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Abstract
In this paper we give a polynomial time recognition algorithm for balanced 0,+1
matrices. This algorithm is based on a decomposition theorem proved in a companion
paper.
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1 Introduction

A 0,41 matrix is balanced if, in every square submatrix with two nonzero entries per row and
column, the sum of the entries is a multiple of four. In [3], Conforti, Cornuéjols and Rao prove
a decomposition theorem for balanced 0,1 matrices and they use it to obtain a polynomial
time recognition algorithm for these matrices. In this paper, using a similar approach, we give
a polynomial time recognition algorithm for balanced 0,41 matrices, using a decomposition
result derived in the companion paper [1]. For a survey of results on balanced matrices, see
[2].

A convenient setting for working with balanced 0,+1 matrices is to consider their signed
bipartite graph representations. A signed graph G is a graph together with an assignment of
+1 or —1 weights to the edges. Given a 0, £1 matrix A, the signed bipartite graph represen-
tation of A is a signed bipartite graph G, with the two sides of the bipartition V" and V¢
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representing respectively the rows and columns of A, and for each nonzero entry a;; of A,
there is an edge between nodes : € V" and j € V° with weight a;;.

A signed bipartite graph G is balanced if it is the signed bipartite graph representation
of a balanced 0,+£1 matrix. Thus a signed bipartite graph G is balanced if and only if for
every hole H of (G, the sum of the weights of the edges of H is a multiple of 4. A hole in a
bipartite graph is a chordless cycle. A hole is balanced if it is of weight 0 modulo 4, and it is
unbalanced if it is of weight 2 modulo 4. A graph G contains a graph H, if H is an induced
subgraph of G. So, a signed bipartite graph is balanced if and only if it does not contain an
unbalanced hole.

In this paper we construct a recognition algorithm that takes as input a signed bipartite
graph G, and outputs YES if GG is balanced, and NO otherwise. The algorithm runs in time
polynomial in the size of V" and V°. This algorithm can be used to obtain a polynomial time
algorithm for finding an unbalanced hole in a graph that contains one, in the following way.

If Recognition(G)=YES, return "¢ is balanced”.
Else set H = G.

While there exists some node v in H such that Recognition(H \ {v}) =NO, set H =

Return ”H is an unbalanced hole of G”.

As mentioned above, the recognition algorithm is based on a decomposition theorem,
which we state in Section 1.1. The organization of the paper is described in Section 1.2.

1.1 Decomposition Theorem

A set S of nodes (respectively edges) of a connected graph G is a node cutset (respectively
an edge cutset) if the subgraph G'\ 5, obtained from G by removing the nodes (respectively
edges) in 5, is disconnected.

A biclique is a complete bipartite graph K45 where the two sides of the bipartition A
and B are both nonempty.

Extended Star Cutset

For a node z, let N(z) denote the set of all neighbors of . In a bipartite graph G, an
extended star (z; X;Y; R) consists of disjoint subsets X, Y, R of V(G') and a node z € X such
that

(i) YURC N(z),

(ii) the node set X UY induces a biclique (with node set X on one side of the bipartition
and node set Y on the other),

(iii) if |X| > 2, then |V > 2.



In a connected bipartite graph, an extended star cutset is an extended star (z; X;Y; R)
where X UY U R is a node cutset. When R = () the extended star is a biclique, and the cutset
is called a biclique cutset. When |X| = 1 then the extended star cutset is also called a star
cutset.

2-Join

Let G be a connected bipartite graph with more than four nodes, containing bicliques
K 4,4, and Kp, B,, where Ay, Ay, By, By are disjoint nonempty node sets. The edge set
E(K4,4,)UE(KB,B,)is a 2-join if it satisfies the following properties:

(i) The graph G' = G\ (F(K 4,4,)U E(KB,B,)) is disconnected.

(i) Every connected component of G’ has a nonempty intersection with exactly two of the
sets Ay, A9, By, By and these two sets are either A; and By or A; and B,. For
i = 1,2, let G’ be the subgraph of G’ containing all its connected components that have
nonempty intersection with A; and B;.

(iii) If |A4| = |By| = 1, then G} is not a chordless path or Ay U By induces a biclique. If
|Az| = |Bz| = 1, then GY is not a chordless path or A; U By induces a biclique.

The purpose of Property (iii) is to exclude "improper” 2-joins.
6-Join

In a connected bipartite graph G, let A;, ¢ = 1,...,6 be disjoint, nonempty node sets
such that, for each ¢, every node in A; is adjacent to every node in A;_1 U A;4; (indices are
taken modulo 6), and these are the only edges in the subgraph A induced by the node set
US_, A;. (Note that, for convenience of notation, the modulo 6 function is assumed to return
values between 1 and 6, instead of the usual 0 to 5). The edge set F(A)is a 6-join if

(i) The graph G' = G'\ F(A) is disconnected.

(i) The nodes of GG can be partitioned into Vj and V3 so that AyUA3UAs C Vi, AUA4UAg C
V, and the only adjacencies between the nodes of V; and V; are the edges of E(A).

(iil) |Vi| > 4 fori=1,2.

When the graph GG comprises more than one connected component, we say that GG has a
2-join, a 6-join or an extended star cutset if at least one of its connected components does.

Basic Classes of Graphs

A signed bipartite graph is strongly balanced if it is balanced and contains no cycle with
exactly one chord. The recognition problem for this class of graphs is polynomial (Conforti
and Rao [5]). Ryg is the bipartite graph defined by the cycle z1,..., 210,21 of length 10 with
chords z;2;45, 1 < ¢ <5 (indices taken modulo 10). Ryo can be signed to be balanced, say
with weight +1 on the edges of the cycle z1,..., 210,21 and —1 on the chords.

In [1] we prove the following decomposition theorem.

Theorem 1.1 A signed bipartite graph that is balanced but not strongly balanced is either
Ryo with proper signing or it contains a 2-join, a 6-join or an extended star cutset.



1.2 Organization of the Paper

The general idea of our recognition algorithm for balanced signed bipartite graphs is as
follows. Let (¢ be a signed bipartite graph. If G is strongly balanced or the underlying graph
is Rig, then we are done. FElse, we search for one of the three cutsets described above. If
none exists, G is not balanced as a consequence of Theorem 1.1. If one exists, its removal
disconnects G into several connected components. From these components, we construct
blocks by adding some new nodes and edges with some signing. In other words, we decompose
G into these blocks. Ideally, the blocks should be constructed so that ' is balanced if and only
if all the blocks are. Let B stand for the class of signed bipartite graphs that are balanced.
We say that a decomposition is B-preserving if it satisfies the following: G belongs to B if
and only if all the blocks of the decomposition belong to B. The three decompositions are
then applied recursively to the blocks until no cutset can be found. We show that only a
polynomial number of such basic blocks are generated. For each, we check whether it is Rqq
or strongly balanced. G is balanced if and only if all basic blocks are balanced (assuming all
decompositions are B-preserving).

In Section 2, we show how to construct blocks that are B-preserving for the 2-join and
the 6-join decompositions. In Section 3, we deal with the node cutset decomposition. For the
extended star cutset, we are not able to construct blocks to be B-preserving. Instead, in our
recognition algorithm we first apply a certain cleaning procedure to the input graph G, which
transforms it into a graph G’ with the property that G’ is balanced if and only if G is and,
if G contains an unbalanced hole then G’ contains an unbalanced hole that will either never
be broken by extended star cutset decompositions or it will be detected while performing the
decomposition. To construct such a procedure we need to study signed bipartite graphs that
do contain unbalanced holes. In Section 3.2, we obtain certain properties of a smallest unbal-
anced hole which allow us to construct the cleaning procedure in Section 4.1. In Section 4,
we present the recognition algorithm for signed bipartite graphs that are balanced, and prove
its validity and polynomiality.

2 Edge Cutset Decompositions
Throughout the rest of the paper, we assume that G is a signed bipartite graph.

By scaling G at node u, we mean changing the sign of the weights on all the edges incident
with u.

Remark 2.1 Let G’ be a signed bipartite graph obtained from G by scaling at node u. A hole
is balanced in G' if and only if it is balanced in G.

Let u,v be two nonadjacent nodes of & in opposite sides of the bipartition. A 3-path
configuration connecting v and v, denoted by 3PC(u,v), is defined by three chordless paths
Py, P, and Ps with endnodes u and v, such that the node set V(P;) UV (P;), ¢,5 € {1,2,3},
t # j, induces a hole. Since paths Py, P, and P5 of a 3-path configuration are of length 1
or 3 modulo 4, the sum of the weights of the edges in each path is also 1 or 3 modulo 4. It
follows that two of the three paths induce a hole of weight 2 modulo 4. So a signed bipartite
graph that contains a 3-path configuration is not balanced.



A wheel, denoted by (H,z), is defined by a hole H and a node z ¢ V(H) which has at
least three neighbors in H, say @1,...,2,. The wheel (H,z) is even if n is even and it is odd
otherwise. An edge zx; is a spoke. A subpath of H connecting x; and z; is called a sector
if it contains no intermediate node z;, 1 <! < n. Consider a wheel (H, ) which is signed
to be balanced. By Remark 2.1, we can assume that all spokes of the wheel are signed +1.
This implies that the sum of the weights of the edges in each sector is 2 modulo 4. Hence if
(H,z)is an odd wheel, the hole H has weight 2 modulo 4. So a signed bipartite graph that
contains an odd wheel is not balanced.

2.1 2-Join Decomposition

A 2-join E(K 4,4,)UE(KpB,B,)is rigidif A1 UBy or Ay U B; induces a biclique. The following
easy result was proved in [3].

Lemma 2.2 Let G be a bipartite graph that has no extended star cutset. Then G has no
rigid 2-join.

Let K4,4, and Kp,p, define a 2-join of GG that is not rigid. The blocks G and G
of the 2-join decomposition are defined as follows. For i = 1,2, let G be the subgraph of
G\ (E(K4,4,) U E(Kp,B,)) containing all its connected components that have nonempty
intersection with A; and B;. To obtain G;, we first add to G% a node «;, adjacent to all the
nodes in A; and to no other node of G and a node f;, adjacent to all the nodes in B; and
to no other node of G!. Let )1 be a path in G, with smallest number of edges connecting
a node in Ay to a node in By, and let @5 be a path in G with smallest number of edges
connecting a node in A to a node in By. Note that the existence of @)1, ¢J5 is guaranteed by
(ii) in the definition of 2-joins. For i = 1,2, add to G; a marker path M; connecting «; and
B; with length 4 < |E(M;)| <5 and edge weights +1 or —1 chosen so that the weight of M,
is congruent to the weight of ¢); modulo 4.

Theorem 2.3 Let G and G5 be the blocks of the decomposition of the signed bipartite graph
G by a 2-join E(K 4,4,) U E(Kp,B,) that is not rigid. If G does not contain an unbalanced
hole of length 4, then G is balanced if and only if both G and G4 are balanced.

The following lemma is used in the proof of Theorem 2.3.

Lemma 2.4 Let GG be a signed bipartite graph with no unbalanced hole of length four. For
every biclique Kpp in G, we can scale G on the nodes in BUD so that every edge in E(Kpp)
has weight +1.

Proof: If |B| = 1 then we can scale on nodes in D to obtain the result. Similarily, for
|D| = 1.

We can assume |B| > 2 and |D| > 2. Let b € B and d € D. Scale at nodes d’ € D so
that all edges bd’ have weight +1. Scale at nodes o’ € B so that all edges b’'d have weight +1.
Every d' € D\ {d} and &’ € B\ {b} induce a hole b,d,b',d’, b of length four. By assumption
this hole is balanced. Hence b'd’ must have weight +1. O



Remark 2.5 Let G' be a signed bipartite graph with no unbalanced hole of length 4. By
Lemma 2./ there exists a signed graph G', which is obtained from G by a sequence of scalings,
such that all the edges in E(K 4, 4,)U E(Kp,B,) have weight +1, since K 4,4, and Kp,p, are
node disjoint.

Proof of Theorem 2.3: By Remark 2.5 we can assume that all the edges in (K 4,4,) and
E(KpB,B,) have weight 4+1. First we show that G4 and Go are balanced if ¢ is balanced.
Every hole H in (1 corresponds to a hole H' in (7, except for the case where H contains
nodes oy and f; and no other nodes of My, and A; U B5 is a biclique in G. The existence of
such a biclique would contradict our assumption that E(K 4,4,)UE(Kp,p,)is a 2-join that is
not rigid. The hole ' has the same weight as H, since all the edges of E(K 4,4,)UE(KpB,B,)
are signed positive. Thus 1 is balanced if GG is balanced. Similarly for G.

Now assume that Gy and (G5 are balanced, but G is not. Let H be an unbalanced hole
of G. If it contains no edge of GY, there exists a hole in /4 which is unbalanced. The same
argument holds for Gj. So H must contain both an edge of G} and an edge of GY. Hence
H must contain an edge of E(K 4,4,) U E(Kp,B,), say an edge ajay where a; € Ay and
ay € Az. Since H is a hole it cannot contain any node of K4, 4, \ {a1,a2}. So H must
also contain an edge b1by where by € By and by € By, and similarly H cannot contain any
node of Kg g, \ {b1,b2}. So H = ay,az, P2,b2,by, Pi,a; where P, is a path in G from ay
to by having no intermediate nodes in Ay U By, and Pj is a path in G from b; to a; having
no intermediate nodes in Ay U By. Since the hole ay, ay, My, 81, b1, P1, aq is balanced in Gy,
w(Py) and w(My) are not congruent modulo 4. But by definition of a block, there exists a
path @ in GY from af € Ay to b, € By, such that w(Q)3) is congruent to w(M;) modulo 4.
The holes Hy = afy, Q2,b5, B2, Mo, g, dly and Hy = ag, Py, by, B2, Mo, a9, as in G have distinet
weights modulo 4. Hence one of them must be unbalanced, contradicting our assumption. O

2.2 6-Join Decomposition

Let G be a signed bipartite graph that has a 6-join E(A). Blocks G; and G5 of a 6-join
decomposition are constructed as follows. For ¢ = 1,...,6 let a; be any node of 4;. G is a
subgraph of G induced by the node set V; U {aq, a4, a6} and G2 is a subgraph of G induced
by the node set V5 U {ay, a3, as}.

Theorem 2.6 Let Gy and G5 be the blocks of the decomposition of the signed bipartite graph
G by a 6-join E(A). If G does not contain an unbalanced hole of length 4 or 6, then G is
balanced if and only if both G and G4 are balanced.

We first prove the following lemma.

Lemma 2.7 If A does not contain an unbalanced hole of length 4 or 6, then there exists a
signing of G which is obtained by a sequence of scalings on the nodes of A, such that for every
biclique K, 4,,,,7 € {1,...,6} (where indices are taken modulo 6) the edges in the biclique
are all signed +1 or they are all signed -1.

Proof: By Lemma 2.4 we can sign all the edges in F(K 4,4, ), F(K4,4,) and E(K 4, 4,) to
be +1. W.lo.g. let E(K 4,4,) contain an edge signed +1 and another signed -1. Now there



exist in A two holes of length 6 which differ in weight by 2. Clearly one of these must be
unbalanced contradicting our assumption that A contains no unbalanced hole of length 6. O

Proof of Theorem 2.6: Tt follows from the definition of the blocks that G and G5 are
induced subgraphs of G' and so are balanced if (7 is balanced.

To prove the converse assume that G and G5 are balanced, but GG contains an unbalanced
hole H. By Lemma 2.7 we may assume that for every biclique K4, 4,,,,7 € {1,...,6}, the
edges of the biclique are all signed 41 or they are all signed —1. So H must contain an edge
with both ends in V5, since otherwise there exists a hole in 7 which is unbalanced. Similarly
H must also contain an edge with both ends in V;. Since H is a hole it must have exactly
4 nodes in common with V(A). Then w.lo.g. H = df, Py,af,d, Py,d},a] where af € Ay,
al € Ag, alf € Ay, al € As, Py is a path with nodes in V; that connects af to aZ, and P, is
a path with nodes in V3 that connects af to aj. The hole Hy = af, P1, a¥, as,ay is a hole of
G and Hy = dYf, Py, dY,as,ady is a hole of G3. Since GG1 and G5 are balanced, both Hy and
H; are balanced. Also H' = af,d}),as3,alf,a?, ag,ay is a hole of G (A in particular) and by
the construction of blocks the edges afag and agay (resp. ajas and ajjas) are signed in G the
same as the corresponding edges afag and agaf (resp. afas and ajjas) are signed in G (resp.
Gg). Sow(H') = (w(H)+ w(Hy)+ w(H;)) mod4. Since H is unbalanced and H; and Ho
are balanced, this implies that w(H’) = 2 mod 4, and hence H' is an unbalanced hole of A,
contradicting the assumption that (G does not contain an unbalanced hole of length 6. O

3 Node Cutset Decompositions

Let S be a node cutset in a signed bipartite graph G, and let C4,...,Ck be the connected
components of G\ S. We define the blocks of decomposition to be signed bipartite graphs
G1,...,Gy, where each G is a subgraph of ¢ induced by the node set V(C;)U S.

With this definition of blocks, the decomposition by an extended star cutset is not B-
preserving. For example, consider an odd wheel (H,z) in which all the spokes have weight
+1, and the sectors are of weight 2 modulo 4. Then the wheel is not balanced, since H
is an unbalanced hole, but all the blocks of decomposition by a star cutset N(z)U {z} are
balanced.

In the next section we define a notion of a clean unbalanced hole and show that either
some such hole is not broken by the node cutset decompositions we use in the recognition
algorithm, or an unbalanced hole is detected while performing the decomposition.

To ensure that we end up with a polynomial number of blocks, instead of using extended
strar cutset decompositions, we use the removal of dominated nodes together with double
star cutset decompositions. A node u is said to be dominated if there exists a node v, distinct
from w, such that N(u) C N(v). A graph is said to be undominated if it does not contain
any dominated nodes. A double star cutsetin a graph G is a node cutset S = N(u)U N(v),
where uv is an edge of (4.

Lemma 3.1 [3] If a bipartite graph contains an extended star cutset, then it contains a
dominated node or a double star cutset.



3.1 Decompositions in Clean Graphs

Definition 3.2 A node u is strongly adjacent to a hole H in the graph G, if u is not a
node of H and it has at least two neighbors in H. It is odd-strongly adjacent if it has an
odd number of neighbors in H and il is even-strongly adjacent if it has an even number of
neighbors in H.

Definition 3.3 A tent 7(H,u,v) is a subgraph of G' induced by node set V(H )U{u, v}, where
H is a hole of G and v € V" and v € V© are adjacent nodes which are even-strongly adjacent
to H with the following property: the nodes of H can be partitioned into two subpaths P, and
P, containing the nodes in N(u)N H and N(v)NH respectively. A tent 7(H,u,v) is referred
to as a tent containing H .

Definition 3.4 A hole H is said to be clean in G if the following three conditions hold:
(i) No node is odd-strongly adjacent to H.

(ii) Every even-strongly adjacent node to H has exactly two neighbors in H and these two
neighbors are at distance two in H.

(iii) There is no tent containing H.

Definition 3.5 Let G be a signed bipartite graph containing a hole H. Then Cq(H) =
{H; | H; is obtained from H by a sequence of holes H = Hy, Hy, ..., H;, where H; and H;_q,
for j =1,2,....14, differ in one node }.

Lemma 3.6 Let G be a signed bipartite graph which contains no unbalanced holes of length
4. Let H be an unbalanced hole in G. If H' and H differ in at most one node, then H' is
unbalanced.

Proof: Let H' be obtained from H by replacing node u by node v. Let x and y be the
common neighbors of w and v in [ . Since GG contains no unbalanced of length four, the paths
x,u,y and z,v,y have the same weight modulo 4. Thus, H’ is unbalanced. O

An unbalanced hole H* of (G is smallest if its number of edges is smallest.

Lemma 3.7 If H* is a smallest unbalanced hole in G, then every even-strongly adjacent

node to H* has exactly two neighbors in H* and these two neighbors are at distance two in
H™.

Proof: Suppose u has an even number of neighbors, uy,ug,...,u9k, k£ > 21in H*. Let
Si, 1=1,2,...,2k be the sectors of (H*,u) having nodes u;, ;11 as endnodes (where indices
are taken modulo 2k).

By scaling of the graph at every node w; for which the edge wu; has weight —1, we can
obtain a graph in which all the spokes of (H*, u) have weight +1. Now since H* is unbalanced,
there is a sector, say .55, of weight 0 mod 4. Then the hole u, u;, S5, u;41, u is unbalanced and
has smaller length than H*. Hence if u is an even-strongly adjacent node in H* it must have
exactly two neighbors, say w1 and ug. W.l.o.g the edges uuy and uwuy have weight +1. Clearly
the two ujug-subpaths of H* say Py and P;, are such that one of them is of weight 0 mod 4



and the other is of weight 2 mod 4. Suppose P; is of weight 2 mod 4. Then P, must have
length two for otherwise w,uy, Pr,u2,u would be an unbalanced hole of smaller length than
H* . Hence uy and wuy are at distance 2 in H*. O

When referring to a tent 7(H*,u,v) we assume that H* is a smallest unbalanced hole.
By Lemma 3.7, « has two neighbors in H* say uy,uq, both adjacent to ug in H*. Similarly
the neighbors of v in H* are vy, vy, both adjacent to vy in H*. We assume that nodes
U1, Ug, Uz, V1, Vg, V2 are encountered in this order, when traversing H™.

Definition 3.8 A wheel with three spokes and at least two sectors of length 2 is said to be a
short 3-wheel.

Lemma 3.9 Let GG be a signed bipartite graph containing a smallest unbalanced hole H*, but
not containing a short 3-wheel and not containing an unbalanced hole of length 4. If H* is
clean in G, then every hole H} in Cq(H*) is clean in G.

Proof: 1t suffices to show that, if H{ is a hole that differs from H* in only one node, then
H7 is clean in G.

By Lemma 3.6, H{ is an unbalanced hole of smallest length. By Lemma 3.7, condition (ii)
of Definition 3.4 is satisfied. Hence, if the lemma is false, condition (i) or (iii) of Definition
3.4 is not satisfied. Therefore we consider the following two cases.

Case 1: Condition (i) of Definition 3.4 is not satisfied.

Now a node w must be odd-strongly adjacent to H{. Since no node is odd-strongly
adjacent to H*, it follows that w has three neighbors, say wy,wy, w3 in H;y. Two of these
neighbors, say wy and we must be in H* and, by Lemma 3.7, they have a common neighbor,
say wo in H*. Since ws is in H but not in H*, it follows that H{ is obtained from H* by
replacing some node u # wy, we in H* with ws. Let u; and uy be the neighbors of w in H*.
Note that ws is adjacent to uy and uy and u does not coincide with wy or ws. Hence uq and
uz do not coincide with wg. Now 7(H™, w3, w) is a tent, contradicting the assumption that
H* is clean in G.

Case 2: Condition (iii) of Definition 3.4 is not satisfied.

There must be a tent 7(H7, u,v). We first show the following claim:

Claim: At least one of the nodes uq, uy, v1, vy does not belong to the hole H*.

Proof of Claim: Assume not. Since u and v are not in H7, it follows that at most one
of them is in H*. If w is in H*, then wug is not in H* and v is odd-strongly adjacent to H*,
contradicting (i) of Definition 3.4. So u is not in H* and, by symmetry, node v is not in H*.

Let w # wuy,ug,v1,v2 be a node in H* but not in H;. Nodes w and u are not adjacent,
otherwise node u is odd-strongly adjacent to H™, contradicting the assumption that H* is
clean. By symmetry, it follows that nodes w and v are not adjacent. Now 7(H*, u,v) is a
tent, contradicting the assumption that H* is clean and the proof of the claim is complete.

By the above claim, one of the nodes uq, us,v1, v2 is not in H*. Assume w.l.o.g. that us
is not in H*. Clearly, node » is not in H*. Node v is not in H*, otherwise node vy is not in
H~, node uy coincides with vg and 7(Hy, u,v) is not a tent.



Thus the hole Hj is obtained from H* by replacing a node w with uy, where w is
adjacent to ug. Let ug in H™ be the other neighbor of u;. It follows that us is adja-
cent to w. Let ¢) denote the vjus-subpath of H* not containing wy. Consider the hole
C = u,v,m,Q,us,w,ug, u1,u. Now the wheel (C,u3) is a short 3-wheel, contradicting the
fact that G does not contain a short 3-wheel. O

Definition 3.10 A signed bipartite graph G is clean if either G is balanced or G contains a
smallest unbalanced hole H* such that all the holes in Cq(H™) are clean.

In the next section we show how to construct, from a signed bipartite graph G, a clean
graph (i’ that has the property that (i is balanced if and only if G’ is.

Lemma 3.11 Let G be a clean graph with family Co(H*) of clean smallest unbalanced holes.
Let u be a dominated node of G and let G' = G\{u}. Then some hole in Cq(H™*) is contained
in G'.

Proof: If w is not in H*, then H* belongs to G’. So assume that v € V(H*) and that it
is dominated by node v. Let uy and wuy be the neighbors of w in H*. Then v is adjacent to
1y and wug, and since H* is clean, these are the only neighbors of v in H*. The hole induced

by the node set (V(H*)\ {u})U {v} is in Co(H*) and is contained in G'. O

Definition 3.12 A 3PC(x,y), with the three paths Py, Py and Ps, is decomposition de-
tectable w.r.t. the double star cutset S = N(u)U N(v) if Py = x,u, v,y and the intermediate
nodes of Py and Ps are in different components of G\ 5.

Lemma 3.13 Let G be a clean graph with family Co(H*) of clean smallest unbalanced holes.
Furthermore assume that G does not contain an unbalanced hole of length 4. When decom-
posing G with a double star cutset S, then either some hole in Co(H*) is contained in one of
the blocks of the decomposition or there exists a decomposition detectable 3PC(z,y) w.r.t. S.

Proof: Let S = N(u)UN (v) be a double star cutset of G. Let 'y, ..., C} be the connected
components of G \ S and Gy,...,G be the corresponding blocks of decomposition. We
consider the following three cases.

Case 1: Both nodes u and v belong to H*.

Let uy (resp. v1) be the neighbor of u (resp. v) in H* that is distinct from v (resp. u).
The nodes of V(H*)\ {u,v,uq,v1} are in some connected component C; and hence H* is
contained in G;.

Case 2: Exactly one of the nodes v or v is in H*.

Assume w.l.o.g. that w is in H* and v is not. Let w; and us be the neighbors of w in
H~”. Note that, since H* is clean, v can have at most one neighbor distinct from » in H*.
First suppose that v does not have any neighbor other than « in H*. Then the node set
V(H*)\ {u, u1,uz} is contained in some connected component C; and hence G; contains H*.
Now suppose that v has a neighbor vy, distinct from u, in H*. Nodes »; and u must have
a common neighbor in H*, say u;. Then the node set V(H*)\ {v1,u, u1,uz} is contained in
some connected component C; and hence G; contains H™.
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Case 3: Neither v nor v is in H*.

Assume w.Lo.g. that |[N(u)NV(H*)| < |N(v)NV(H*)|. We consider the following three
subcases.

Case 3.1: N(u)NV(H*)=10
If IN(v)NV(H*)| = 0 or 1, then H* is contained in some block (/;. Suppose that
N(v)NV(H*) = {v1,v2}. Let vy be the common neighor of v; and vy in H*. The node set

V(H*)\{vo,v1,v2} is contained in some connected component C;. Let H be the hole obtained
from H* by replacing vy with v. Then H belongs to Cq(H*) and the block G; contains H.

Case 3.2: N(u)NV(H*) = {u}

Then |N(v) N V(H*)| = 1 or 2. First suppose that N(v)NV(H*) = {v1}. If uy and v
are adjacent in H*, then H* is contained in some block ;. Suppose that w; and vy are not
adjacent. Let P and @) be the two ujvi-subpaths of H*. The nodes of V(P)\ {uy,v1} are
contained in some connected component C; and the nodes in V(@) \ {u1,v1} are contained
in some connected component ;. If 7 = j then H* is contained in the block G;. If i # j
then the node set V(H*)U {u, v} induces a decomposition detectable 3PC(uy,v1) w.r.t. 5.

Now suppose that N(v)N V(H*) = {vy,v3}. Let vy be the common neighbor of v; and
vy in H*. If uy = vy then H* is contained in some block G;. So suppose that uy; # vg. Scale
at v; and vy to get the edges vvy and vwy to have weight +1. Since G does not contain an
unbalanced hole of length 4, the weight of the path vy, vg, v2 is congruent to 2 mod 4. Scale
at w and u; to get the edges uv and wuy to have weight +1. Let P be the ujvi-subpath of
H* that does not contain vy, and let () be the uqvg-subpath of H* that does not contain
v1. Then w(P) and w(Q)) are congruent to 1 or 3 mod 4. Since the weight of the path
v1, Vg, V2 is congruent to 2 mod 4, w(P) # w(Q) mod 4. If u; is not adjacent to vy or vg,
then either v, u,uy, P,vi,v or v, u,u1,, v, v is an unbalanced hole of length smaller than
H*. So suppose w.l.o.g. that u; is adjacent to v1. Then the nodes of V(H*)\ {uy,v1,v0,v2}
are contained in some connected component ;. Let H be the hole obtained from H* by
replacing vg with v. Then H belongs to Co(H*) and the block G; contains H.

Case 3.3: N(u)NV(H*) = {ug,uz}

Then N(v)NV(H*) = {v1,v3}. Let ug be the common neighbor of u; and uz in H* and
let vy be the common neighbor of v and vy in H*. Since there is no tent containing H* and
N(u)NV(H*) ={uy,uz} and N(v)NV(H*) = {v1,v2}, we have that ug is adjacent to v and
vg is adjacent to u. Therefore H* is contained in some block ;. O

3.2 Properties of Smallest Unbalanced Holes

Let H be a hole of G. By A,(H) (resp. A.(H )) we denote the set of all odd-strongly adjacent
nodes to fI which belong to V" (resp. V°).

Theorem 3.14 Let GG be a signed bipartite graph which does not contain an unbalanced hole
of length 4. Let H* be a smallest unbalanced hole of G. Then H* contains two edges x1x4
and y1y2 such that

(i) A, (H™) C N(x1)U N(y1)
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(ii) Ac(H*) C N(22)U N(y2)

(iii) for every tent T(H*, u,v), either u € N(xz1) U N(y1) or v € N(z2) U N(yz2).

This section is devoted to the proof of the above theorem. We assume that ¢ is a signed
bipartite graph that is not balanced but does not contain an unbalanced hole of length 4. We
denote by H* a smallest unbalanced hole of G.

Lemma 3.15 Ifu,v € A.(H™), then they have at least one common neighbor in H*. More-
over in any sector of (H*,v), node u has either an even number of neighbors, or exactly one
neighbor adjacent to v.

Proof: First we show that u cannot have an odd number, greater than one, of neighbors
in any one sector of (H*,v). Suppose not. Let u have an odd number of neighbors, greater
than one in sector S of (H*,v). Let H = v, Sk, v. Now (H,u) is an odd wheel, therefore this
wheel contains an unbalanced hole which must be of smaller length than H*. Hence u must
have either an even number or exactly one neighbor in any sector of (H*,v).

Next we show that if node u has exactly one neighbor in some sector then this node is
also adjacent to v. This in turn implies that at least one node in H* is a neighbor of both «
and v since node u has an odd number of neighbors in H*.

Suppose in sector S node u has a unique neighbor w; which is not a neighbor of ».
Let vp_1 and v; be the end nodes of 53, P; and Py be the vy_jup and viug-subpaths of Sy
repectively. Since u is strongly adjacent to H*, it has a neighbor in another sector, say 9;
having one endnode v; distinct from v,_; and vg. Let u; be the neighbor of u closest to v; in
sector 5. (Note that since u,v € V¢, then vi_q1, v, u; € V" and hence u; cannot be adjacent
to vg—1 or vg). Now there is a 3PC(ug,v) using paths Py, P» and nodes u; and v;. This
3-path configuration must contain an unbalanced hole which must be of smaller length than
H*, which contradicts our choice of H*. O

Lemma 3.16 FEvery three nodes in A.(H*) have a common neighbor in H*.

Proof: Let U = {uy,uz,us} C A.(H*). Note that by Lemma 3.15 every pair of nodes in
A.(H*) has a common neighbor in H*. Assume that there is no node of H* that is adjacent
to all three nodes of U.

Let Ay be the set of nodes of H* adjacent to w; and wuy. Ai3 and Ass are analogously
defined.

By our assumption Ayo N Az = 0. Consider the wheel (H*,uy) and the strongly adjacent
node uz. For any j,k € {1,2,3} with j # k, define A% = {v € Aj|in the two adjacent
sectors of (H*,u;) with the common node v, there are in total an odd number of neighbors
of uy}. (Note that this definition is not symmetric, i.e. A7y 1s not necessarily equal to AZ]‘)-
Now we prove two claims.

Claim 1: A7y contains an odd number of elements.

Proof of Claim 1: We prove that |A{;] is odd. Consider the wheel (H*, uy) and let
S1,...,5, be the sectors of this wheel, with 5; having endnodes s; and s;11 (where indices
are taken modulo n). For every ¢ = 1,...,n let z; denote the number of neighbors of us in
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sector ;. By Lemma 3.15 every sector of (H*,uy) either has an even number of neighbors
of us or exactly one neighbor, in which case the neighbor is in Ay3. This and the definition
of A{5 leads to the following properties:

(a) If s; € AY; then either ;1 = ; = 1, or both ;-1 and 2; are even.
(b) If s; € Ay3\ Aj5 then either ;1 = 1 and =, is even, or z;_1 is even and z; = 1.

(c) If s; and s;41 are not in Aq3 then z; is even.

Now we show that

Zwi = |Ay3\ A5 mod 2 (1)
=1

Clearly the parity of > i, x; is the parity of the number of sectors with an odd number
of neighbors of u3. We refer to these sectors as odd sectors. By Properties (a), (b) and (c), if
S; is an odd sector, then it has exactly one neighbor of ug (i.e. z; = 1), and either s; or s;41
is an element of A;3. Each element in A3 belongs to 0,1 or 2 odd sectors. Clearly the parity
of the number of odd sectors is equal to the parity of the number of elements in A3 which
belong to exactly one odd sector. By Properties (a) and (b), Ayz\ A5 is the set of elements
of Ay3 that belong to exactly one odd sector. Thus the parity of >~ #; is the same as the
parity of |Ays\ A5

In the summation )", 2;, every neighbor of us which is in Ay3 is counted twice, so the
total number of neighbors of uz on H* is

N () OV = i~ Ay )

Now by (1) and (2) we have

[N (uz) N V(H")| (|A13\ Afs| — |A13]) mod 2

= —|Afs] mod 2

Since ug is an odd-strongly adjacent node to H*, we have that | A{5| is odd. This completes
the proof of Claim 1.

Claim 2: Let v1,v; € V(H*)\ A1z be neighbors of uy and uy respectively. If P is a
vivg-subpath of H*, such that uy and uy have no neighbors in V(P)\ {v1,v2}, then us has
an even number of neighbors on P.

Proof of Claim 2: Suppose that us has an odd number of neighbors on P.

Assume first that uz has exactly one neighbor v3 on P.

W.lo.g vs # v1. By Lemma 3.15, any two nodes of A.(H*) have a common neighbor
on H*. Let v € V(H*) be a common neighbor of u; and uz, and let v13 € V(H*) be a
common neighbor of u; and uz. By our assumption Ay N Ay3 = 0, so v13 # v13. Now there
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is a 3PC(vs, u1) where nodes vy, v12, v13 belong to distinct paths of the 3-path configuration,
which must contain an unbalanced hole of length smaller than H*. This contradicts our
choice of H*.

Assume now that us has an odd number of neighbors, greater than one, on P.

Let v12 be defined as above. Now there is an odd wheel (C, u3), where C' = uy, vq, P, vg, ug, v12, u1.
Since uy is an odd-strongly adjacent node either the vyvi3-subpath of H* that does not con-
tain vy or the wovig-subpath of H* that does not contain vy, is of length greater than two.
Therefore the wheel contains an unbalanced hole of length smaller than H*, which contradicts
our choice of H*. This completes the proof of Claim 2.

Now let s1,...,s, be the neighbors of u; on H*, and 4, ...,1, be the neighbors of u; on
H*. Let Py,..., P;beall the subpaths of H*, whose endnodes belong to {s1,...,$,,%1,...,tm}
but have no intermediate node in this set. For every 2 = 1,...,[, let 2; denote the number of

neighbors of ug in P;. Let the endnodes of P; be denoted by p; and p;11 (where the indices
are taken modulo /). By Lemma 3.15 and Claim 2, if 2; is odd, then z; = 1. Furthermore,
by property (c) in Claim 1, if 2; = 1 then exactly one of p; or p;41 is in A1z U Ags.

The P;’s with exactly one neighbor of us are characterized as follows:

(i) If 2; = 1 and p; € AJ5, then by Claim 2, p;4; is a neighbor of u;. Now by Property (a)
in Claim 1 z;_; = 1 and hence by Claim 2, p;_ is a neighbor of uy. Similarily if z; = 1
and p; € ASs, then 2,9 = 1 and both p;_y and p;41 are neighbors of u,.

(ii) If 2; = 1 and p; € Ayz \ A5, then by Claim 2, p;4;1 is a neighbor of uy. Also either
by Property (b) in Claim 1 or by Claim 2, ;-1 is even. Similarily if z; = 1 and
pi € Ags \ ASs, then p;iq is a neighbor of ug and ;4 is even.

In the summation ) i, @;, every neighbor of us which is in Ay3 U Ags is counted twice,
so the total number of neighbors of uz on H* is

|N(us) N V(H™)| = > wi—|Ass| — |Ags] (3)
=1
Further we will show that

n

dowi = (|Aws\ Afa| 4| Azs \ AG3]) mod 2 (4)

=1
Now by (3) and (4) we have

[N (u3) NV (H>)| (1413 \ Af3| — [Aus| + [Ags \ AS3] — [A23]) mod 2

—([Af3] + [A3]) mod 2

By Claim 1 (|As] 4+ |A$s]) is even, which contradicts our choice of uz. Thus Ay and Asgs
cannot be disjoint.

Now we prove (4). Clearly the parity of > i~ z; is the same as the parity of the number
of sectors with an odd number of neighbors of us. Recall that if P; has an odd number of
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neighbors of usz, then it has exactly one neighbor (i.e. #; = 1) and exactly one of p; or p;41 is
an element of 413U Azz. W.lo.g. let p; € A13U Ass. Pair off P;_y and F; if the only neighbor
of uz in these paths is the node common to P;,_; and P;, namely p;. By Property (i) and (ii)
this is possible if and only if p; € A73 U A35. Notice that in this case z;_1 + 2; = 2 and the
sectors together provide an even count in the sum .7, z;. Hence the parity of > i, @; is
the same as the parity of |43\ A5 + |A23 \ A%/, and so (4) holds.

This completes the proof that A3 and Ass are not disjoint. Hence we have proved the
lemma. O

Lemma 3.17 H* contains a node adjacent to all the nodes in A.(H*) and a node adjacent
to all the nodes in A.(H*).

Proof: By symmetry, it suffices to prove the first statement. If H* is of length 6 or less
then the property clearly holds. Suppose now that H* has length greater than 6. Suppose
W C A.(H*) is such that for every proper subset W’ of W there exists a node of H* which
is adjacent to all nodes in W', but there exists no node of H* adjacent to all nodes in
W. By Lemma 3.15 and Lemma 3.16, |W| > 3. Let W = {wi = 1,2,...,p} and let
Wy =Awlit =1,...,p,i # l}. Now for [ = 1,2,...,p, all the nodes in W; have a common
neighbor say ¢;, in H*. Hence for 2 =1,...,p, node ¢; is adjacent to w;, for j = 1,...,p,j # 1,
but ¢; is not adjacent to w;. Now there exists an odd wheel, w1, t2, ws, t1, ws, t3, wy with center

t4, hence it must contain an unbalanced hole smaller than H*. This contradicts the choice of
H*. O

Lemma 3.18 For a tent 7(H*,u,v) the following hold:
o A (H*)C N(vo)UN(uy) or A,(H*) C N(vg)U N(uz).
o A(H*)C N(up)UN(v1) or A(H*) C N(ug)U N(v2).

Proof: We prove the first part. Suppose w € A,(H™) is not adjacent to vg. Consider
the hole H{ obtained from H* by replacing vy with node v of 7(H*,u,v). By Lemma 3.6,
Hf is unbalanced, and since it is of the same length as 7™, it also is a smallest unbalanced
hole. Now w cannot be adjacent to v, for otherwise w is even-strongly adjacent to H, which
violates Lemma 3.7. Node u is in A,(H7) and has neighbors uy, ug and v in HY. Since w is
not adjacent to v, by Lemma 3.17 it follows that w is adjacent to uy or uy. Furthermore, by
Lemma 3.17 the nodes in A, (H*) which are not adjacent to vy are either all adjacent to u; or
they are all adjacent to ug. Therefore A,(H*) C N(vg)UN(uq) or A.(H*) C N(vg)UN(ug).
The second part of the lemma can be proved similarly. O

Lemma 3.19 Let 7(H*,u,v) and 7(H*,w,y) be two tents, where wy,wy are the neighbors
of w and y1,ys are the neighbors of y in H*. Let wqg and yg be the common neighbors in H*
of wy,we and w1, yo respectively. Then at least one of the following properties holds:

o Nodes uy and ug coincide with wy and ws.

e Nodes vy and vy coincide with 1 and ys.
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e Node ug coincides with y; or ys.

o Node vg coincides with wy or ws.

Proof: Suppose the contrary. Then node u does not coincide with w, node v does not
coincide with y , nodes ug and y are not adjacent and nodes vy and w are not adjacent. Let
P denote the uyvy-subpath of H* not containing any other neighbor of v or v. Similarly, let
() denote the vyuq-subpath of H* not containing any other neighbors of u and ». Now it
follows that y; and gy, are contained in P or () since they are at distance two by Lemma 3.7,
and wy and wy are contained in P or ). Assume w.l.o.g. that y; and y, are contained in P.
We now prove the following two claims.

Claim 1: Node y is not adjacent to u and node w is not adjacent to v.

Proof of Claim 1: Suppose that y and u are adjacent. Now there is an odd wheel
ug, P, v1,v,u, us with center y. This wheel contains an unbalanced hole, which is by con-
struction, of smaller length than H*, which contradicts our choice of H*. Hence ¥y is not
adjacent to u. By symmetry, it follows that w is not adjacent to v. This completes the proof
of Claim 1.

Claim 2: Nodes wq and wy belong to ().

Proof of Claim 2: Suppose not. Then wy and wy belong to P. By assumption, y; and y,
belong to P. Let P’ be the path obtained from P by substituting y for yo. Now by Claim
1, there is an odd wheel uy, P’, vy, v, u, us with center w. This wheel contains an unbalanced
hole, which is by construction, of smaller length than H*. This contradics our choice of H*.
Hence wy and ws belong to (). This completes the proof of Claim 2.

Now by Claim 1 and Claim 2, there is a 3PC(u,y) that uses at most as many edges as
there are in H*. This 3-path configuration contains an unbalanced hole, of smaller length
than H*, which contradicts our choice of H*. O

Proof of Theorem 3.14: First assume that there is no tent in ' that contains H*. By
Lemma 3.17 H* contains a node x5 that is adjacent to all nodes in A.(H*). By Lemma 3.17
H* contains a node y; that is adjacent to all nodes in A,(H*). Let 21 be a neighbor of x5 in
H*, and let yz be a neighbor of y; in H*. Then the edges z1z3 and y1yz satisfy (i), (ii) and
(iii).

Now assume that G contains a tent 7(H*, u,v). By Lemma 3.18 A,.(H*) C N(vg)UN(uq)
or A, (H*) C N(vg) U N(uz), and A(H*) C N(ug) U N(vq) or A(H*) C N(ug) U N(vg).
Assume that A, (H*) C N(v) U N(uy) and A(H*) C N(up)U N(vy). By Lemma 3.19, for
every tent 7(H*,w,y)in G, either w € N(vg)UN(uy) or y € N(ug)UN(vq1). Hence the edges
upuy and vovy satisfy (i), (ii) and (iii). The other cases follow similarly. O

4 Recognition Algorithm and its Validity

In this section we present the algorithm that recognizes whether a signed bipartite graph is
balanced.
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4.1 Cleaning Procedure
CLEANING PROCEDURE

Input: A signed bipartite graph & which does not contain an unbalanced hole of length
4.

Output: A family £ of induced subgraphs of GG such that if G is not balanced, then some
G’ in L contains a smallest unbalanced hole that is clean in G’.

Step 1 Let £ = {G}. Let U be the set of all (Py; P;) where P; and P, are chordless
paths in G of length 3.

Step 2 Forevery (P = 2o, 21, %2, 23; P2 = Yo, Y1, Y2, ¥3) € U, add to £ the graph obtained
from G by removing the node set (N (z1) U N(z2) UN(y1)U N(y2)) \ (V(P1) U V(F)).

Remark 4.1 The number of graphs in list L produced by the Cleaning Procedure is bounded
by [V' Vel

Lemma 4.2 The Cleaning Procedure produces the desired output.

Proof: Assume that G is not balanced and let H* be a smallest unbalanced hole in G.
By Theorem 3.14 H* contains edges zy25 and y;y2 that satisfy (i), (ii) and (iii) of Theorem
3.14. Let Py = zg,x1,22,23 and P> = yo, 41, Y2, y3 be the two subpaths of H* with middle
edges z1wy and yiy,. Let G’ be the graph obtained from (' by removing the node set
(N(z1) U N(2z2) U N(y1) U N(y2)) \ (V(P1)UV(P2)). G"is one of the graphs in £ and it
contains H*. By Lemma 3.7 and Theorem 3.14, H* is clean in G'. O

4.2 Short 3-Wheels
SHORT 3-WHEEL PROCEDURE

Input: A signed bipartite graph G.
Output: A short 3-wheel of GG or the fact that G does not contain such a node induced
subgraph.

Step 1: Enumerate all distinct subsets of six nodes with three nodes in V" and three
nodes in V¢ and declare them as unscanned. Go to Step 2.

Step 2: If all subsets are scanned, G does not contain a short 3-wheel, stop. Otherwise
choose an unscanned subset U. If U induces a 6-cycle C' = aq,aq, a3, aq, as, ag, a1, having
unique chord asas, go to Step 3. Otherwise declare U as scanned and repeat Step 2.

Step 3: Remove the nodes in N(az)U N(as) U N(as) U N(ag) \ {a1,a3}. If a1 and a3
are in the same connected component, then a short 3-wheel with spokes asaq, asas, asas is
identified, stop. If not, remove the nodes in N(aq) U N(az)U N(a3)U N(as) \ {aq,a6}. If ay
and ag are in the same connected component, then a short 3-wheel with spokes asaq, asaq,
asag is identified, stop. Otherwise declare U as scanned return to Step 2.
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4.3 6-Join Decomposition

We now give an algorithm that finds a 6-join in a connected undominated graph G or shows
that G does not have one.

Note that, if a connected undominated graph has a 6-join, then (using the notation given
in the introduction) there exists a node in V; \ (A; U A3 U A5) that is adjacent to a node of
A1 U A3 U Aj (otherwise some node in 43 U A3 U A5 would be dominated) and there exists a
node in V3 \(A3UA4UAg) that is adjacent to a node of ApUA4UAg. Let aq, ..., aq,u1,uz be 8
distinct nodes of GG such that {ay,...,ag} induces a hole of length 6, u; is adjacent to at least
one node in {ay,as, as}, and uy is adjacent to at least one node in {ay, ay, ag} but not to uy.
The following rules yield a 6-join F(A) with {a1,as,as,u1} C Vi and {az, a4, as,uz} C Vs,
or show that G does not have such a 6-join. (Note that if such a 6-join is found then, for
1=1,...,6,a;, € A;, uy EVl\(A1UA3UA5) and uq 6V2\(A2UA4UA6)).

Initially V4 = {a1,as,a5,u1} and Vo = V(G) \ V1. Then forcing rules will be applied to
move nodes from V; to V3.

During the algorithm the nodes w in Vj are partitioned into four sets:

e u € Ay if it is adjacent to ay and ag but not to ay4,
e u € Az if it is adjacent to ay and a4 but not to ag,
e u € As if it is adjacent to a4 and ag but not to as,
o ue Vi \ (A1 UAzU Ajs) if it is not adjacent to any node ag, a4, as.

The case where some node u in V; is adjacent to exactly one of the nodes as, a4, ag or to
all three of them will not be permitted.
Forcing rules that move nodes from V5 to V; are as follows.

o If u € V3\ {ag,ayq,a6,uz} is adjacent to at least one node in V; \ (A3 U A3 U Aj) then
remove u from V5 and add it to V;.

o If uw € V3 )\ {az,a4,as,uz} is adjacent to at least one node in Ay U A3 U A5 and N(u)N
(AJUAsUA5) # A1 U Az, AsU As or Ay U Aj, then remove u from V3 and add it to V7.

Clearly, if there exists a 6-join E(A) with {aq,as,a5,u1} C Vi and {az,a4,a6,uz} C V3
and u satisfies one of the above rules, then « must be in V.

If some node » which is moved from V; to V; does not satisfy the following: N(u) N
{ag,aq,a6} = 0, {az, a4}, {az,a6} or {as,as}, and N(u) N {uz} = 0, then the algorithm
terminates since no 6-join F(A) with {a1,as,as,u1} C Vi and {ag, a4, a6, uz} C V5 exists.
If this situation never occurs, we continue moving nodes from V5 to V; until no forcing rule
applies.

At this stage the nodes of V5 satisfy the following: no node of V; is adjacent to a node
of V1 \ (41 U A3 U A45) and if a node u € V3 is adjacent to a node of 43 U A3 U A5 then
N(u)N (A1 U AsU As) = Ay U Az, A3 U As or A; U As. Denote by A, the nodes of V5 that
are adjacent to all nodes in Ay U A3, by A4 the nodes of V5 that are adjacent to all nodes in
A3 U A5 and by Ag the nodes of V5 that are adjacent to all nodes in Ay U A5. Let A be the
graph induced by the node set U%_; A;. Then E(A) is a 6-join of G with partition V; and V5.
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To determine whether a graph G has a 6-join one would apply the above algorithm to all
8-tuples (ay,...,as,ur, uz) of nodes of G for which {aq,...,as} induces a hole of length 6,
uy is adjacent to at least one node in {aq,as, a5}, and ug is adjacent to at least one node in
{ay, a4,a6} but not uy. Clearly all of this can be implemented to run in polynomial time.

Let § be a double star cutset in a graph G, and let G, ..., Gy be the blocks of decompo-
sition. The refined blocks of decomposition are graphs G7, ..., G, where G is obtained from
G; by removing all dominated nodes.

When we say ”"remove all dominated nodes from a graph F”, we mean to apply the
following procedure:

Step 1: If F contains a dominated node wu, then go to Step 2. Otherwise, stop and output F.
Step 2: Let F'= F'\ {u} and go to Step 1.

DOUBLE STAR CUTSET AND 6-JOIN DECOMPOSITION ALGORITHM

Input: A signed bipartite graph G that does not contain a short 3-wheel or an unbalanced
hole of length 4 or 6.

Output: Either G is identified as not being balanced, or a list £ of induced subgraphs
of G with the following properties:

e The graphs in £ do not contain a 6-join, a double star cutset or any dominated nodes.

o If the input graph G contains a family Cq(H*) of clean smallest unbalanced holes, then
one of the graphs G/ in £ contains a hole H' of Cq(H*), and Ce(H') is a family of clean
smallest unbalanced holes in G’.

Step 1: Remove all dominated nodes from G and initialize M = {G} and £ = {.

Step 2: If M is empty, return £ and stop. Otherwise, remove a graph F' from M.

Step 3: If F contains a double star cutset 5 go to Step 4 and otherwise go to Step 5.
(Note that checking whether F' contains a double star cutset involves checking for every pair
of adjacent nodes u and v whether S = N(u)U N(v)is a cutset).

Step 4: Check whether there exists a decomposition detectable 3PC(z,y) w.r.t. 5. If
it does, identify ' as not balanced and stop. Otherwise, construct the refined blocks of the
decomposition by S5, add them to M and go to Step 2.

Step 5: Check whether F contains a 6-join. If it does, construct the blocks of the 6-join
decomposition, remove all dominated nodes from the blocks, add these graphs to M and go
to Step 2. Otherwise, add F' to £ and go to Step 2.

Theorem 4.3 The Double Star Cutset and 6-Join Decomposition Algorithm produces the
desired output.

Proof: Let G be a signed bipartite graph that does not contain an unbalanced hole of
length 4 or 6, or a short 3-wheel. If the algorithm terminates in Step 4, then G is correctly
identified as not being balanced. So suppose that the algorithm does not terminate in Step 4.
By the construction of the algorithm, the graphs in £ do not contain a 6-join, a double star
cutset or any dominated nodes. Suppose that GG contains a family Cq(H™) of clean smallest
unbalanced holes. To prove the theorem it is enough to show the following.
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(1) If G’ is the graph obtained from ' by removing dominated nodes, then G’ contains a
hole in Cq(H™).

(2) If G, ..., G% are the refined blocks of decomposition of G by a double star cutset, then
for some ¢, G contains a hole in Cq(H™).

(3) If 1 and Gy are the blocks of decomposition of G by a 6-join F(A), then for some 1,
(i; contains a hole in Cq(H™).

(4) If G’ contains a hole H' of C;(H*), then Ci(H') is a family of clean smallest unbalanced
holes in G.

(1) and (2) follow from Lemma 3.11 and Lemma 3.13. (4) follows from the fact that if a
hole H' is clean in (7, then it is also clean in any induced subgraph G’. To prove (3) suppose
that H* is contained in neither G4 nor G'3. Then H* must contain an edge of £(A). Since ¢
does not contain an unbalanced hole of length 6, not all of the edges of H* can be in E(A).
Hence w.l.0.g. we may assume that either (i) H* = af,d}, a5, Py, a} where a} € A; fori=1,2
and 3, and P; is a path with nodes in V; from @} to af, or (ii) H* = d},d), P>, dly, af, Py, d}
where a; € A; for i = 1,2,4 and 5, Py is a path with nodes in V; from «f to af, and P,
is a path with nodes in V; from af to @}. If (i) holds, then the hole obtained from H* by
substituting a, for af, is a hole of Co(H*) and is contained in (1. So assume (ii) holds. Since
node as has neighbors af, and af in H*, and H* is clean, the path P must be of length 2.
Similarly path P, must be of length 2. Hence H™ is of length 6, contradicting our assumption.
|

Lemma 4.4 The number of graphs in the list L produced by the Double Star Cutset and
6-Join Decomposition Algorithm is bounded by |V"[2|[V[P(|V7| + |[V<]).

Proof: Let G be a signed bipartite graph that does not contain a short 3-wheel, and
let £ be the list of induced subgraphs of GG produced by the algorithm. Note that we are
assuming that the algorithm does not terminate in Step 4, with identifying a decomposition
detectable 3PC(z,y). We prove the lemma by showing that the number of decompositions
used to decompose G by the algorithm is bounded by the number of chordless paths of length
5in G. (So in the decomposition tree the number of parents of the leaves, i.e. graphs
added to £, is bounded by |V7|?|V¢|3, and hence the number of graphs in £ is bounded by
VT PIVER(|VT| + |VE])). This will be shown by proving that if F is a graph decomposed in
Step 4 or Step 5 of the algorithm, F' has the property that it contains a chordless path of
length 5 that is not contained in any of the blocks of decomposition that are added to list
M, and that no two blocks of decomposition contain the same chordless path of length 5. So
the lemma follows from the following four claims.

First suppose that F is decomposed in Step 5 by a 6-join E(A). Let Fy and Fy be the
blocks of decomposition.

Claim 1: Fy and Fy do not contain the same chordless path of length 5.

Proof of Claim 1: Any chordless path of length 5 in F; must contain a node of v \ (41 U
As U As) and hence cannot be a path of F,. This completes the proof of Claim 1.
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Claim 2: F' contains at least one chordless path of length 5 that is contained neither in
Fi norin I,

Proof of Claim 2: By (iii) of the definition of a 6-join, |V1]| > 4. Let U; = V1 \(41UA3UAs3).
We must have Uy # (), otherwise some node of A;UA3U A5 is dominated in F', a contradiction.
No node u € Uy can have neighbors in each of the sets Ay, As and Aj since, otherwise, u
would be the center of a short 3-wheel. So, w.l.o.g. there exists a node u; with no neighbor
in As, but at least one neighbor in Ay. In F, node uy is not dominated by a node of A,.
This implies that uq is adjacent to a node vy € Uy that is at distance two from A; U A3 U As,
i.e. v1,uy,a] is a chordless path where @} € Ay. Similarly, let v be a node of F, that is at
distance two from Ay UA4U Ag. Let vg, ug, a: be a chordless path with uy € Vo\ (A2 U A4 U Ag)
and a) € A;, i = 2,40r 6. If i =2 or 6, then vy, uq,a},al,us, vy is the desired path. So
assume that ¢ = 4 and uy is not adjacent to any node of Ay U Ag. Then uq,dl,ag, as, aly, us
is the desired path. This completes the proof of Claim 2.

Now assume that /' is decomposed in Step 4 by a double star cutset S = N(u)U N(v).
Let Cy,...,C} be the connected components of F'\ 5. Let Fy,..., Fi be the blocks of decom-
position and F7, ..., I} the refined blocks of decomposition. Note that F'is an undominated
graph, and by the defintion of refined blocks so are I, ..., Fj;. Also, w.l.o.g. we assume that
Fis a connected graph.

Claim 3: No two graphs FY, ..., F contain the same chordless path of length 5.

Proof of Claim 3: We actualy prove a stronger statement that no two graphs F7, ..., Fy
contain the same chordless path of length 3. Assume otherwise and let P = a,b,¢,d be a
chordless path that is contained in both I and F7, ¢ # j. Then {a,b,c,d} C S. Since
a,b,c,d must alternate between N(u) and N(v), and P is a chordless path, u and v cannot
coincide with a or d, and similarly for v. So w.l.o.g. @ € N(u)\ {v} and d € N(v)\ {u}. If a
does not have a neighbor in C; then a is dominated by v in Fj;, and hence a is dominated by
some node in F;*, contradicting the assumption that /' is an undominated graph. So a must
have a neighbor in (;, and similarly it must have a neighbor in ;. By the same argument
d has a neighbor in both C; and C;. But then there is a decomposition detectable 3PC(a,d)
w.r.t. 5, contradicing our assumption. This completes the proof of Claim 3.

Claim 4: I’ contains at least one chordless path of length 5 that is not contained in any
of the graphs Iy, ... F}.

Proof of Clazm 4: Each of the connected components C7,...,C; must contain at least
two nodes, since F is an undominated graph. Since F’is connected, a node of C;, ¢ = 1,... k,
must have a neighbor in 5.

First assume that there exist nodes p; € V(Cq) and py € V(Cy) such that they have
a common neighbor a; € N(u). Since |V(Cy)| > 2, Cy contains a node ¢; adjacent to py.
Similarly C'5 contains a node ¢, adjacent to py. Since go is not dominated by ay, g2 must have
a neighbor ¢, that ay is not adjacent to. If ¢5 is adjacent to ¢, then ¢ € N(v) and hence
there is a decomposition detectable 3PC(aq,?3) w.r.t. S, contradicting our assumption. So
to is not adjacent to ¢;, and hence P = ¢, p1, a1, p2, g2, t2 is the desired path.

Now assume that no two nodes, one from €5 and one from 5, have a common neighbor
in 5. Let p; (resp. p2) be a node of Cy (resp. C3) that is adjacent to a; € S (resp.
az € 5). Let ¢1 (resp. ¢2) be a neighbor of py (resp. py) in Cy (resp. Cy). If a1, a2 € N(u),
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then P = q1,p1,a1,u,az,py is the desired path. So we may assume that a; € N(u) and
az € N(v). If ajaz is not an edge then P = py,a1,u,v,ag, ps is the desired path. Otherwise,
P = q1,p1,0a1, a2, p2, ¢z is the desired path. This completes the proof of Claim 4. O

4.4 2-Join Decomposition

In [6] an algorithm that either finds a 2-join in a graph G or concludes that G does not have
one is given. We outline here this algorithm for the sake of completeness, in the case where
GG contains no extended star cutset.

Lemma 4.5 Let G be a bipartite graph that has no extended star cutset. Then, in every
2-join, |V (G| > 4, fori=1,2.

Proof: By Lemma 2.2, the 2-join is not rigid. Suppose |V(G?)| < 3, for i =1 or 2.

If there exists a node u € V(G%)\ (A; U B;), then |A;| = |B;| = 1 and, since the 2-join is
not rigid, (ii) of the definition of 2-join implies that u is adjacent to both these nodes. This
contradicts (iii) of the definition of 2-join.

So V(GH\(A;UB;) = (. By (ii) of the definition of 2-join, every node of A; has a neighbor
in B; and vice versa, every node in B; has a neighbor in A;. Since the 2-join is not rigid, this
implies that |A;] > 2 and |B;| > 2. O

Let aq,b1,a2,bs be 4 distinct nodes of a bipartite graph G, such that ajas and biby are
edges, but a;b2, azby are not. The following procedure yields a 2-join F(K4,4,)U E(Kp,B,)
with a1 € Ay, by € By, az € Ay and by € By, or shows that no such 2-join exists.

For every 2 distinct nodes uq,v € V(G) \ {a1,az,b1,b3}, each adjacent to at most one
node in {ag,by}, the following rules identify a partition of V(&) into Vi and V3, where
a1,by,ur,v1 € V1 and ag, by € V3, such that the edges with one endnode in V; and the other
in V5 induce two disjoint bicliques K 4,4, and Kp, p, satisfying Properties (i) and (ii) in the
definition of 2-join, or show that no such partition exists.

Initially we let Vi = {a1,b1,u1,v1} and Vo = V(G)\ {a1, b1, u1,v1}. Then forcing rules
will be applied that will move nodes from V5 to V.

During the algorithm, the nodes u in V; are partitioned into three sets:

o u € Ay if way is an edge but uby is not,
o u € By if uby is an edge but uay is not,
o u € Vi \ (A1 U By) if neither uay nor ub, is an edge.

The case where some node u in V; is adjacent to both ay and by will not be permitted.
The forcing rules that move nodes from V3 to V; are as follows.

o If u € Vu\ {ag,b2} is adjacent to at least one node in V; \ (41 U By), add u to V; and
remove it from V5.

o If uw € V3\{az,bs} is adjacent to some node in A; U By and N(u)N(A; U By)# Ay or
By, then add u to V; and delete it from V5.
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Note that if there is a 2-join F(K 4,4, )UE(Kp,B,) with ai,b1,ur,v1 € V7 and ag, by € Vs,
and u satisfies one of the above rules, then u would have to be in V7.

If some node w which is moved from V5 to V; is adjacent to both as and bs, then the
algorithm terminates since no 2-join E (K 4,4,)UE(Kp,B,) with a1,b1,uq,v1 € Vi and ag, by €
V5 exists. If this situation never occurs, we continue moving nodes from V3 to V; until no
forcing rule applies.

At this stage the nodes of V5 satisfy the following: no node of V; is adjacent to a node of
Vi\(A1UBy), and if a node u of V3 is adjacent to a node of A;U By then N(u)N(A1UB1) = 4,
or By. Denote by Ay the nodes of V5 that are adjacent to all nodes in Ay, and by By the
nodes of V; that are adjacent to all nodes in By. The edge set E(K 4,4,)U E(Kp,B,) satisfies
(i) of the definition of 2-join. By our assumption that G has no extended star cutset, (ii) of
the definition of 2-join holds as well.

Now, if (iii) also holds, we have a 2-join with ay,bq,us,v1 € V4 and ag,by € V3. On the
other hand, if no choice of uq,v; yields an edge set E(K 4,4,) U E(Kp,B,) satisfying (iii),
then no 2-join with ay,by € V1 and a9, by € V5 exists. Indeed, the only way in which a choice
u1,v1 can fail to yield a 2-join with aq, b1, uq,v1 € Vi and a9, by € Vo when such a 2-join exists
is if, at termination, |Ay| = |By| = 1 and Vj induces a chordless path P. Furthermore, any
2-join with ay,by,uy,v; € V{ and ay, by € V satisfies V4 C V{. Therefore, the choice uq,v],
where v] € V] \ V(P) yields the desired 2-join.

To determine whether a bipartite graph G without extended star cutsets has a 2-join, one
would apply the above algorithm to all 4-tuples (ay, b1, az,b2) of nodes of G for which aqjas
and byby are edges, but ayby, azby are not. Clearly all of this can be implemented to run in
polynomial time.

2-JOIN DECOMPOSITION ALGORITHM

Input: A signed bipartite graph & that does not contain a short 3-wheel, an unbalanced
hole of length 4, an extended star cutset or a 6-join.
Output: A list of signed bipartite graphs £ with the following properties:

e The graphs in £ do not contain an extended star cutset, a 6-join or a 2-join.

e (7 is balanced if and only if all the graphs in £ are balanced.

Step 1: Let M = {G} and £ = 0.

Step 2: If M is empty, return £ and stop. Otherwise remove a graph M from M.

Step 3: Check whether M has a 2-join. If it does not, then add M to £ and go to Step
2. Otherwise, the 2-join is not rigid (we justify this in Theorem 4.6). Construct the blocks
of the 2-join decomposition, add them to M and go to Step 2.

Theorem 4.6 The 2-Join Decomposition Algorithm produces the desired output.

Proof: Let G be a signed bipartite graph that does not contain a short 3-wheel, an
unbalanced hole of length 4, an extended star cutset or a 6-join. Let E(K 4,4,)U E(Kp,B,)
be a 2-join of G. Let Gy and G5 be the blocks of the decomposition. To prove the validity
of the algorithm it is enough to show that (i) ;4 and (/3 do not contain a short 3-wheel, an
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unbalanced hole of length 4, an extended star cutset or a 6-join, and (ii) G is balanced if and
only if G4 and G5 are balanced.

By Lemma 2.2, the 2-join is not rigid. So by Theorem 2.3, (ii) holds. By the construction
of the blocks, there is no hole of length less than 7 in the blocks that uses the marker paths.
Hence GG7 and G2 do not contain an unbalanced hole of length 4, a short 3-wheel or a 6-join.

We now show that 1 and G5 do not contain an extended star cutset. Suppose w.l.o.g.
that GG; contains an extended star cutset S = (2; X;Y; R). Recall that the marker path M,
of Gy is of length 4 or 5. Let G} = G\ V(M;).

Case 1: Node z coincides with aq or (.

Assume w.l.0.g. that z coincides with ay. Since |E(M;)| > 4, #1 is not in 5. So, S is a
cutset that separates 1 from a node in G \ S. We can assume w.l.o.g. that the neighbor of
a1 in My is not in 9, since the set obtained by removing that neighbor from .5 would also be
an extended star cutset of Gy. So Y UR C Ay. If S is a star cutset, i.e. X = {2z} and R = 0,
then $* =Y U Aj is a biclique cutset of (&, separating By from a node in G} \ 5. So assume
that | X| > 2. Then at least two nodes of Ay are contained in Y. Let z* be any node of A,.
Then 5* = (2*;(X U Ay) \ {z};Y; R) is an extended star cutset of GG separating B, from a
node in G \ 5.

Case 2: Node z is an intermediate node of Mj.

Since M; has length at least 4, we must have | X| = 1, i.e. S is a star cutset. W.lo.g.
assume 31 ¢ 5. Then S separates ; from a node in G \ 5. But then S = {a;1} is also a
star cutset of G'1. So, by Case 1, we are done.

Case 3: Node z is in A, or By.

W.lo.g. assume that z is in Ay. If 51 € 5, then S separates 31 from a node in G/ \ S.
fag gYUR, let S*=5. If ag € R, let S* = (z; X;Y;(R\ {a1})U Ay) and if a; € Y,
let % = (2; X;(Y \ {on}) U Ay; R). Then S is an extended star cutset of (G separating
By from a node in G} \ S. So f; € S and hence 3y € X. Thus Y C B;. Now §* =
(z; (X \{A1})U By Y (R\{a1}) U Ay) is an extended star cutset of ¢ separating a node of
G\ S from a node of G\ (A2 U By). Indeed, this graph is nonempty by the following claim.

Claim: V(G%)\ (A2 U Bg) # 0.

Proof: Assume otherwise, namely V(G5)\ (42 U Bz) = 0. By (ii) in the definition of a
2-join, every node of A has a neighbor in B and, vice versa, every node in By has a neighbor
in A,. Since the 2-join is not rigid, this implies that |As| > 2 and |Bg| > 2. Furthermore,
every node in Ay has a node in By that it is not adjacent to (otherwise, there is a star cutset)
and every node in B3 has a node in A, that it is not adjacent to. Let u be a node of largest
degree in the graph induced by Ay U By. W.l.o.g. assume u € Ay. Let @) be the set of
neighbors of w in By and let v € By \ ). Let w € Ay be a neighbor of ». Then w is not
adjacent to some node ¢ € (), by our choice of u. Since the 2-join is not rigid, A; U By is not
a biclique, i.e. there exist ¢y € Ay and by € By which are not adjacent. So wajwvbiqu is a
6-hole. Now, if z is adjacent to by, it induces a short 3-wheel with this 6-hole, a contradiction.
Therefore z is not adjacent to by and wazwwvbiqu is a 6-hole. But then, any y € Y induces a
short 3-wheel with this 6-hole, a contradiction. This completes the proof of the claim.

Case 4: Node z is in G} \ (41 U By).
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Not both a; and f; can be in 5. Assume w.l.o.g. that gy ¢ S. Then S is a cutset
separating 1 from a node in G|\ 5. If oy ¢ 5, then S is a cutset of G separating By from a
node in G|\ 5. Soa; € §. Then a3 € X, Y C Ay and hence 5* = (2;(X \ {a1})U A3 Y R)

is an extended star cutset of G separating By from a node in G\ 5. O

Lemma 4.7 The number of graphs in the list L produced by the 2-Join Decomposition Al-
gorithm s linear in the size of the input graph G.

Proof: For a graph G, let ®(G) = |E(G)|— |[V(G)| — 1.

First, we show that, if a connected graph G has a 2-join with blocks Gy, G5, then ®(G1)+
®(Gy) < ®(G). Consider a 2-join of G, say E(K 4,4,) U E(KB,B,), and let G, G be the
graphs described in the definition of a 2-join. Then

O(G) = [E(GD]+ [E(G)] + [Au] x [Ag| + [ Bi] x | By| = V(G| = V(G - 1

and

O(Gy) = [E(G)] + [Ail + [Bil = [V(GD)] = 2.

Now ®(Gh) + ®(G2) < ®(G) follows by observing that any positive integers p, ¢ satisfy
p+qg<pxgqg+Ll

Now we show that, if G has a 2-join but no extended star cutset, then ®(G) > 0, ®(G1) > 0
and ®(G3) > 0. Since G has a 2-join, it has more than four nodes and therefore it is 2-
connected. Thus, for ¢ = 1,2, GG; is 2-connected as well and its number of edges is at least
|[V(Gy)|,ie. ®(G;) > —1. If &(G;) = —1, then G| is a hole, but this is impossible by Property
(i) in the definition of a 2-join. Therefore ®(G;) > 0. Since ®(G1)+P(Gy) < (&), it follows
that ®(G) > 0.

This implies that the total number of blocks created in the 2-join decomposition algorithm
is at most 2®((), i.e. it is linear in the size of the input graph. O

4.5 Recognition Algorithm

We now give the recognition algorithm, prove its validity and polynomial time bound.

RECOGNITION ALGORITHM

Input: A signed bipartite graph G.
Output: YES if GG is balanced and NO otherwise.

Step 1: Check whether (G contains an unbalanced hole of length 4 or 6. If it does output
NO.

Step 2: Apply the Short 3-Wheel Procedure to check whether GG contains a short 3-wheel.
If it does, output NO.

Step 3: Apply the Cleaning Procedure to GG and let £1 be the output family of graphs.

Step 4: For each L € Ly, apply the Double Star Cutset and 6-Join Decomposition
Algorithm. If L is identified as not being balanced output NO, and otherwise union the
output with L.

Step 5: For each L € L5, apply the 2-Join Decomposition Algorithm and union the
output with Ls.
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Step 6: For each I € L3, check whether L is strongly balanced. If some L € L3 is not
strongly balanced, then output NO. If every L € L3 is strongly balanced, output YES.

Remark 4.8 An algorithm that tests whether a signed bipartite graph is strongly balanced is
given in [5]. Hence the details of Step 6 are omitted in this paper.

Theorem 4.9 The Recognition Algorithm produces the desired output and it can be imple-
mented to run in time polynomial in the size of the input graph G'.

Proof: If G contains an unbalanced hole of length 4 or 6, a short 3-wheel or a 3-path
configuration, then the algorithm correctly identifies GG as not being balanced. So suppose
that the algorithm does not terminate in Step 1, 2 or 4.

Claim 1: No L € L3 contains an extended star cutset, a 6-join or a 2-join.

Proof of Claim 1: The graphs in L5 do not contain a 6-join, a double star cutset or any
dominated nodes. By Lemma 3.1, they do not contain an extended star cutset. So by the
2-Join Decomposition Algorithm, graphs in L3 do not contain an extended star cutset, a
6-join or a 2-join. This completes the proof of Claim 1.

Claim 2: G is balanced if and only if all the graphs in L3 are balanced.

Proof of Claim 2: If G is balanced, then all the induced subgraphs of GG are balanced, and
hence all the graphs in L3 are balanced. Suppose that G is not balanced. Then G contains
a smallest unbalanced hole H*. By the Cleaning Procedure, some graph G’ € £y contains
H* and H* is clean in G'. By Lemma 3.9 all the holes in Cc/(H™) are clean in G’. By the
Double Star Cutset and 6-Join Decomposition Algorithm, some graph G € L, contains an
unbalanced hole in Cq/(H*). So G is balanced if and only if all the graphs in £, are balanced.
Then, by the 2-Join Decomposition Algorithm, G is balanced if and only if all the graphs in
L3 are balanced. This completes the proof of Claim 2.

So by Claim 1, Claim 2 and Theorem 1.1, G is balanced if and only if every L € L3 is
strongly balanced. Hence the algorithm correctly identifies G as balanced or not balanced.

Now we show that the Recognition Algorithm can be implemented to run in time poly-
nomial in the size of the input graph . Steps 1 and 2 can clearly be implemented to run in
polynomial time. By Remark 4.1, Lemma 4.4 and Lemma 4.7, the Cleaning Procedure, the
Double Star Cutset and 6-Join Decomposition Algorithm and the 2-Join Decomposition Al-
gorithm can be implemented to run in polynomial time. Furthermore, the number of graphs
in L3 is polynomial in the size of . So by Remark 4.8, Step 6 can also be implemented to
run in polynomial time. O
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