Branching on Split Disjunctions

G. NANNICINI *!, G. CORNUEJOLS2, M. KARAMANOV ", L. LIBERTI ¢3

aTepper School of Business, Carnegie Mellon UniversitysRitrgh, PA
b Capacity and Operations Planning, Bank of America, ChaeloNC
¢LIX, Ecole Polytechnique, Palaiseau, France

Abstract. Branch-and-Cut is the most commonly used algorithm for soliher
ger and Mixed-Integer Linear Programs. In order to reducentitaber of nodes
that have to be enumerated before optimality of a solution eaproven, branch-
ing on general disjunctions (i.e. split disjunctions irsing more than one variable,
as opposed to branching on simple disjunctions defined on aneble only) was
shown to be very effective on particular classes of instayimgt not much work has
been done to study general purpose methods of this kind.dmp#per, we survey
known results related to this line of research, and we stioelyelationship between
branching and cutting from a split disjunction.

Keywords. Integer programming, Branch-and-Bound, Split disjunctions

Introduction

Solving Mixed-Integer Linear Programs (MILPS) is of greaagtical use in a number
of applications, and efficient software exists for this msg. One key ingredient is the
Branch-and-Bound algorithm [21]. Branch-and-Bound hasrvain components: divid-
ing a problem into subproblems, which is known as branchamgl, computing bounds
on the objective function value at the subproblems. The isl¢éa recursively subdivide
the initial problem into smaller problems, until the subigeoms can be easily solved, and
use bounds to eliminate as many as possible. Subproblentgpérally stored in a tree
structure, hence they are calleddesn the literature. The bounding phase is carried out
by considering the Linear Programming (LP) relaxation afreaode; in this paper, we
focus on the branching phase.

Whenever the solutiom to the LP associated with a node is fractional on a variable
x; that is required to take on integer values, a natural way afditing is to create two
subproblems imposing the constraint < |z;| on one subproblem and, > [Z;] on
the other. In this paper, we take a different approach wiyebbednching can occur on a
general hyperplane with integer componentsy imposingr "z < 7, on one child and
7Tz > 7y + 1 on the other.

How do we choose? We use the connections between branching and cutting from
split disjunctions [12], Gomory Mixed-Integer (GMI) cutsd] and intersection cuts [7].

LCorresponding Author: e-mail: nannicin@andrew.cmu.edppStted by an IBM fellowship.
2Supported by NSF grant CMMI1024554 and ONR grant N00014-0933.
3Supported by ANR grant 07-JCJC-0151.

GMI cuts arise as intersection cuts from a split disjunctenmd provide a computation-
ally inexpensive way of generating Therefore, we generate a pool of possible branch-
ing hyperplanes this way, and select one by using strongchiag [6]. We also inves-
tigate the effect of modifying the hyperplanes by strengimig the underlying GMI cut
with a Reduce-and-Split like algorithm [4,15].

Computational experiments on MIPLIB instances show thiatapproach is effec-
tive in practice, and can significantly reduce the size oktin@meration tree; on average,
the reduction in number of nodes is by more than a factor twmised-integer instances.

Extended versions of this work have appeared in [14,19]hiw paper, we give a
unified treating of this topic. In Section 1, we give some ipnelaries and survey the
research carried out in this area. In Section 2 we introducenotation and recall sev-
eral known results that are useful for the subsequent patte@aper. Section 3 stud-
ies the relationship between the integrality gap (i.e. tiffer@nce between the integer
optimum and the relaxed optimum) closed by generating &mgattion cut from a split
disjunction, or branching on the same disjunction. In S&cti we describe a branching
scheme that is based on exploiting the disjunctions defitiiagcMI cuts read directly
from an optimal simplex tableau; Section 5 modifies this suady adding a disjunc-
tion strenghtening step. In Section 6 we discuss the sizheotoefficients of “good”
disjunctions. Finally, Section 7 concludes the paper witbmputational evaluation.

1. Preliminaries and Literature Review

In this paper we consider the Mixed Integer Linear Prograstamdard form:

T

minc'x
Ar=b
x>0 P

Vj € Ny SﬂjEZ,

wherec € R", b € R™, A € R™*™ andN; C N = {1,...,n}. The LP relaxation of
P is the linear program obtained by dropping the integralggstraints, and is denoted
by P. We denote byP the set of feasible solutions @, which is a polyhedron. The
Branch-and-Bound algorithm makes an implicit use of theceph of disjunctions [8]:
whenever the solution to the current LP relaxation is foawl, we divide the current
problem? into two subproblem$; andP, such that the union of the feasible regions
of P, andP, contains all feasible solutions . Usually, this is done by choosing a
fractional component; (for somei € Ny) of the optimal solutiort: to the relaxatiorP,
and adding the constraints < |z, | andz; > [Z,] to P, andP, respectively. Choosing
which variable should be branched on at each step is of fuadhimportance for the
performance of Branch-and-Bound. We refer to [2] for a résenvey on this topic.

Here, we take a more general approach whereby branchingccanwith respect to
a directiont € R™ by adding the constraintsr < 3y, 72 > 31 with 5y < 3; toP; and
P- respectively, as long as no feasible poinfofs cut off. A natural way of generating
such directions is to consider split disjunctiabér, 7() of the form:

WTISWO \/ 7TT1:27TO+1 Q)

with 7 € 2", 79 € Z, m; = 0 Vi ¢ Nj. By integrality, every feasible solution t8
satisfies any split disjunction. In other words, a splitaisition is defined by two parallel
hyperplanes that have no integer point in the interior of“dtap” between them. In
the branching literature, disjunctions involving only oreiable are labeledimpleor
elementarywhereas those involving more than one variable are cgkeeral

There are mainly two different categories of approachesramdhing on general
disjunctions that have been proposed in the MILP literatlihe first category contains
methods that try to identify “thin” directions oP ; the second category focuses on
improving as much as possible the LP bound at the childrees1d@5] discusses both
problems, which are shown to be strondli?-hard in [26].

1.1. Branching on thin directions

The concept of thin direction requires the notionnaflth of a full-dimensional polyhe-
dron P along a direction:, which is defined asnax, ,cp(uz — uy). Thus, for apure
integer program associated with theinteger widthis defined as

min max (7x — 7Y).
weZ™\{0} z,yeP

This definition naturally extends to the mixed integer cagednsidering integer direc-
tionsm € Z" \ {0} with 7; = 0 for j ¢ N;.

The work of Lenstra [23] on solving integer programs in fixechension in poly-
nomial time (see also [17,24]) is at the origin of the idearafriching on thin directions
of P. The method works as follows. First, some thin directiong’aire computed, us-
ing the lattice basis reduction algorithm by Lenstra, Lemand Lovasz [22]. Then, the
space is transformed so that these directions correspamdtteectors, and the problem
is solved by Branch-and-Bound in the new space. Thus, bilagcm single variables in
the transformed space translates back to branching onajefigunctions in the original
space. This method has proven successful for some partiostances where standard
Branch-and-Bound fails because of the huge size of the ematime tree, such as the
Market Split instances [13], whose solution is discussdd]inrOther examples are given
in [20,27].

1.2. Branching for maximum bound improvement

Another line of research which has been pursued is that e€geg a good general dis-
junction for branching at each node of the Branch-and-Bdue, in order to improve

as much as possible the bound at the children nodes. Owen ehobivha [28] proposed

branching on split disjunctions with coefficients §a-1,0, 1} on the integer variables
with fractional values at the current node. They generateaasible such disjunctions,
and evaluate them using strong branching (i.e. solving & dssociated with the chil-
dren nodes to optimality), in order to select the one thagthe largest improvement of
the dual bound. [14,19] follow this idea of generating digjtions for maximum bound

improvement, and try to do so by exploiting the relationdiepween split cuts [12] and
split disjunctions for branching.

7Ty >my+1 P 7rTx27T0+1VP2/’

split cut
i P

T < My P mlr < m P

Figure 1. Deriving a split cut.

2. Split Disjunctions: Cutting and Branching

Given a split disjunctiorD(r, o) of the form (1), asplit cutfor P is a cut which is valid
(i.e. does not cut off any integral feasible solution) fottb®, = PN {z: 7'z < mp}
andP, = Pn{z: 7lr >+ 1}. SinceP; U P, contains all integral feasible points of
P, such a cutis valid foP as well. Split cuts were introduced in [12]. Itis intuitiv@dee
that there should be some kind of relationship between aaglderived fromD (7, 7o)
and the “strength” of the two polyhedrd,, P»; since the aim of branching is exactly
that of creating two strong (but smaller) subproblefisP, associated withP;, P, we
want to study this relationship. To do so, we first investigedme useful properties of
split cuts that will lead to the formulas used in the rest @ flaper.

Split cuts are disjunctive cuts [8], i.e. cutting planes ethare valid forconv(P; U
P,). A pictorial representation of such a cut is given in Figurksthere an easier way of
deriving split cuts without having to resort to disjunctpmgramming? [5] establishes
a correspondence between split cuts and intersectiongutshjowing that each split cut
for P can be derived as an intersection cut from a split disjunctiod a suitable basis
of P. This allows for a geometric understanding of their deitwatand for closed form
formulas.

We need some definitions. Basisfor P is anm-subsetB of N such that the column
submatrix ofA induced byB is an invertible submatrix ofl. LetJ := N \ B denote the
index set of the nonbasic variablds; = BN N; the set of integer basic variableg, =
JN N7 the set of integer nonbasic variabldgs, = J\ N; the set of continuous nonbasic
variables. Additionally, we denote by) the fractional part oft, i.e. (z) = « — |z].

A further relaxation of the seP with respect to a basiB is obtained by removing the
non-negativity constraints on the basic variables. We tieitbdy P(B):

PB):={ze€R": Ax=band z; > 0for j € J}. 2

This set is a translate of a polyhedral cor¢B) = C'+z, whereC' = {z € R" : Az =
Oand z; > 0 for j € J} andz solves{x € R" : Av =band z; =0for j € J},i.e.Z

is thebasic solutiorcorresponding to the basis. Typically, B will be the optimal basis
of an LP relaxation of MILP, but not necessarily so (see e.@j])[In this paperB will

be optimal forP. The coneC' can be expressed also in terms of its extreme naygr

j € J: P(B) = Cone({r’};cs) + &, whereCone({r’}) denotes the polyhedral cone
generated by vectors}. Looking at the simplex tableau associated withwritten in
the usual form:

8

mtr < mp 7Tz >,

2 Intersection

Figure 2. Deriving the intersection cut

mi:ii—Zaijxj Vi € B, (3)
jeJ

the extreme rays aP(B) can be read directly as:

, —a;jifi e B
=<1 ifi=j 4)
0 otherwise

Observe that our interest is in split disjunctions that aotated by the current frac-
tional solutionz. This is because we do not wanto be feasible for eitheP; or P, so
that the solution to the LP relaxation is forced to “move’eafbranching. The same is
true for cutting planes: the most interesting ones are alfyithose that cut off:. How
do we generate a split cut as an intersection cut? Given ajyndtionD (r, 7() violated
by z, we can generate a split cut usibfr, 7o) andP(B) as exemplified in Figure 2. In
particular, the intersection cut is a half-space boundetiéyyperplane passing through
the intersection points db(x, mo) with the extreme rays aP(B).

In order to find the intersection points, for gl J we compute the scalars:

—elmmo) g Ty <),

a;(m,mo) i= L=EmTo) if 7T > 0, ()
400 otherwise,

wheree(m, my) = 71z — mo is the amount by whiclr violates the first term of the
disjunctionD (7, my). The numbeiy; (7,) for j € J is the smallest number such
thatz + ar’ satisfies the disjunction. In other words, = z + «;(w, m)r’ lies on one
of the disjunctive hyperplanes’ z = my andn”z = 7y + 1.

Now, the intersection cut associated witrand D (7, 7o) supports the points’ and
is given by:

Y1)

jGJ a] (Tr’ ’R-O)

The Euclidean distance betweermand this hyperplane is:

1
d(B)ﬂ-77T0) = —1 (7)
Y ies wmma®

This quantity, calledlistance cut ofbr depth was used as a measure of cut quality in
[9].

The well known GMI cuts from a basiB®, which are included in virtually every
Branch-and-Cut based software for solving MILPs, can baetkeas intersection cuts
from a particular split disjunction [7]. They can be obtalres follows. We start from a
disjunction on the integer basic variables:

3 i < {Z mJ VoD > {Z mJ +1, (8)

1€BT i€BT 1€BT i€Br

with 7; € Z Vi € Brand)_,.p m:Z; ¢ Z. (8) is then strengthened on the nonbasic
integer variables where the affected are modified so that the distance cut off (7) is
maximized. We obtain the following disjunction:

LZiEBI ﬁ'iaijJ If] €Jr and<zi631 ﬁ'iaij> < <Z’i€BI 7%11_77>
= [ZiEBI fridij] |fJ cJr and<zieBI ﬁidij> > <Zi631 frl:?2>
J ﬁ'j if J € By
0 otherwise

©)

Ty = LWTQEJ.
Plugging (9) into (5) gives a GMI cut that cuts aff In the original cutting plane pro-
cedure of Gomory [16], (8) is an elementary disjunction.ibthat we have a closed
form formula for this disjunction, therefore we can compititeery efficiently. This is
the class of split disjunctions that will be employed in teeainder.

3. Gap Closed by Cutting and by Branching

A violated split disjunction can be used for generating aergection cut but it can be
used for branching as well. A good intersection cut cuts lyge P and improves the
LP bound at the children nodes. Our suggestion is that adigjitnction defining a deep
cut is good for branching too.

Indeed, the improvement in the lower bound caused by bragobin a split dis-
junction is no less than the improvement by the correspanifitersection cut. Let;
andz, be the LP relaxation optima @, and P, (if Py is infeasible therx;, = ~o for
ke {1,2}).

Proposition 3.1. migl c'a? <min(c' Zy, ¢ Zo).
Jj€

Proof. We haver; = argmin{c'z : c € P}, Zy = argmin{c'z : c € P»}. Let P} =
PB)N{reR": 7'z <my}andPy = P(B)N{zr € R" : 7'z > my + 1}. By the
definition of the points? Vj € J, min e {c" 2’} = min{c"z : x € P} U Py}. Since
PC P(B),min{c'z:z€ PFUPy} <min{c'z:2 € PUPR,} = min(c' z1,c' Zs),
which completes the proof. O

Therefore, in order to generate children nodes that have ti§ relaxations, it
makes sense to try to maximize the lower bound given in Pitipn$.1; as this quantity
is bounded from below by the gap closed by the correspondiegsection cut, this ex-
plains our intuition. However, it can be shown with a sma#meyle that the bound on the
gap closed by branching given by the corresponding intéosecut can be arbitrarily
far from the real value.

Example 3.2. Consider the integer program:

min —T1 — X2
r1 < 1.5
xro S 1
x1/m —x9 > 1.5/m —1.25
mx; —xo < 1.5m — 0.75
X1, T2 e,

P (10)

wherem > 1 is a given parameter close to 1. The solution to the LP relaxas
(1.5,1), with an objective value of2.5. The intersection cut obtained from the disjunc-
tionxzy —xo <0V —ae > 1isxzy + 2o < 2, Which gives an objective value ef2.
Now suppose we branch an —zo < 0V x; — x5 > 1. We obtain two childrerP; and
P», which are both feasible. One can verify that optimal soluto the LP relaxation of
Py is (LL20m L5-120m) with objective value-2+:57125™ and the optimal solu-
tion to the LP relaxation oP, is (1:5m=L75 0.5m=0.75) yith objective value- 22=22,

m—1 ? m—1

Therefore, the gap closed by branching is:

1.5—-1.25m 2m —2.5

,—

max{—2 } —2.5,

1—m m—1
which can be made arbitrarily large whentends to 1 from above. At the same time, the
intersection cut associated with the same disjunctioreslasgap o6.5 regardless ofn.

We give a picture of the situation for. = 1.1 in Figure 3.

4. Branching on Disjunctions Defining the GMI Cuts

We need a procedure for selecting promising split disjamstifor branching. As we dis-
cussed in the introduction, optimizing over the set of alltgisjunctions is strongly
NP-hard [26]. [19] simply suggests to concentrate on a finiesslof general disjunc-
tions generated directly from the current optimal basis -e-g&tG of split disjunctions

defining the GMI cuts that can be read from the simplex tabl&#ae GMI cuts as de-
fined by Gomory [16] arise from simple disjunctions (8) with= e; for i € B; where

Z; € 7. These cuts have been shown to be very effective in practigle The reasons

1 /m —x9 > 1.5/m — 1.25
mzr; — x2 < 1.5m — 0.75
xT9 Sl ’

T+ 29 <2

T S 1.5

° %0& function

Figure 3. Representation of Example 3.2 for = 1.1.

for this choice are the following. First, the ggis not only finite but relatively small. Its
cardinality at a given node of the Branch-and-Bound treealsgilhe number of integer
variables with fractional values in the current basic dolutSecond, these disjunctions
are fast to obtain. They can be read from the current tablétwanclosed form formula
(9). Third, as we explained at the end of Section 2, thesermtitjpns can be viewed as
strengthened simple disjunctions (with respect to the epttg) which suggests that they
could perform better than the elementary disjunctions.

The branching procedure proposed in [19] is as follows. @emdhe set of all GMI
disjunctions arising from elementary disjunctions for adfic basic solution, and select
a subsetS of it, containing the most promising disjunctions accogdio the chosen
criterion for comparison. The distance (7) cut off by the entging intersection cut, is
used as a criterion for selecting promising disjunctioniskipg those with the largest
distance. The cardinality & is limited to a parametek, which can be used to manage
the computational effort at different levels, e.g. a largean be used close to the root
where branching decisions are more important and a sniailtethe deep levels. Finally,
in view of Example 3.2, we apply strong branching to the disfions inS, in the spirit
of [6,28], to evaluate the true impact of each disjunctionté\that the computational
complexity of this algorithm is dominated by the strong loféing phase.

Once strong branching is performed and we know the objefiivetion improve-
ment at the children nodes z;, ¢’ z5, we use

ymin(c' Zy, ¢ Ty) + (1 —y)max(c' Zy, ¢’ Zy), (11)

with 0 < v < 1, as a measure of quality of a disjunction, attempting togase the LP
bound. This approach is not new: for instance, [2] propeses 5/6 in the context of
branching on elementary disjunctions.

5. Strengthening the GMI Disjunctions

GMI cuts derived from elementary disjunctions are veryrggrin practice; but can we
do better? [4,15] experiment with cutting planes derive@&H cuts from split disjunc-
tions, with good results. In our framework, their procedcae be seen as a method for
finding a disjunction (8) that gives rise to an intersectiahwith better cut coefficients
on the continuous variables. The starting disjunctitas then plugged into (9) as usual.
Clearly, this approach is computationally more expenghiveelementary disjunctions of
Section 4 can be read from the tableau with no additional bostinding a strong split
disjunction of the form (8) is not as simple, as there is amitdinumber of them.

[14] proposes the following approach, which has also beedified and enhanced
for cutting plane generation in [15]. The motivating ideacts back to [4]. We look at
the expression af; (5) for the intersection cut derived from (9):

<Z'iEBI ‘ﬁ"tiz> 1—<2i€31 7}7}:1> > o
f
- (22%31 fria”y 17<Zi€BI ﬁiﬁij> e
Sien, ®idi) 1A Yicp, FiFi n
e (Zi:jzli:‘;;j>7 <Z7::BB,I7%7:;>> ifjeJe

(12)

o]

wherea; = oo if its denominator is zero. A larger; means a smaller cut coefficient in
(6), hence a stronger cut, as can be seen from (7); and by §tiopd3.1, we argue that
a disjunction with largey; will be strong for branching as well. Therefore, we study a
method for increasing; by acting onz.

It seems difficult to optimizey; for j € J; because both terms of the fraction are
nonlinear. Furthermore, fogre Ny, «; is always at least 1, independent of the choice of
7. Forj € Jo, a; can be smaller than 1, therefore we concentrate on tryingipodve
thesea;. From (12) we see that the denominatoragffor j € J¢ is a linear function
of 7, whereas the numerator is a nonlinear functiotr @ind is always between 0 and 1.
For this reason we attempt to minimize the denominator,Ec;EBl maq; for j € Jeo,

over integral vectors. More specifically, we would like to minimizid||, where

d= () #iaij)jee - (13)

i1€BT

Since we try to improve the disjunction by looking at the cokfficients on the contin-
uous variables, the method described in this section is suable for mixed-integer
instances.

Apply a permutation to the simplex tableau in order to obfain= {1, ..., |B;|}, Jo =
{1,...,]Jc|}, and define the matri® € RIB11x1Jel g, = a,;. Minimizing ||d|| can be
written as

cemm EEBI [(14)

This is a shortest vector problem in the additive group geteerby the rows oD. If
these rows are linearly independent, the group defineseelatind we have the classical
shortest vector problem in a lattice, which is NP-hard umdadomized reductions [3].

[4] proposes a heuristic for (14) based on a reduction algorivhich cycles through
the rows ofD and, for each such rod,, considers whether summing an integer multiple
of some other row yields a reduction [od, || . If this is the case, the matrik is updated
by replacingd, with the shorter vector. Note, however, that this methog @ohsiders
two rows at a time.

The idea of [14] is to use, for each raly of D, a subseR;, C B; of the rows of the
simplex tableau withl), € Ry, in order to reducédy|| as much as possible with a linear
combination with integer coefficients df, andd; for all i € Ry, \ {k}. This is done by
defining, for each row;, that we want to reduce, the convex minimization problem:

mi iR, 15
in Y Ak (15)

#kcRIBR| 7k —
akeR s i€ Ry

and then rounding the coefficient$ to the nearest integéf?|. There are several rea-
sons for imposing¥ = 1. One reason is that not only do we want to find a short vector,
but it is also important to find a vectar* with small norm: in the spac& N N, the
distance between the two hyperplanes that define a splitrdispn D (7,) is related
to the norm of#: in this space, disjunctions that cut off a larger volumeehavsmall
I7t||. We will come back to this issue in Section 6. Another reasdhat we must avoid
the zero vector as a solution. Yet another is to get diffeogtimization problems for
k =1,...,|Bj|, thus increasing the chance of obtaining different bramgliirections.
Vanishing the partial derivatives §fy", , 7/ d;|| with respect tat} for all i, we obtain
an|Ry| x |Ry| linear system that yields the optimal (continuous) solutio

Once these linear systems are solved and we have the optiefiicents7* <
RIZ+l forall k € {1,...,|B;|}, we round them to the nearest integer. Then, we consider
the norm ofy_, . |#F |di. If || Y2, |75 |dill < [|dk ||, then we have an improvement

2

with respect to the original row of the simplex tableau; iis ttase, we use

Sodtwi= > wwi- Y Y waga;, (16)

1€ R 1€ Ry jeJi€ERy

instead of rowa;, in order to compute a GMI disjunction, and consider the gabgsi
improved disjunction for branching.

It is natural to ask how to chood®, C Bj. Although usingR;, = By is possible,
in that case two problems arise: first, the size of the lingatesns may become too
large, and second, if we add up too many rows then the coeffeca the variables with
indices inJ N N; may deteriorate. In particular, we may get more nonzeroficiefts.
Thus, we do the following. We fix a maximum cardinalty,r, |; if Mz, | > |B;], we
setR, = Bj. Otherwise, for each row that we want to reduce, we sort the remaining
rows by ascending number of nonzero coefficients on the blasawith indices infi
J N Nrlay; = 0}, and select the first/|z, | indices as those iR;,. The reason for this
choice is thati,; = 0 impliesa; = oo, i.e. the cut is strong on that variable. Therefore,
we would like those coefficients that abein row a; to be left unmodified when we

computed ;. |75]a;-

6. On Non-Dominated Disjunctions

Although solving the shortest vector problem (14) is impottfor finding a deep cut,
it is not the only consideration when trying to find a good leteing direction. In the
spaceB N Ny, the distance between the two hyperplanes that define adsglinction
D(m,m) is equal tol /|| A|| as can be seen from (9). Therefore, in this space, disjursctio
that cut off a larger volume have a smgN||. We illustrate this with an example.

Example 6.1. Consider the following tableau, wherg, zo are binary variables and
Y1, Y2 are continuous:

x1=1/3+98y; + yo

The solution to the shortest vector problem (14) is givenheyihteger multipliers\; =

99, A\, = 98 which yield the shortest vector in the latti¢ce 0.02) and the disjunction
9921 + 98z2 < 65V 99z1 + 98x2 > 66. The heuristic method of Section 5 computes
the continuous multipliers; = 1, Ao = 98/99 which are rounded ta; = 1, Ao = 1,
that correspond to the disjunction + 2o < 0V 21 + z2 > 1. It is easy to verify that
the distance between these two hyperplanes is roughlyrestiarger than in the first
case. Therefore, in the unit square, the disjunction obthihrough the heuristic method
dominates the one computed through the exact solution oftlthetest vector problem.
Figure 4 gives a picture of this.

AN
Y. X+%<0
N SVUX x> 1
N

N
N N\
N N\
N N
N\

N 99X, + 98X, < 65
N \/ 99, + 98X, > 66

Figure 4. Representation of the disjunctions discussed in Example 6.1

It is clear from Example 6.1 why disjunctions with small di@énts are likely to
perform better. It is intuitive to think that, at least in theit hypercube, the coefficients
of “good” disjunctions will be small. However, this is noug in general. We formalize
our statament.

For a polyhedronP, we say that the split disjunctio® (7!, 7}) dominates
D(r?,md)if PN {71'1Tm <m}cCPn {7r2Tx < mg}andP N {7r1Ta: > b+ 1} C
Pﬂ{ﬂ'QTx > m2+1}, with at least one of the two inclusions being strict. The dwting
disjunction is obviously to be preferred to the dominated fam branching, as it induces
the same partition of the feasible integer points, whileagating smaller feasible regions
for the two children. Thus, we are interested in finding nomahated disjunctions only.
Do the coefficients of non-dominated disjunctions have e€hcharacterization, so that
we can restrict our search to disjunctions with small nornmPottunately, the answer
is negative in general. Even by restricting our attentiofi/fiopolytopes, no polynomial
bound (in the dimension) can be given on the size of the coefficients of non-dominated
disjunctions.

Proposition 6.2. The size of the coefficients of non-dominated disjunctian®f1 poly-
topes of dimension cannot be polynomially bounded in

Proof. It is known [29] that the largest integer coefficient in thedadescription of a
full-dimensional 0/1 polytope can be exponentiahinLeta = > b be the hyperplane,
which we can assume to have all integer coefficients, deagruch a facet with a large
coefficient. Consider the polytope definedBy= {z € [0,1]"|a"x > b,a’ < b+0.5}.
The disjunctionD(x, mg) with @ = a, 7y = b is non-dominated, and in fact gives the
convex hull of the integer points in one branching step. Hargts largest coefficient
has size exponential im. O

Therefore, even though in low dimension non-dominatedudigjons have small
integer coefficients, in general there is no hope of findingca oharacterization of their
coefficients. The method described in Section 5 tries to ggaelisjunctions with small
coefficients heuristically, following the intuition of Exgle 6.1.

7. Computational experiments

The ideas proposed in [14,19] were tested in a Branch-anth@dramework imple-
mented on top of Cplex [18]. The test set consists of all imsta inM PLI B2. 0,
M PLI B3 andM PLI B2003, excluding those that can be solved in less than 50 nodes
by branching on simple disjunctions, and those for whicls l®n 50 nodes can be
processed in an hour. Also removed were the instances withizeegrality gap, which
leaves 84 instances.

We report tests with three branching algorithms:

e Branching on single variables (Simple Disjunctions, SD);

e Branching on the disjunctions defining the GMI cuts at theémakLP basis (GMI
Disjunctions, GD);

e Branching on the disjunctions defining the GMI cuts aftergtiengthening pro-
cedure described in Section 5 (Improved GMI Disjunctio@&D).

In order to evaluate the effect of branching on split disfiores, we focus primarily
on the integrality gap closed by branching. An additiongbamant factor is the number
of infeasible children which are created by branching: ict,fi& one of the two sides
of the branching disjunction is infeasible, the number adewin the enumeration tree

does not grow. This can be seen as adding a cutting planeh@deasible side of the
disjunction) to the current node. In case such a disjunctialiscovered, it is always
preferred to the ones that create two children. Note thattifi Isides of the disjunction
are infeasible, the node is infeasible.

7.1. Branching for Eight Levels

In this experiment, we branch at the top eight levels of thenBh-and-Bound tree, and
compare the resulting gap closed. At each node, for the S@ridigh we consider all
fractional integer variables for branching, whereas for @®consider all simple GMI
disjunctions. Note that the number of candidate branchbijgats is the same for both
SD and GD. We sety = 5/6 in (11) as suggested by [2], trying to increase the LP
bound in both children nodes. In this experiment, GD perfotmatter, mainly due to
the larger gap closed by branching on split disjunctions.oldserve an interesting sec-
ondary effect: branching on GMI disjunctions tends to pmore infeasible children,
which additionally decreases the amount of enumeratiorréd@rd this phenomenon by
counting the number of active nodes at the ninth level.

Table 1 contains a summary of the results. We report aver@ges;, and the number
of times that one method is better than the other accorditizgtcomparison criterion.

Percentage gap closed
average (# better)
Simple disjunctions (SD): 32.1% (20)
GMI disjunctions (GD): 41.7% (48)

Active nodes at level 9
average (# better)
Simple disjunctions (SD): 114.6 (16)
GMI disjunctions (GD): 66.7 (53)

Gap closed and active nodes together

better
Simple disjunctions (SD): 6
GMI disjunctions (GD): 45

Table 1. Comparison of SD and GD after eight levels of branching. Bnaawed-Bound.

In terms of amount of gap closed, SD dominates in 20 cases,nGIB icases out
of 84. The average gap closed by SD and GD is 32.1% and 41.&¢ectvely. The
difference in the average gap closed is 9.6%. It is staéiyisignificantly larger than
zero with 99% confidence, according to a one-sided pairesttip-value=0.0021). These
results support our observation that GD closes more gap.

A graphical representation of the gap closed by SD and GDawslin Figure 5.A.
In the figure, dots correspond to test instances. The gapdlog SD is shown on the
abscissa while that closed by GD is shown on the ordinatedidgonal line represents

100
|
°
°
°
°
°
o
250
|
%o

60 80
|
o
o
100 150
| |

20
1
o
o

Gap Closed - Disjunctive Branching
o
o
o
Nodes - Disjunctive Branching
50
1
o
@®

0 20 40 60 80 100 0 50 100 150 200 250

Gap Closed - Variable Branching Nodes - Variable Branching

Figure 5. A. Gap closed (in percentage) after eight levels of brargeh®D vs. SD. B. Number of active nodes
after eight levels of branching: GD vs. SD. Every data papresents a test instance.

equality in the gap closed by both methods. We observe thst points lie in the upper-
left triangle, corresponding to “GD outperforms SD.” Fuatimore, most of the points
that lie in the lower-right triangle are close to the diagdime — there are few cases in
which SD outperforms GD significantly.

It is interesting to observe that GD typically produces allsnaumber of active
nodes at the ninth level. On this criterion, SD performsdyett 16 cases while GD does
so in 53 cases. Out of the maximum possible 256 nodes at level 8D generates 113
while GD generates 65, on average. A statistical t-testtejine null hypothesis “GD
produces at least as many active nodes at level nine as SD¥.8¥%9level of confi-
dence (p-value=1.30e-6). This indicates that the numbactfe nodes created by GD
is significantly smaller.

The difference in the performance is best seen graphidalllfigure 5.B, we plot
the number of active nodes at level nine produced by GD vs$pifealuced by SD. Not
only do most of the points lie below the equality line but marfythem reside in the
bottom-right corner, corresponding to a significant défere in the number of nodes.
On the other hand, out of the 16 instances for which SD outpa$ GD, only eight lie
visibly far from the equality line.

The effect of a smaller number of active nodes is importartthyoitself but in
combination with improvement in the gap. Combining botheria, we count the cases
in which an algorithm strictly dominates in one of the ciiteeand performs at least as
well in the other criterion. SD is better than GD in only 6 casehile GD outperforms
SD in 45 cases out of 84.

The reason for the smaller number of active nodes is that G&h@enerates dis-
junctions that produce only one feasible child. For som&amses, this happens at most
nodes of the branching tree, resulting in only a few nodesvat hine. Although SD gen-
erates many infeasible children, GD generates even mometsues, this is combined
with an impressive improvement of the gap closed over SD.

e <m T iy > m+1
—— —
2 SRy
2
r
1
P

Figure 6. Disjunction with only one feasible child.

The combination of a larger improvement in the gap and a emalimber of ac-
tive nodes is a very desirable effect and it deserves moegataih. Branching on a dis-
junction that generates only one feasible child is equivaie adding a single cut to the
formulation. One may argue that this cut would be added byadir-and-cut algorithm
anyway. This is true in some cases but in others the dispmdtiequality is stronger
than the corresponding GMI cut. Figure 6 is an example. Theeneration procedure
considers the polyhedral cone pointed:zatelaxing some of the constraints definiRgy
and generates the intersection @tz < S,. But it cannot detect the fact that one of
the feasible sets of the children is empty. (HePen) {z € R" : 772 < 70}.) When
branching onD (7, 7o), we essentially add the cat = > 7, + 1, which is stronger than
Bz < fo.

Consequently, branching on a split disjunction that gemeranly one child can
be viewed as strengthening the underlying intersectionTdutis, branching on a split
disjunction cannot be substituted by adding the corresipgridtersection cut even when
one of the disjunctive sets is empty. When both disjunctite ae non-empty, branching
on a split disjunction can still close more gap than the gpoading cut, as we showed
in Section 3.

We do not consider branching on split disjunctions a sulistifor cutting planes.
The procedure comes into play when Branch-and-Cut decalsgatt branching. It is
important to note that the observed good effects of bragchmsplit disjunctions are
not neutralized by adding cuts. We repeat the above expetimea Cut-and-Branch
framework where we add ten rounds of GMI cuts, MIR cuts, arapkack cover cuts. As
expected, aggressive cut generation closes a significaniratrof gap (63% on average),
leaving less work for the branching phase. As a result, theuaof gap closed by
branching on the top eight levels is smaller and the diffeedvetween the two methods

is smaller. Nevertheless, the mutual relation in perforceds preserved, as seen in Table
2.

Percentage gap closed
average (# better)
Simple disjunctions (SD): 5.6% (11)
GMI disjunctions (GD): 7.4% (52)

Active nodes at level 9
average (# better)
Simple disjunctions (SD): 107.6 (23)
GMI disjunctions (GD): 81.6 (44)

Gap closed and active nodes together

better
Simple disjunctions (SD): 6
GMI disjunctions (GD): 39

Table 2. Comparison of SD and GD after eight levels of branching. Gui-aranch.

7.2. Effect of the Disjunction Strengthening Procedure

In this section we want to evaluate the impact of the disjondmprovement procedure
on the branching phase. We have already seen that GD is algaerform SD in several
respects. We want to see if the same holds true for IGD. Toergive design a similar
experiment: we branch for 1000 nodes, and compare the aliigggap closed by each
method (or the number of nodes, for instances solved to afitymin less than 1000
nodes). In this experiment, generating fewer feasible sagglelearly an advantage, as
it allows to progress further in the tree. Note that IGD calydre applied on mixed-
integer instances, because the disjunction strengthg@mawpdure requires the presence
of continuous variable. Thus, for this experiment the testensists of the 57 instances
with more than one continuous variable only.

Since we are focusing on closing more integrality gap, is #iperiment we set
~ = 1in(11). Besides, to speed up the computations, we do noy apping branching to
all possible branching disjunctions, but only to the 10 nppetnising ones. This setting
is meant to mimick more closely what is done in commerciatveafe, since strong
branching can be very expensive. This allows us to bettduateathe computational
overhead introduced by branching on split disjunction® st promising disjunctions
are chosen as the 10 variables with larges fractional Varidbr SD), or as the split
disjunctions with largest distance cut off by the correspiog intersection cut (for GD
and IGD).

For IGD, after some preliminary testing, we decided to &g, | = 50, i.e. we
combine at most 50 rows during the disjunction streanghtephase.

Table 3 shows that the increase in the gap closed per nodeabghing on GMI
disjunctions is large compared to branching on single fsée&@ Besides, the IGD method

Number of solved instances

Simple disjunctions (SD): 15
GMI disjunctions (GD): 20
Improved GMI disjunctions (IGD): 20

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 125.6
GMI disjunctions (GD): 98.1
Improved GMI disjunctions (IGD): 75.3

Average CPU time [sec]
on instances solved by all methods

Simple disjunctions (SD): 2.53
GMI disjunctions (GD): 5.23
Improved GMI disjunctions (IGD): 4.79

Average gap closed
on instances not solved by any method
Simple disjunctions (SD): 9.02%
GMI disjunctions (GD): 12.99%
Improved GMI disjunctions (IGD): 13.30%

Number of instances with largest closed gap
(at least as much as the other methods)

Simple disjunctions (SD): 34
GMI disjunctions (GD): 33
Improved GMI disjunctions (IGD): 36

Table 3. Results on mixed-integer instances after 1000 solved nodes

seems to be on average superior in all respects to the tworo#tbods, as it closes more
gap for the unsolved instances under 1000 nodes, and redgg®nodes for the solved
instances. This is also evident if we compare the numberstdintes where each method
closes at least the same absolute gap as the other two metlBG@sanks first with 36
instances over 57.

On the instances solved by all methods, SD is roughly twidastsas GD and IGD.
Moreover, if we consider only the instances not solved by raeyhod (i.e. all branch-
ing algorithms solve 1000 nodes without reaching optimplite obtain the following
average times:

e SD: 32.59 seconds;
e GD: 150.61 seconds;
e |IGD: 176.78 seconds.

This suggests that branching on split disjunctions intoedua significant computational

overhead at each node with respect to branching on simglendi®ns. The average
time spent per node by the three methods, recorded as theetrgommean of the average
time spent per node over all the instances, is as follows:

e SD: 0.02 seconds;
e GD: 0.08 seconds;
e |IGD: 0.10 seconds.

Therefore, the most evident drawback of branching on spdjudctions is that it is
slower than using simple disjunctions. It is slower in saleespects: the first reason is
that the computations at each node take longer. This is beaae have to compute the
distance cut off by the GMI cut associated with each row ofsih@plex tableau, and the
reduction step proposed in Section 5 involves the solutfeena\/|z, | x Mg, linear
system for each row which is improved, where we chbgg, | = 50. All these compu-
tations are carried out several times, thus the overheadqukr with respect to branch-
ing on simple disjunctions is significant. Additionally,rggating the GMI disjunctions
requires the computation of the optimal simplex tableauckvis not necessary (and is
typically not carried out) when branching on single varégshiThe second reason is that,
by branching on GMI disjunctions, we add one (or more) rowshe formulation of
children nodes, which may result in a slowdown of the LP soituprocess. On the other
hand, branching on simple disjunctions involves only a geaim the bounds of some
variables, thus the size of the LP does not increase.

In summary, computational experience with branching oit digjunctions shows
that the size of the enumeration tree can be reduced by a fafctowo or more on av-
erage. This is not quite sufficient to compensate for theem®ed computing time per
node. A possibility for overcoming this drawback is to con#gbranching on single vari-
ables and on split disjunctions, using the latter disjurddionly when the gap closed is
significantly greater.

References

[1] K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, addW. Smeltink. Market split and basis
reduction: Towards a solution of the Cornuéjols-Dawang&imcesINFORMS Journal on Computing
12(3):192-202, 2000.

[2] T. Achterberg, T. Koch, and A. Martin. Branching rulesvigited. Operations Research Letters
33(1):42-54, 2005.

[3] M. Ajtai. The shortest vector problem i is NP-hard for randomized reductions. Pnoceedings of
the 30th Annual ACM Symposium on Theory of Compubadjas, TX, 1998.

[4] K. Andersen, G. Cornuéjols, and Y. Li. Reduce-and-sglits: Improving the performance of mixed
integer Gomory cutsManagement Sciencg1(11):1720-1732, 2005.

[5] K. Andersen, G. Cornuéjols, and Y. Li. Split closure antkrsection cutsMathematical Programming
A, 102(3):457-493, 2005.

[6] D. Applegate, R. E. Bixby, V. Chvatal, and W. Cook. Fingiouts in the TSP. Technical Report 95-05,
DIMACS, 1995.

[7] E.Balas. Intersection cuts - a new type of cutting plaioemteger programmingOperations Research
19(1):19-39, 1971.

[8] E. Balas. Disjunctive programmindinnals of Discrete MathematicS:3-51, 1979.

[9] E.Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 prograngnhiy lift-and-project in a branch-and-cut
framework.Management Sciencé?2(9):1229-1246, 1996.

[10] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomaitg cevisited.Operations Research Letters
19(1):1-9, 1996.

(11]

[12]

(13]

(14]

(15]

[16]
(17]

(18]
(19]

(20]
[21]
[22]
(23]
(24]
(25]
(26]
(27]
(28]

[29]

E. Balas and M. Perregaard. A precise corresponderteeba lift-and-project cuts, simple disjunctive
cuts, and mixed integer gomory cuts for 0-1 programmikigithematical Programming4(2-3):221—
245, 2003.

W. Cook, R. Kannan, and A. Schrijver. Chvatal closuresrhixed integer programming problems.
Mathematical Programming}7:155-174, 1990.

G. Cornuéjols and M. Dawande. A class of hard small O-gmms. In R. E. Bixby and E. A. Boyd,
editors,Proceedings of the 6th IPCO Conferengelume 1412 otLecture Notes in Computer Science
pages 284-293. Springer-Verlag, Berlin, 1998.

G. Cornuéjols, L. Liberti, and G. Nannicini. Improvedategies for branching on general disjunctions.
Mathematical Programming /A009. Published online.

G. Cornuéjols and G. Nannicini. Reduce-and-splitsied: efficient generation of split cuts for mixed-
integer linear programs. Technical report, Tepper SchoBlsiness, Carnegie Mellon University, April
2010.

R. E. Gomory. An algorithm for the mixed-integer problenechinical Report RM-2597, RAND Cor-
poration, 1960.

M. Grotschel, L. Lovasz, and A. Schrijver. Progress ambinatorial optimization. InGeometric
methods in Combinatorial Optimizatippages 167-183. Academic Press, Toronto, 1984.

ILOG. ILOG CPLEX 8.0 User's ManualLOG S.A., Gentilly, France, 2002.

M. Karamanov and G. Cornuéjols. Branching on generglididions. Mathematical Programming A
2009. Published online.

B. Krishnamoorthy and G. Pataki. Column basis reductiwh@composable knapsack problemss-
crete Optimization6(3):242-270, 2009.

A. H. Land and A. G. Doig. An automatic method of solvingaite programming problem&cono-
metrica 28(3):497-520, 1960.

A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz. Factgripolynomials with rational coefficients.
Mathematische Annaled(261):515-534, 1982.

H. W. Lenstra Jr. Integer programming with a fixed numberafiables. Mathematics of Operations
Research8(4):538-548, 1983.

L. Lovasz and H. E. Scarf. The generalized basis redoctigorithm. Mathematics of Operations
Researchl17(3):751-764, 1992.

A. Mahajan and T. K. Ralphs. Experiments with Branchisgg General Disjunctions. IRroceedings
of the Eleventh INFORMS Computing Society Meetrages 101-118, 2009.

A. Mahajan and T. K. Ralphs. On the Complexity of Selegtidisjunctions in Integer Programming.
SIAM Journal on Optimizatigr20(5):2181-2198, 2010.

S. Mehrotra and Z. Li. On generalized branching methaditxed integer programming. Technical
report, Northwestern University, Evanston, lllinois, 200

J. Owen and S. Mehrotra. Experimental results on usimgige disjunctions in branch-and-bound for
general-integer linear prograr@omputational Optimization and Applicatiqriz0:159-170, 2001.

G. M. Ziegler. Lectures on 0/1-polytopes. In G. Kalada®. M. Ziegler, editorsPolytopes — Combina-
torics and Computatiorvolume 29 o DMV Seminarspages 1-42. Birkhduser Basel, 2000.

