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Abstract

In this paper we give a polynomial time recognition algorithm for balanced 0;�1

matrices. This algorithm is based on a decomposition theorem proved in a companion

paper.
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1 Introduction

A 0;�1 matrix is balanced if, in every square submatrix with two nonzero entries per row and
column, the sum of the entries is a multiple of four. In [3], Conforti, Cornu�ejols and Rao prove
a decomposition theorem for balanced 0; 1 matrices and they use it to obtain a polynomial
time recognition algorithm for these matrices. In this paper, using a similar approach, we give
a polynomial time recognition algorithm for balanced 0;�1 matrices, using a decomposition
result derived in the companion paper [1]. For a survey of results on balanced matrices, see
[2].

A convenient setting for working with balanced 0;�1 matrices is to consider their signed
bipartite graph representations. A signed graph G is a graph together with an assignment of
+1 or �1 weights to the edges. Given a 0;�1 matrix A, the signed bipartite graph represen-
tation of A is a signed bipartite graph G, with the two sides of the bipartition V r and V c
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representing respectively the rows and columns of A, and for each nonzero entry aij of A,
there is an edge between nodes i 2 V r and j 2 V c with weight aij .

A signed bipartite graph G is balanced if it is the signed bipartite graph representation
of a balanced 0;�1 matrix. Thus a signed bipartite graph G is balanced if and only if for
every hole H of G, the sum of the weights of the edges of H is a multiple of 4. A hole in a
bipartite graph is a chordless cycle. A hole is balanced if it is of weight 0 modulo 4, and it is
unbalanced if it is of weight 2 modulo 4. A graph G contains a graph H , if H is an induced
subgraph of G. So, a signed bipartite graph is balanced if and only if it does not contain an
unbalanced hole.

In this paper we construct a recognition algorithm that takes as input a signed bipartite
graph G, and outputs YES if G is balanced, and NO otherwise. The algorithm runs in time
polynomial in the size of V r and V c. This algorithm can be used to obtain a polynomial time
algorithm for �nding an unbalanced hole in a graph that contains one, in the following way.

If Recognition(G)=YES, return "G is balanced".

Else set H = G.

While there exists some node v in H such that Recognition(H n fvg) =NO, set H =
H n fvg.

Return "H is an unbalanced hole of G".

As mentioned above, the recognition algorithm is based on a decomposition theorem,
which we state in Section 1.1. The organization of the paper is described in Section 1.2.

1.1 Decomposition Theorem

A set S of nodes (respectively edges) of a connected graph G is a node cutset (respectively
an edge cutset) if the subgraph G n S, obtained from G by removing the nodes (respectively
edges) in S, is disconnected.

A biclique is a complete bipartite graph KAB where the two sides of the bipartition A

and B are both nonempty.

Extended Star Cutset

For a node x, let N(x) denote the set of all neighbors of x. In a bipartite graph G, an
extended star (x;X ; Y ;R) consists of disjoint subsets X; Y;R of V (G) and a node x 2 X such
that

(i) Y [ R � N(x),

(ii) the node set X [ Y induces a biclique (with node set X on one side of the bipartition
and node set Y on the other),

(iii) if jX j � 2, then jY j � 2.
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In a connected bipartite graph, an extended star cutset is an extended star (x;X ; Y ;R)
where X[Y [R is a node cutset. When R = ; the extended star is a biclique, and the cutset
is called a biclique cutset. When jX j = 1 then the extended star cutset is also called a star
cutset.

2-Join

Let G be a connected bipartite graph with more than four nodes, containing bicliques
KA1A2

and KB1B2
, where A1, A2, B1, B2 are disjoint nonempty node sets. The edge set

E(KA1A2
) [E(KB1B2

) is a 2-join if it satis�es the following properties:

(i) The graph G0 = G n (E(KA1A2
)[ E(KB1B2

)) is disconnected.

(ii) Every connected component of G0 has a nonempty intersection with exactly two of the
sets A1, A2, B1, B2 and these two sets are either A1 and B1 or A2 and B2. For
i = 1; 2, let G0

i be the subgraph of G0 containing all its connected components that have
nonempty intersection with Ai and Bi.

(iii) If jA1j = jB1j = 1, then G0
1 is not a chordless path or A2 [ B2 induces a biclique. If

jA2j = jB2j = 1, then G0
2 is not a chordless path or A1 [B1 induces a biclique.

The purpose of Property (iii) is to exclude "improper" 2-joins.

6-Join

In a connected bipartite graph G, let Ai, i = 1; : : : ; 6 be disjoint, nonempty node sets
such that, for each i, every node in Ai is adjacent to every node in Ai�1 [ Ai+1 (indices are
taken modulo 6), and these are the only edges in the subgraph A induced by the node set
[6i=1Ai. (Note that, for convenience of notation, the modulo 6 function is assumed to return
values between 1 and 6, instead of the usual 0 to 5). The edge set E(A) is a 6-join if

(i) The graph G0 = G nE(A) is disconnected.

(ii) The nodes ofG can be partitioned into V1 and V2 so thatA1[A3[A5 � V1, A2[A4[A6 �
V2 and the only adjacencies between the nodes of V1 and V2 are the edges of E(A).

(iii) jVij � 4 for i = 1; 2.

When the graph G comprises more than one connected component, we say that G has a
2-join, a 6-join or an extended star cutset if at least one of its connected components does.

Basic Classes of Graphs

A signed bipartite graph is strongly balanced if it is balanced and contains no cycle with
exactly one chord. The recognition problem for this class of graphs is polynomial (Conforti
and Rao [5]). R10 is the bipartite graph de�ned by the cycle x1; : : : ; x10; x1 of length 10 with
chords xixi+5, 1 � i � 5 (indices taken modulo 10). R10 can be signed to be balanced, say
with weight +1 on the edges of the cycle x1; : : : ; x10; x1 and �1 on the chords.

In [1] we prove the following decomposition theorem.

Theorem 1.1 A signed bipartite graph that is balanced but not strongly balanced is either
R10 with proper signing or it contains a 2-join, a 6-join or an extended star cutset.
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1.2 Organization of the Paper

The general idea of our recognition algorithm for balanced signed bipartite graphs is as
follows. Let G be a signed bipartite graph. If G is strongly balanced or the underlying graph
is R10, then we are done. Else, we search for one of the three cutsets described above. If
none exists, G is not balanced as a consequence of Theorem 1.1. If one exists, its removal
disconnects G into several connected components. From these components, we construct
blocks by adding some new nodes and edges with some signing. In other words, we decompose
G into these blocks. Ideally, the blocks should be constructed so thatG is balanced if and only
if all the blocks are. Let B stand for the class of signed bipartite graphs that are balanced.
We say that a decomposition is B-preserving if it satis�es the following: G belongs to B if
and only if all the blocks of the decomposition belong to B. The three decompositions are
then applied recursively to the blocks until no cutset can be found. We show that only a
polynomial number of such basic blocks are generated. For each, we check whether it is R10

or strongly balanced. G is balanced if and only if all basic blocks are balanced (assuming all
decompositions are B-preserving).

In Section 2, we show how to construct blocks that are B-preserving for the 2-join and
the 6-join decompositions. In Section 3, we deal with the node cutset decomposition. For the
extended star cutset, we are not able to construct blocks to be B-preserving. Instead, in our
recognition algorithm we �rst apply a certain cleaning procedure to the input graph G, which
transforms it into a graph G0 with the property that G0 is balanced if and only if G is and,
if G contains an unbalanced hole then G0 contains an unbalanced hole that will either never
be broken by extended star cutset decompositions or it will be detected while performing the
decomposition. To construct such a procedure we need to study signed bipartite graphs that
do contain unbalanced holes. In Section 3.2, we obtain certain properties of a smallest unbal-
anced hole which allow us to construct the cleaning procedure in Section 4.1. In Section 4,
we present the recognition algorithm for signed bipartite graphs that are balanced, and prove
its validity and polynomiality.

2 Edge Cutset Decompositions

Throughout the rest of the paper, we assume that G is a signed bipartite graph.

By scalingG at node u, we mean changing the sign of the weights on all the edges incident
with u.

Remark 2.1 Let G0 be a signed bipartite graph obtained from G by scaling at node u. A hole
is balanced in G0 if and only if it is balanced in G.

Let u; v be two nonadjacent nodes of G in opposite sides of the bipartition. A 3-path
con�guration connecting u and v, denoted by 3PC(u; v), is de�ned by three chordless paths
P1, P2 and P3 with endnodes u and v, such that the node set V (Pi) [ V (Pj), i; j 2 f1; 2; 3g,
i 6= j, induces a hole. Since paths P1, P2 and P3 of a 3-path con�guration are of length 1
or 3 modulo 4, the sum of the weights of the edges in each path is also 1 or 3 modulo 4. It
follows that two of the three paths induce a hole of weight 2 modulo 4. So a signed bipartite
graph that contains a 3-path con�guration is not balanced.
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A wheel, denoted by (H; x), is de�ned by a hole H and a node x 62 V (H) which has at
least three neighbors in H , say x1; : : : ; xn. The wheel (H; x) is even if n is even and it is odd
otherwise. An edge xxi is a spoke. A subpath of H connecting xi and xj is called a sector
if it contains no intermediate node xl, 1 � l � n. Consider a wheel (H; x) which is signed
to be balanced. By Remark 2.1, we can assume that all spokes of the wheel are signed +1.
This implies that the sum of the weights of the edges in each sector is 2 modulo 4. Hence if
(H; x) is an odd wheel, the hole H has weight 2 modulo 4. So a signed bipartite graph that
contains an odd wheel is not balanced.

2.1 2-Join Decomposition

A 2-join E(KA1A2
)[E(KB1B2

) is rigid if A1[B1 or A2[B2 induces a biclique. The following
easy result was proved in [3].

Lemma 2.2 Let G be a bipartite graph that has no extended star cutset. Then G has no
rigid 2-join.

Let KA1A2
and KB1B2

de�ne a 2-join of G that is not rigid. The blocks G1 and G2

of the 2-join decomposition are de�ned as follows. For i = 1; 2, let G0
i be the subgraph of

G n (E(KA1A2
) [ E(KB1B2

)) containing all its connected components that have nonempty
intersection with Ai and Bi. To obtain Gi, we �rst add to G0

i a node �i, adjacent to all the
nodes in Ai and to no other node of G0

i and a node �i, adjacent to all the nodes in Bi and
to no other node of G0

i. Let Q1 be a path in G0
2 with smallest number of edges connecting

a node in A2 to a node in B2, and let Q2 be a path in G0
1 with smallest number of edges

connecting a node in A1 to a node in B1. Note that the existence of Q1, Q2 is guaranteed by
(ii) in the de�nition of 2-joins. For i = 1; 2, add to Gi a marker path Mi connecting �i and
�i with length 4 � jE(Mi)j � 5 and edge weights +1 or �1 chosen so that the weight of Mi

is congruent to the weight of Qi modulo 4.

Theorem 2.3 Let G1 and G2 be the blocks of the decomposition of the signed bipartite graph
G by a 2-join E(KA1A2

) [ E(KB1B2
) that is not rigid. If G does not contain an unbalanced

hole of length 4, then G is balanced if and only if both G1 and G2 are balanced.

The following lemma is used in the proof of Theorem 2.3.

Lemma 2.4 Let G be a signed bipartite graph with no unbalanced hole of length four. For
every biclique KBD in G, we can scale G on the nodes in B[D so that every edge in E(KBD)
has weight +1.

Proof: If jBj = 1 then we can scale on nodes in D to obtain the result. Similarily, for
jDj = 1.

We can assume jBj � 2 and jDj � 2. Let b 2 B and d 2 D. Scale at nodes d0 2 D so
that all edges bd0 have weight +1. Scale at nodes b0 2 B so that all edges b0d have weight +1.
Every d0 2 D n fdg and b0 2 B n fbg induce a hole b; d; b0; d0; b of length four. By assumption
this hole is balanced. Hence b0d0 must have weight +1. 2
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Remark 2.5 Let G be a signed bipartite graph with no unbalanced hole of length 4. By
Lemma 2.4 there exists a signed graph G0, which is obtained from G by a sequence of scalings,
such that all the edges in E(KA1A2

)[E(KB1B2
) have weight +1, since KA1A2

and KB1B2
are

node disjoint.

Proof of Theorem 2.3: By Remark 2.5 we can assume that all the edges in E(KA1A2
) and

E(KB1B2
) have weight +1. First we show that G1 and G2 are balanced if G is balanced.

Every hole H in G1 corresponds to a hole H 0 in G, except for the case where H contains
nodes �1 and �1 and no other nodes of M1, and A2 [B2 is a biclique in G. The existence of
such a biclique would contradict our assumption that E(KA1A2

)[E(KB1B2
) is a 2-join that is

not rigid. The hole H 0 has the same weight as H , since all the edges of E(KA1A2
)[E(KB1B2

)
are signed positive. Thus G1 is balanced if G is balanced. Similarly for G2.

Now assume that G1 and G2 are balanced, but G is not. Let H be an unbalanced hole
of G. If it contains no edge of G0

2, there exists a hole in G1 which is unbalanced. The same
argument holds for G0

1. So H must contain both an edge of G0
1 and an edge of G0

2. Hence
H must contain an edge of E(KA1A2

) [ E(KB1B2
), say an edge a1a2 where a1 2 A1 and

a2 2 A2. Since H is a hole it cannot contain any node of KA1A2
n fa1; a2g. So H must

also contain an edge b1b2 where b1 2 B1 and b2 2 B2, and similarly H cannot contain any
node of KB1B2

n fb1; b2g. So H = a1; a2; P2; b2; b1; P1; a1 where P2 is a path in G0
2 from a2

to b2 having no intermediate nodes in A2 [B2, and P1 is a path in G0
1 from b1 to a1 having

no intermediate nodes in A1 [ B1. Since the hole a1; �1;M1; �1; b1; P1; a1 is balanced in G1,
w(P2) and w(M1) are not congruent modulo 4. But by de�nition of a block, there exists a
path Q2 in G0

2 from a02 2 A2 to b02 2 B2, such that w(Q2) is congruent to w(M1) modulo 4.
The holes H1 = a02; Q2; b

0
2; �2;M2; �2; a

0
2 and H2 = a2; P2; b2; �2;M2; �2; a2 in G2 have distinct

weights modulo 4. Hence one of them must be unbalanced, contradicting our assumption. 2

2.2 6-Join Decomposition

Let G be a signed bipartite graph that has a 6-join E(A). Blocks G1 and G2 of a 6-join
decomposition are constructed as follows. For i = 1; : : : ; 6 let ai be any node of Ai. G1 is a
subgraph of G induced by the node set V1 [ fa2; a4; a6g and G2 is a subgraph of G induced
by the node set V2 [ fa1; a3; a5g.

Theorem 2.6 Let G1 and G2 be the blocks of the decomposition of the signed bipartite graph
G by a 6-join E(A). If G does not contain an unbalanced hole of length 4 or 6, then G is
balanced if and only if both G1 and G2 are balanced.

We �rst prove the following lemma.

Lemma 2.7 If A does not contain an unbalanced hole of length 4 or 6, then there exists a
signing of G which is obtained by a sequence of scalings on the nodes of A, such that for every
biclique KAiAi+1

; i 2 f1; : : : ; 6g (where indices are taken modulo 6) the edges in the biclique
are all signed +1 or they are all signed -1.

Proof: By Lemma 2.4 we can sign all the edges in E(KA1A2
); E(KA3A4

) and E(KA5A6
) to

be +1. W.l.o.g. let E(KA2A3
) contain an edge signed +1 and another signed -1. Now there
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exist in A two holes of length 6 which di�er in weight by 2. Clearly one of these must be
unbalanced contradicting our assumption that A contains no unbalanced hole of length 6. 2

Proof of Theorem 2.6: It follows from the de�nition of the blocks that G1 and G2 are
induced subgraphs of G and so are balanced if G is balanced.

To prove the converse assume that G1 and G2 are balanced, but G contains an unbalanced
hole H . By Lemma 2.7 we may assume that for every biclique KAiAi+1

; i 2 f1; : : : ; 6g, the
edges of the biclique are all signed +1 or they are all signed �1. So H must contain an edge
with both ends in V2, since otherwise there exists a hole in G1 which is unbalanced. Similarly
H must also contain an edge with both ends in V1. Since H is a hole it must have exactly
4 nodes in common with V (A). Then w.l.o.g. H = a001; P1; a

00
5; a

00
4; P2; a

00
2; a

00
1 where a001 2 A1,

a002 2 A2, a
00
4 2 A4, a

00
5 2 A5, P1 is a path with nodes in V1 that connects a

00
1 to a005 , and P2 is

a path with nodes in V2 that connects a
00
2 to a004. The hole H1 = a001 ; P1; a

00
5; a6; a

00
1 is a hole of

G1 and H2 = a002; P2; a
00
4; a3; a

00
2 is a hole of G2. Since G1 and G2 are balanced, both H1 and

H2 are balanced. Also H 0 = a001 ; a
00
2; a3; a

00
4; a

00
5; a6; a

00
1 is a hole of G (A in particular) and by

the construction of blocks the edges a001a6 and a6a
00
5 (resp. a

00
2a3 and a

00
4a3) are signed in G the

same as the corresponding edges a001a6 and a6a
00
5 (resp. a

00
2a3 and a

00
4a3) are signed in G1 (resp.

G2). So w(H
0) � (w(H) + w(H1) + w(H2)) mod 4. Since H is unbalanced and H1 and H2

are balanced, this implies that w(H 0) � 2 mod 4, and hence H 0 is an unbalanced hole of A,
contradicting the assumption that G does not contain an unbalanced hole of length 6. 2

3 Node Cutset Decompositions

Let S be a node cutset in a signed bipartite graph G, and let C1; : : : ; Ck be the connected
components of G n S. We de�ne the blocks of decomposition to be signed bipartite graphs
G1; : : : ; Gk, where each Gi is a subgraph of G induced by the node set V (Ci) [ S.

With this de�nition of blocks, the decomposition by an extended star cutset is not B-
preserving. For example, consider an odd wheel (H; x) in which all the spokes have weight
+1, and the sectors are of weight 2 modulo 4. Then the wheel is not balanced, since H
is an unbalanced hole, but all the blocks of decomposition by a star cutset N(x) [ fxg are
balanced.

In the next section we de�ne a notion of a clean unbalanced hole and show that either
some such hole is not broken by the node cutset decompositions we use in the recognition
algorithm, or an unbalanced hole is detected while performing the decomposition.

To ensure that we end up with a polynomial number of blocks, instead of using extended
strar cutset decompositions, we use the removal of dominated nodes together with double
star cutset decompositions. A node u is said to be dominated if there exists a node v, distinct
from u, such that N(u) � N(v). A graph is said to be undominated if it does not contain
any dominated nodes. A double star cutset in a graph G is a node cutset S = N(u)[N(v),
where uv is an edge of G.

Lemma 3.1 [3] If a bipartite graph contains an extended star cutset, then it contains a
dominated node or a double star cutset.
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3.1 Decompositions in Clean Graphs

De�nition 3.2 A node u is strongly adjacent to a hole H in the graph G, if u is not a
node of H and it has at least two neighbors in H. It is odd-strongly adjacent if it has an
odd number of neighbors in H and it is even-strongly adjacent if it has an even number of
neighbors in H.

De�nition 3.3 A tent �(H; u; v) is a subgraph of G induced by node set V (H)[fu; vg, where
H is a hole of G and u 2 V r and v 2 V c are adjacent nodes which are even-strongly adjacent
to H with the following property: the nodes of H can be partitioned into two subpaths Pu and
Pv containing the nodes in N(u)\H and N(v)\H respectively. A tent �(H; u; v) is referred
to as a tent containing H.

De�nition 3.4 A hole H is said to be clean in G if the following three conditions hold:

(i) No node is odd-strongly adjacent to H.

(ii) Every even-strongly adjacent node to H has exactly two neighbors in H and these two
neighbors are at distance two in H.

(iii) There is no tent containing H.

De�nition 3.5 Let G be a signed bipartite graph containing a hole H. Then CG(H) =
fHi j Hi is obtained from H by a sequence of holes H = H0; H1; : : : ; Hi, where Hj and Hj�1,
for j = 1; 2; : : : ; i, di�er in one node g.

Lemma 3.6 Let G be a signed bipartite graph which contains no unbalanced holes of length
4. Let H be an unbalanced hole in G. If H 0 and H di�er in at most one node, then H 0 is
unbalanced.

Proof: Let H 0 be obtained from H by replacing node u by node v. Let x and y be the
common neighbors of u and v in H . Since G contains no unbalanced of length four, the paths
x; u; y and x; v; y have the same weight modulo 4. Thus, H 0 is unbalanced. 2

An unbalanced hole H� of G is smallest if its number of edges is smallest.

Lemma 3.7 If H� is a smallest unbalanced hole in G, then every even-strongly adjacent
node to H� has exactly two neighbors in H� and these two neighbors are at distance two in
H�.

Proof: Suppose u has an even number of neighbors, u1; u2; : : : ; u2k; k � 2 in H�. Let
Si; i = 1; 2; : : : ; 2k be the sectors of (H�; u) having nodes ui; ui+1 as endnodes (where indices
are taken modulo 2k).

By scaling of the graph at every node ui for which the edge uui has weight �1, we can
obtain a graph in which all the spokes of (H�; u) have weight +1. Now since H� is unbalanced,
there is a sector, say Si, of weight 0 mod 4. Then the hole u; ui; Si; ui+1; u is unbalanced and
has smaller length than H�. Hence if u is an even-strongly adjacent node in H� it must have
exactly two neighbors, say u1 and u2. W.l.o.g the edges uu1 and uu2 have weight +1. Clearly
the two u1u2-subpaths of H

� say P1 and P2, are such that one of them is of weight 0 mod 4
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and the other is of weight 2 mod 4. Suppose P2 is of weight 2 mod 4. Then P2 must have
length two for otherwise u; u1; P1; u2; u would be an unbalanced hole of smaller length than
H� . Hence u1 and u2 are at distance 2 in H�. 2

When referring to a tent �(H�; u; v) we assume that H� is a smallest unbalanced hole.
By Lemma 3.7, u has two neighbors in H� say u1; u2, both adjacent to u0 in H�. Similarly
the neighbors of v in H� are v1; v2, both adjacent to v0 in H�. We assume that nodes
u1; u0; u2; v1; v0; v2 are encountered in this order, when traversing H�.

De�nition 3.8 A wheel with three spokes and at least two sectors of length 2 is said to be a
short 3-wheel.

Lemma 3.9 Let G be a signed bipartite graph containing a smallest unbalanced hole H�, but
not containing a short 3-wheel and not containing an unbalanced hole of length 4. If H� is
clean in G, then every hole H�

i in CG(H
�) is clean in G.

Proof: It su�ces to show that, if H�
1 is a hole that di�ers from H� in only one node, then

H�
1 is clean in G.
By Lemma 3.6, H�

1 is an unbalanced hole of smallest length. By Lemma 3.7, condition (ii)
of De�nition 3.4 is satis�ed. Hence, if the lemma is false, condition (i) or (iii) of De�nition
3.4 is not satis�ed. Therefore we consider the following two cases.

Case 1: Condition (i) of De�nition 3.4 is not satis�ed.

Now a node w must be odd-strongly adjacent to H�
1 . Since no node is odd-strongly

adjacent to H�, it follows that w has three neighbors, say w1; w2; w3 in H�
1 . Two of these

neighbors, say w1 and w2 must be in H
� and, by Lemma 3.7, they have a common neighbor,

say w0 in H�. Since w3 is in H�
1 but not in H�, it follows that H�

1 is obtained from H� by
replacing some node u 6= w1; w2 in H

� with w3. Let u1 and u2 be the neighbors of u in H�.
Note that w3 is adjacent to u1 and u2 and u does not coincide with w1 or w2. Hence u1 and
u2 do not coincide with w0. Now �(H�; w3; w) is a tent, contradicting the assumption that
H� is clean in G.

Case 2: Condition (iii) of De�nition 3.4 is not satis�ed.

There must be a tent �(H�
1 ; u; v). We �rst show the following claim:

Claim: At least one of the nodes u1; u2; v1; v2 does not belong to the hole H�.

Proof of Claim: Assume not. Since u and v are not in H�
1 , it follows that at most one

of them is in H�. If u is in H�, then u0 is not in H� and v is odd-strongly adjacent to H�,
contradicting (i) of De�nition 3.4. So u is not in H� and, by symmetry, node v is not in H�.

Let w 6= u1; u2; v1; v2 be a node in H� but not in H�
1 . Nodes w and u are not adjacent,

otherwise node u is odd-strongly adjacent to H�, contradicting the assumption that H� is
clean. By symmetry, it follows that nodes w and v are not adjacent. Now �(H�; u; v) is a
tent, contradicting the assumption that H� is clean and the proof of the claim is complete.

By the above claim, one of the nodes u1; u2; v1; v2 is not in H
�. Assume w.l.o.g. that u2

is not in H�. Clearly, node u is not in H�. Node v is not in H�, otherwise node v0 is not in
H�, node u2 coincides with v0 and �(H

�
1 ; u; v) is not a tent.
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Thus the hole H�
1 is obtained from H� by replacing a node w with u2, where w is

adjacent to u0. Let u3 in H� be the other neighbor of u2. It follows that u3 is adja-
cent to w. Let Q denote the v1u3-subpath of H� not containing v2. Consider the hole
C = u; v; v1; Q; u3; w; u0; u1; u. Now the wheel (C; u2) is a short 3-wheel, contradicting the
fact that G does not contain a short 3-wheel. 2

De�nition 3.10 A signed bipartite graph G is clean if either G is balanced or G contains a
smallest unbalanced hole H� such that all the holes in CG(H

�) are clean.

In the next section we show how to construct, from a signed bipartite graph G, a clean
graph G0 that has the property that G is balanced if and only if G0 is.

Lemma 3.11 Let G be a clean graph with family CG(H
�) of clean smallest unbalanced holes.

Let u be a dominated node of G and let G0 = Gnfug. Then some hole in CG(H
�) is contained

in G0.

Proof: If u is not in H�, then H� belongs to G0. So assume that u 2 V (H�) and that it
is dominated by node v. Let u1 and u2 be the neighbors of u in H�. Then v is adjacent to
u1 and u2, and since H� is clean, these are the only neighbors of v in H�. The hole induced
by the node set (V (H�) n fug) [ fvg is in CG(H

�) and is contained in G0. 2

De�nition 3.12 A 3PC(x; y), with the three paths P1, P2 and P3, is decomposition de-
tectable w.r.t. the double star cutset S = N(u)[N(v) if P1 = x; u; v; y and the intermediate
nodes of P2 and P3 are in di�erent components of G n S.

Lemma 3.13 Let G be a clean graph with family CG(H
�) of clean smallest unbalanced holes.

Furthermore assume that G does not contain an unbalanced hole of length 4. When decom-
posing G with a double star cutset S, then either some hole in CG(H

�) is contained in one of
the blocks of the decomposition or there exists a decomposition detectable 3PC(x; y) w.r.t. S.

Proof: Let S = N(u)[N(v) be a double star cutset of G. Let C1; : : : ; Ck be the connected
components of G n S and G1; : : : ; Gk be the corresponding blocks of decomposition. We
consider the following three cases.

Case 1: Both nodes u and v belong to H�.

Let u1 (resp. v1) be the neighbor of u (resp. v) in H� that is distinct from v (resp. u).
The nodes of V (H�) n fu; v; u1; v1g are in some connected component Ci and hence H� is
contained in Gi.

Case 2: Exactly one of the nodes u or v is in H�.

Assume w.l.o.g. that u is in H� and v is not. Let u1 and u2 be the neighbors of u in
H�. Note that, since H� is clean, v can have at most one neighbor distinct from u in H�.
First suppose that v does not have any neighbor other than u in H�. Then the node set
V (H�) n fu; u1; u2g is contained in some connected component Ci and hence Gi contains H

�.
Now suppose that v has a neighbor v1, distinct from u, in H�. Nodes v1 and u must have
a common neighbor in H�, say u1. Then the node set V (H�) n fv1; u; u1; u2g is contained in
some connected component Ci and hence Gi contains H

�.

10



Case 3: Neither u nor v is in H�.

Assume w.l.o.g. that jN(u)\ V (H�)j � jN(v)\ V (H�)j. We consider the following three
subcases.

Case 3.1: N(u)\ V (H�) = ;

If jN(v) \ V (H�)j = 0 or 1, then H� is contained in some block Gi. Suppose that
N(v) \ V (H�) = fv1; v2g. Let v0 be the common neigbor of v1 and v2 in H�. The node set
V (H�)nfv0; v1; v2g is contained in some connected component Ci. Let H be the hole obtained
from H� by replacing v0 with v. Then H belongs to CG(H

�) and the block Gi contains H .

Case 3.2: N(u)\ V (H�) = fu1g

Then jN(v)\ V (H�)j = 1 or 2. First suppose that N(v)\ V (H�) = fv1g. If u1 and v1
are adjacent in H�, then H� is contained in some block Gi. Suppose that u1 and v1 are not
adjacent. Let P and Q be the two u1v1-subpaths of H

�. The nodes of V (P ) n fu1; v1g are
contained in some connected component Ci and the nodes in V (Q) n fu1; v1g are contained
in some connected component Cj. If i = j then H� is contained in the block Gi. If i 6= j

then the node set V (H�) [ fu; vg induces a decomposition detectable 3PC(u1; v1) w.r.t. S.
Now suppose that N(v)\ V (H�) = fv1; v2g. Let v0 be the common neighbor of v1 and

v2 in H
�. If u1 = v0 then H

� is contained in some block Gi. So suppose that u1 6= v0. Scale
at v1 and v2 to get the edges vv1 and vv2 to have weight +1. Since G does not contain an
unbalanced hole of length 4, the weight of the path v1; v0; v2 is congruent to 2 mod 4. Scale
at u and u1 to get the edges uv and uu1 to have weight +1. Let P be the u1v1-subpath of
H� that does not contain v2, and let Q be the u1v2-subpath of H� that does not contain
v1. Then w(P ) and w(Q) are congruent to 1 or 3 mod 4. Since the weight of the path
v1; v0; v2 is congruent to 2 mod 4, w(P ) 6� w(Q) mod 4. If u1 is not adjacent to v1 or v2,
then either v; u; u1; P; v1; v or v; u; u1; Q; v2; v is an unbalanced hole of length smaller than
H�. So suppose w.l.o.g. that u1 is adjacent to v1. Then the nodes of V (H�) n fu1; v1; v0; v2g
are contained in some connected component Ci. Let H be the hole obtained from H� by
replacing v0 with v. Then H belongs to CG(H�) and the block Gi contains H .

Case 3.3: N(u)\ V (H�) = fu1; u2g

Then N(v) \ V (H�) = fv1; v2g. Let u0 be the common neighbor of u1 and u2 in H� and
let v0 be the common neighbor of v1 and v2 in H

�. Since there is no tent containing H� and
N(u)\V (H�) = fu1; u2g and N(v)\V (H�) = fv1; v2g, we have that u0 is adjacent to v and
v0 is adjacent to u. Therefore H

� is contained in some block Gi. 2

3.2 Properties of Smallest Unbalanced Holes

Let H be a hole of G. By Ar(H) (resp. Ac(H)) we denote the set of all odd-strongly adjacent
nodes to H which belong to V r (resp. V c).

Theorem 3.14 Let G be a signed bipartite graph which does not contain an unbalanced hole
of length 4. Let H� be a smallest unbalanced hole of G. Then H� contains two edges x1x2
and y1y2 such that

(i) Ar(H
�) � N(x1) [N(y1)
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(ii) Ac(H�) � N(x2) [N(y2)

(iii) for every tent �(H�; u; v), either u 2 N(x1) [N(y1) or v 2 N(x2) [N(y2).

This section is devoted to the proof of the above theorem. We assume that G is a signed
bipartite graph that is not balanced but does not contain an unbalanced hole of length 4. We
denote by H� a smallest unbalanced hole of G.

Lemma 3.15 If u; v 2 Ac(H
�), then they have at least one common neighbor in H�. More-

over in any sector of (H�; v), node u has either an even number of neighbors, or exactly one
neighbor adjacent to v.

Proof: First we show that u cannot have an odd number, greater than one, of neighbors
in any one sector of (H�; v). Suppose not. Let u have an odd number of neighbors, greater
than one in sector Sk of (H�; v). Let H = v; Sk; v. Now (H; u) is an odd wheel, therefore this
wheel contains an unbalanced hole which must be of smaller length than H�. Hence u must
have either an even number or exactly one neighbor in any sector of (H�; v).

Next we show that if node u has exactly one neighbor in some sector then this node is
also adjacent to v. This in turn implies that at least one node in H� is a neighbor of both u
and v since node u has an odd number of neighbors in H�.

Suppose in sector Sk node u has a unique neighbor uk which is not a neighbor of v.
Let vk�1 and vk be the end nodes of Sk , P1 and P2 be the vk�1uk and vkuk-subpaths of Sk
repectively. Since u is strongly adjacent to H�, it has a neighbor in another sector, say Sl
having one endnode vl distinct from vk�1 and vk . Let ul be the neighbor of u closest to vl in
sector Sl. (Note that since u; v 2 V c, then vk�1; vk; ul 2 V r and hence ul cannot be adjacent
to vk�1 or vk). Now there is a 3PC(uk; v) using paths P1, P2 and nodes ul and vl. This
3-path con�guration must contain an unbalanced hole which must be of smaller length than
H�, which contradicts our choice of H�. 2

Lemma 3.16 Every three nodes in Ac(H�) have a common neighbor in H�.

Proof: Let U = fu1; u2; u3g � Ac(H�). Note that by Lemma 3.15 every pair of nodes in
Ac(H

�) has a common neighbor in H�. Assume that there is no node of H� that is adjacent
to all three nodes of U .

Let A12 be the set of nodes of H� adjacent to u1 and u2. A13 and A23 are analogously
de�ned.

By our assumption A12\A23 = ;. Consider the wheel (H�; u1) and the strongly adjacent
node u3. For any j; k 2 f1; 2; 3g with j 6= k, de�ne Ao

jk = fv 2 Ajkj in the two adjacent
sectors of (H�; uj) with the common node v, there are in total an odd number of neighbors
of ukg. (Note that this de�nition is not symmetric, i.e. Ao

jk is not necessarily equal to Ao
kj).

Now we prove two claims.

Claim 1: Ao
jk contains an odd number of elements.

Proof of Claim 1: We prove that jAo
13j is odd. Consider the wheel (H�; u1) and let

S1; : : : ; Sn be the sectors of this wheel, with Si having endnodes si and si+1 (where indices
are taken modulo n). For every i = 1; : : : ; n let xi denote the number of neighbors of u3 in
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sector Si. By Lemma 3.15 every sector of (H�; u1) either has an even number of neighbors
of u3 or exactly one neighbor, in which case the neighbor is in A13. This and the de�nition
of Ao

13 leads to the following properties:

(a) If si 2 Ao
13 then either xi�1 = xi = 1, or both xi�1 and xi are even.

(b) If si 2 A13 nA
o
13 then either xi�1 = 1 and xi is even, or xi�1 is even and xi = 1.

(c) If si and si+1 are not in A13 then xi is even.

Now we show that

nX

i=1

xi � jA13 nA
o
13j mod 2 (1)

Clearly the parity of
Pn

i=1 xi is the parity of the number of sectors with an odd number
of neighbors of u3. We refer to these sectors as odd sectors. By Properties (a), (b) and (c), if
Si is an odd sector, then it has exactly one neighbor of u3 (i.e. xi = 1), and either si or si+1
is an element of A13. Each element in A13 belongs to 0; 1 or 2 odd sectors. Clearly the parity
of the number of odd sectors is equal to the parity of the number of elements in A13 which
belong to exactly one odd sector. By Properties (a) and (b), A13 nAo

13 is the set of elements
of A13 that belong to exactly one odd sector. Thus the parity of

Pn
i=1 xi is the same as the

parity of jA13 nAo
13j.

In the summation
Pn

i=1 xi, every neighbor of u3 which is in A13 is counted twice, so the
total number of neighbors of u3 on H

� is

jN(u3) \ V (H
�)j =

nX

i=1

xi � jA13j (2)

Now by (1) and (2) we have

jN(u3) \ V (H
�)j � (jA13 nA

o
13j � jA13j) mod 2

� �jAo
13j mod 2

Since u3 is an odd-strongly adjacent node toH
�, we have that jAo

13j is odd. This completes
the proof of Claim 1.

Claim 2: Let v1; v2 2 V (H�) n A12 be neighbors of u1 and u2 respectively. If P is a
v1v2-subpath of H�, such that u1 and u2 have no neighbors in V (P ) n fv1; v2g, then u3 has
an even number of neighbors on P .

Proof of Claim 2: Suppose that u3 has an odd number of neighbors on P .
Assume �rst that u3 has exactly one neighbor v3 on P .
W.l.o.g v3 6= v1. By Lemma 3.15, any two nodes of Ac(H�) have a common neighbor

on H�. Let v12 2 V (H�) be a common neighbor of u1 and u2, and let v13 2 V (H�) be a
common neighbor of u1 and u3. By our assumption A12 \ A13 = ;, so v12 6= v13. Now there
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is a 3PC(v3; u1) where nodes v1; v12; v13 belong to distinct paths of the 3-path con�guration,
which must contain an unbalanced hole of length smaller than H�. This contradicts our
choice of H�.

Assume now that u3 has an odd number of neighbors, greater than one, on P .
Let v12 be de�ned as above. Now there is an odd wheel (C; u3), where C = u1; v1; P; v2; u2; v12; u1.

Since u1 is an odd-strongly adjacent node either the v1v12-subpath of H� that does not con-
tain v2 or the v2v12-subpath of H� that does not contain v1, is of length greater than two.
Therefore the wheel contains an unbalanced hole of length smaller than H�, which contradicts
our choice of H�. This completes the proof of Claim 2.

Now let s1; : : : ; sn be the neighbors of u1 on H
�, and t1; : : : ; tm be the neighbors of u2 on

H�. Let P1; : : : ; Pl be all the subpaths ofH
�, whose endnodes belong to fs1; : : : ; sn; t1; : : : ; tmg

but have no intermediate node in this set. For every i = 1; : : : ; l, let xi denote the number of
neighbors of u3 in Pi. Let the endnodes of Pi be denoted by pi and pi+1 (where the indices
are taken modulo l). By Lemma 3.15 and Claim 2, if xi is odd, then xi = 1. Furthermore,
by property (c) in Claim 1, if xi = 1 then exactly one of pi or pi+1 is in A13 [A23.

The Pi's with exactly one neighbor of u3 are characterized as follows:

(i) If xi = 1 and pi 2 Ao
13, then by Claim 2, pi+1 is a neighbor of u1. Now by Property (a)

in Claim 1 xi�1 = 1 and hence by Claim 2, pi�1 is a neighbor of u1. Similarily if xi = 1
and pi 2 Ao

23, then xi�1 = 1 and both pi�1 and pi+1 are neighbors of u2.

(ii) If xi = 1 and pi 2 A13 n Ao
13, then by Claim 2, pi+1 is a neighbor of u1. Also either

by Property (b) in Claim 1 or by Claim 2, xi�1 is even. Similarily if xi = 1 and
pi 2 A23 nAo

23, then pi+1 is a neighbor of u2 and xi�1 is even.

In the summation
Pn

i=1 xi, every neighbor of u3 which is in A13 [ A23 is counted twice,
so the total number of neighbors of u3 on H

� is

jN(u3) \ V (H
�)j =

nX

i=1

xi � jA13j � jA23j (3)

Further we will show that

nX

i=1

xi � (jA13 nA
o
13j+ jA23 nA

o
23j) mod 2 (4)

Now by (3) and (4) we have

jN(u3) \ V (H�)j � (jA13 nAo
13j � jA13j+ jA23 nAo

23j � jA23j) mod 2
� �(jAo

13j+ jAo
23j) mod 2

By Claim 1 (jAo
13j+ jA

o
23j) is even, which contradicts our choice of u3. Thus A13 and A23

cannot be disjoint.
Now we prove (4). Clearly the parity of

Pn
i=1 xi is the same as the parity of the number

of sectors with an odd number of neighbors of u3. Recall that if Pi has an odd number of
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neighbors of u3, then it has exactly one neighbor (i.e. xi = 1) and exactly one of pi or pi+1 is
an element of A13[A23. W.l.o.g. let pi 2 A13[A23. Pair o� Pi�1 and Pi if the only neighbor
of u3 in these paths is the node common to Pi�1 and Pi, namely pi. By Property (i) and (ii)
this is possible if and only if pi 2 Ao

13 [ A
o
23. Notice that in this case xi�1 + xi = 2 and the

sectors together provide an even count in the sum
Pn

i=1 xi. Hence the parity of
Pn

i=1 xi is
the same as the parity of jA13 nA

o
13j+ jA23 nA

o
23j, and so (4) holds.

This completes the proof that A13 and A23 are not disjoint. Hence we have proved the
lemma. 2

Lemma 3.17 H� contains a node adjacent to all the nodes in Ac(H
�) and a node adjacent

to all the nodes in Ar(H
�).

Proof: By symmetry, it su�ces to prove the �rst statement. If H� is of length 6 or less
then the property clearly holds. Suppose now that H� has length greater than 6. Suppose
W � Ac(H�) is such that for every proper subset W 0 of W there exists a node of H� which
is adjacent to all nodes in W 0, but there exists no node of H� adjacent to all nodes in
W . By Lemma 3.15 and Lemma 3.16, jW j > 3. Let W = fwiji = 1; 2; : : : ; pg and let
Wl = fwiji = 1; : : : ; p; i 6= lg. Now for l = 1; 2; : : : ; p, all the nodes in Wl have a common
neighbor say tl, in H

�. Hence for i = 1; : : : ; p, node ti is adjacent to wj , for j = 1; : : : ; p; j 6= i,
but ti is not adjacent to wi. Now there exists an odd wheel, w1; t2; w3; t1; w2; t3; w1 with center
t4, hence it must contain an unbalanced hole smaller than H�. This contradicts the choice of
H�. 2

Lemma 3.18 For a tent �(H�; u; v) the following hold:

� Ar(H
�) � N(v0) [N(u1) or Ar(H

�) � N(v0)[N(u2).

� Ac(H
�) � N(u0) [N(v1) or Ac(H

�) � N(u0) [N(v2).

Proof: We prove the �rst part. Suppose w 2 Ar(H
�) is not adjacent to v0. Consider

the hole H�
1 obtained from H� by replacing v0 with node v of �(H�; u; v). By Lemma 3.6,

H�
1 is unbalanced, and since it is of the same length as H�, it also is a smallest unbalanced

hole. Now w cannot be adjacent to v, for otherwise w is even-strongly adjacent to H�
1 , which

violates Lemma 3.7. Node u is in Ar(H
�
1) and has neighbors u1, u2 and v in H�

1 . Since w is
not adjacent to v, by Lemma 3.17 it follows that w is adjacent to u1 or u2. Furthermore, by
Lemma 3.17 the nodes in Ar(H

�) which are not adjacent to v0 are either all adjacent to u1 or
they are all adjacent to u2. Therefore Ar(H�) � N(v0)[N(u1) or Ar(H�) � N(v0)[N(u2).
The second part of the lemma can be proved similarly. 2

Lemma 3.19 Let �(H�; u; v) and �(H�; w; y) be two tents, where w1; w2 are the neighbors
of w and y1; y2 are the neighbors of y in H�. Let w0 and y0 be the common neighbors in H�

of w1; w2 and y1; y2 respectively. Then at least one of the following properties holds:

� Nodes u1 and u2 coincide with w1 and w2.

� Nodes v1 and v2 coincide with y1 and y2.
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� Node u0 coincides with y1 or y2.

� Node v0 coincides with w1 or w2.

Proof: Suppose the contrary. Then node u does not coincide with w, node v does not
coincide with y , nodes u0 and y are not adjacent and nodes v0 and w are not adjacent. Let
P denote the u2v1-subpath of H� not containing any other neighbor of u or v. Similarly, let
Q denote the v2u1-subpath of H� not containing any other neighbors of u and v. Now it
follows that y1 and y2 are contained in P or Q since they are at distance two by Lemma 3.7,
and w1 and w2 are contained in P or Q. Assume w.l.o.g. that y1 and y2 are contained in P .
We now prove the following two claims.

Claim 1: Node y is not adjacent to u and node w is not adjacent to v.

Proof of Claim 1: Suppose that y and u are adjacent. Now there is an odd wheel
u2; P; v1; v; u; u2 with center y. This wheel contains an unbalanced hole, which is by con-
struction, of smaller length than H�, which contradicts our choice of H�. Hence y is not
adjacent to u. By symmetry, it follows that w is not adjacent to v. This completes the proof
of Claim 1.

Claim 2: Nodes w1 and w2 belong to Q.

Proof of Claim 2: Suppose not. Then w1 and w2 belong to P . By assumption, y1 and y2
belong to P . Let P 0 be the path obtained from P by substituting y for y0. Now by Claim
1, there is an odd wheel u2; P

0; v1; v; u; u2 with center w. This wheel contains an unbalanced
hole, which is by construction, of smaller length than H�. This contradics our choice of H�.
Hence w1 and w2 belong to Q. This completes the proof of Claim 2.

Now by Claim 1 and Claim 2, there is a 3PC(u; y) that uses at most as many edges as
there are in H�. This 3-path con�guration contains an unbalanced hole, of smaller length
than H�, which contradicts our choice of H�. 2

Proof of Theorem 3.14: First assume that there is no tent in G that contains H�. By
Lemma 3.17 H� contains a node x2 that is adjacent to all nodes in Ac(H�). By Lemma 3.17
H� contains a node y1 that is adjacent to all nodes in Ar(H

�). Let x1 be a neighbor of x2 in
H�, and let y2 be a neighbor of y1 in H�. Then the edges x1x2 and y1y2 satisfy (i), (ii) and
(iii).

Now assume that G contains a tent �(H�; u; v). By Lemma 3.18 Ar(H�) � N(v0)[N(u1)
or Ar(H

�) � N(v0) [ N(u2), and Ac(H
�) � N(u0) [ N(v1) or Ac(H

�) � N(u0) [ N(v2).
Assume that Ar(H�) � N(v0) [N(u1) and Ac(H�) � N(u0) [ N(v1). By Lemma 3.19, for
every tent �(H�; w; y) in G, either w 2 N(v0)[N(u1) or y 2 N(u0)[N(v1). Hence the edges
u0u1 and v0v1 satisfy (i), (ii) and (iii). The other cases follow similarly. 2

4 Recognition Algorithm and its Validity

In this section we present the algorithm that recognizes whether a signed bipartite graph is
balanced.
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4.1 Cleaning Procedure

CLEANING PROCEDURE

Input: A signed bipartite graph G which does not contain an unbalanced hole of length
4.

Output: A family L of induced subgraphs of G such that if G is not balanced, then some
G0 in L contains a smallest unbalanced hole that is clean in G0.

Step 1 Let L = fGg. Let U be the set of all (P1;P2) where P1 and P2 are chordless
paths in G of length 3.

Step 2 For every (P1 = x0; x1; x2; x3;P2 = y0; y1; y2; y3) 2 U , add toL the graph obtained
from G by removing the node set (N(x1) [N(x2) [N(y1)[N(y2)) n (V (P1) [ V (P2)).

Remark 4.1 The number of graphs in list L produced by the Cleaning Procedure is bounded
by jV rj4jV cj4.

Lemma 4.2 The Cleaning Procedure produces the desired output.

Proof: Assume that G is not balanced and let H� be a smallest unbalanced hole in G.
By Theorem 3.14 H� contains edges x1x2 and y1y2 that satisfy (i), (ii) and (iii) of Theorem
3.14. Let P1 = x0; x1; x2; x3 and P2 = y0; y1; y2; y3 be the two subpaths of H� with middle
edges x1x2 and y1y2. Let G0 be the graph obtained from G by removing the node set
(N(x1) [ N(x2) [ N(y1) [ N(y2)) n (V (P1) [ V (P2)). G0 is one of the graphs in L and it
contains H�. By Lemma 3.7 and Theorem 3.14, H� is clean in G0. 2

4.2 Short 3-Wheels

SHORT 3-WHEEL PROCEDURE

Input: A signed bipartite graph G.
Output: A short 3-wheel of G or the fact that G does not contain such a node induced

subgraph.

Step 1: Enumerate all distinct subsets of six nodes with three nodes in V r and three
nodes in V c and declare them as unscanned. Go to Step 2.

Step 2: If all subsets are scanned, G does not contain a short 3-wheel, stop. Otherwise
choose an unscanned subset U . If U induces a 6-cycle C = a1; a2; a3; a4; a5; a6; a1, having
unique chord a2a5, go to Step 3. Otherwise declare U as scanned and repeat Step 2.

Step 3: Remove the nodes in N(a2) [ N(a4) [ N(a5) [ N(a6) n fa1; a3g. If a1 and a3
are in the same connected component, then a short 3-wheel with spokes a2a1, a2a3, a2a5 is
identi�ed, stop. If not, remove the nodes in N(a1) [N(a2)[N(a3)[N(a5) n fa4; a6g. If a4
and a6 are in the same connected component, then a short 3-wheel with spokes a5a2, a5a4,
a5a6 is identi�ed, stop. Otherwise declare U as scanned return to Step 2.
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4.3 6-Join Decomposition

We now give an algorithm that �nds a 6-join in a connected undominated graph G or shows
that G does not have one.

Note that, if a connected undominated graph has a 6-join, then (using the notation given
in the introduction) there exists a node in V1 n (A1 [ A3 [ A5) that is adjacent to a node of
A1 [A3 [A5 (otherwise some node in A1 [A3 [A5 would be dominated) and there exists a
node in V2n(A2[A4[A6) that is adjacent to a node of A2[A4[A6. Let a1; : : : ; a6; u1; u2 be 8
distinct nodes of G such that fa1; : : : ; a6g induces a hole of length 6, u1 is adjacent to at least
one node in fa1; a3; a5g, and u2 is adjacent to at least one node in fa2; a4; a6g but not to u1.
The following rules yield a 6-join E(A) with fa1; a3; a5; u1g � V1 and fa2; a4; a6; u2g � V2,
or show that G does not have such a 6-join. (Note that if such a 6-join is found then, for
i = 1; : : : ; 6, ai 2 Ai, u1 2 V1 n (A1 [ A3 [ A5) and u2 2 V2 n (A2 [A4 [ A6)).

Initially V1 = fa1; a3; a5; u1g and V2 = V (G) n V1. Then forcing rules will be applied to
move nodes from V2 to V1.

During the algorithm the nodes u in V1 are partitioned into four sets:

� u 2 A1 if it is adjacent to a2 and a6 but not to a4,

� u 2 A3 if it is adjacent to a2 and a4 but not to a6,

� u 2 A5 if it is adjacent to a4 and a6 but not to a2,

� u 2 V1 n (A1 [A3 [ A5) if it is not adjacent to any node a2; a4; a6.

The case where some node u in V1 is adjacent to exactly one of the nodes a2; a4; a6 or to
all three of them will not be permitted.

Forcing rules that move nodes from V2 to V1 are as follows.

� If u 2 V2 n fa2; a4; a6; u2g is adjacent to at least one node in V1 n (A1 [ A3 [ A5) then
remove u from V2 and add it to V1.

� If u 2 V2 n fa2; a4; a6; u2g is adjacent to at least one node in A1 [A3 [ A5 and N(u) \
(A1[A3 [A5) 6= A1[A3, A3[A5 or A1[A5, then remove u from V2 and add it to V1.

Clearly, if there exists a 6-join E(A) with fa1; a3; a5; u1g � V1 and fa2; a4; a6; u2g � V2
and u satis�es one of the above rules, then u must be in V1.

If some node u which is moved from V2 to V1 does not satisfy the following: N(u) \
fa2; a4; a6g = ;, fa2; a4g, fa2; a6g or fa4; a6g, and N(u) \ fu2g = ;, then the algorithm
terminates since no 6-join E(A) with fa1; a3; a5; u1g � V1 and fa2; a4; a6; u2g � V2 exists.
If this situation never occurs, we continue moving nodes from V2 to V1 until no forcing rule
applies.

At this stage the nodes of V2 satisfy the following: no node of V2 is adjacent to a node
of V1 n (A1 [ A3 [ A5) and if a node u 2 V2 is adjacent to a node of A1 [ A3 [ A5 then
N(u) \ (A1 [ A3 [ A5) = A1 [ A3, A3 [ A5 or A1 [ A5. Denote by A2 the nodes of V2 that
are adjacent to all nodes in A1 [A3, by A4 the nodes of V2 that are adjacent to all nodes in
A3 [ A5 and by A6 the nodes of V2 that are adjacent to all nodes in A1 [A5. Let A be the
graph induced by the node set [6i=1Ai. Then E(A) is a 6-join of G with partition V1 and V2.
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To determine whether a graph G has a 6-join one would apply the above algorithm to all
8-tuples (a1; : : : ; a6; u1; u2) of nodes of G for which fa1; : : : ; a6g induces a hole of length 6,
u1 is adjacent to at least one node in fa1; a3; a5g, and u2 is adjacent to at least one node in
fa2; a4; a6g but not u1. Clearly all of this can be implemented to run in polynomial time.

Let S be a double star cutset in a graph G, and let G1; : : : ; Gk be the blocks of decompo-
sition. The re�ned blocks of decomposition are graphs G�

1; : : : ; G
�
k, where G

�
i is obtained from

Gi by removing all dominated nodes.
When we say "remove all dominated nodes from a graph F", we mean to apply the

following procedure:

Step 1: If F contains a dominated node u, then go to Step 2. Otherwise, stop and output F .

Step 2: Let F = F n fug and go to Step 1.

DOUBLE STAR CUTSET AND 6-JOIN DECOMPOSITION ALGORITHM

Input: A signed bipartite graph G that does not contain a short 3-wheel or an unbalanced
hole of length 4 or 6.

Output: Either G is identi�ed as not being balanced, or a list L of induced subgraphs
of G with the following properties:

� The graphs in L do not contain a 6-join, a double star cutset or any dominated nodes.

� If the input graph G contains a family CG(H�) of clean smallest unbalanced holes, then
one of the graphs G0 in L contains a hole H 0 of CG(H

�), and CG0(H 0) is a family of clean
smallest unbalanced holes in G0.

Step 1: Remove all dominated nodes from G and initialize M = fGg and L = ;.
Step 2: If M is empty, return L and stop. Otherwise, remove a graph F from M.
Step 3: If F contains a double star cutset S go to Step 4 and otherwise go to Step 5.

(Note that checking whether F contains a double star cutset involves checking for every pair
of adjacent nodes u and v whether S = N(u)[N(v) is a cutset).

Step 4: Check whether there exists a decomposition detectable 3PC(x; y) w.r.t. S. If
it does, identify G as not balanced and stop. Otherwise, construct the re�ned blocks of the
decomposition by S, add them to M and go to Step 2.

Step 5: Check whether F contains a 6-join. If it does, construct the blocks of the 6-join
decomposition, remove all dominated nodes from the blocks, add these graphs to M and go
to Step 2. Otherwise, add F to L and go to Step 2.

Theorem 4.3 The Double Star Cutset and 6-Join Decomposition Algorithm produces the
desired output.

Proof: Let G be a signed bipartite graph that does not contain an unbalanced hole of
length 4 or 6, or a short 3-wheel. If the algorithm terminates in Step 4, then G is correctly
identi�ed as not being balanced. So suppose that the algorithm does not terminate in Step 4.
By the construction of the algorithm, the graphs in L do not contain a 6-join, a double star
cutset or any dominated nodes. Suppose that G contains a family CG(H

�) of clean smallest
unbalanced holes. To prove the theorem it is enough to show the following.
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(1) If G0 is the graph obtained from G by removing dominated nodes, then G0 contains a
hole in CG(H

�).

(2) If G�
1; : : : ; G

�
k are the re�ned blocks of decomposition of G by a double star cutset, then

for some i, G�
i contains a hole in CG(H

�).

(3) If G1 and G2 are the blocks of decomposition of G by a 6-join E(A), then for some i,
Gi contains a hole in CG(H

�).

(4) If G0 contains a hole H 0 of CG(H�), then CG0(H 0) is a family of clean smallest unbalanced
holes in G0.

(1) and (2) follow from Lemma 3.11 and Lemma 3.13. (4) follows from the fact that if a
hole H 0 is clean in G, then it is also clean in any induced subgraph G0. To prove (3) suppose
that H� is contained in neither G1 nor G2. Then H

� must contain an edge of E(A). Since G
does not contain an unbalanced hole of length 6, not all of the edges of H� can be in E(A).
Hence w.l.o.g. we may assume that either (i) H� = a01; a

0
2; a

0
3; P1; a

0
1 where a

0
i 2 Ai for i = 1; 2

and 3, and P1 is a path with nodes in V1 from a01 to a
0
3, or (ii) H

� = a01; a
0
2; P2; a

0
4; a

0
5; P1; a

0
1

where a0i 2 Ai for i = 1; 2; 4 and 5, P1 is a path with nodes in V1 from a01 to a05, and P2
is a path with nodes in V2 from a02 to a04. If (i) holds, then the hole obtained from H� by
substituting a2 for a

0
2, is a hole of CG(H

�) and is contained in G1. So assume (ii) holds. Since
node a3 has neighbors a02 and a04 in H�, and H� is clean, the path P2 must be of length 2.
Similarly path P1 must be of length 2. Hence H� is of length 6, contradicting our assumption.
2

Lemma 4.4 The number of graphs in the list L produced by the Double Star Cutset and
6-Join Decomposition Algorithm is bounded by jV rj3jV cj3(jV rj+ jV cj).

Proof: Let G be a signed bipartite graph that does not contain a short 3-wheel, and
let L be the list of induced subgraphs of G produced by the algorithm. Note that we are
assuming that the algorithm does not terminate in Step 4, with identifying a decomposition
detectable 3PC(x; y). We prove the lemma by showing that the number of decompositions
used to decompose G by the algorithm is bounded by the number of chordless paths of length
5 in G. (So in the decomposition tree the number of parents of the leaves, i.e. graphs
added to L, is bounded by jV rj3jV cj3, and hence the number of graphs in L is bounded by
jV rj3jV cj3(jV rj + jV cj)). This will be shown by proving that if F is a graph decomposed in
Step 4 or Step 5 of the algorithm, F has the property that it contains a chordless path of
length 5 that is not contained in any of the blocks of decomposition that are added to list
M, and that no two blocks of decomposition contain the same chordless path of length 5. So
the lemma follows from the following four claims.

First suppose that F is decomposed in Step 5 by a 6-join E(A). Let F1 and F2 be the
blocks of decomposition.

Claim 1: F1 and F2 do not contain the same chordless path of length 5.

Proof of Claim 1: Any chordless path of length 5 in F1 must contain a node of V1 n (A1 [
A3 [A5) and hence cannot be a path of F2. This completes the proof of Claim 1.
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Claim 2: F contains at least one chordless path of length 5 that is contained neither in
F1 nor in F2.

Proof of Claim 2: By (iii) of the de�nition of a 6-join, jV1j � 4. Let U1 = V1n(A1[A3[A5).
We must have U1 6= ;, otherwise some node of A1[A3[A5 is dominated in F , a contradiction.
No node u 2 U1 can have neighbors in each of the sets A1, A3 and A5 since, otherwise, u
would be the center of a short 3-wheel. So, w.l.o.g. there exists a node u1 with no neighbor
in A5, but at least one neighbor in A1. In F , node u1 is not dominated by a node of A2.
This implies that u1 is adjacent to a node v1 2 U1 that is at distance two from A1 [A3 [A5,
i.e. v1; u1; a

0
1 is a chordless path where a01 2 A1. Similarly, let v2 be a node of F2 that is at

distance two from A2[A4[A6. Let v2; u2; a
0
i be a chordless path with u2 2 V2n(A2[A4[A6)

and a0i 2 Ai, i = 2; 4 or 6. If i = 2 or 6, then v1; u1; a
0
1; a

0
i; u2; v2 is the desired path. So

assume that i = 4 and u2 is not adjacent to any node of A2 [ A6. Then u1; a
0
1; a6; a5; a

0
4; u2

is the desired path. This completes the proof of Claim 2.

Now assume that F is decomposed in Step 4 by a double star cutset S = N(u) [ N(v).
Let C1; : : : ; Ck be the connected components of F nS. Let F1; : : : ; Fk be the blocks of decom-
position and F �

1 ; : : : ; F
�
k the re�ned blocks of decomposition. Note that F is an undominated

graph, and by the de�ntion of re�ned blocks so are F �
1 ; : : : ; F

�
k . Also, w.l.o.g. we assume that

F is a connected graph.

Claim 3: No two graphs F �
1 ; : : : ; F

�
k contain the same chordless path of length 5.

Proof of Claim 3: We actualy prove a stronger statement that no two graphs F �
1 ; : : : ; F

�
k

contain the same chordless path of length 3. Assume otherwise and let P = a; b; c; d be a
chordless path that is contained in both F �

i and F �
j , i 6= j. Then fa; b; c; dg � S. Since

a; b; c; d must alternate between N(u) and N(v), and P is a chordless path, u and v cannot
coincide with a or d, and similarly for v. So w.l.o.g. a 2 N(u) n fvg and d 2 N(v) n fug. If a
does not have a neighbor in Ci then a is dominated by v in Fi, and hence a is dominated by
some node in F �

i , contradicting the assumption that F �
i is an undominated graph. So a must

have a neighbor in Ci, and similarly it must have a neighbor in Cj . By the same argument
d has a neighbor in both Ci and Cj . But then there is a decomposition detectable 3PC(a; d)
w.r.t. S, contradicing our assumption. This completes the proof of Claim 3.

Claim 4: F contains at least one chordless path of length 5 that is not contained in any
of the graphs F �

1 ; : : : ; F
�
k .

Proof of Claim 4: Each of the connected components C1; : : : ; Ck must contain at least
two nodes, since F is an undominated graph. Since F is connected, a node of Ci, i = 1; : : : ; k,
must have a neighbor in S.

First assume that there exist nodes p1 2 V (C1) and p2 2 V (C2) such that they have
a common neighbor a1 2 N(u). Since jV (C1)j � 2, C1 contains a node q1 adjacent to p1.
Similarly C2 contains a node q2 adjacent to p2. Since q2 is not dominated by a1, q2 must have
a neighbor t2 that a1 is not adjacent to. If t2 is adjacent to q1, then t2 2 N(v) and hence
there is a decomposition detectable 3PC(a1; t2) w.r.t. S, contradicting our assumption. So
t2 is not adjacent to q1, and hence P = q1; p1; a1; p2; q2; t2 is the desired path.

Now assume that no two nodes, one from C1 and one from C2, have a common neighbor
in S. Let p1 (resp. p2) be a node of C1 (resp. C2) that is adjacent to a1 2 S (resp.
a2 2 S). Let q1 (resp. q2) be a neighbor of p1 (resp. p2) in C1 (resp. C2). If a1; a2 2 N(u),
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then P = q1; p1; a1; u; a2; p2 is the desired path. So we may assume that a1 2 N(u) and
a2 2 N(v). If a1a2 is not an edge then P = p1; a1; u; v; a2; p2 is the desired path. Otherwise,
P = q1; p1; a1; a2; p2; q2 is the desired path. This completes the proof of Claim 4. 2

4.4 2-Join Decomposition

In [6] an algorithm that either �nds a 2-join in a graph G or concludes that G does not have
one is given. We outline here this algorithm for the sake of completeness, in the case where
G contains no extended star cutset.

Lemma 4.5 Let G be a bipartite graph that has no extended star cutset. Then, in every
2-join, jV (G0

i)j � 4, for i = 1; 2.

Proof: By Lemma 2.2, the 2-join is not rigid. Suppose jV (G0
i)j � 3, for i = 1 or 2.

If there exists a node u 2 V (G0
i) n (Ai [ Bi), then jAij = jBij = 1 and, since the 2-join is

not rigid, (ii) of the de�nition of 2-join implies that u is adjacent to both these nodes. This
contradicts (iii) of the de�nition of 2-join.

So V (G0
i)n(Ai[Bi) = ;. By (ii) of the de�nition of 2-join, every node of Ai has a neighbor

in Bi and vice versa, every node in Bi has a neighbor in Ai. Since the 2-join is not rigid, this
implies that jAij � 2 and jBij � 2. 2

Let a1; b1; a2; b2 be 4 distinct nodes of a bipartite graph G, such that a1a2 and b1b2 are
edges, but a1b2, a2b1 are not. The following procedure yields a 2-join E(KA1A2

)[E(KB1B2
)

with a1 2 A1, b1 2 B1, a2 2 A2 and b2 2 B2, or shows that no such 2-join exists.
For every 2 distinct nodes u1; v1 2 V (G) n fa1; a2; b1; b2g, each adjacent to at most one

node in fa2; b2g, the following rules identify a partition of V (G) into V1 and V2, where
a1; b1; u1; v1 2 V1 and a2; b2 2 V2, such that the edges with one endnode in V1 and the other
in V2 induce two disjoint bicliques KA1A2

and KB1B2
satisfying Properties (i) and (ii) in the

de�nition of 2-join, or show that no such partition exists.
Initially we let V1 = fa1; b1; u1; v1g and V2 = V (G) n fa1; b1; u1; v1g. Then forcing rules

will be applied that will move nodes from V2 to V1.
During the algorithm, the nodes u in V1 are partitioned into three sets:

� u 2 A1 if ua2 is an edge but ub2 is not,

� u 2 B1 if ub2 is an edge but ua2 is not,

� u 2 V1 n (A1 [B1) if neither ua2 nor ub2 is an edge.

The case where some node u in V1 is adjacent to both a2 and b2 will not be permitted.
The forcing rules that move nodes from V2 to V1 are as follows.

� If u 2 V2 n fa2; b2g is adjacent to at least one node in V1 n (A1 [ B1), add u to V1 and
remove it from V2.

� If u 2 V2 n fa2; b2g is adjacent to some node in A1 [ B1 and N(u)\ (A1 [B1) 6= A1 or
B1, then add u to V1 and delete it from V2.
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Note that if there is a 2-join E(KA1A2
)[E(KB1B2

) with a1; b1; u1; v1 2 V1 and a2; b2 2 V2,
and u satis�es one of the above rules, then u would have to be in V1.

If some node u which is moved from V2 to V1 is adjacent to both a2 and b2, then the
algorithm terminates since no 2-join E(KA1A2

)[E(KB1B2
) with a1; b1; u1; v1 2 V1 and a2; b2 2

V2 exists. If this situation never occurs, we continue moving nodes from V2 to V1 until no
forcing rule applies.

At this stage the nodes of V2 satisfy the following: no node of V2 is adjacent to a node of
V1n(A1[B1), and if a node u of V2 is adjacent to a node of A1[B1 then N(u)\(A1[B1) = A1

or B1. Denote by A2 the nodes of V2 that are adjacent to all nodes in A1, and by B2 the
nodes of V2 that are adjacent to all nodes in B1. The edge set E(KA1A2

)[E(KB1B2
) satis�es

(i) of the de�nition of 2-join. By our assumption that G has no extended star cutset, (ii) of
the de�nition of 2-join holds as well.

Now, if (iii) also holds, we have a 2-join with a1; b1; u1; v1 2 V1 and a2; b2 2 V2. On the
other hand, if no choice of u1; v1 yields an edge set E(KA1A2

) [ E(KB1B2
) satisfying (iii),

then no 2-join with a1; b1 2 V1 and a2; b2 2 V2 exists. Indeed, the only way in which a choice
u1; v1 can fail to yield a 2-join with a1; b1; u1; v1 2 V1 and a2; b2 2 V2 when such a 2-join exists
is if, at termination, jA1j = jB1j = 1 and V1 induces a chordless path P . Furthermore, any
2-join with a1; b1; u1; v1 2 V 0

1 and a2; b2 2 V 0
2 satis�es V1 � V 0

1 . Therefore, the choice u1; v
0
1,

where v01 2 V 0
1 n V (P ) yields the desired 2-join.

To determine whether a bipartite graph G without extended star cutsets has a 2-join, one
would apply the above algorithm to all 4-tuples (a1; b1; a2; b2) of nodes of G for which a1a2
and b1b2 are edges, but a1b2, a2b1 are not. Clearly all of this can be implemented to run in
polynomial time.

2-JOIN DECOMPOSITION ALGORITHM

Input: A signed bipartite graph G that does not contain a short 3-wheel, an unbalanced
hole of length 4, an extended star cutset or a 6-join.

Output: A list of signed bipartite graphs L with the following properties:

� The graphs in L do not contain an extended star cutset, a 6-join or a 2-join.

� G is balanced if and only if all the graphs in L are balanced.

Step 1: Let M = fGg and L = ;.
Step 2: If M is empty, return L and stop. Otherwise remove a graph M from M.
Step 3: Check whether M has a 2-join. If it does not, then add M to L and go to Step

2. Otherwise, the 2-join is not rigid (we justify this in Theorem 4.6). Construct the blocks
of the 2-join decomposition, add them to M and go to Step 2.

Theorem 4.6 The 2-Join Decomposition Algorithm produces the desired output.

Proof: Let G be a signed bipartite graph that does not contain a short 3-wheel, an
unbalanced hole of length 4, an extended star cutset or a 6-join. Let E(KA1A2

) [ E(KB1B2
)

be a 2-join of G. Let G1 and G2 be the blocks of the decomposition. To prove the validity
of the algorithm it is enough to show that (i) G1 and G2 do not contain a short 3-wheel, an
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unbalanced hole of length 4, an extended star cutset or a 6-join, and (ii) G is balanced if and
only if G1 and G2 are balanced.

By Lemma 2.2, the 2-join is not rigid. So by Theorem 2.3, (ii) holds. By the construction
of the blocks, there is no hole of length less than 7 in the blocks that uses the marker paths.
Hence G1 and G2 do not contain an unbalanced hole of length 4, a short 3-wheel or a 6-join.

We now show that G1 and G2 do not contain an extended star cutset. Suppose w.l.o.g.
that G1 contains an extended star cutset S = (x;X ; Y ;R). Recall that the marker path M1

of G1 is of length 4 or 5. Let G0
i = Gi n V (Mi).

Case 1: Node x coincides with �1 or �1.

Assume w.l.o.g. that x coincides with �1. Since jE(M1)j � 4, �1 is not in S. So, S is a
cutset that separates �1 from a node in G0

1 n S. We can assume w.l.o.g. that the neighbor of
�1 in M1 is not in S, since the set obtained by removing that neighbor from S would also be
an extended star cutset of G1. So Y [R � A1. If S is a star cutset, i.e. X = fxg and R = ;,
then S� = Y [A2 is a biclique cutset of G, separating B2 from a node in G0

1 n S. So assume
that jX j � 2. Then at least two nodes of A1 are contained in Y . Let x� be any node of A2.
Then S� = (x�; (X [ A2) n fxg; Y ;R) is an extended star cutset of G separating B2 from a
node in G0

1 n S.

Case 2: Node x is an intermediate node of M1.

Since M1 has length at least 4, we must have jX j = 1, i.e. S is a star cutset. W.l.o.g.
assume �1 62 S. Then S separates �1 from a node in G0

1 n S. But then S0 = f�1g is also a
star cutset of G1. So, by Case 1, we are done.

Case 3: Node x is in A1 or B1.

W.l.o.g. assume that x is in A1. If �1 62 S, then S separates �1 from a node in G0
1 n S.

If �1 62 Y [ R, let S� = S. If �1 2 R, let S� = (x;X ; Y ; (R n f�1g) [ A2) and if �1 2 Y ,
let S� = (x;X ; (Y n f�1g) [ A2;R). Then S� is an extended star cutset of G separating
B2 from a node in G0

1 n S. So �1 2 S and hence �1 2 X . Thus Y � B1. Now S� =
(x; (X n f�1g) [ B2; Y ; (R n f�1g)[A2) is an extended star cutset of G separating a node of
G0
1 nS from a node of G0

2 n (A2[B2). Indeed, this graph is nonempty by the following claim.

Claim: V (G0
2) n (A2 [B2) 6= ;.

Proof: Assume otherwise, namely V (G0
2) n (A2 [ B2) = ;. By (ii) in the de�nition of a

2-join, every node of A2 has a neighbor in B2 and, vice versa, every node in B2 has a neighbor
in A2. Since the 2-join is not rigid, this implies that jA2j � 2 and jB2j � 2. Furthermore,
every node in A2 has a node in B2 that it is not adjacent to (otherwise, there is a star cutset)
and every node in B2 has a node in A2 that it is not adjacent to. Let u be a node of largest
degree in the graph induced by A2 [ B2. W.l.o.g. assume u 2 A2. Let Q be the set of
neighbors of u in B2 and let v 2 B2 n Q. Let w 2 A2 be a neighbor of v. Then w is not
adjacent to some node q 2 Q, by our choice of u. Since the 2-join is not rigid, A1 [B1 is not
a biclique, i.e. there exist a1 2 A1 and b1 2 B1 which are not adjacent. So ua1wvb1qu is a
6-hole. Now, if x is adjacent to b1, it induces a short 3-wheel with this 6-hole, a contradiction.
Therefore x is not adjacent to b1 and uxwvb1qu is a 6-hole. But then, any y 2 Y induces a
short 3-wheel with this 6-hole, a contradiction. This completes the proof of the claim.

Case 4: Node x is in G0
1 n (A1 [ B1).
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Not both �1 and �1 can be in S. Assume w.l.o.g. that �1 62 S. Then S is a cutset
separating �1 from a node in G0

1 n S. If �1 62 S, then S is a cutset of G separating B2 from a
node in G0

1 nS. So �1 2 S. Then �1 2 X , Y � A1 and hence S� = (x; (X n f�1g)[A2; Y ;R)
is an extended star cutset of G separating B2 from a node in G0

1 n S. 2

Lemma 4.7 The number of graphs in the list L produced by the 2-Join Decomposition Al-
gorithm is linear in the size of the input graph G.

Proof: For a graph G, let �(G) = jE(G)j� jV (G)j � 1.
First, we show that, if a connected graph G has a 2-join with blocks G1, G2, then �(G1)+

�(G2) < �(G). Consider a 2-join of G, say E(KA1A2
) [ E(KB1B2

), and let G0
1, G

0
2 be the

graphs described in the de�nition of a 2-join. Then

�(G) = jE(G0
1)j+ jE(G0

2)j+ jA1j � jA2j+ jB1j � jB2j � jV (G
0
1)j � jV (G0

2)j � 1

and
�(Gi) = jE(G0

i)j+ jAij+ jBij � jV (G0
i)j � 2:

Now �(G1) + �(G2) < �(G) follows by observing that any positive integers p, q satisfy
p+ q � p� q + 1.

Nowwe show that, if G has a 2-join but no extended star cutset, then �(G) > 0, �(G1) � 0
and �(G2) � 0. Since G has a 2-join, it has more than four nodes and therefore it is 2-
connected. Thus, for i = 1; 2, Gi is 2-connected as well and its number of edges is at least
jV (Gi)j, i.e. �(Gi) � �1. If �(Gi) = �1, then Gi is a hole, but this is impossible by Property
(iii) in the de�nition of a 2-join. Therefore �(Gi) � 0. Since �(G1)+�(G2) < �(G), it follows
that �(G) > 0.

This implies that the total number of blocks created in the 2-join decomposition algorithm
is at most 2�(G), i.e. it is linear in the size of the input graph. 2

4.5 Recognition Algorithm

We now give the recognition algorithm, prove its validity and polynomial time bound.

RECOGNITION ALGORITHM

Input: A signed bipartite graph G.
Output: YES if G is balanced and NO otherwise.

Step 1: Check whether G contains an unbalanced hole of length 4 or 6. If it does output
NO.

Step 2: Apply the Short 3-Wheel Procedure to check whether G contains a short 3-wheel.
If it does, output NO.

Step 3: Apply the Cleaning Procedure to G and let L1 be the output family of graphs.
Step 4: For each L 2 L1, apply the Double Star Cutset and 6-Join Decomposition

Algorithm. If L is identi�ed as not being balanced output NO, and otherwise union the
output with L2.

Step 5: For each L 2 L2, apply the 2-Join Decomposition Algorithm and union the
output with L3.
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Step 6: For each L 2 L3, check whether L is strongly balanced. If some L 2 L3 is not
strongly balanced, then output NO. If every L 2 L3 is strongly balanced, output YES.

Remark 4.8 An algorithm that tests whether a signed bipartite graph is strongly balanced is
given in [5]. Hence the details of Step 6 are omitted in this paper.

Theorem 4.9 The Recognition Algorithm produces the desired output and it can be imple-
mented to run in time polynomial in the size of the input graph G.

Proof: If G contains an unbalanced hole of length 4 or 6, a short 3-wheel or a 3-path
con�guration, then the algorithm correctly identi�es G as not being balanced. So suppose
that the algorithm does not terminate in Step 1, 2 or 4.

Claim 1: No L 2 L3 contains an extended star cutset, a 6-join or a 2-join.

Proof of Claim 1: The graphs in L2 do not contain a 6-join, a double star cutset or any
dominated nodes. By Lemma 3.1, they do not contain an extended star cutset. So by the
2-Join Decomposition Algorithm, graphs in L3 do not contain an extended star cutset, a
6-join or a 2-join. This completes the proof of Claim 1.

Claim 2: G is balanced if and only if all the graphs in L3 are balanced.

Proof of Claim 2: If G is balanced, then all the induced subgraphs of G are balanced, and
hence all the graphs in L3 are balanced. Suppose that G is not balanced. Then G contains
a smallest unbalanced hole H�. By the Cleaning Procedure, some graph G0 2 L1 contains
H� and H� is clean in G0. By Lemma 3.9 all the holes in CG0(H�) are clean in G0. By the
Double Star Cutset and 6-Join Decomposition Algorithm, some graph G00 2 L2 contains an
unbalanced hole in CG0(H�). So G is balanced if and only if all the graphs in L2 are balanced.
Then, by the 2-Join Decomposition Algorithm, G is balanced if and only if all the graphs in
L3 are balanced. This completes the proof of Claim 2.

So by Claim 1, Claim 2 and Theorem 1.1, G is balanced if and only if every L 2 L3 is
strongly balanced. Hence the algorithm correctly identi�es G as balanced or not balanced.

Now we show that the Recognition Algorithm can be implemented to run in time poly-
nomial in the size of the input graph G. Steps 1 and 2 can clearly be implemented to run in
polynomial time. By Remark 4.1, Lemma 4.4 and Lemma 4.7, the Cleaning Procedure, the
Double Star Cutset and 6-Join Decomposition Algorithm and the 2-Join Decomposition Al-
gorithm can be implemented to run in polynomial time. Furthermore, the number of graphs
in L3 is polynomial in the size of G. So by Remark 4.8, Step 6 can also be implemented to
run in polynomial time. 2
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