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Abstract

In this paper, we relate several questions about cutting planes to a fundamental
problem in the peometry of numbers, namely, the closest vector problem. Using
this connection we show that the dominance, membership and validity problems
are NP-complete for Chvital and split cuts,
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1. Introduction

Given a rational polyhedron P = {r € F"|Axr < b}, where A € Z™*" and b€ Z™, a
Chudtal cut [4] az < d is obtained from a valid inequality ar < ¢ for P, where a € Z"
and d = [c]. A split cut [5] ar < d is a valid inequality for Conv(P N {r € RB"|rz <
m}, PN{x € R"|mx > mp+ 1}) for some (7. mp) € Z™', where Conv(P,, P;) denotes
the convex hull of P, |J FP,. Split cuts are an important special case of disjunctive
cuts [2]. The equivalence between split cuts, Gomory mixed integer cuts and mixed
integer rounding cuts was proved by Nemhauser and Wolsey [13, 14]. See also [6, 7).
Chvital cuts are special split cuts where PN {xr € R"|7x > my + 1} is empty, 7 = a
and my; = d. The intersection of all the cuts in a given family is called the elementary
closure of P for this family. The elementary closure for Chvatal cuts is called Chvdtal
elosure and for split cuts it is called split closure.
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A cut ar < d for a rational polvhedron P dominates ax < d if P {z € R"|az < d} C
Pn{z € R"|ax < rf} The dominance problem for a family of cuts is, given a rational
polvhedron P and an inequality ax < d with {&,rf} € Z", to decide whether there
exists a cut ar < d for P in the family such that ar < d dominates ar < d.

The membership problem [11, 15] for the elementary closure of a family of cuts is,
given a rational polvhedron P and a rational point 2* € P, to decide whether z*
belongs to the elementary closure of P for this family of cuts.

The wvalidity problem for the elementary closure of a family of cuts is, given P and
an inequality, to decide whether this inequality is valid for the elementary closure
of P for the family of cuts. The validity problem for Chvital cuts was considered
in [9]. It is well known [11] that the membership and validity problems have the
same computational complexity since optimizing a linear function over the elementary
closure can be done using binary search to solve a sequence of membership problems.

One can verify that these three decision problems are in NP both for Chvatal cuts
and split cuts. The complexity of the membership problem for the Chvatal closure
was raised by Schrijver [15] and settled by Eisenbrand [8]. Using a result of Caprara
and Fischetti, Eisenbrand reduces the weighted binary clutter problem [10] in a clever
way to the membership problem to prove its NP-completeness. The complexity of
the membership problem for the split closure was raised by Cornuéjols and Li [6] and
recently settled by Caprara and Letchford [3]. They reduce the max cut problem to
the membership problems for split cuts, balanced split cuts and binary split cuts, and
thereby prove their NP-completeness. The dominance problem has not been studied
previously in the literature. Note that it involves a single cut whereas, by contrast,
the validity problem involves the whole elementary closure.

In this paper, we reduce the closest vector problem. a fundamental problem in the
geometry of numbers, to the dominance and membership problems for Chvatal and
split cuts, and concisely prove their NP-completeness even when P is a simplicial
cone.

2. Connecting the closest vector problem to the dominance
and membership problems

Given a vector b = (b, by,---,b,) € " and n linearly independent vectors a; =
(@1, @oi, -+ aye) € Q" (1 < & < n), the Closest Vector Problem (CVP) is to find a

T
vector closest to b in the lattice L={r € Q" : z = 2k, ke Z 1<i< n}. CVP

i=1
was shown to be NP-hard for any [,-norm (p = 1) [16]. The corresponding decision
problem is NP-complete [12, 16]:

Lemma 1. Given b € (0", a lattice L generated by n basis vectors a; € (2" (1 <1 <



n), and u € (., the feasibility problem for

(1) { |z = bl|, < u,

re kL
15 NP-complete.

We are going to reduce the above feasibility problem for the [.-norm and l;-norm
to the dominance and membership problems for Chvatal and split cuts on a sim-
plicial cone. Let a; = (a;,b) (1 < 7 < n) and a,+y = (0,0,---,0,—-1), where
d; = (aj, @, -+, 05,) € Q" (1 < i < n) are n arbitrary linearly independent vec-
tors, and let b; € @ (1 < ¢ < n). The simplicial cone that we will work on is

n+1l
C={ze Rtz=75+ El Aity, A > 0for1<i<n+1}, where 3= (0,0,---,0,3).

Theorem 2. The dominance problem for Chvatal cuts is NP-complete.

Proof. Consider the simplicial cone ' defined above and an inequality ar < d with
(a.d) € Z"* such that the hyperplane ar = d intersects the extreme rays of C at
the points 8+ ou6; (L<i<n+1), wherel <oy <+oo (1<i<n)and a, = ]E
An inequality 7z > my + 1 is a Chvatal cut of C, where (7, m) € Z"2, if and only
f0<af—mp<landwag; > 0(l <i<n+1). Let e =78 — mp. It is easy to
check that the hyperplane 7o = my + 1 intersects the extreme rays of C' at the points
3+ Aji;, where \; = :ﬁ (1 <i<mn+1). Note that when ma; = 0, the hyperplane
max = mp + 1 is parallel to the ray a;, and by convention we let A = +oc.
The inequality ax < d is dominated by 7o < mp + 1 if and only if a; < A; (1 €1 <
n <+ 1). Therefore the inequality ar < d is dominated by a Chvital cut of C if and
only if there exists (7w, my) € 2" such that (0 < 7a; < Iﬂ;‘ (lL<i<mn+1)and
0 <e<1, where e =73 — m,. I
By the choice of 5, we have 0 < € = % — my < 1. Since wp and 7, ., are integer,
it follows that ¢ = % and w41 18 an odd number. By the choice of a,; and a4, it
follows that 0 < —m, 4y < 1. Thus 7,4 = —1.
Let 7 = (7, Tyxq). Then ar < d is dominated by a Chvatal cut on C if and only if
there exists a solution T to

©) { 0<7a—bi< s L,

Tean

Let L be the lattice with basis vectors {a; = (ay;,a9.---,a,)}",. Because the
feasibility problem for (1) {(when p = o¢) is NP-complete, by Lemma 1, and (2) has
a more general form than (1), the feasibility problem for (2) is NP-complete. O

Theorem 3. The dominance problem for split cuts is NP-complete.

Proof. A split cut from a disjunction (7z < m) V (7x > my + 1) that is not valid
for C', must be violated by 3. Thus 0 < v —my < 1, ice., 0 < ™5 —my < 1. Let
€ =73 —mwy. Then ¢ = % and w41 is an odd number.
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Let @4 Xa; (1 <1 < n+ 1), where A; > 0, be the n + 1 intersection points of the
extreme rays of C' with the split cut. Since these points are either on the hyperplane
T = My or T = my + 1, we have

M= e if iy < 0,

— i

j o ™
{ F—T: ]F i, ::_:" [}1

l.:-l—

= (1 <i=<n+1). Let ar < d with (a,d) € Z"*? be an

Since e = 3, i =
inequality such that thL hyperplane ar = d intersects the extreme rays of €' at the
points F+ oy (1 <i<n+1),where 0 <a; < +oc (1 <i<n)and a,y = % Let

T = (T, Tas1). Now the inequality ar < d is dominated by a split cut if and only if

[T + Tgals] < 50 1 <i<n,
a1 < 1, :rrﬂ_H is odd,
AL

(3)

is feasible. Since 7, can only take the value —1 or 1 and there is no sign restriction
on 7, (3) is feasible if and only if

|7 — b|'=i , L<i<n,
(@) {
?n-

is feasible.

Let L be the lattice with basis vectors {a; = (a4, ag, - - ani )}y Since (ay, ag, - -,
v, ) 18 an arbitrary positive rational vector, the NP-completeness of the feasibility
problem for (4) follows from Lemma 1 (when p = o). O

Theorem 4. The membership problem for the split closure is NP-complete.

Proof. Let z* = 3 + L a; € C be an interior point of €. Using results in the

proof of Theorem 3, a tht nlt fmm the disjunction (rr < my) V (rz > mp + 1) is
l

violated by x* if and only if E__ < 1, where A; = I_?T:;I (l1<i<n+1)and muy

is .:m odd number. Th&*n—*ﬂ:r{-’ th(J point x* is cut off by a split cut if and only if

trr.r. Hi= E_ |Ta@; + Th10i| + |Tr41| < 2 has a solution 7 = (7, 74 ) € 2", where
1'_I

M1 IS AN Ddc] number,

Being odd and satisfving Z |Tai; + Tt 1| + |Tpr1] < 2 enforces w4y to be either
g=1
—1 or 1. Because @ has no sign restriction, x* is cut off by a split cut if and only
EL
if ¥ |ma; — b;| < 1 has a solution 7 € Z". Now, the NP-completeness follows from
i=1

Lemma 1 (when p=1 and u = 1). O

Kannan's proof [12] of Lemma 1 above (see also Theorem 5 in [1]) actually implies
the NP-completeness of the following variant of CVP:
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Lemma 5. Given b € )", a lattice L generated by n basis vectors a; € Q" (1 <i <
n), and v € ., the feasibility problem for

I:I:;} ||-.f‘—fi'|E] < U,
g rel, x>b
is NP-complete.

Theorem 6. The membership problem for the Chvatal closure is NP-complete.

Proof. Taking the same point &* as in the proof of Theorem 4 and using the argument
in the proof of Theorem 4 and the fact that wa; > 0 for a Chvatal cut, we conclude
that =* is cut off by a Chvatal cut if and only if

3 i, — bl < 1,
[ﬁ}{ 5 |ra; ~ b

i=
TeZ® fa2h 1<i<n

has a solution. The NP-completeness now follows from Lemma 5 (when u=1). O

Using binarv search to optimize a linear function over the elementarv closure, it
follows that the validity and membership problems have the same computational
complexity. This implies the following result.

Corollary 7. The validity problems for the Chvital and split closures are NP-
complete.

Acknowledgments: We thank Fritz Eisenbrand for his helpful comments and Daniele
Micciancio for kindly pointing out the NP-completeness proofs in [1, 12].
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