.4(ii), a is a 0,1 extreme point of Q). O

1.2 Related Concepts

Let M # 0 be a 0,1 clutter matrix and consider the following pair of dual linear
programs.

min{wz : x >0, Mx > 1} (5)
=max{yl:y >0, yM < w} (6)

The clutter C(M) is ideal if (5) has an optimal solution vector x that is integral for
all w > 0. Next, we consider concepts that involve integrality in both the primal and
the dual problems.

Definition 1.6 The clutter C(M) packs if both (5) and (6) have optimal solution vec-
tors x and y that are integral when w = 1.

Definition 1.7 The clutter C(M) has the packing property if both (5) and (6) have
optimal solution vectors x and y that are integral for all vectors w with components
equal to 0,1 or 4o00.



Definition 1.8 The clutter C(M) has the Max Flow Min Cut property (or MFMC
property) if both (5) and (6) have optimal solution vectors x and y that are integral for
all nonnegative integral vectors w.

Clearly, the MFMC property for a clutter implies the packing property which itself
implies that the clutter packs. Conforti and Cornuéjols [6] conjectured that, in fact,
the MFMC property and the packing property are identical. This conjecture is still
open.

Conjecture 1.9 A clutter has the MFMC property if and only if it has the packing
property.

Clearly, the MEMC property implies idealness. In fact, the packing property implies
idealness.

Theorem 1.10 If a clutter has the packing property, then it is ideal.

This follows from a result of Lehman [36] that we will prove in Section 4.

PACKING PROPERTY

MAX FLOW MIN CUT PROPERTY

CLUTTERS THAT PACK

Figure 1: Classes of clutters.

A linear system Az > b is Total Dual Integral (TDI) if the linear program min wx
subject to Ar > b has an integral optimal dual solution y for every integral w for
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which the linear program has a finite optimum. Edmonds and Giles [20] proved that,
if Ax > bis TDI and b is integral, then P = {x : Ax > b} is an integral polyhedron.
The proof of the Edmonds-Giles theorem can be found in Schrijver [52], pages 310-311,

or Nemhauser and Wolsey [40], pages 536-537. It follows that C(M) has the MFMC
property if and only if (6) has an optimal integral solution y for all nonnegative integral
vectors w.

Definition 1.11 Let k be a positive integer. The clutter C(M) has the 1/k - MFMC
property if it is ideal and, for all nonnegative integral vectors w, the linear program
(6) has an optimal solution vector y such that ky is integral.

When k = 1, this definition reduces to that of the MEMC property. If C(M) has
the 1/k-MFMC property, then it also has the 1/¢-MFMC property for every integer ¢
that is a multiple of k.

Example 1.12 Let V(C) be the set of edges of Ky and let E(C) be the set of triangles
of Ky. The reader can verify that C is ideal, does not have the MFMC property and, in
fact, does not pack. Whereas b(C) is ideal, packs and, in fact, has the MFMC property.

1.3 Deletion, Contraction and Minor

Let C be a clutter. For j € V(C), the contraction C/j and deletion C \ j are clutters
defined as follows: both have V(C) — {j} as vertex set, E(C/j) is the set of minimal
members in {S — {j}:S€ E(C)}and E(C\j)={S:j¢S € E(C)}.

Contractions and deletions of distinct vertices can be performed sequentially, and
it is easy to show that the result does not depend on the order.

Proposition 1.13 For a clutter C and distinct vertices j1, ja,
(i) (C\ji)\j2 = (C\J2)\J1
(ii) (C/31)/d2 = (C/72) /i
(iit) (C\j1)/j2 = (C/j2)\ir
Proof: Use the definitions of contraction and deletion! a

Definition 1.14 A clutter D obtained from C by a sequence of deletions and contrac-
tions is a minor of C.

If Vi and V5 are disjoint subsets of V(C), we let C/V;\V, be the minor obtained from
C by contracting all vertices of V; and deleting all vertices of V5. If V} # () or V5 # 0,
the minor is proper.

Proposition 1.15 For a clutter C and U C V(C),
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(i) b(C\U) = b(C)/U
(11) b(C/U) = b(C)\U
Proof: Use the definitions of contraction, deletion and blocker! a
We leave it as an exercise to prove the following result.
Proposition 1.16 If a clutter is ideal, then so are all its minors.

Contracting j € V(C) corresponds to setting z; = 0 in the set covering constraints
Mz > 1 of (5) since column j is removed from M as well as the resulting dominating
rows. Deleting j corresponds to setting x; = 1 since column j is removed from M as
well as all the rows with a 1 in column j.

Corollary 1.17 Let M be a 0,1 matriz. The following are equivalent.
e The polyhedron {x > 0, Mx > 1} is integral.

e The polytope {0 < x <1, Mx > 1} is integral.

2 st-cuts and st-paths

Consider a digraph (N, A) with s,t € N. Let C be the clutter where V(C) = A and
where F(C) is the family of st-paths.

Theorem 2.1 (Ford and Fulkerson [22]) The clutter C has the MFMC' property.

This theorem is a restatement of the famous Max Flow Min Cut theorem of Ford-
Fulkerson: for any nonnegative integral arc capacities w, the minimum capacity of an
st-cut equals the maximum number of st-paths such that every arc a € A belongs to
at most w, of the paths. Indeed, the Ford-Fulkerson theorem states that both (5) and
(6) have optimal solutions that are integral.

Theorem 2.1 implies that C is ideal and therefore the polyhedron

{z € R : 2(P) > 1for all st-paths P}

is integral. Its extreme points are the minimal st-cuts. In the remainder, it will be
convenient to refer to minimal st-cuts simply as st-cuts.

As a consequence of Lehman’s theorem (Theorem 1.5), the clutter of st-cuts is also
ideal. So the polyhedron

{z e R{ : 2(C) > 1 for all st-cuts C}

is integral. In fact, it is easy to show that the clutter of st-cuts has the MFMC property.
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2.1 The Width-Length Inequality

In a network, the product of the minimum number of edges in an st-path by the
minimum number of edges in an st-cut is at most equal to the total number of edges in
the network. This width-length inequality can be generalized to any nonnegative edge
lengths ¢, and widths w,: the minimum length of an st-path times the minimum width
of an st-cut is at most equal to the scalar product ¢7w. This width-length inequality
was observed by Moore and Shannon [39] and Duffin [18]. A length and a width can
be defined for any clutter and its blocker. Interestingly, Lehman [35] showed that the
width-length inequality can be used as a characterization of idealness.

Theorem 2.2 (Width-length inequality, Lehman [35]) For a clutter C and its blocker
b(C), the following statements are equivalent.

e C and b(C) are ideal;
e min{w(C): C € E(C)} xmin{{(D): D e Eb(C))} < whl for all {,w e RY.

Proof: Let A= M(C) and B = M(b(C)) be the blocking pair of 0,1 matrices associated
with C and b(C) respectively.

First we show that if C and b(C) are ideal then, for all £,w € R}, aff < w’l where
a:=min{w(C): C € E(C)} and §:=min{l(D): D e E(b(C))}.

If a =0 or g =0, then this clearly holds.

If « >0and g > 0, we can assume w.l.o.g. that « = § = 1 by scaling ¢ and w.
So Aw > 1, i.e. w belongs to the polyhedron P := {z > 0, Az > 1}. Therefore w
is greater than or equal to a convex combination of the extreme points of P, which
are the rows of B by Remark 1.4(i) since P is an integral polyhedron. It follows that
w? > AT'B where A\ > 0 and 3; \; = 1. Similarly, one shows that ¢ > pT A where
p>0and Y, u; = 1. Since BAT > J, where J denotes the matrix of all 1’s, it follows
that

wil > N'BATu > \N"Ju=1=ap

Now we prove the converse. Let C be a nontrivial clutter and let w be any extreme
point of P := {z > 0: Ax > 1}. Since Aw > 1, it follows that min{w(C) : C €
E(C)} > 1. For any point z in @ :={z > 0: Bz > 1}, we also have min{z(D) : D €
E(b(C))} > 1. Using the hypothesis, it follows that w?z > 1 is satisfied by all points z
in ). Furthermore, equality holds for at least one z € (). Now, by linear programming
duality,

1 = min{w'z: 2€Q} = max{y’1: "B <w’, p>0}.

It follows from Remark 1.4(ii) that w is a 0,1 extreme point of P. Therefore, C is ideal.
By Theorem 1.5, b(C) is also ideal. O



2.2 Two-Commodity Flows

Let G be an undirected graph and let {s;,¢} and {sq, 2} be two pairs of nodes of G.
A two-commodity cut is a set of edges separating each of the pairs {s1,¢;} and {so,t2}.
A two-commodity path is an sit;-path or an sots-path.

For any edge capacities w € %E(G), Hu [33] showed that a minimum capacity two-
commodity cut can be obtained by solving the linear program (5) where M is the
incidence matrix of two-commodity paths versus edges.

Theorem 2.3 (Hu [33]) The clutter of two-commodity paths is ideal.
Hence, the polyhedron

z(P) > 1 for all two-commodity paths P
z. > 0 foralle e E(G)

is integral.
Using Lehman’s theorem (Theorem 1.5), the polyhedron

z(C) > 1 for all two-commodity cuts C
z. > 0 foralle e E(G)

is integral.

The clutters of 2-commodity paths and of 2-commodity cuts do not pack, but both
have the 1/2-MFMC property (Hu [33] and Seymour [58], respectively).

The clutter of multicommodity paths is not always ideal for more than two com-
modities, but conditions on the graph G and the source-sink pairs {sy, %1}, ..., {sk, tx}
have been obtained under which it is ideal. See Papernov [48], Okamura and Seymour
[44], Lomonosov [37] and Frank [23] for examples.

3 T-cuts and T-joins

Consider a connected graph G with nonnegative edge weights w,, for e € E(G). The
Chinese Postman Problem consists in finding a minimum weight closed walk going
through each edge at least once (the edges of the graph represent streets where mail
must be delivered and w, is the length of the street). Equivalently, the postman must
find a minimum weight set of edges J C E(G) such that JU E(G) induces an Eulerian
graph, i.e. J induces a graph the odd degree nodes of which coincide with the odd
degree nodes of GG. Since w > 0, we can assume w.l.o.g. that J is acyclic. Such an
edge set J is called a postman set.

The problem is generalized as follows. Let G be a graph and T' a node set of G of
even cardinality. An edge set J of G is called a T-join if it induces an acyclic graph the
odd degree nodes of which coincide with T'. For disjoint node sets Sy, Sa, let (Si, S)
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denote the set of edges with one endnode in S; and the other in S;. A T-cut is a
minimal edge set of the form (S5, V(G) —S) where S is a set of nodes with |7'N S| odd.
Clearly every T'-cut intersects every T-join.

Edmonds and Johnson [21] considered the problem of finding a minimum weight
T-join. One way to solve this problem is to reduce it to the perfect matching problem
in a complete graph K, where p = |T'|. Namely, compute the lengths of shortest paths
in G between all pairs of nodes in 7', use these values as edge weights in K, and find
a minimum weight perfect matching in K,. The union of the corresponding paths in
G is a minimum weight T-join. Edmonds and Johnson developed a direct primal-dual
algorithm for the minimum weight 7-join problem and, as a by-product, obtained that
the clutter of T-cuts is ideal.

Theorem 3.1 (Edmonds and Johnson [21]) The polyhedron

x(C) >1 forall T —cuts C (7)
xe >0 forall e€ E(G). (8)

is integral.

In the next section, we give a non-algorithmic proof of this theorem suggested by
Pulleyblank [49].

The Edmonds-Johnson theorem together with the fact that the blocker of an ideal
clutter is ideal (Theorem 1.3 of Lehman) implies that the clutter of T-joins is also ideal.
That is the polyhedron

xz(J) >1 forall T —joins J
ze >0 forall ee E(G).

is integral.

The clutter of T-cuts does not pack, but it has the 1/2-MFMC property (Seymour
[61]). The clutter of T-joins does not have the 1/2-MFMC property (there is an example
requiring multiplication by 4 to get an integer dual), but it may have the 1/4-MFMC
property (open problem). Another intriguing conjecture is the following. Recall that,
in a graph G, a postman set is a T-join where T' coincides with the nodes of G having
odd degree.

Conjecture 3.2 (Conforti and Johnson [9]) The clutter of postman sets packs in
graphs noncontractible to the Petersen graph.

If true, this implies the four color theorem! Indeed, the special case where G

is cubic is Tutte’s conjecture, recently proved by Robertson, Sanders, Seymour and
Thomas [51].
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3.1 Proof of the Edmonds-Johnson Theorem

First, we prove the following lemma. For v € V(G), let §(v) denote the set of edges
incident with v. A staris a tree where one node is adjacent to all the other nodes.

Lemma 3.3 Let & be an extreme point of the polyhedron

z(6(v)) >1 forall veT (9)
xe >0 forall e€ E(G). (10)

The connected components of the graph G induced by the edges such that . > 0 are
either

(1) odd cycles with nodes in T and edges T, = 1/2, or

(ii) stars with nodes in T, except possibly the center, and edges T, = 1.

Proof: Every connected component C' of G is either a tree or contains a unique cycle,
since the number of edges in C' is at most the number of inequalities (9) that hold with
equality.

Assume first that C' contains a unique cycle. Then (9) holds with equality for all
nodes of C, which are therefore in T. Now C is a cycle since, otherwise, C' has a
pendant edge e with Z, = 1 and therefore C' is disconnected, a contradiction. If C' is an
even cycle, then by alternately increasing and decreasing & around the cycle by a small
¢ (—e respectively), & can be written as a convex combination of two points satisfying
(9) and (10). So (i) must hold.

Assume now that C'is a tree. Then (9) holds with equality for at least |[V(C)| — 1
nodes of C. In particular, it holds with equality for at least one node of degree one.
Since C' is connected, this implies that C' is a star and (ii) holds. O

Proof of Theorem 3.1: In order to prove the theorem, it suffices to show that every
extreme point Z of the polyhedron (7)—(8) is the incidence vector of a T-join. We
proceed by induction on the number of nodes of G.

Suppose first that & is an extreme point of the polyhedron (9)—(10). Consider a
connected component of the graph G induced by the edges such that Z, > 0 and let S
be its node set. Since Z(S,V(G) —S) = 0, it follows from (7) that S contains an even
number of nodes of T. By Lemma 3.3, G contains no odd cycle, showing that 7 is an
integral vector. Furthermore, ¥ is the incidence vector of a T-join since, by Lemma 3.3
again, the component of G induced by S is a star and |S N T| even implies that the
center is in T' if and only if the star has an odd number of edges.

Assume now that Z is not an extreme point of the polyhedron (9)—(10). Then there
is some T-cut C' = (V1, V) with |V1] > 2 and |V5| > 2 such that

#C) = 1.
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Let G; = (V3 U{wy}, E1) be the graph obtained from G by contracting V5 to a single
node vy. Similarly, Gy = (Vo U {v1}, Es) is the graph obtained from G by contracting
Vi to a single node v;. The new nodes vy, v, belong to T. For i = 1,2, let & be
the restriction of Z to E;. Since every T-cut of G; is also a T-cut of G, it follows by
induction that #? is greater than or equal to a convex combination of incidence vectors
of T-joins of G;. Let 7Z; be this set of T-joins. Each T-join in 7; has exactly one edge
incident with v;. Since 2! and Z? coincide on the edges of C, it follows that the T-joins
of 71 can be combined with those of 75 to form T-joins of GG and that 7 is greater than
or equal to a convex combination of incidence vectors of T-joins of G. Since 7 is an
extreme point, it is the incidence vector of a T-join. |

We have just proved that the clutter of T-cuts is ideal. It does not have the MFMC
property in general graphs. However Seymour proved that it does in bipartite graphs.
Seymour also showed that, in a general graph, if the edge weights w, are integral and
their sum is even in every cycle, then the dual variables can be chosen to be integral
in an optimum solution.

3.2 st-T-Cuts

Goemans and Ramakrishnan [26] introduced a generalization of st-cuts, T-cuts and
two-commodity cuts as follows. In a graph G, let s, t be two distinct nodes and let T be
a node set of even cardinality. An st-T-cutis a T-cut 6(U) :={uww € E:u e U,v € U}
where U contains exactly one of s or t. The st-cut clutter is obtained when T' = {s, t},
the T-cut clutter is obtained when ¢ is an isolated node and the two-commodity cut
clutter is obtained when T' = {s', ¢'}.

Recently, Guenin [30] characterized exactly when the clutter of st-T-cuts is ideal.
This generalizes theorems of Hu (Theorem 2.3) and Edmonds-Johnson (Theorem 3.1).

4 Minimally Nonideal Matrices

Lehman (Theorem 1.5) showed that ideal 0,1 matrices always come in pairs (if M is
ideal, so is its blocker b(M)) and that the width-length inequality is in fact a character-
ization of idealness (recall Theorem 2.2). Another important result of Lehman about
ideal 0,1 matrices is the following.

Theorem 4.1 (Lehman [36]) For a 0,1 matriz A, the following statements are equiv-
alent:

(i) the matriz A is ideal,

(i1) min {cx : Ax > 1, x > 0} has an integral optimal solution x for all ¢ €
{0,1,400}".
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The fact that (i) implies (ii) is an immediate consequence of the definition of ideal-
ness. The difficult part of Lehman’s theorem is that (ii) implies (i). The main purpose
of this section is to prove this result. This is done by studying properties of minimally
nonideal matrices.

4.1 Lehman’s Characterization

A 0,1 matrix A is minimally nonideal (mni) if

(i) A contains no dominating row,
(ii) Q(A) :={x > 0: Az > 1} is not an integral polyhedron,

(iii) For every i = 1,...,n, both Q(A) N{z: z; =0} and Q(A)N{z: z; = 1} are
integral polyhedra.

If A is mni, the clutter C(A) is also called mni. Equivalently, a clutter C is mni if
it is not ideal but all its proper minors are ideal.

For t > 2 integer, let J; denote the clutter with ¢ 4+ 1 vertices and edges corre-
sponding, respectively, to the points and lines of the finite degenerate projective plane.
Namely, V(J;) :=={0,...,t}, and E(J;) := {{1,...,t},{0,1}, {0,2}, ...,{0,¢}}.

A matrix A is isomorphic to a matrix B if B can be obtained from A by a permu-
tation of rows and a permutation of columns.

Let J denote a square matrix all of whose entries are 1’s, and let I be the identity
matrix. Given a mni matrix A, let T be an extreme point of the polyhedron Q(A) :=

{r > 0: Ax > 1} with fractional components. The maximum row submatrix A of A
such that Az = 1 is called a core of A. So A has a core for each fractional extreme

point of Q(A).
Theorem 4.2 (Lehman [36]) Let A be a mni matriz and B = b(A). Then

(i) A has a unique core A and B has a unique core B;
(i1) A and B are square matrices;

(iii) Either A is isomorphic to M(J;), t > 2, or the rows of A and B can be permuted
so that

ABT = J+dI

for some positive integer d.

Lehman’s proof of this theorem is rather terse. Seymour [63], Padberg [47] and
Gasparyan, Preissmann and Seb6 [24] give more accessible presentations of Lehman’s
proof. In the next section, we present a proof of Lehman’s theorem following Padberg’s
polyhedral point of view.

Bridges and Ryser [2] studied square matrices Y, Z that satisfy the matrix equation
YZ =J+dl.
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Theorem 4.3 (Bridges and Ryser [2]) Let Y and Z be n x n 0,1 matrices such that
YZ = J+dl for some positive integer d. Then

(i) each row and column of Y has the same number r of ones, each row and column
of Z has the same number s of ones with rs = n + d,

(i) YZ = ZY,
Proof: Tt is straightforward to check that (J +dI)™' = 1T — mJ . Hence
vZ—Jgidl=vzir—-— 1 porszdio L pyvor
- d dn+d)" d d(n+d) -

1 1
ie. Y = ——ZJY +dIl = ——sr! +dI
n+d n+d

where s :=Z1 and r :=Y 1.

It follows that, for each ¢ and j, n+d divides 7;s;. On the other hand, the trace of the
matrix ZY is equal to the trace of Y'Z, which is n(d+1). This implies —— (3 s;7;) = n
and, since s; > 0 and r; > 0, we have r;s; = n + d. Now consider distinct 7, j. Since
ri5; = 1;8; = n+d and n + d divides r;s; and r;s;, it follows that r; = r; and s; = s;.
Therefore, all columns of Z have the same sum s and all rows of Y have the same sum
r. Furthermore, ZY = J 4 dI and, by symmetry, all columns of Y have the same sum

and all rows of Z have the same sum. O

Theorems 4.2 and 4.3 have the following consequence.

Corollary 4.4 Let A be a mni matriz nonisomorphic to M(J;). Then it has a non-
singular row submatriz A with ezactly r ones in every row and column. Moreover, rows
of A not in A have at least v + 1 ones.

This implies the next result, which is a restatement of Theorem 4.1.

Corollary 4.5 Let A be a 0,1 matriz. The polyhedron Q(A) = {x € R} : Az > 1}
is integral if and only if min{wz : x € Q(A)} has an integral optimal solution for all
w € {0,1,00}™.

Note that Theorem 1.10 mentioned in the introduction follows from Corollary 4.5.

Let A be a mni matrix nonisomorphic to M(J;) and let B be its blocker. Let A
be the unique core of A and B be the unique core of B. Define, A := C(A),B :=
C(B),core(A) := C(A),core(B) := C(B). Corollary 4.4 implies that core(A) (resp.
core(B)) is the set of edges of A (resp. B) of minimum cardinality. Let L be the edge
of core(A) which corresponds to the i" row of A and let U be the edge of core(B) which
corresponds to the " row of B. Theorem 4.2 states that ABT = J 4 dI. It follows
that L intersects every edge of core(B) exactly once except for U which is intersected
d + 1 times. We say that L and U are mates. It follows from Theorem 4.3(ii) that
ABT = BT A = J +dI. In particular for every column j of B, col(B,j)TA =1+ de;.
We can restate this as follows.
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Corollary 4.6 Let A and B be mni matrices which are not isomorphic to M(J;).
Suppose A hasr ones per row and B has s ones per row. Let j be the index of a column
of B. Let Ly,...,L, be the edges of core(A) corresponding to the rows of A whose
indices are given by the characteristic set of column j of B. Then Ly —{j},..., Ls—{j}
are pairwise disjoint, and exactly d+ 1 of these edges contain j.

The previous corollary implies immediately,

Remark 4.7 Let A be a mni clutter distinct from [J;. Let C1,Cy be edges of core(A)
and let Uy, Uy be their mates. If e € Uy NUy then L1 N Ly C {e} and if e € C; N Cy
then Uy NUy C {e}.

4.1.1 Proof of Lehman’s Theorem

Let A be an m x n mni matrix, Z a fractional extreme point of Q(A) = {z € R} :
Az > 1} and A a core of A. That is, A is the maximal row submatrix of A such that
Az = 1. For simplicity of notation, assume that A corresponds to the first p rows of
A, i.e. the entries of A are a;; fori=1,...,pand j =1,...,n. Since A is mni, every
component of Z is nonzero. Therefore p > n and A has no row or column containing
only 0’s or only 1’s.

The following easy result will be applied to the bipartite representation G of the
0,1 matrix J — A where J denotes the p x n matrix of all 1’s, namely 4j is an edge of
G if and only if a;; =0, for 1 <i <pand 1 <j <n. Let d(u) denote the degree of
node u.

Lemma 4.8 (de Bruijn and Erdés [15]) Let (I U J, E) be a bipartite graph with no
isolated node. If |I| > |J| and d(i) > d(j) for alli € I, j € J such that ij € E, then
|I| = |J| and d(i) = d(j) for alli € I, j € J such that ij € E.

Proof: |I| = Yiei(Xjene %) < Dler ZjeN(i)ﬁ = D jeJ ZieN(j)ﬁ = |J]. Now
the hypothesis |I| > |J| implies that equality holds throughout. So |I| = |J| and
d(i) = d(j) for all ¢ € I, j € J such that ij € E. O

The key to proving Lehman’s theorem is the following lemma.

Lemma 4.9 p =n and, if a;; = 0 for 1 <14, j < n, then row i and column j of A have
the same number of ones.

Proof: Let 27 be defined by

=N
|

To if kA
1 if k=
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and let F}; be the face of Q(A)N{x; = 1} of smallest dimension that contains z7. Since
Ais mnz, Fj is an integral polyhedron. The proof of the lemma will follow unexpectedly
from computing the dimension of Fj.

The point 27 lies at the intersection of the hyperplanes in Az = 1 such that ag; =0
(at least n — Y7 _, ay; such hyperplanes are independent since A has rank n) and of
the hyperplane z; = 1 (independent of the previous hyperplanes). It follows that

p p
dim(Fj) <n—(n—> ap;+1)=> ay —1
k=1 k=1

Choose a row a’ of A such that a;j = 0. Since 27 € F}, it is greater than or equal
to a convex combination of extreme points b¢ of Fj, say 27 > S0 44b°, where v > 0

and > v, = 1.

t

1=a'a? >3 7ad'tt > 1 (11)
=1

Therefore, equality must hold throughout. In particular a’b’ =1 for £ = 1,...,t. Since

b’ is a 0,1 vector, it has exactly one nonzero entry in the set of columns k£ where ay, = 1.

Another consequence of the fact that equality holds in (11) is that @}, = >>5_; ybj, for

every k where a;, = 1. Now, since zj, > 0 for all k, it follows that F; contains at least

> h_q Gix linearly independent points b, ie.

dim(F;) > > ay — 1.
k=1

Therefore, Y3 ag < >h_; ax; for all ¢, j such that a;; = 0.

Now Lemma 4.8 applied to the bipartite representation of J — A implies that p =n
and
n n
Z Qi = Z ag; for all 4, j such that a;; = 0.
k=1 k=1
(Il

Lemma 4.10 T has exactly n adjacent extreme points in Q(A), all with 0,1 coordi-
nates.

Proof: By Lemma 4.9, exactly n inequalities of AZ > 1 are tight, namely Az = 1. In
the polyhedron Q(A), an edge adjacent to Z is defined by n — 1 of the n equalities in
Ax = 1. Moving along such an edge from Z, at least one of the coordinates decreases.
Since Q(A) € R, this implies that Z has exactly n adjacent extreme points on Q(A).
Suppose Z has a fractional adjacent extreme point . Since A is mni, 0 < z; < 1 for
all j. Let A’ be the n x n nonsingular submatrix of A such that A'Z" = 1. Since Z
and 7’ are adjacent on Q(A), A and A’ differ in only one row. W.l.o.g. assume that A’
corresponds to rows 2 to n+ 1. Since A contains no dominating row, there exists j such
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that a;; = 0 and a,41; = 1. Since A’ cannot contain a column with only 1’s, a;; = 0
for some 2 < ¢ < n. But now, Lemma 4.8 is contradicted with row ¢ and column j in
either A or A'. a

Lemma 4.10 has the following implication. Let B denote the n xn 0,1 matrix whose
rows are the extreme points of Q(A) adjacent to T. By Remark 1.4(i), B is a submatrix
of B. By Lemma 4.10, B satisfies the matrix equation

ABT =J+D

where J is the matrix of all 1’'s and D is a diagonal matrix with positive diagonal
entries di, ..., d,.

Lemma 4.11 FEither
(i) A= B are isomorphic to M(J,), fort > 2, or
(i) D = dI, where d is a positive integer.
Proof: Consider the bipartite representation G of the 0,1 matrix J — A.

Case 1: (G is connected.
Then it follows from Lemma 4.9 that

Zaik = Zakj for all 4, 5. (12)
e e

Let o denote this common row and column sum.
(n+dy,...,n+d,) =1"(J+D)=1"ABT = 1" A)B" = 1" B*

Since there is at most one d, 1 < d < «, such that n + d is a multiple of «, all d; must
be equal to d, i.e. D =dl.

Case 2: (G is disconnected.
Let g > 2 denote the number of connected components in G and let

K 1
A= e
1 K,
where K; are 0,1 matrices, fort = 1,...,q. It follows from Lemma 4.9 that the matrices

K, are square and > a;, = > ) ag; = oy in each K.

Suppose first that A has no row with n — 1 ones. Then every K, has at least two
rows and columns. We claim that, for every j, k, there exist ¢,/ such that a;; = a; =
a;; = ay; = 1. The claim is true if ¢ > 3 or if ¢ = 2 and j, k are in the same component
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(simply take two rows 4,[ from a different component). So suppose ¢ = 2, column j is
in K and column k is in K5. Since no two rows are identical, we must have a; > 1,
i.e. a;; = 1 for some row ¢ of K;. Similarly, a;, = 1 for some row [ of K5. The claim
follows.

For each row b of B, the vector AbT has an entry greater than or equal to 2, so
there exist two columns j, k such that b; = b, = 1. By the claim, there exist rows
a; and a; of A such that a;b” > 2 and ;b7 > 2, contradicting the fact that Ab” has
exactly one entry greater than 1.

Therefore A has a row with n — 1 ones. Now it is routine to check that A is
isomorphic to M(J;), for t > 2. O

To complete the proof of Theorem 4.2, it only remains to show that the core A is
unique and that B is a core of B and is unique.

If A= M(J;) for some t > 2, then the fact that A has no dominated rows implies
that A= A. Thus B = B = M(J,). So, the theorem holds in this case.

If ABT = J + dI for some positive integer d, then, by Theorem 4.3, all rows of
A contain 7 ones. Therefore, Ty = %, for j = 1,...,n. The feasibility of = implies
that all rows of A have at least r ones, and Lemma 4.9 implies that exactly n rows of
A have r ones. Now Q(A) cannot have a fractional extreme point Z’ distinct from Z,
since the above argument applies to ' as well. Therefore A has a unique core A. Since
7 has exactly n neighbors in Q(A) and they all have s components equal to one, the
inequality Y7 x; > s is valid for the 0,1 points in Q(A). This shows that every row of
B has at least s ones and exactly n rows of B have s ones. Since B is mni, B is the
unique core of B. O

4.2 Examples of mn: Clutters

Let Z, = {0,...,n — 1}. We define addition of elements in Z, to be addition modulo
n. Let k < n — 1 be a positive integer. For each i € Z,, let C; denote the subset
{i,i +1,...,i+k — 1} of Z,. Define the circulant clutter C* by V(C¥) := Z, and
E(CF) :={Cy,...,Ch1}.

Lehman [35] gave three infinite classes of minimally nonideal clutters: C2, n > 3

n?
odd, their blockers, and the degenerate projective planes [J,, n > 2.

Conjecture 4.12 (Cornuéjols and Novick [13]) There exists ng such that, for n > ny,

ntl
all mni matrices have a core isomorphic to C2, Cn®  forn >3 odd, or J,, forn > 2.
However, there exist several known “small” mnz matrices that do not belong to any

of the above classes. For example, Lehman [35] noted that F7 is mni. F7 is the clutter
with 7 vertices and 7 edges corresponding to points and lines of the Fano plane (finite
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projective geometry on 7 points):

1101000
0110100
0011010

M(F)=[0001101
1000110
0100011
1010001

Let K5 denote the complete graph on five nodes and let O, denote the clutter
whose vertices are the edges of K5 and whose edges are the odd cycles of K5 (the
triangles and the pentagons). Seymour [57] noted that Ok, b(Ok,), and C3 with the
extra edge {3,6,9} are mni.

Ding [17] found the following mni clutter: V(Ds) := {1,...,8} and

E(Ds) :={{1,2,6},{2,3,5},{3.4,8},{4,5,7},{2,5,6},{1,6,7},{4,7,8},{1,3,8} }.

Cornuéjols and Novick [13] characterized the mni circulant clutters C¥. They
showed that the following ten clutters are the only mni C¥ for k > 3:

3 3 3 3 3 4 4 5 6 7
C57 CB? CH? 6147 6177 C77 Cll? CQ7 CH? Cl3'

Independently, Qi [50] discovered Cg and C?; and Ding [17] discovered Cg.

Let Tk, denote the clutter whose vertices are the edges of K5 and whose edges are
the triangles of Kj (interestingly, M(7y,) is also the node-node adjacency matrix of
the Petersen graph). It can be shown that 7., core(b(7k,)) and their blockers are
mni. Often, when a mni clutter H has the property that core(H) and core(b(H)) are
also mni, many more mni clutters can be constructed from H and from b(H), see [13].
For example, Cornuéjols and Novick [13] have constructed more than one thousand
mni clutters from 7y,. More results can be found in [42].

Liitolf and Margot [38] designed a computer program that enumerates possible cores
of minimally nonideal matrices. It first enumerates the square 0,1 matrices Y, Z that
satisfy the matrix equation Y Z = J4dI, and then checks that the covering polyhedron
has a unique fractional extreme point. Liitolf and Margot [38] enumerated all square
mni matrices of dimension at most 12 x 12 and found 20 such matrices (previously,
only 15 were known); they found 13 new square mni matrices of dimensions 14 x 14 and
17 x 17; and they found 38 new nonsquare mni matrices with 11, 14 and 17 columns
with nonisomorphic cores. The overwhelming majority of these examples have d = 1:
Only three cores with d = 2 are known (namely F7, 7k, and the core of its blocker)
and none with d > 3.

A clutter C is minimally nonpacking if it does not pack, but all its proper minors
do. If C is minimally nonpacking, then M (C) is also said to be minimally nonpacking.
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Theorem 4.13 (Cornuéjols, Guenin and Margot [12]) Let A be a mni matriz noniso-
morphic to M(J;), t > 2. If A is minimally nonpacking, then d = 1.

Conjecture 4.14 ([12]) Let A be a mni matriz nonisomorphic to M(J;), t > 2. Then
A is minimally nonpacking if and only if d = 1.

Using a computer program, this conjecture was verified for all known minimally non-
ideal matrices with n < 14.

Proof of Theorem 4.13: We show that, if C # 7, is a mni clutter with d > 1 then C
is not minimally nonpacking. Let L be an edge of core(C) and let U be its mate. Let
r:=|L| and s :=|U|. Let ¢ be any vertex in LNU and let I := (L —U) U {i}.

Claim 1: Every transversal of C \ I has cardinality at least s — 1.

Proof of claim: Tt suffices to show that every transversal of core(C) \ I has cardinality
at least s — 1. Suppose there exists a transversal T of core(C) \ I with |T'| < s—2. Let
j be any vertex in U — {i}. By Corollary 4.6, L is among the s edges of core(C) that
pairwise intersect at most in {j}. Since I C L—{j}, there are s — 1 edges of core(C)\ I
that pairwise intersect at most in {j}. Therefore, |T| < s — 2 implies j € T. By
symmetry among the vertices of U — {i}, it follows that U — {i} C T'. So in particular
|T'| > s — 1, a contradiction. &

Suppose C \ I packs. Then it follows from Claim 1 that C \ I contains s — 1 disjoint
edges Ly,...,Ls 1.

Claim 2: None of Ly,..., Ls_; are edges of core(C).

Proof of claim: Suppose that L; is an edge of core(C) and let U; be its mate. Then
Uy —(IULy) contains an edge T"in b(C)/(I UL;). By assumption |L;NU;| =d+1 > 3.
Thus

T| < |U—Li|=|0h|—(d+1)=s—(d+1) <s—3

By Proposition 1.15, T" is a transversal of C \ (I U Ly). But Lo, ..., Ls_; are disjoint
edges of C\ (I U L;), which implies that every tranversal of C\ (I U L) has cardinality
at least s — 2, a contradiction. &

By Corollary 4.4, the edges Ly, ..., Ls_1 have cardinality at least r + 1. Moreover they
do not intersect I. Therefore we must have:

r+O)(s=—1)<n—|I|=@rs—d)—(r—d)=rs—r

Thus r < 1, a contradiction. O
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4.3 A Conjecture

As a parallel to Theorem 4.1, we can restate Conjecture 1.9 as follows.

Conjecture 4.15 (Conforti and Cornuéjols [6])
For a 0,1 matriz A, the following statements are equivalent:

(i) the matriz A has the MFMC property,

(11) min {cx : Ax > 1, x > 0} has an integral optimal dual solution y for all
c € {0,1,+o00}".

4.4 Ideal Minimally Nonpacking Clutters

Minimally nonpacking clutters are either ideal or minimally nonideal. This follows
from Theorem 1.10. Theorem 4.13 above discussed the minimally nonideal case. In
this section, we discuss the ideal case. The clutter of triangles of K is such an example:
this clutter has 6 vertices (the 6 edges of Ky4) and 4 edges (the 4 triangles of K, viewed
as edge sets) and it is denoted by Q.

A clutter is binary if its edges have an odd intersection with its minimal transversals.
Seymour [57] showed that Qs is the only ideal minimally nonpacking binary clutter.
However, there are ideal minimally nonpacking clutters that are not binary, such as

1101010
1100101
0010110
0011001
1011010
0110101

Note that, for this clutter, the minimum size of a transversal is 2. Other examples can
be found in [12] but none is known with a minimum transversal of size greater than 2.
Interestingly, all ideal minimally nonpacking clutters with a transversal of size 2 share
strong structural properties with Qs. A clutter C has the Qg-property it M(C) has 4
rows such that every column restricted to this set of rows contains two 0’s and two 1’s
and each such 6 possible 0,1 vectors occurs at least once.

Theorem 4.16 (Cornuéjols, Guenin and Margot [12]) Every ideal minimally nonpack-
ing clutter with a transversal of size 2 has the QQg-property.

Conjecture 4.17 [12] Every ideal minimally nonpacking clutter has a transversal of
size 2.

It is proved in [12] that this conjecture would imply Conjecture 1.9 or, equivalently,
Conjecture 4.15.
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5 0Odd Cycles in Graphs

In this section, we consider the clutter of odd cycles in a graph. Seymour [57] char-
acterized exactly the graphs for which H has the MFMC property and Guenin [28]
characterized exactly when H is ideal.

For edge weights w € %E(G), consider the minimization problem (5). Recall that
an integral solution to (5) is the incidence vector of a transversal T of H. Since T
intersects all odd cycles, E(G) — T induces a bipartite graph. Therefore, a minimal
transversal T of H is the complement of a cut 6(U). In particular, when H is ideal,
(5) finds a cut of maximum weight in G, i.e. (5) solves the famous maz cut problem.

5.1 Planar Graphs

Orlova and Dorfman [45] showed that the clutter H of odd cycles is ideal when G is
planar.

Theorem 5.1 (Orlova and Dorfman [45]) In a planar graph, the clutter of odd cycles
is ideal.

Proof: Let G be a planar graph and D its dual. The bounded faces of G form a cycle
basis. Thus any odd cycle of G is a symmetric difference of faces, an odd number of
which are odd faces. Faces of G correspond to nodes of D. Let T be the set of odd
degree nodes of D. An odd cycle of G corresponds to an edge set of D of the form
0(U) where [UNT| has odd cardinality, i.e. a T-cut of D. The clutter of T-cuts in D is
ideal by the Edmonds-Johnson theorem (Theorem 3.1) and therefore so is the clutter
of odd cycles in G. O

When G = K5, the complete graph on 5 nodes, the clutter H of odd cycles is not
ideal since z; = % for j = 1,...,10 is a fractional extreme point of the polyhedron
{r e RY: M(H)x>1}.

Barahona [1] observed that Theorem 5.1 has the following generalization.

Theorem 5.2 In a graph not contractible to K5, the clutter of odd cycles is ideal.

This follows from a famous theorem of Wagner [67] stating that any edge-maximal
graph not contractible to K5 can be constructed recursively by pasting plane triangu-
lations and copies of Vg along K3’s and K5’s, where Vg is the cycle vy, vs, . .., vg, v; with
chords v;v;,4 for 1 =1,2,3,4.

Is there a converse to Barahona’s theorem? In particular, is it true that, if the
clutter of odd cycles is ideal in a graph G, then G is not contractible to K57 The
answer to the second question is no. For example, insert a node of degree 2 on every
edge of K5. The graph is now bipartite and the clutter of odd cycles has become the
trivial clutter, which is ideal! The problem is that contraction of an edge changes
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odd cycles into even cycles and vice versa. To get a converse to Barahona’s theorem,
one needs to redefine contraction appropriately. It is convenient to work in the more
general context of signed graphs.

5.2 Signed Graphs

Consider a graph G and a subset S of its edges. The pair (G,S) is called a signed
graph. A subset X of edges of G is odd (resp. even) if | X N S| is odd (resp. even). A
set S C E(G) is a signature of (G, S) if (G, S’) has the same odd cycles as (G, S).

Consider a signed graph (G, S) and let 6(U) be a cut of G. Since §(U) intersects
every cycle with even parity, SAJ(U) is a signature of (G, S). We call the operation
which consists of replacing S by SAJ(U) a signature-exchange. In a signed graph
(G,S), deleting an edge means removing it from the graph. Contracting an edge e
means first (if necessary) doing a signature-exchange so that the edge e is even (i.e.
not in the signature) and then removing the edge and identifying its endnodes.

Let E' and E” be disjoint edge sets. One can readily verify that all the signed graphs
obtained by deleting the edges in E’ and contracting the edges in E” are identical (up
to signature-exchanges), no matter in which order the contractions and deletions are
performed. A signed graph obtained from (G, S) by a sequence of contractions and
deletions and signature-exchanges is called a minor of (G, .5).

Let H denote the clutter of odd cycles of a signed graph (G, S). It is easy to check
that every minor of H is the clutter of odd cycles of a signed graph (G’, S’) obtained
as a minor of (G, .S). A signed complete graph K, on r nodes is called an odd-K., if all
its edges are odd. Guenin proved the following theorem.

Theorem 5.3 (Guenin [28]) The clutter of odd cycles of a signed graph (G, S) is ideal
if and only if (G, S) has no odd-Ks minor.

A clutter is binary (see Section 6) if its edges and its minimal transversals intersect
in an odd number of vertices. The clutter of odd cycles in a signed graph is a binary
clutter. Theorem 5.3 is a special case of a famous conjecture of Seymour [57], [60]
(Conjecture 6.9) on ideal binary clutters. In [57], Seymour characterized the binary
clutters that have the MFMC property. Specialized to the clutter of odd cycles, this
theorem is the following.

Theorem 5.4 (Seymour [57]) The clutter of odd cycles of a signed graph (G,S) has
the MFMC property if and only if (G,S) has no odd-K, minor.

5.3 Schrijver’s proof of Guenin’s Theorem

One direction of Guenin’s theorem is easy: If the clutter of odd cycles is ideal for a
signed graph (G, S), then (G, S) has no odd- K5 minor. Thus the essence of Theorem 5.3
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is the converse. Schrijver [53] obtained a shorter proof for this result, which curtails
the technical and case-checking part of Guenin’s proof.

Schrijver’s proof which we give next (albeit with a different presentation along the
lines of the proof of Theorem 5.8 see [25]) relies on the following two lemmas on mni
binary clutters. These lemmas were also used in Guenin’s original proof. Observe at
the outset that J; is not binary.

Lemma 5.5 Let H be a mni binary clutter and Cy,Cy be edges in core(H). If C' C
C1UCy and C is an edge of H then C = C; or C = Cs.

Proof: Let C be an edge of H contained in C; UCy. Then (Proposition 6.1) C;AC,AC
contains an edge of H, say C’. This implies that CUC" C C1UCy and CNC' C C1NCy
(for if e € CNC’' then e € C1ACs). Hence |C|+|C'| < |Cy|+ |Cy|. So C,C" are also of
minimum cardinality, and C,C" are edges of core(H). Let B be the mate of C. Since
H is binary, |C' N B is odd, hence at least 3. It follows that either, |C; N B| > 2 or
|Cy N B| > 2. This implies that C; or Cy is the mate of B, i.e. C =Cjor C =Cy. O

Lemma 5.6 Let H be a mni binary clutter. For any e € V(H) there exist edges
C1,Cy,C3 of core(H) and edges By, By, Bs of core(b(H)) such that

(Z) 01002201003202003:{6}
(ZZ) B10B2=BlﬂBg=BgﬂB3={e}

(1it) For distinct 1,7 € {1,2,3} we have C; N B; = {e}. Fori € {1,2,3} we have
|C; N B;| =d+ 1 where d+1 is odd and d+ 1 > 3.

Proof: Corollary 4.6 states that there exist s edges C1,...,Cs of core(H) such that
C1—{e},...,Cs—{e} are pairwise disjoint. Moreover, exactly d+1 > 2 of these edges,
say C1,...,Cy, contain vertex e. As H is binary, d+ 1 is odd (since d+1 = |C'N B for
any pair of mates C, B). Thus d+1 > 3 and (i) follows. Let B;, By, B3 be the mates of
C1,Cy,Cs. Fori € {1,2,3} we have: |C;NB;| = d+1 > 1; C1—{e}, ..., Cs—{e} disjoint;
and |B;| = s. Then e € B; as B; intersects each C1,...,Cs. Since e € C; N Cy N Cy, it
follows from Remark 4.7 that B; N B; C {e} for all distinct 4, j € {1,2,3}. Hence, (i)
holds. Finally (iii) holds since By, Bs, Bs are the mates of C}, Cy, Cs. O

A key ingredient in Schrijver’s proof is the following lemma. The particular version
presented here was given in [25].

Lemma 5.7 Let G = (V| E) be a graph, let e be an edge of G with endnodes x and
y, let (Yo,Y1,Ys,Y3) be disjoint subsets of V', and let Py, Py, and P3 be internally node
disjoint xy—paths in G\e. Moreover, suppose that

(1) x,y € Yy and, fori € {0,1,2,3},Y; is a stable set of G\e,
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(2) forie{1,2,3}, V() CY,UY;, and
(3) for distinct i,j € {1,2,3}, there exists a path from V(F;) to V(P;) in G]Y; UYj].
Then (G, E(QG)) has a minor isomorphic to odd-Kj.

Proof: Suppose otherwise, and let G be a counterexample minimizing |V (G)| + |E(G)].
For distinct ¢,j € {1,2,3}, let P;; be a path from V(P) to V(F;) in G[Y; UY]]. (We
assume that P; = Pj;.) By the minimality of G, we have E(G) :={e}UP,UP,U Py U
P12 U P23 U P13, and V(G) = V(Pl) U V(PQ) U V(Pg) U V(Plg) U V(ng) U V(Plg)

Suppose that G has a node v of degree 2, and define G’ := G/dg(v). Note that,
(G,E(GQ))/dg(v) = (G',E(G")), and that G’ satisfies the conditions of the lemma.
However, this contradicts the minimality of G, and, hence, G has no nodes of degree 2.
Thus, we see that Yy = {z,y}, and, for each ¢ € {1,2,3}, P, has exactly one internal
node, say v;. Now, the neighbors of x are vy, vo, vs3, and y, and the neighbors of y are
vy, U9, v3, and x. Moreover, since G has no nodes of degree 2, we also conclude that
Yi = V(Plg) N V(Plg), ng = V(Plg) N V(P23), and Y:f), = V(P13) N V(P23) Therefore,
V| = [Va] = [Val.

If Yy| = 1, then (G, E(G)) is isomorphic to odd-Kj, so we may assume that
|Y1] > 1. For distinct 4,5 € {1,2,3}, let e;; be the edge on P; that is incident
with v;. Let G' := G\{eis, 32, €21} /{e12, €23, €31}, and, for distinct ¢, 5 € {1,2,3}, let
Pl i= Py — {ey,esik. Now let Y/ = V(Ply) 1 V(Pl), let Y1 i= V(Ply) N V(Ply),
let Y3 := V(P{;) NV (Ps,;), and let Yy := {z,y}. Note that, (G', E(G")) is a minor of
(G, E(@)) and that G’ satisfies the conditions of the lemma. However, this contradicts
the minimality of G. O

Given a graph G and U C V(G), the subgraph of G induced by U is denoted G[U].

Proof of Theorem 5.3: Let H be a mni clutter of odd cycles of a signed graph
(G,S). We will show that (G, S) contains an odd-K; minor. Fix an edge e € E(G),
with endnodes say = and y. Let C}, Cy, C3 be the sets of core(H) and let By, By, B3 be
the sets of core(b(H)) given in Lemma 5.6.

Claim 1: For distinct 4,5 € {1,2,3} the odd cycles C; and C; have no common node
other than z,y.

Proof of claim: Otherwise (C; U C;) — {e} contains a path P from z to y different
from C; — {e} and C; — {e}. By Lemma 5.5, (C; U C;) — {e} contains no odd cycle.
Hence, P and C; — {e} have the same parity and so P U{e} is an odd cycle in C; UC},
contradicting Lemma 5.5. <&

Since H is binary, B; (i = 1,2, 3) is a signature. It follows that for distinct 7, 7 € {1, 2,3}
B;AB; intersects all cycles with even parity; i.e. B;AB; is a cut of G. Moreover,
e & B;AB;. Therefore, for distinct 4, j € {1,2,3}, there exists U;; C V(G) such that
0(U;j) = B;AB; and z,y ¢ U;j. Note that

5(U12AU13AU23) = 5(U12)A5(U13)A5(U23) = @
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Moreover, x,y & U;nAU;3/AUsyz and G is connected. Therefore, Up AUz AUsz = ().
Let Yi = UlgmUlg,Yé = Ulgngg,Y}, = U130U23, and let YE) = V(G) — (EU}/QU}%)

Claim 2: For distinct ¢, j, k € {1, 2,3}, the edge set B; —{e} consists of all edges with
one endnode in Y; and the other in Y; and all edges with one endnode in Y and the
other in Y.

Proof of claim: We may assume ¢ = 1. Since By — {e}, By — {e}, B3 — {e} are pairwise
diSjOth, Bl —{8} = (BlABQ) 0(31AB3) But (S(Ulg) = BlABg and 5(U13) = BlABg.
Thus the edges of B; — {e} are exactly the edges in both 6(U;2) and §(Uis). &

For each i € {1,2,3} let P, := C; — {e}, thus P; is an xy-path. Recall that for distinct
i,j,k € {1,2,3}, C; N (B;j U By) = {e}. It follows together with Claim 2 that for each
i€{1,2,3}, V(P;) CYyUY;. Moreover, since |C; N B;| > 1, P, NV (Y;) # 0.

Claim 3: For distinct 4, j € {1,2,3}, there exists a path P; from V() to V(FP;) in
GIY; Y]]

Proof of claim: Recall, U;; = Y; UYj. It suffices to prove that G[U;;] is connected. If
not, there is an X C U;; such that 6(X) is a non-empty proper subset of §(U;;). Then
B;A)(X) is contained in B; U B; but is distinct from B; and B;. Since B;AJ(X) is a
signature, it contains an element of b(H), a contradiction with Lemma 5.5. <&

Let B := BiABy;/ABs. Then B is a signature for (G, 5). Let T := {e}UP,UP, U P;U
PioUPi3U Py3. Each edge in T'— {e} is in at most one of the sets By, By, Bs. Therefore,
the odd edges of (G, B)[T] are e and any edge whose endnodes are in different parts of
(Y0, Y2, Y5, Y3). Let (G',.S’) be the signed graph obtained from (G, B)[T] by contracting
the edges in 7' — B; thus S’ = E(G’). For i € {1,2,3}, let P/ = P, N B; for distinct
i,j € {1,2,3}, let P;; = P;; N B; and for [ € {0,1,2,3} let Y/ be the set of nodes of
G’ corresponding to Y;. Now by Lemma 5.7, we see that (G', S’) contains an odd-Kj3
minor, as required. a

5.3.1 Cycling

Let (G, S) be a signed graph. Weights w € Zf () are called Bulerian if w(d(v)) is even
for every v € V(G). We say that the clutter of odd cycles of (G, S) is cycling [62] if (6)
and (5) have both optimum integer solutions for all Eulerian edge-weights. Note that
the clutter of odd cycles of odd-Kj5 is not cycling. However, it is the only obstruction
to the property.

Theorem 5.8 (Geelen and Guenin [25]) The clutter of odd cycles of a signed graph
(G, S) is cycling if and only if (G, S) has no minor isomorphic to odd-Ks.

Let H be the clutter of odd cycles of a signed graph (G, S). Suppose that H is

(@)

cycling and let w € Zf . Now, 2w is Eulerian, so there exists an integral optimal
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solution z to (5) with respect to the weights 2w. Clearly, z is also optimal with respect
to w. Hence, if H is cycling it is also ideal (see Corollary 4.5). Thus Theorem 5.8 implies
Theorem 5.3 and the fact that for clutters of odd cycles, the property of being ideal is
the same as cycling. Using the same trick as above, of doubling the edge—capacities,
we also obtain the following result.

Corollary 5.9 If the clutter of odd cycles of a signed graph is ideal then it has the
1/2-MFMC property.

5.3.2 0Odd st-Walks

Guenin [30] considers the following generalization of the odd cycle clutter. Let (G, S)
be a signed graph and let s,t be two nodes of G. A subset of edges of G is an odd
st-walk if it is an odd st-path or the union of an even st-path P and an odd cycle C'
where P and C' share at most one node. The odd cycle clutter is obtained when s = .

Guenin characterized exactly when this clutter is ideal. This generalizes Theo-
rem 5.3.

6 Binary Clutters

A clutter is binary if its edges and its minimal transversals intersect in an odd number
of vertices. It follows from the definition that a clutter is binary if and only if its
blocker is binary. An equivalent formulation is given by Lehman.

Proposition 6.1 (Lehman [34], see also Seymour [55]) A clutter C is binary if and
only if, for any three edges Si,Ss,S3 of C, the set S1/ASs/\S3 contains an edge of C.

Proof: Let C be a binary clutter and S = S1AS;/AS3 where Sp, 55,55 € E(C). Since
every minimal transversal T has an odd intersection with Sy, Sy and S3, we have
SNT # (. Therefore S contains an edge of C.

Conversely, assume that for any three edges Si, S, 53 of C, the set S;AS;AS3
contains an edge of C. We leave it as an exercise to show that, for any odd number
of edges S1,...,S; of C, the set S{A...AS, contains an edge of C. Now consider
any S € FE(C), T € E(b(C)) and let SNT = {xy,...,x,}. Since T — x; is not a
transversal of C, there exists an edge S; of C such that TN S; = {x;}. It follows that
TN(SASIA ... AS;) = 0. Therefore SASIA ... AS, does not contain an edge of C.
It follows that k is odd. O

Let P4 be the clutter with four vertices and the following three edges:

E(P4) = {{17 2}7 {27 3}7 {37 4}}

One can easily show that neither P, nor J; is a binary clutter, for ¢ > 2. Seymour
proved the following.
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Theorem 6.2 (Seymour [55]) C is a binary clutter if and only if C has no minor P,
or Ty, fort > 2.

The following clutters (and their blockers!) are examples of binary clutters.
Example 6.3 The clutter of st-cuts in a graph.
Example 6.4 The clutter of two-commodity cuts in a graph.
Example 6.5 The clutter of T-joins in a graft (G, T).
Example 6.6 The clutter of odd cycles in a signed graph.
Example 6.7 The clutter of st-T-cuts.

Example 6.8 The clutter of odd st-walks.

6.1 Seymour’s Conjecture

Recall (Section 4.2) that F7 denotes the clutter with 7 vertices and 7 edges correspond-
ing to points and lines of the Fano plane (finite projective geometry on 7 points). It is
easy to verify that F7 is binary, mni and that b(F7) = Fr.

Let K5 denote the complete graph on five vertices. We let O, denote the binary
clutter whose vertices are the edges of K5 and whose edges are the odd cycles of Kj.
So Ok, has 10 edges of cardinality three and 12 edges of cardinality five. Ok, is binary
and mni. It follows that b(Op,) is binary and mna.

Conjecture 6.9 (Seymour [57]) A binary clutter is ideal if and only if it contains no
Fr, Ok, or b(Ok,) minor.

6.2 Binary Matroids

In the remainder of this section, we present results of Novick-Seb6 [43] and Cornuéjols-
Guenin [11] on ideal binary clutters. We adopt a matroidal point of view. See Oxley’s
excellent textbook [46] on matroid theory for background material.

A matroid is binary if it can be represented over GF'(2).

Example 6.10 The Fano matroid F; has the following binary representation.

1001101
(0101011)
00101171
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Given a matroid M, the dual matroid is denoted by M*. A binary matroid is
regular if it has no Fr or F¥ minor (Tutte [66]).

Let M be a matroid with element set U and let k be a positive integer. A k-
separation of M is a partition (Uy,Us) of U such that |Uy| > k, |Us| > k and r(U;) +
r(Uy) < 7(U) + k — 1. The matroid M is k-connected if it has no (k — 1)-separation.
The k-separation is strict if |Uy| > k, |Us| > k. A matroid is internally k-connected if
it has no strict (k — 1)-separation.

Theorem 6.11 ( Seymour [59]) Every 3-connnected, internally 4-connected regular
matroid is graphic, cographic or a 10-element matroid Ry.

Theorem 6.12 ( Seymour [60]) Let M be a 3-connected binary matroid with no F;
manor. Then M is reqular or M = F.

6.3 Signed Matroid

Let M be a binary matroid and S C V(M) a subset of its elements. The pair (M, S)
is called a signed matroid, and S is called the signature of M. We say that a circuit C
of M is odd (resp. even) if |C'N S| is odd (resp. even).

Proposition 6.13 The odd circuits of a signed matroid form a binary clutter.

Proof: Consider a signed matroid (M, S) and let Cy, Cy, C3 be three odd circuits. Since
S intersects each of C7,Cy, C3 with odd parity, so does L = C;ACsACs. Since M is
binary, L is a disjoint union of circuits (see for example Oxley [46] Theorem 9.1.2).
One of these circuits must be odd since |L N S| is odd. The result now follows from
Proposition 6.1. O

Let M be a binary matroid. Any nontrivial binary clutter obtained as the odd
circuit clutter of the signed matroid (M, S), for some S, is called a source of M. Any
nontrivial binary clutter H such that every circuit of M is of the form TiAT,, for
T1,T> € E(H), is called a lift of M. One can show that a lift of M is the blocker of a
source of M*.

In a binary matroid, any circuit C' and cocircuit D have an even intersection (see for
example Oxley [46] Theorem 9.1.2). So, if D is a cocircuit, then (M, S) and (M, SAD)
have exactly the same odd circuits.

Remark 6.14 Let (M, S) be a signed matroid and H the clutter of its odd circuits.
e H\ e is the clutter of odd circuits of the signed matroid (M \ e, S —{e}).
o [fed S, then H/e is the clutter of odd circuits of the signed matroid (M]e, S).
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e Ife € S isnotaloop of M, then H/e is the clutter of odd circuits of the signed
matroid (M /e, SAD) where D is any cocircuit containing e.

e Ife€ Sisaloop of M, then H/e is a trivial clutter.

Given a nontrivial binary clutter H, the minimal sets in E(H) U {T1AT, : 11, T, €
E(H)} form the circuits of a binary matroid «(H). This binary matroid is called the
up matroid of H. Since H is binary, the minimal transversals of H intersect with odd
parity exactly the circuits of u(H) that are edges of H. It follows that H is the clutter
of odd circuits of the signed matroid (u(H), S) where S is any minimal transversal of
H. Moreover, this representation is essentially unique (see for example [11]):

Proposition 6.15 Let (M,S) and (M',S’) be signed matroids that have the same
clutter of odd circuits H. If M 1is a 2-connected matroid and 'H is a nontrivial clutter,
then M = M' = u(H).

To prove this, we use the following result of Lehman [34] (see Oxley [46] Theorem
4.3.2 or Exercise 9 of Section 9.3).

Theorem 6.16 (Lehman [34]) Let t be an element of a 2-connected binary matroid
M. The circuits of M not containing t are of the form C1ACy where Cy and Cy are
circuits of M containing t.

Proof of Proposition 6.15: Let N be the binary matroid with elements V(M) U{t} and
circuits I' = C' when C' is an even circuit of (M,S) and I' = C'U {t} when C is an
odd circuit of (M, S). Define N’ similarly from (M’,S’). Since H is nontrivial, at least
one circuit of N contains t and some x # t. Since M is 2-connected, for every pair of
elements in V(M), there is a circuit of M containing both. So for z and any v € V/(N),
there is a circuit of N containing both. It follows that, for any pair of elements in
V(N), there is a circuit containing both. So N is 2-connected. Furthermore, every
v € V(H) belongs to an edge of H. So N’ is 2-connected as well. By Theorem 6.16, a
2-connected matroid is uniquely determined by the set of circuits containing any fixed
element. In particular, N and N’ are uniquely determined by the circuits containing ¢.
This implies N = N'. Since M = N/t and M' = N'/t, it follows that M = M’ = u(H).
O

Proposition 6.17 (Novick and Sebo [43])

A binary clutter H is the odd cycle clutter of a signed graph if and only if u(H) is
a graphic matrouid.

A binary clutter H is the T-cut clutter of a graft if and only if u(H) is a cographic
matroid.
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The next result relates the minors of the matroid u(H) to the minors of the clutter
H. For a clutter H and v € V(H), the clutter H* has vertex set V(H) U {v} and edge
set {AU{v}: A€ E(H)}.

Theorem 6.18 (Cornuéjols and Guenin [11]) Let H be a nontrivial binary clutter such
that its up matroid u(H) is 2-connected, and let N be a 2-connected binary matroid.
Then u(H) has N as a minor if and only if H has Hy or Hy as a minor, where Hy is
a source of N and Hs is a lift of N.

To prove this, we use the following result of Brylawski [3] and Seymour [56] (see
Oxley [46] Proposition 4.3.6).

Theorem 6.19 (Brylawski [3], Seymour [56]) Let M be a 2-connected matroid and N
a 2-connected minor of M. For anyi € V(M) — V(N), at least one of M \ i or M/i
s 2-connected and has N as a minor.

Proof of Theorem 6.18: 'H is the clutter of odd circuits of the signed matroid (M, S)
where M = u(H) and S is a minimal transversal of H.

Suppose first that H has a minor H; that is a source of N. Then H; is nontrivial and
it follows from Remark 6.14 that H; is the clutter of odd circuits of a signed matroid
(N',S") where N’ is a minor of M. Since H; is nontrivial and N is 2-connected,
N = N’ = u(H;) by Proposition 6.15. So N is a minor of M.

Suppose now that H has a minor HJ where H, is a lift of N. Let ¢ be the vertex of
V(H3) — V(Hs). Since Hj is a nontrivial minor of H, it is the clutter of odd circuits
of a signed matroid (N’,S") where N’ is a minor of M. Since u(Hj) is 2-connected,
N’ = u(H3) by Proposition 6.15. So N’ is 2-connected. Therefore, by Theorem 6.16
and the definition of lift, N = N’ \ t. So N is a minor of M.

Now we prove the converse. Suppose that M has N as minor and does not satisfy the
theorem. Let H be such a counterexample with smallest number of vertices. Clearly,
N is a proper minor of M as otherwise u(H) = N, i.e. H is a source of N. By
Theorem 6.19, for every ¢ € V(M) — V(N), one of M \ ¢ and M/i is 2-connected and
has N as a minor. Suppose first that M /i is 2-connected and has an N minor. Since
M is 2-connected, 7 is not a loop of M and therefore H /i is nontrivial by Remark 6.14,
a contradiction to the choice of H with smallest number of vertices. Thus, for every
i e V(M)—V(N), M\ iis 2-connected and has an N minor. By minimality, H \ ¢
must be trivial. It follows from Remark 6.14 that all odd circuits of (M, S) use i. As
M = u(H), even circuits of M do not use i.

We claim that V(M) — V(N) = {i}. Suppose not and let j # i be an element of
V(M)—V(N). The set of circuits of (M, S) using j is exactly the set of odd circuits. It
follows that the elements 7, 7 must be in series in M. But then M \ ¢ is not connected,
a contradiction.

Therefore V(M) — V(N) = {i} and M \ i = N. As the circuits of (M, S) using 4
are exactly the odd circuits of (M, S), it follows that column i of H consists of all 1’s,
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i.e. H ="Hs. By Theorem 6.16 applied to 7 and M, every circuit of N is of the form
T1 AT, where T1, Ty € E(Hs). So Hs is a lift of N. O

6.4 k-Connectedness of Binary Clutters

A binary clutter ‘H has a k-separation if u(H) has a k-separation, i.e. there exists a
partition (Uy, Us) of V(H) such that |Uy| > k, |Us| > k and r(Uy) +r(Us) < r(V(H))+
k — 1. The k-separation is strict if |[Uy| > k, |Uz| > k. The binary clutter H is k-
connected if it has no (k — 1)-separation. It is internally k-connected if it has no strict
(k — 1)-separation.

Theorem 6.20 [11] Minimally nonideal binary clutters are 3-connected.

The minimally nonideal binary clutter F; has a 3-separation. So minimally nonideal
clutters are not 4-connected in general. However they are internally 4-connected.

Theorem 6.21 [11] Minimally nonideal binary clutters are internally 4-connected.
Conjecture 6.22 Minimally nonideal binary clutters are internally 5-connected.

Let (s be the clutter where V(Qg) is the set of edges of K4 and E(Qg) the set of
triangles of K. The next result proves Seymour’s conjecture (Conjecture 6.9) for the
class of clutters that do not have Qd or b(Qg)" as a minor.

Theorem 6.23 (Cornuéjols and Guenin [11]) A binary clutter is ideal if it does not
have Fr, Ok, b(Ok,), Qf, or b(Qs)™ as a minor.

Proof: 1t suffices to show that every mni clutter H contains one of the minors in the
statement of the theorem.

Claim 1: The result holds if «(H) has no F; minor.

Proof of claim: When u(H) = Ry, then H is one of the sources of Rjy. We leave it as
an exercise to show that Rjo has 6 sources. One such source is b(Of,) and the other
five are ideal.

When u(H) is graphic, then H is ideal if and only if H has no Ok, minor, by
Proposition 6.17 of Novick-Seb6 and Guenin’s theorem (Theorem 5.3).

When u(H) is cographic, then H is ideal, by Proposition 6.17 of Novick-Sebd and
the Edmonds-Johnson theorem (Theorem 3.1).

By the connectivity results (Theorems 6.20 and 6.21), u(H) is 3-connected and
internally 4-connected. So, by Seymour’s theorem (Theorem 6.11), the result holds
when u(H) is a regular matroid.

Now consider the case when u(H) is not regular. Another theorem of Seymour
(Theorem 6.12) shows that u(H) = Fr. So H is a source of F7. It is easy to verify that
F% has three sources. Two of these sources are ideal and the third is the clutter F;. So
the result holds. <&
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Claim 2: The result holds if «(H) has an F; minor.

Proof of claim: By Theorem 6.18, u(H) has an F; minor if and only if H has H; or
H3 as a minor, where H; is a source of F¥ and H, is a lift of F¥. On can easily verify
that F¥ has one source and three lifts. The source is @, which is one of the excluded
minors in the statement of the theorem. For the three lifts Hs of F, one can check that
H3 contains Fr, Qf and b(Qg) " as minors, respectively, which are excluded minors in
the statement of the theorem. O

The class of clutters of T-cuts is closed under minor taking. Moreover, it is not hard
to check that none of the five excluded minors of Theorem 6.23 are clutters of T-cuts.
Thus Theorem 6.23 implies that clutters of T-cuts are ideal, and thus that their blocker,
the clutters of T-joins are ideal. Hence Theorem 6.23 implies the Edmonds-Johnson
theorem (Theorem 3.1). Similarly, the class of clutters of odd circuits is closed under
minor taking. Moreover, it can be shown that Ok, is the only clutter of odd circuits
among the five excluded minors. It follows that Theorem 6.23 also implies Guenin’s
theorem (Theorem 5.3). Note, however, that the proof of Theorem 6.23 uses these two
results.

7 Ideal 0,41 Matrices

The concept of ideal 0,1 matrix can be extended to a 0,£1 matrix. Given a 0, +1

matrix A, denote by n(A) the column vector whose i component is the number of

-1’s in the i* row of matrix A. The 0, £1 matrix A is ideal if its fractional generalized
set covering polytope Q(A) = {z : Ax > 1 —n(A), 0 < z < 1} only has integral
extreme points.

7.1 Propositional Logic

In propositional logic, atomic propositions x1,...,x;,...,x, can be either true or false.
A truth assignment is an assignment of "true” or "false” to every atomic proposition.
A literal is an atomic proposition z; or its negation —x;. A clause is a disjunction of
literals and is satisfied by a given truth assignment if at least one of its literals is true.

A survey of the connections between propositional logic and integer programming
can be found in Hooker [31], Truemper [65] or Chandru and Hooker [5].

A truth assignment satisfies the set S of clauses

\V z;v(\ —x;) forallies

jEP; JEN;
if and only if the corresponding 0, 1 vector satisfies the system of inequalities

x> x;>1—|N;| forallies.

JjEPR; JEN;
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The above system of inequalities is of the form
Az > 1 —n(A). (13)

Given a set S of clauses, the satisfiability problem (SAT) consists in finding a truth
assignment that satisfies all the clauses in S or show that none exists. Equivalently,
SAT consists in finding a 0, 1 solution x to (13) or show that none exists.

Given a set S of clauses (the premises) and a clause C' (the conclusion), logical
inference in propositional logic consists of deciding whether every truth assignment
that satisfies all the clauses in S also satisfies the conclusion C.

To the clause C, using transformation (13), we associate an inequality

cx > 1—nfc),

where cis a 0,+1, —1 vector. Therefore C' cannot be deduced from S if and only if the
integer program
min {cx : Az > 1—n(A), x € {0,1}"} (14)

has a solution with value —n(c).

The above problems are NP-hard in general but can be solved efficiently for Horn
clauses, clauses with at most two literals and several related classes [4],[64]. A set S
of clauses is ideal if the corresponding 0, £1 matrix A defined in (13) is ideal. If S is
ideal, it follows from the definition that the satisfiability and logical inference problems
can be solved by linear programming.

Remark 7.1 Let S be an ideal set of clauses. If every clause of S contains more
than one literal then, for every atomic proposition x;, there exist at least two truth
assignments satisfying S, one in which x; is true and one in which x; is false.

Proof: Since the point z; = 1/2, j = 1,...,n belongs to the polytope Q(A) = {z :
Arx >1—-n(A), 0 <z <1} and Q(A) is an integral polytope, then the above point
can be expressed as a convex combination of 0,1 vectors in Q(A). Clearly, for every
index j, there exists in the convex combination a 0,1 vector with z; = 0 and another
with in =1. O

Let S be an ideal set of clauses. A consequence of Remark 7.1 is that the satisfia-
bility problem can be solved more efficiently than by general linear programming.

Theorem 7.2 (Conforti and Cornuéjols [7]) Let S be an ideal set of clauses. Then S
is satisfiable if and only if a recursive application of the following procedure stops with
an empty set of clauses.

Recursive Step
If S =0, then S is satisfiable.
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If S contains a clause C' with a single literal (unit clause), set the corresponding
atomic proposition x; so that C is satisfied. Eliminate from S all clauses that become
satisfied and remove x; from all the other clauses. If a clause becomes empty, then S
is mot satisfiable (unit resolution).

If every clause in S contains at least two literals, choose any atomic proposition x;
appearing in a clause of S and add to S an arbitrary clause x; or —x;.

It is easy to modify the above algorithm in order to solve the logical inference
problem when S is an ideal set of clauses.

7.2 Relating Ideal 0,+1 Matrices to Ideal 0,1 Matrices

This section follows [8]. Hooker [32] was the first to relate idealness of a 0, £1 matrix
to that of a family of 0,1 matrices. These results were strengthened by Guenin [27]
and by Nobili, Sassano [41].

A prime implication of Q(A) is a generalized set covering inequality ax > 1 —
n(a) that is satisfied by all the 0,1 vectors in Q(A) but is not dominated by any
other such generalized set covering inequality. A row monotonization of A is any 0,1
matrix obtained from a row submatrix of A by multiplying some of its columns by
—1. A row monotonization of A is mazximal if it is not a proper submatrix of any row
monotonization of A.

Theorem 7.3 (Hooker [32]) If A is a 0,£1 matriz such that Q(A) contains all of its
prime implications, then A is ideal if and only if all the mazimal row monotonizations
of A are ideal 0,1 matrices.

In [27], the idealness of a 0,+1 matrix A is linked to the idealness of a single 0, 1
matrix as follows. Given a 0,41 matrix A, let P and R be 0,1 matrices of the same
dimension as A, such that Pj; = 1 if and only if A;; = 1, and R;; = 1 if and only if

A;; = —1. The matrix
P|R
DA - [ I ] b

is the 0,1 extension of A. Note that the transformation 2t = z and = = 1 — x maps
every vector = in Q(A) into a vector in {(z*,27) >0: Pzt + Rz~ > 1, 2t +a2~ =
1}. So Q(A) corresponds to the face of Q(D4), obtained by setting the inequalites
xt + 27 > 1 at equality.

Theorem 7.4 (Guenin [27]) Let A be a 0,£1 matriz such that Q(A) contains all of
its prime implications. Then A is ideal if and only if the 0,1 matriz D4 is ideal.

Furthermore A is ideal if and only if min{cz : = € Q(A)} has an integer optimum
for every vector ¢ € {0, +1, +o0}".
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In Nobili, Sassano [41], a condition for a 0,41 matrix A to be ideal, without as-
suming that Q(A) contains all of its prime implications is given as follows. Given a
0,41 matrix A, let a' and a? be two rows of A, such that there is one index %k such
that azaj = —1 and, for all j # k, aja; = 0. A disjoint implication of A is the 0, +1
vector a' + a?. The matrix AT obtained by recursively adding all disjoint implications
and removing all dominated rows is called the disjoint completion of A.

Theorem 7.5 (Nobili and Sassano [41]) Let A be a 0,£1 matriz. Then A is ideal if
and only if D+ is an ideal 0,1 matriz, where A" is the disjoint completion of A.

Let J be a subset of columns of a 0,£1 matrix A. The deletion of J consists of
removing all columns in J, all rows with at least one 1 in a column of J and rows that
become dominated. The contraction of J consists of removing all columns in J, all
rows with at least one —1 in a column of J and rows that become dominated. The
semi-deletion of J consists of removing all rows with a 1 in at least one column of J
and then all zero columns. The semi-contraction of J consists of removing all rows
with at least one —1 in a column of J and then all zero columns.

Nobili and Sassano define a weak minor of a 0, £1 matrix A to be any submatrix
that can be obtained from A by a sequence of deletions, contractions, semi-deletions
and semi-contractions. They define A to be minimally nonideal if A is not ideal but
every weak minor of A is ideal. The usefulness of this concept comes from the fact
that a 0,£1 matrix A is minimally nonideal if and only D, is a minimally nonideal
0, 1 matrix.

For n > 3, the following n x n 0, £+1 matrix, denoted J,, is minimally nonideal:

-1 11111
1 10000
Jj = 1 01 000
n 1 00100
1 00010
1 00001

Nobili and Sassano [41] give the following characterization of minimally nonideal
0, =1 matrices.

Theorem 7.6 (Nobili and Sassano [41]) Let A be a 0, £1 matriz with n columns. Then
A is minimally nonideal if and only if A is a switching of J,,, after permutation of rows
and columns, or A is a switching of a minimally nonideal 0,1 matrixz or A contains an
n X n submatriz B with two nonzeroes per row and per column and det(B) = +2 and
all rows in A but not in B have at least three nonzeroes.
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