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It is well known that the performance of the classical Markowitz model for portfolio optimization is extremely
sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We
focus on ellipsoidal uncertainty sets around a point estimate of the expected asset returns. An important
issue is the choice of the parameters that specify this ellipsoid, namely the point estimate and the estimation-
error matrix. We show that there exist diagonal estimation-error matrices that achieve an arbitrarily small
loss in the expected portfolio return as compared to the optimum. We empirically investigate the sample
size needed to compute the point estimate. We also conduct an empirical study of different estimation-error
matrices and give a heuristic to choose the size of the uncertainty set. The results of our experiments show
that robust portfolio models featuring a family of diagonal estimation-error matrices outperform benchmark

portfolio models including the classical Markowitz model.
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1. Introduction
Consider a portfolio optimization problem where we allocate capital across n assets to maximize
the return on investment. If the return vector r € R” is known, the problem can be formulated as
MaXyepn {r"x:1"x =1}, where x denotes the fraction of investment in each asset assuming long
positions only. In this case, the problem has a trivial optimal solution: invest only in the asset with
the largest return.

In practice, however, investors must consider that the assets are risky and that the return vector
r ~ D belongs to some probability distribution. The classical mean-variance portfolio optimization
problem introduced by [Markowitz| (1952)) addresses this uncertainty by maximizing the ezpected
return of the portfolio subject to a constraint on the risk modeled as the variance of the portfolio
return. Let pp € R™ and 3 € R™*™ denote the expectation vector and covariance matrix of the asset
returns, respectively. Then the Markowitz model is formulated as

.
1
max #ox (1)
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subject to x' Ix < v (2)
17x=1. (3)
Despite the theoretical promise of this mean-variance model, practitioners face an overwhelming

challenge. The true expectation vector g and covariance matrix 3 of the random asset returns are

unknown. Therefore, one can only optimize — with estimated parameters.

1.1. Literature Review

It has been observed that even small errors in estimating p produce large changes in the returns of

portfolio holdings (see, for example, Best and Grauer|[1991}, |(Chopra and Ziemba, 1993, Michaud and|
. The issue of obtaining reliable estimates for p and 32 has been studied extensively,
leading to a vast literature. Several papers advocate the use of shrinkage estimators, such as the
James-Stein (James and Stein|[1992)), Jobson (Jobson![1979), Jorion (Jorion|[1986)), Frost-Savarino
(Frost and Savarino[1986)), and Ledoit-Wolf (Ledoit and Wolf][2003], 2004alb, 2020) estimators. The

James-Stein, Jobson, and Jorion procedures are estimators for the mean asset returns, the Frost-

Savarino procedure is a joint estimator of the means and covariances, and the Ledoit-Wolf procedure
is an estimator of the covariance. Shrinkage is often interpreted as a form of empirical Bayesian

procedure, which assumes a prior to establish an exogenous structure on potential estimates. We

refer the reader to|Avramov and Zhou (2010) for a survey of Bayesian procedures used in portfolio

selection. An interesting approach to addressing estimation errors is the Black-Litterman model

(Black and Litterman||1990, [1992)), which combines market information and investor views into

the mean-variance optimization problem. Other works have incorporated diversification across
market and estimation risk into the model (Jagannathan and Ma| 2003, ter Horst et al. 2006,
Kan and Zhou/[2007)). {ter Horst et al.| (2006]) also suggest portfolio weight adjustments.
et al.| (2009), Brodie et al. (2009), Gotoh and Takeda (2011) additionally study the imposition

of norm constraints to regularize the optimal portfolio against large errors. There have also been

studies on the intersection of machine learning and portfolio optimization in the context of error

mitigation (Lim et al.|[2012, Ban et al.|2018). Finally, we name robust portfolio optimization. Robust

optimization has been well-studied in the portfolio management literature |Goldfarb and Iyengar|
(2003)), Tiutuncu and Koenig (2004), Natarajan et al. (2008), |Calafiore and Monastero (2012),

Bertsimas et al.| (2018). This paper contributes to the stream of robust portfolio optimization

literature, focusing on errors on the estimates for p.

1.2. Background on Robust Optimization
We assume that the true expected return vector p that parametrizes the real-world returns distri-

bution is unknown and belongs to an ellipsoidal uncertainty set given by

U={peR": (u—p) B (n—p) <r%}
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where fi is an estimated expected return vector and E is a positive definite matrix referred to
as the estimation-error matrix. The robust optimization problem hopes to find a portfolio that
maximizes the expected returns of the investment in a worst-case scenario g € U. That is, the
robust optimization problem is formulated as

mey i (')

where X is the feasible region characterized by constraints and over the non-negative
orthant. Estimation errors in the mean p have a greater impact on portfolio performance than
those in the covariance matrix ¥ or other parameters (Jagannathan and Ma|2003|, DeMiguel et al.
2009}, |Gotoh and Takeda 2011)). Indeed, |(Chopra and Ziemba| (1993) show that errors in p are
around twenty times as significant as errors in the covariances (see also |Ulf and Raimond|2006)).
Additionally, there is a common perception that return variances and covariances are much easier to
estimate from historical data, and that a few factors can capture the general covariance structure,
making it more manageable to estimate compared to expected returns (Merton!/ 1980, Nelson| (1992,
Chan et al.[[1999). This paper focuses on the estimation of g and on how to deal with estimation
errors in . For the remainder of the paper, we assume that the true covariance matrix 3 is known.

Following Ben-Tal and Nemirovski (1999), the robust optimization problem can be reformulated
as a quadratically constrained convex programming problem

max {f1'x — kVxTEx}. (4)

xeX

Here x> 0 and the term v/x Z=x can be interpreted as an estimation risk that must be considered
in addition to the market risk x " ¥x (see Fabozzi et al.[2007, p. 371). While s can be absorbed into
2 in the reformulation, we maintain a distinction between the two terms as k may be interpreted
as the weight on the estimation risk relative to the expected return term in the objective.

In this paper we assume that we have access to historical data on asset returns over an extended
period. A fascinating question in data science is to estimate g and E from this data, especially

when one can expect some degree of obsolescence in the older data.

1.3. Contributions

A common critique of robust portfolio models is that they often lack guidance on how to define
the uncertainty set. Indeed, the literature on constructing ¢ in portfolio management is scarce.
Stubbs and Vance| (2005) provide a comprehensive overview of the practical impacts of computing
suitable estimation-error matrices. Additionally, there have been studies in which a scalar multiple
of ¥ is used as the estimation-error matrix (Scherer| 2007, (Garlappi et al.|2007). Among these,
Scherer| (2007)) has a skeptical take on robust optimization and shows that such a choice for E is

equivalent to some other well known shrinkage approaches.
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The primary contribution of this paper is a practical framework for constructing the uncertainty
set U for the expected return vector p. We focus on constructing & based on observed historical
asset returns. We conduct theoretical and empirical analyses on the choice of the estimation-
error matrix 2 and the parameter k, and provide empirically strong choices for the sample size
of historical data used to estimate p. We first give theoretical results on the class of diagonal
estimation-error matrices for the choice of E in Section [2| In particular, we show that one can
achieve an arbitrarily small loss in the expected portfolio return as compared to the optimal
portfolio. We accomplish this by showing that there exists a choice of parameters for the diagonal
estimation-error matrix E such that the resulting solution to (4 is arbitrarily close to the optimal
portfolio. This is an existential result which, unfortunately, does not translate into actual portfolios
in practice. In the following sections, we address constructive aspects of the uncertainty set. In
Section |3 we evaluate different sample sizes for constructing the estimate 1 of p from historical
returns. Our results highlight the existence of a gap between the expected returns of the Markowitz
mean-variance portfolio, constructed using the estimated fi, and the optimal portfolio, constructed
using the true p, across all sample sizes. We observe that larger sample sizes do not produce
superior portfolios; rather, an “intermediate” sample size achieves the best results. We explore
choices for the estimation-error matrix = through empirical experiments and present a heuristic
to calibrate s in Section [df We perform computational experiments on simulated, synthetic data
drawn from distributions with parameters constructed from historical asset returns and devise
choices for 2 and x that lead to statistically significant improvements. Given that it is infeasible
to meaningfully obtain valid and statistically significant results on real-world returns, we validate
our findings on additional synthetic data with added temporal uncertainty in the asset returns.
Our results demonstrate that a robust portfolio model featuring a family of diagonal estimation-
error matrices and an appropriate choice for x found using our proposed heuristic can significantly

improve the performance of the Markowitz model. Section [5| contains some concluding remarks.

2. Diagonal Estimation-Error Matrices
In this section, we present two existential theorems, which demonstrate that one can focus on
diagonal estimation-error matrices without compromising on the quality of the portfolio. The con-
struction of these matrices in the proofs relies on knowledge of the true optimal portfolio, which is
not available in practice. The purpose of these theoretical results is not to propose a directly imple-
mentable method, but rather to motivate the empirical investigation of diagonal estimation-error
matrices by establishing that, in principle, such structures can achieve near-optimal performance.
We explore practical, data-driven constructions of such matrices in later sections.

Diagonal estimation-error matrices were first studied by |Stubbs and Vance, (2005), where the

authors argue that a simple diagonal estimation-error matrix is easier to generate than a dense
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estimation-error matrix. However, a natural question arises: does there exist a trade-off in the per-
formance of the robust portfolio if constructed with the simpler diagonal estimation-error matrix?
We address this question by presenting our main theoretical result, which states that for any esti-
mate [ of p, one can always choose a diagonal, positive definite matrix 2 and a positive parameter
k such that the resulting robust portfolio has an expected return arbitrarily close to that of the
optimal portfolio.

Given a feasible portfolio X and an optimal portfolio x*, we define the loss in expected returns
as

loss(%) =p'x* — pu'%,

where p is the true expected return. A solution X to the robust portfolio problem

max fi' X — kVXEX 5
X

subject to x' ¥x < v 6

(5)
(6)
1'x=1 (7)
x>0 (8)

depends on the expected return estimate fi, the estimation-error matrix Z, and the parameter .

In this case, assuming feasibility, we write

Tk,

loss(f1, B, k) = NTX* —u

and

[1]

THEOREM 1. Given € >0, for every fu there exists a diagonal, positive definite matriz
k>0 such that loss(f1,E, k) < €. Furthermore, for any optimal portfolio x*, we can choose E and

k such that the robust problem — has a solution X that is arbitrarily close to x*.

Proof. Let X :={x€R7: x"Ex <wv, 1"x=1} be the set of feasible portfolios. If X =0 or
a single point the theorem trivially holds, so we assume that the dimension of X is at least 1.
Let I°:={ie{1,2,....,n}: ; =0forallx € X} and I":={1,2,...,n}\ I°. Note that I° may
be nonempty, for example, when v is set equal to the variance of a minimum-variance portfolio:
v =mincegn {x ' Tx:1"x=1}. Pick X € rint(X’), where rint(X) denotes the relative interior of the
convex set X. Note that Z; =0 for 7 € I° and Z; >0 for : € I'". Let x* be an optimal portfolio and
let x* = (1 —¢€)x* 4+ ¢'x for € € (0,1). Then x* € rint(X).

Observe that X* — x* as ¢ — 0. This implies pu'x* — pu'x* as € — 0. Therefore, the loss corre-
sponding to x* is arbitrarily small. We now show that there exists a choice of E and « such that
the solution to the robust portfolio problem is arbitrarily close to x*, thus proving the theorem.

First, suppose f&t = 0. Choose x > 0, & = % for i € It and & =1 for i € I°. We claim that

x* solves the robust portfolio problem max,cy —kVxX ' Ex = min,cy x' 2x. Indeed, let Y :={x €
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"% {0}": 1Tx =1} be the relaxation of the set X where z; = 0 for all i € I° and the non-

negativity and risk constraints have been dropped. We have minyeyx'Ex > mingcyx Ex =

T

2
: - : —_
MaXycr NN _pr+ D ier+ = T A1 ="+ z:) where equality holds because x ' Ex is a convex func-

tion and ) is an affine space. Solving this Lagrangian problem, the partial derivatives are 2 =~ —A=0
forieI* and 1 -3, ;. x; =0, which yields the unique optimal solution z; = &} for i € I+ and
A = 2. Since the optimal solution X* to min,cy x " Zx is also a feasible solution in X, it is the unique
optimal solution to minycy x " Ex as well. This proves the claim.

For any given [, again let & = wi for i€ I and & =1 for i € I°. Consider the problem
MaXyey 1 X — VX BEX = minge \/}ﬁ—n[ﬁx where n= 1 > 0. Let g(x,7n) := VXTEx - x.
Let g*(n) := minyer g(x,n) and let x*(n) be an optimal solution. Define M := max,cx |ft' x|. The
existence of the maximum follows from the boundedness of X. Let h*(7) := minyex VX' Ex —nM =
VX TER* —nM. Clearly, h*(n) < g*(n) < VX*TE2x* — nja" x*. Taking the limit as 7 — 0, we get
VX TER <lim, g% (n) < VX*TEx*. Therefore lim,_,, ¢* (1) = VX*TEx*. We claim that, in fact,
lim, 0 x*(n) = x*. To prove this claim, we will show that Ve” > 0,3n, > 0 such that V0 <n <
o |[x*(n) = x> < €.

Because vxTEx is a convex function (the matrix Z is positive definite and therefore vxTEx is
a Mahalabonis norm), X is a convex set, and X* is the unique optimal solution to minyex VxTEx,

it follows that (see, for example, Corollary 27.2.2 in Rockafellar| (1970))

Ve’ >0 3¢ > 0 such that |VxTEx — VX TEx*| < ( for x € X, implies ||x —x*[|; <€”.  (9)

Given such a scalar ¢, the boundedness of X' and lim,_,, ¢*() = VX*TEx* imply, respectively,

I, >0 such that YO <n<mn, |ni'x|<(/2 for all x€ X (10)
dny > 0 such that VO<n<mn, |¢"(n) — VX*TEX*| < (/2 (11)

Set o = min{ny, 7.} and let 0 <7 < no. Replacing g*(n) in (11]), we get

[V/x* — i x () - VRITER < (/2

It now follows from and the triangle inequality that

|vVx* () TEx* () — VX TEX| < (.

Therefore, by @,
Ve'" >0 I >0V0<n<n ||x"(n) —x*] <€

proving the claim. O
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We now give an example to show that it is not always possible to choose a diagonal positive
definite matrix 2 and a  such that loss(f, =2, k) = 0.

ExaMPLE 1. Consider a two asset portfolio optimization problem. Let o1; < v, 022 > v, and
11 > o, Suppose fi; < fio. Then there does not exist a diagonal positive definite matrix 2 and a
parameter x such that loss(f, 2, k) = 0.

It is easy to see that the optimal portfolio to the problem — is x* = (z; = 1,2, =0) and
that it is unique. Moreover, we observe that both constraint @ and the constraint x; > 0 are not
tight for x*. Then the Lagrangian dual of the robust portfolio problem can be written as

min max ﬂlxl + ﬂgl’g — R\ Z'%fl + J]%ég + )\(1 — (ml + $2)> + TXo

A€ER, TERL z1,29

with the optimality conditions

T+ zo=1 (12)
iy — ST A=0 (13)
7€) + 2585
A K&

—A+7=0. (14)

fig — —
Vai& + 236,

Since kK >0, E>= 0 and 7 > 0, the optimality conditions imply that ji, = A+ k/& > X and fi, =

A—71 <A for x* for any choice of £;,&,. However, this is a contradiction to since fi; < fis.

Despite it not being possible to achieve zero loss generally, our next result states a sufficient

condition for obtaining zero loss.

THEOREM 2. If all the assets are active in the true optimal solution x*, then for every fu there

exists a diagonal, positive definite matriz E and k >0 such that loss(f, 2, k) = 0.

Proof. Incorporating x > 0 into the matrix =, the robust portfolio problem to solve is
MaXyey L' X — VX' EX.
We will construct a diagonal matrix = with diagonal entries &;. Choose a scalar A such that

f;+A>0foralli=1,...,n and set

(s + ) S s+ N

o j=1
3 -
Note that & >0 for i=1,...,n. So E is a positive definite matrix.

Let Y ={x € R": 1"x = 1} be the relaxation of X obtained by dropping the non-
negativity and risk constraints. We have maxyey ft' x — VX' 2x < maxXyey i ' X — VX Ex =
Minyecg MaXyepn ' X — VX Ex — A(1—1"x).
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Let a:=vxT8x = \/m . Taking partial derivatives of the above Lagrangian function, we
get the optimality conditions

ﬂi—@—l—)\:() fori=1,...,n
Q@

n
=1

These optimality conditions are satisfied by the vector x = x*. Indeed, when x = x*, we have

n n n

a=,|> &= | > A+ N (D +N5)as =) (A + M)}
i=1 i=1 j=1 j=1
It follows that f; — % +A=0fori=1,...,n. We also have Y "  x7 = 1. Therefore x* satisfies
the optimality conditions of the Lagrangian problem. Since the solution x = x* belongs to X, it is

an optimal solution to the robust portfolio problem. ]

3. Estimating the Expected Return Vector Using Observed Historical
Asset Returns

In order to use model , a practitioner needs to provide = and f1. We discuss the choice of = in
Section {4l In this section, we address the estimation fi of the vector pu of expected asset returns.
We assume that we have access to historical data. If the historical returns are independent and
identically distributed (i.i.d.) random variables, then certainly, by the law of large numbers, we
obtain the best estimate for p by using all of the data. However, in reality, the historical returns
may become obsolete over time. Therefore it may not be appropriate to assume time independence
over long periods. Indeed, [Ulf and Raimond| (2006) present an empirical study where even the
simple equal-weight portfolio outperforms portfolios constructed under the assumption that the
returns are i.i.d. Our focus is on determining an appropriate sample size for estimating p from

H are the vectors of historical asset returns observed in the

historical returns. Suppose r, 7%, ... r
real world in some time horizon 1,2,..., H, possibly over several decades. It is natural to estimate
the expected asset returns as the average of the IV most recent observations. But then we should
ask: what choice of N gives the best estimates for pu? To this end, we investigate the performance
of portfolios constructed using the Markovitz model with different sample sizes for estimating .
To be able to repeat the experiments and obtain statistically significant results, we generate a set
of synthetic, simulated asset returns, which we briefly describe below.

We generate simulated returns 7 ~ AN (!, X), following a multivariate normal distribution with

a “true” expected return vector u' and covariance matrix X. That is, the simulated returns 7* are

independent random variables, drawn from different distributions for each ¢t =1,..., H. We refer
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the reader to Appendix [A| for our construction of the parameters p' and 3. To summarize, u'
is computed from the real data r* by averaging over T consecutive time periods, centered at t.
Asset returns 7' are then generated using the distribution N (u’,X). A Markowitz portfolio X" is
constructed at time ¢ using the estimate ' = % Zf:t_ N4l 7* based on the asset returns 7' available
in the N periods preceding t. This portfolio is then held until period ¢+ 7T and evaluated using p‘*7.
Note that, by construction, u**7 is derived from future asset returns 7 not used in the estimate fi’
at time t. Clearly, if the data r were independent over time, the vector pu'*7 would be independent
of the values u' for ¢ <t. Therefore, estimates fi' that are averaged over larger N would provide
better estimates of u'*7 and therefore better Markowitz portfolios X*. Our experiments below show
that this is not the case.

In addition to the Markowitz portfolio X := max,cx ft' "%, we construct the optimal portfolio at
time t, namely x™ := max,cx p'' x. We compute its true expected return ,u”TTxt*, assuming we
hold it for the next T periods.

For each choice of N, we compute the estimated expected return ﬂtcht of the Markowitz portfolio
xt, and its actual expected return ut+TT§ct, all averaged over the simulated runs and over the
time periods t. We evaluate the average performance of these portfolios over several simulated
runs using efficient frontiers that plot the expected returns against different risk thresholds v. We
achieve a standard error less than 0.05 for each reported value. A comprehensive overview of our

experimental setup can be found in Appendix [A]
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Figure 1 Efficient frontiers of portfolios constructed on the 11-asset GICS monthly returns dataset.

Figures|l|and [2| present the experimental results for an 11-asset dataset with monthly returns and

a 12-asset dataset with daily returns. The average expected returns for the equal-weight portfolios
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Figure 2 Efficient frontiers of portfolios constructed on the 12-asset Fama-French daily returns dataset.

were 1.21% per month and 0.049% per day, respectively, while the minimum variance portfolios
yielded 1.23% and 0.034% on average, respectively. The corresponding minimum variances were
11.46 and 0.84. Figure [1] plots efficient frontiers for Markowitz portfolios obtained for different
choices of N in the estimation of fif. Note that for any N > 1, the Markowitz optimal portfolios
outperform the equal-weight portfolio when the risk threshold is v > 21.25. This trend is also
observed in Figure [2| for v > 1.75. Both figures reveal a significant gap between the true frontier
and the actual frontier for all values of N. This gap quantifies the value of information: Knowing
p improves the expected portfolio return from around 1.3% per month to about 2% per month for
a risk level v = 20. Interestingly, the actual frontier initially improve with increasing N, but then
deteriorate for larger N. The best results are achieved by choosing N = 24 months (Figure [1|) and
N = 50 days (Figure . Large values of N produce poor portfolios. Perhaps this is not surprising
as the returns are not identically distributed over time. We note that the equal-weight portfolio
has a fixed variance, which in these cases is 17.35 (Figure|l) and 1.18 (Figure . The equal-weight
frontier is shown only for values of the risk threshold v above this level, since it is not feasible for
the equal-weight portfolio to satisfy more stringent risk constraints. We repeated the experiments
on other data sets summarized in Appendix [C] The results are similar. The gap between true and
actual frontiers is very significant. The quality of the Markowitz portfolios improves as N increases
up to some value N*, and then it deteriorates as N increases further. For monthly data, averaging
over 5 data sets and 3 risk levels, we find N* = 28 albeit with substantial variation; for daily data,
averaging over 4 data sets and 3 risk levels, N* &~ 100 again with much variation. In Section [4] we
use N* =24 for monthly datasets and N* = 100 for daily datasets. These values for N* are not

intended to be prescriptive across all datasets, but their existence demonstrates that one cannot
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mitigate the effects of estimation errors on p by using a large N. This lends further support to the
usefulness of a robust optimization framework.

While there exist several other methods for estimating the expected return vector p, Jagannathan
and Ma (2003), |[DeMiguel et al.| (2009) show that estimation errors in the sample mean persist
regardless of the estimation technique used. In our study, we limit our analyses to estimators
obtained from observed historical asset returns.

The significant gap between the true and actual frontiers observed in Figures [I] and [2 highlights
the potential for better portfolios. We show in the next section that robust optimization can indeed

deliver superior portfolios.

4. Empirical Study of the Estimation-Error Matrix

In this section, we investigate choices for the estimation-error matrix E in and the associated
parameter k. While robust optimization techniques have been previously employed in the context of
portfolio management, there is little guidance on constructing =. Following our theoretical results
from Section [2, we explore the class of diagonal estimation-error matrices. Such a choice for =
requires practitioners to only calibrate n+ 1 parameters. We first conduct experiments on simulated
streams of i.i.d. returns. In later parts of the section, we validate the results of these experiments
with the setting introduced in Section [3| for which we consider returns that are not necessarily
independently distributed.

Following the works of [Scherer| (2007) and (Garlappi et al| (2007), we are initially motivated to
examine candidate choices for a diagonal = that involve the covariance matrix 3. Consider the
family of matrices E(k) = diag(ﬁc), where k£ € R. We consider the following choices for Z(k).

1. E(0) = I: The identity matrlix may be appealing to decision-makers because it requires cali-
brating only one parameter, k. A large value of x corresponds to choosing a solution close to
the equally weighted portfolio. As x decreases more emphasis is put on the estimates . This
trade-off makes the tuning of the parameter  fairly intuitive.

2. E(—2) =diag(c?): This choice of E appeals to a fundamental intuition: assets with a higher
variance tend to have a poorer estimate of their expected returns.

3. 2(2)= diag(ﬁ): This choice of E incorporates the notion of a “risk premium”. This approach
is particularlylrelevant when investors believe in the Capital Asset Pricing Model (CAPM),
suggesting that assets with a greater variance in their return should also have a greater

expected return.

Selecting an appropriate value for & is critical. Given the objective function fi'x — kVx ' Ex
in (4f), we may consider k to be the weight imposed on the penalty term vxTEx, relative to the

expected return term fi' x. Therefore, we design a heuristic to calibrate x such that a target ratio
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LT
r between these two terms —£-=
Vx T Ex

Bl We evaluate three potential choices for the target r, namely 2,3, 4.

is achieved. We present the heuristic as Algorithm|1|in Appendix

Our experimental framework is based on real-world stocks in the S&P 500 index and the Fama-
French industry portfolio data library. We assume that the returns follow a multivariate normal
distribution with mean g and variance ¥ computed as follows. Using the observed historical asset
returns r fori=1,..., H, we set u = % Zfil rt, and ¥ to be the covariance matrix of the returns.
The estimated vector fi is then the sample average of N random samples generated from the
distribution N (u, X). Based on the results previously presented in Section we let N = 24 for our
data on monthly returns, and N =100 for our data on daily returns. Our goal is to investigate the
various choices for 2 and x mentioned above. We construct portfolios over four evenly-spaced risk
thresholds v for each dataset, denoted by Low, Medium, High, and Very High.

We compute the Markowitz portfolio to be x* := arg maXyern { X : x'¥x <wv, 1"x=1}, and
obtain the robust portfolio x* by solving the robust portfolio problem (4]) for a given choice of E and
x. The expected return of the Markowitz portfolio is given by " x™, and that of the robust portfolio
by p'xf. We present the results of the experiments as the percentage gap closed by the robust
portfolio relative to the Markowitz portfolio. Specifically, we report the ratio (R — M)/(T — M),
where R denotes the average out-of-sample expected return of the robust portfolios, and M denotes
the average out-of-sample expected returns of the Markowitz portfolio. The quantity 7" denotes the
true optimal expected return obtained by solving problem — using the true mean vector. The
values for R and M are averages of 10,000 simulated runs. Consequently, the standard error of each
reported percentage gap closed is less than 0.1. We further consolidate the results by presenting
the average percentage gap closed across all datasets at four different risk thresholds in Table

The optimal target ratio r was chosen by conducting a grid search for each E(k), with the returns
for the optimal parameters presented. The optimal target ratio was found to be r =4 for the three
rows corresponding to monthly data. For daily data, the ratio was r =4 for E(—2), and r =2 for
=(0) and E(2).

The largest percentage gaps closed for each risk threshold are highlighted in Table [I} Our sim-
ulations demonstrate that significant gains can be achieved over the Markowitz model with an
appropriately chosen estimation-error matrix and parameter k. Notably, even the simple choice
of the identity matrix, Z(0), yields portfolios that outperform the Markowitz portfolio for Low,
Medium, and High risk levels. On the other hand, we find that Z(—2) is not a strong choice for
the estimation-error matrix, suggesting that errors in estimating the expected returns cannot be
corrected based directly on the variance of the returns. Interestingly, robust portfolios constructed
using E(2) consistently outperform the Markowitz portfolio across all risk thresholds in datasets

with both monthly and daily returns, closing the largest gaps.
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Risk Threshold, v Low Medium High Very High
Gap Closed (%) with E(-2) 0.5 -1.7  -4.6 -7.1
Monthly Gap Closed (%) with Z(0) 2.8 2.7 1.0 -1.0
Gap Closed (%) with E(2) 3.5 5.2 4.9 3.6
Risk Threshold, v Low Medium High Very High
Gap Closed (%) with E(—2) 6.4 3.1 -0.1 -1.0
Daily  Gap Closed (%) with Z(0) 10.8 6.7 25 1.0
Gap Closed (%) with E(2) 11.7 8.6 5.6 5.2

Table 1 Average percentage gap closed by the robust portfolio compared to the Markowitz portfolio for
different choices of estimation-error matrices: E(—2) = diag(c?), £(0) = I, and E(2) = diag(o%). The percentages

are averages across 5 datasets with varying number of assets.

Overall, for the best choices of 2 and k, the gap between the expected returns of the Markowitz
portfolios and the optimal portfolios is reduced by an average of 6.1% across all datasets and risk
thresholds in our experiments.

To complement the tabular results, we also include a scatter plot that compares the out-of-
sample expected returns of the robust portfolios with those of four benchmark strategies. Each
point in the plot corresponds to one of 10,000 simulated runs, with the x-axis representing the
expected return of the robust portfolio and the y-axis representing that of a benchmark portfolio.
Benchmarks include the Markowitz portfolio, the true optimal portfolio (computed with p), the
equal-weight portfolio, and the minimum-variance portfolio. The true optimal, equal-weight, and
minimum-variance portfolios do not depend on the sampled estimates of f[i, so their expected
returns remain constant across simulations and appear as horizontal lines in the plot. A point lying
below the identity line x =y indicates that the robust portfolio outperforms the corresponding
benchmark in that run. Since the choice Z(2) yielded the most consistent improvement across all
datasets and risk thresholds, we restrict the scatter plot analysis to this case. The plot corresponds
to the medium risk threshold. This visualization, presented in Figure [3] offers a more granular view
of performance and highlights the empirical advantage of the robust strategy.

As expected, the scatter plot reveals that robust optimization offers the greatest benefit when
the Markowitz portfolio performs poorly, for example, when the equal-weight portfolio outperforms
the Markowitz portfolio. In scenarios where the Markowitz portfolio achieves high returns, typically
when the estimated mean vector fu is close to the true p, the robust portfolio often yields similar or
slightly lower returns. This aligns with the role of the robust approach, which is designed to guard
against adverse estimation errors. When the input estimates are reliable, the added conservatism
of robustness can become less advantageous. Conversely, when fi is inaccurate, the robust portfolio
is more likely to outperform. We also observe meaningful variability across simulations, further

underscoring the value of robust optimization in mitigating downside risk due to estimation error.
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Scatter plot comparing the out-of-sample expected returns of the robust portfolio and four

benchmark portfolios over 10,000 simulations. Points below the identity line x = y indicate that the robust

portfolio outperformed the benchmark.
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Histogram of expected returns showing greater concentration for robust portfolios and wider

variability for Markowitz portfolios across 10,000 simulations for =(2) = diag(a%).

To further explore the behavior of the robust and Markowitz portfolios, we present a histogram

of their out-of-sample expected returns at the medium risk threshold across the 10,000 simulations

in Figure[d The distribution of robust portfolio returns is noticeably more concentrated around its

mean, while the Markowitz portfolio exhibits a wider spread. While the Markowitz portfolio may

occasionally outperform, its performance is more volatile and sensitive to estimation error.

Finally, we present the Sharpe ratios of the robust portfolios and benchmark strategies in Table

The risk-free rate was computed to be the average return of U.S. Treasury securities with 10-year
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Risk Thresholds, v Low Medium High Very High

Robust Portfolio with E(—2) 0.155 0.146  0.142 0.140
Robust Portfolio with E(0) 0.155 0.144 0.139  0.135
E(2)

Robust Portfolio with 0.155 0.143 0.136 0.132

Markowitz Portfolio 0.154 0.142 0.135 0.130

Optimal Portfolio 0.181 0.168 0.157 0.148
Equal Weight 0.146
Minimum Variance 0.174

Table 2 Sharpe ratios of robust and benchmark portfolios across four risk thresholds, averaged over five

monthly-return datasets.

constant maturity over the same horizon as the dataset, yielding a monthly rate of 0.313% and a
daily rate of 0.0063%. Among the robust and Markowitz portfolios, those constructed using Z(—2)
yield the largest Sharpe ratios. This is consistent with the intuition that penalizing high-variance
assets improves risk-adjusted performance. It is notable that the minimum-variance portfolio con-
sistently outperforms all other methods with respect to the Sharpe ratio in the Medium to Very
High risk regimes, including even the optimal portfolio, constructed using the true expected returns.
We also note an interesting contrast between Tables [I] and [2] when comparing robust portfolios con-
structed with E(—2), E(0), and =(2). Robust portfolios with Z(2) deliver higher expected returns
than other choices (Table[1]), while those with Z(—2) achieve higher Sharpe ratios (Table[2). This
is explained by the difference in volatility. As an example, consider the 11-sector data set and a
Medium risk threshold v. In our simulation, with 10,000 robust portfolios constructed for each
of B(—2), E(0), and E(2), the fraction that satisfied the risk constraint x"¥x < v at equality
was 58%, 72%, 82%, respectively; the average volatility was 4.36, 4.43, and 4.47, respectively (the
Markowitz portfolio has an even higher average volatility of 4.5). Thus, E(—2) is advantageous
when risk-adjusted returns are prioritized. Importantly, the robust portfolios always outperform the
Markowitz portfolio in terms of Sharpe ratio, underscoring the robustness benefits of our approach.
Indeed, the Markowitz portfolios have lower returns and higher risk on average.

We also computed Sharpe ratios in the daily return setting. In this case, the robust model
marginally outperforms the Markowitz portfolio. However, excluding the optimal portfolio, the
equal-weight strategy consistently yields the highest Sharpe ratios overall, albeit by a small margin.
We attribute this to the significantly higher standard deviation of the asset returns observed in the
daily setting (see Tables in Appendix , which diminish the relative benefits of optimization-
based strategies in favor of the diversification offered by equal weighting. These findings suggest that
while our robust optimization framework improves expected returns and consistency, traditional

benchmarks such as equal weighting remain competitive in high-volatility environments.
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Our subsequent analysis explores the case of positive k, which aligns with the return-
maximization perspective in Table [I| We conclude the section by validating our choice through
additional experiments by incorporating a temporal component to the data. We utilize the same
experimental setup as in Section [3] and described in Appendix [A] We consider k = 2,4,10 for the
estimation-error matrices E(k). We let N = 24 for monthly returns and N = 100 for our daily
returns, and consider an array of risk thresholds v for each dataset, with « calibrated with the
optimal target ratios found with a grid search. We present our results in Table [3| as the percentage

gap closed by the robust portfolio compared to the Markowitz portfolio for each dataset, with a

standard error less than 0.05 for each reported value.

Dataset Units Number
of Sectors

Risk Threshold, v Low Medium High Very High

Gap Closed (%) with 2(2) 4.1 3.6 35 2.4

GICS ~ Monthly 11 Gap Closed (%) with E(4) 2.1 2.4 3.7 3.7

Gap Closed (%) with £(10) -2.1 -24 2.7 6.3

Gap Closed (%) with E(2) 0.7 03 04 0.9

5 Gap Closed (%) with Z(4) 1.9 1.8 1.8 2.1

Gap Closed (%) with E(10) 1.7 2.1 24 3.8

Gap Closed (%) with Z(2) 4.0 5.8 5.9 5.3

10 Gap Closed (%) with =(4) 3.7 57 6.3 6.2

Gap Closed (%) with Z(10) 0.9 51 9.9 11.1

Gap Closed (%) with 2(2) 3.3 42 38 3.0

12 Gap Closed (%) with Z(4) 3.9 5.8 6.2 5.8

Monthl Gap Closed (%) with 2(10) 1.6 6.3 10.2 10.7
lont

Y Gap Closed (%) with E(2) 3.6 28 23 18

17 Gap Closed (%) with E(4) 4.2 44 3.7 3.1

Gap Closed (%) with 2(10) 4.5 5.0 7.7 6.5

Gap Closed (%) with E(2) 5.0 6.5 6.4 5.9

5 Gap Closed (%) with =(4) 6.4 85 8.7 7.9

Gap Closed (%) with E(10) 6.7 10.0 11.9 12.7

Gap Closed (%) with Z(2) 4.9 33 21 1.8

10 Gap Closed (%) with Z(4) 10.3 89 7.2 6.7

. sed (%) with =

Fama-French Gap Closed (%) with E(10) 12.7 14.6 14.3 13.6

Gap Closed (%) with E(2) 7.3 6.2 4.5 3.9

12 Gap Closed (%) with E(4) 7.1 6.0 4.9 4.7

Dail Gap Closed (%) with Z(10) 9.6 11.5 12.2 12.2
ai

v Gap Closed (%) with 2(2) 3.4 52 5.0 4.2

17 Gap Closed (%) with 2(4) 3.2 6.2 6.9 6.7

Gap Closed (%) with 2(10) 1.4 57 9.8 11.5

Table 3 Percentage gap closed by the robust portfolio with estimation-error matrices =(2) = diag(%),
=4) = diag(g%), and E(10) = diag(a—}o) compared to the Markowitz portfolio, with temporal uncertainty in the

data. Columns correspond to the portfolios constructed along various risk thresholds.

Our findings once again show that robust portfolio with the appropriate estimation-error matrix
can improve upon the Markowitz portfolio. In particular, the choice of E(4) results in robust
portfolios that consistently outperform the Markowitz portfolios across all datasets on average for

all risk thresholds, with E(10) portfolios covering the largest gaps. For the best choices of 2 and &,
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we observe that the gap between the expected returns of the Markowitz portfolios and the optimal
portfolios is closed by an average of 8% across all datasets and risk thresholds in our experiments.
We also note that portfolios with larger k£ tend to exhibit higher variance, with the majority of
portfolios hitting the risk threshold v in our simulated runs. So their gains in expected return come
with increased exposure to risk, as observed in Table [2] Overall, these experiments suggest that a
robust portfolio approach can be extended and applied to settings where the historical returns are

not identically distributed random variables.

5. Conclusion

In this paper, we offer a framework for constructing an ellipsoidal uncertainty set of the expected
asset returns; this is needed in robust portfolio optimization. Our work addresses a gap in the
literature by providing both theoretical and empirical insights into the selection of the estimation-
error matrix = and the weight « assigned to the estimation risk. These choices are critical to
the performance of robust portfolio optimization models. We prove an existential theorem show-
ing that diagonal estimation-error matrices can yield robust portfolios with arbitrarily small loss
in expected return compared to an optimum portfolio. Additionally, we challenge a conventional
assumption often made for data-driven optimization methods that larger sample sizes from histor-
ical data invariably reduce estimation error. Instead, we demonstrate through empirical analysis
that this is not always the case. Our empirical findings, based on synthetic data reflecting histor-
ical asset returns, support the practical usefulness of robust portfolio model as an improvement
to the traditional Markowitz model. We find that the penalty term in the objective function can
improve portfolio construction by reshaping how estimation risk interacts with asset volatility.
Thus, the ellipsoid in the robust formulation provides a flexible mechanism that goes beyond mod-
eling uncertainty and can be tuned to different investment priorities. Our work paves the way for
further investigations in constructing estimation-error matrices for robust portfolio optimization,

with implications for both academic research and practical financial decision-making.
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Appendix A: Detailed Experimental Setup

We conduct our experiments using simulated data modeled on stocks in the U.S. equity market. We use data
on the historical returns of stocks in the S&P 500 index as consolidated by [Kocuk and Cornuéjols| (2020)),
classified into 11 sectors according to the Global Industrial Classification Standard (GICS). Table 4] gives the
market-weighted averages and variances of their monthly returns over a 30-year period between January 1987
and December 2016. Additionally, we consider the 5-, 10-, 12-, and 17-sector datasets from the Fama-French
data library. These datasets include monthly returns, for which we consider a 30-year period between March
1994 and February 2024, and daily returns, for which we consider a 10-year period between March 2014 and
February 2024. The sectors are outlined in Tables along with the market-weighted average and variance
of their returns.

Observations of the financial market suggest that assumptions about structural stationarity are weak.
Systemic changes to the market in recent history, such as the 1997 Asian financial crisis, the collapse of the
dot-com bubble, the 2008 financial crisis, and the 2020 COVID-19 pandemic substantiate this claim. These
events significantly impacted key industries across numerous sectors. Therefore, it seems more reasonable
to consider multiple distributions that evolves over time rather than assuming one static distribution that
describes the asset returns as a whole. Consequently, it is unlikely that the asset returns are i.i.d. random
variables. Instead, we model the asset returns for each time period as random variables drawn from possibly
different multivariate normal distributions.

A fundamental challenge is extracting the true expected returns that parameterize the distributions the
real-world observed historical data are drawn from. To address this concern and to obtain statistically signif-
icant results, we use simulated data in our experiments. We assume that the returns are normally distributed

over time with varying mean returns pu' and a fixed variance X across all time periods, Normal(u', X).
Consider planning horizon for t =1,..., H. We compute the true expected returns as pu! = % ZZEZH rt
fort=2%,...,H—ZL, where r’is the realization of returns observed in the " time unit in the data and 2T isa
prescribed parameter. We chose T'= 30 and T = 260 for our experiments on the monthly and daily datasets,
respectively. The parameter T was tuned in accordance with systemic changes in the market observed in
the data. We let the true covariance matrix ¥ be the covariance of the asset returns in the stock market

data. We then sample #* ~ N (u?, 3) to simulate additional streams of “observed” returns, and compute the
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estimated expected return vectors as fit = % Ezzt_NH 7t for t = % +N-—-1,...,H — % — T, where N is a
chosen parameter for the sample size of historical time-units to consider for the estimation. We simulated
50 runs for experiments on monthly returns where H = 360, and 10 runs for experiments on daily returns
where H = 2600.

We define the optimal portfolios as x* := maxye p! ' x for each t = Z,...,H—Z. That is, for each time
period, we find the portfolio that maximizes the true expected return u’. Similarly, we define the estimated
Markowitz portfolios as X' := maxyex o' x for each t =2 + N —1,....H — L —T. We utilize efficient
frontiers to quantify the performance of the portfolios. An efficient frontier plots the maximum expected
return of a portfolio of assets as a function of the risk thresholds (Markowitz |1952)). The true frontier is
computed using the true expected returns of the assets and the optimal portfolios. The estimated frontier is
computed by using the estimated expected returns and the estimated Markowitz portfolios, which describes
the expected return of the Markowitz portfolios should the estimated parameters be realized. The actual
frontier plots the expected return one actually observes on the true expected returns when one invests in
the portfolios constructed with the estimated expected returns. That is, for each choice of N, we compute
the true ezpected return p'*T ' xt*, the estimated expected return fit' %t, and the actual ezpected return
NHTT?{t, all averaged over the simulated runs and over the time periods t. We evaluate the portfolios at
time ¢ +7T to negate any sampling bias in our set up. We illustrate our experimental setup in Figure

All experiments were run on an Apple M3 processor with 8GB of memory, running Python version 3.12.4

and Gurobi Optimizer version 11.0.1 (Gurobi Optimization|2024)).

Appendix B: A Heuristic to Calibrate

Algorithm 1 Heuristic to calibrate s

Input: Estimates of the expected returns f1 € R", a diagonal positive definite estimation-error

~T
matrix 2 € R"*" a lower bound [ € R and an upper bound u € R for the ratio ——=—.

krVx' Ex

Output: k €R.

1: Initialize x = (%,...,%), ):c:( & ey & i), r:“T*l.
i=1%; i=1g;

2: Compute ax, VX' EX.

3: Choose k = —£X

4: while Stopping condition not met do

5. Solve for x® the solution to ().

R
6. ifl<—£X_ <y then
- rV xRTExR -

7: return k.
8 else
- R
9: P — . S
rvV xRTExR
10: end if

11: end while
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Step 1. Compute the true expected returns
T .
p= iTZf;i 1, 7" using the observed return r'
2

+1

3
A
] r’ i+l FHE Tl

Step 2. Sample ' ~ A (u',X) to simulate
additional streams of “observed” returns

Step 3. Compute the estimated expected return vectors
1 & . N
=— 2 7 using the simulated returns #
i=t—N+1

a1

hﬁ@

PNFL p=N+2 P prl

K Step 4. Compute the optimal and Markowitz \
portfolios using #’ and fi’, respectively
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/ Step 5. Compute the following: \
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o true expected returns =y x,
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+TT ot
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Figure 5 A schematic summarizing our experimental setup

Algorithm [I] first initializes the portfolios X and x. Here, X is the equal-weight portfolio, X is a portfolio
that is normalized relative to the inverse of & across all assets. The heuristic also initializes the target r for

the ratio —£%X— to the middle point in a target range [I,u]. Tt then chooses the corresponding x and solves

x'=

i

. . R . . . . ﬂxR .
for the associated robust portfolio x**. The heuristic returns & if the ratio VAT falls in the target range
[I,u]. If not, & is re-calibrated and the ratio is checked again. We evaluate three potential choices for the

range [I,u], namely [1,3], [2,4], [3,5], conducting a grid search to determine the optimal values.
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Appendix C: Data Summary

Energy Consumer  Consumer Real Industrials  Financials Telecomm- Information Materials Health Utilities
Discre- Staples Estate -unications Technology Care
tionary Services
1 1.18 1.51 1.39 1.15 1.29 1.33 1.03 1.73 1.39 1.42 1.01
o? 39.5 28.3 17.2 52.5 26.5 39.5 30.0 50.5 32.4 21.6 18.3

Table 4 Sample averages and variances of historical returns of the GICS 11-sector dataset.

Cnsmr Manuf HiTec HIth Other

. o 0.0453 0.0457 0.0553 0.0500 0.0449
Daily 52 111 140 221 131 197

p 0939 0907 112 1.03 0.876
Monthly 52 177 205 386 183 28.1

Table 5 Sample averages and variances of historical returns of the Fama-French 5-sector dataset.

NoDur Durbl Manuf Enrgy HiTec Telem Shops HIlth  Utils Other

, p 0.0410 0.0480 0.0494 0.0516 0.0630 0.0316 0.0489 0.0500 0.0384 0.0449
Daily 452 (885 3.17 145 283 269 1.63 142 131 123 197
p 0887 1.0l 1.02 1.04 1.29 0.646 1.02 1.05 0.813 0.900

Monthly 52 141 752 250 46.2 483 274 216 181 173 281

Table 6 Sample averages and variances of historical returns of the Fama-French 10-sector dataset.

NoDur Durbl Manuf Enrgy Chems BusEq Telem Utils Shops HIth Money Other

) ©0.0410 0.0480 0.0527 0.0516 0.0433 0.0632 0.0316 0.0384 0.0489 0.0500 0.0493 0.0364
Daily 52 0885 3.17 1.75 2.83 1.25 2.70 1.63 1.23 1.42 1.31 2.45 1.59

p 0887 1.01 109 1.04 0877 1.29 0.646 0813 1.02 1.05 0969 0.739
Monthly 52 141 752 316 462 185 484 274 173 216 181 325 258

Table 7 Sample averages and variances of historical returns of the Fama-French 12-sector dataset.

Food Mines Oil  Clths Durbl Chems Cnsum Cnstr Steel FabPr Machn Cars Trans Utils Rtail Finan Other

. o 0.0405 0.0534 0.0507 0.0419 0.0306 0.0445 0.0504 0.0574 0.0473 0.0504 0.0638 0.0528 0.0500 0.0384 0.0492 0.0493 0.0453
Daily 52 0951 379 2.8 220 183 2.21 1.13 224 4.27 1.75 2.84 294 166 1.23 1.53  2.46 1.57

uo 0.880 1.01 1.03  0.897 0.633 0.874 1.08 1.19  0.959 1.05 1.31 1.08 1.01  0.813 1.03 0.969 0.935
Monthly 52 148 675 468 396 372 36.7 15.8 372 837 328 52.3 65.2  29.6 173 233 325 256

Table 8 Sample averages and variances of historical returns of the Fama-French 17-sector dataset.
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