
Math. Program., Ser. A (2008) 113:241–257
DOI 10.1007/s10107-006-0051-y

F U L L L E N G T H PA P E R

Projected Chvátal–Gomory cuts for mixed integer
linear programs

Pierre Bonami · Gérard Cornuéjols ·
Sanjeeb Dash · Matteo Fischetti · Andrea Lodi

Received: 28 December 2005 / Accepted: 12 October 2006 / Published online: 8 December 2006
© Springer-Verlag 2006

Abstract Recent experiments by Fischetti and Lodi show that the first Chvá-
tal closure of a pure integer linear program (ILP) often gives a surprisingly
tight approximation of the integer hull. They optimize over the first Chvá-
tal closure by modeling the Chvátal–Gomory (CG) separation problem as
a mixed integer linear program (MILP) which is then solved by a general-

Gérard Cornuéjols was supported in part by NSF grant DMI-0352885, ONR grant
N00014-03-1-0188, and ANR grant BLAN 06-1-138894.
Matteo Fischetti was supported in part by the EU projects ADONET (contract n.
MRTN-CT-2003-504438) and ARRIVAL (contract n. FP6-021235-2).
Andrea Lodi was supported in part by the EU projects ADONET (contract n.
MRTN-CT-2003-504438) and ARRIVAL (contract n. FP6-021235-2).

P. Bonami · S. Dash
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
e-mail: pbonami@us.ibm.com

S. Dash
e-mail: sanjeebd@us.ibm.com

G. Cornuéjols (B)
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA

G. Cornuéjols
LIF, Faculté des Sciences de Luminy, 13288 Marseille, France
e-mail: gc0v@andrew.cmu.edu

M. Fischetti
DEI, University of Padova, via Gradenigo 6A, 35131 Padova, Italy
e-mail: matteo.fischetti@unipd.it

A. Lodi
DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy
e-mail: alodi@deis.unibo.it

242 P. Bonami et al.

purpose MILP solver. Unfortunately, this approach does not extend immedi-
ately to the Gomory mixed integer (GMI) closure of an MILP, since the GMI
separation problem involves the solution of a nonlinear mixed integer program
or a parametric MILP. In this paper we introduce a projected version of the CG
cuts, and study their practical effectiveness for MILP problems. The idea is to
project first the linear programming relaxation of the MILP at hand onto the
space of the integer variables, and then to derive Chvátal–Gomory cuts for the
projected polyhedron. Though theoretically dominated by GMI cuts, projected
CG cuts have the advantage of producing a separation model very similar to
the one introduced by Fischetti and Lodi, which can typically be solved in a
reasonable amount of computing time.

Keywords Mixed integer linear program · Chvátal–Gomory cut · Separation
problem · Projected polyhedron

Mathematics Subject Classification (2000) 90C10 · 90C11 · 90C57

1 Introduction

Consider first the pure Integer Linear Programming (ILP) problem min{cTx :
Ax ≤ b, x ≥ 0, x integral} where A is an m × n rational matrix, b ∈ Qm, and
c ∈ Qn, along with the two associated polyhedra P := {x ∈ Rn+ : Ax ≤ b} and
PI := conv{x ∈ Zn+ : Ax ≤ b} = conv(P ∩ Zn).

A Chvátal–Gomory (CG) cut (also known as Gomory fractional cut) [17,8]
is an inequality of the form �uTA�x ≤ �uTb� where u ∈ Rm+ is a vector of mul-
tipliers, and �·� denotes the largest integer less than or equal to its argument.
Chvátal–Gomory cuts are valid inequalities for PI . The Chvátal closure of P is
defined as

P1 := {x ≥ 0 : �uTA�x ≤ �uTb� for all u ∈ Rm+}. (1)

Thus PI ⊆ P1 ⊆ P. By the well-known equivalence between optimization
and separation [19], optimizing over the first Chvátal closure is equivalent to
solving the CG separation problem:

CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut that is violated by
x∗, i.e., find u ∈ Rm+ such that �uTA�x∗ > �uTb�, or prove that no such u
exists.

It was proved by Eisenbrand [15] that CG-SEP is NP-hard, and therefore so
is optimizing over P1. Fischetti and Lodi [16] recently studied the practical
strength of P1 in approximating PI . Their approach is to model the CG sep-
aration problem as an MILP, which is then solved through a general-purpose
MILP solver. To be more specific, given an input point x∗ ∈ P to be separated,
CG-SEP calls for a CG cut αTx ≤ α0 which is (maximally) violated by x∗,
where α = �uTA� and α0 = �uTb� for some u ∈ Rm+ . Hence, if Aj denotes the

Projected Chvátal–Gomory for mixed integer linear programs 243

jth column of A, CG-SEP can be modeled as:

max αTx∗ − α0, (2)

αj ≤ uTAj, for j = 1, . . . , n, (3)

α0 + 1 − ε ≥ uTb, (4)

ui ≥ 0, for i = 1, . . . , m, (5)

αj integer, for j = 0, . . . , n, (6)

where ε is a small positive value. The objective function (2) gives the amount
of violation of the CG cut evaluated for x = x∗, that we want to maximize.
Because of the sign of the objective function coefficients, the rounding condi-
tions αj = �uTAj� can be imposed through upper bound conditions on variables
αj (j = 1, . . . , n), as in (3), and with a lower bound condition on α0, as in (4).
Note that this latter constraint requires the introduction of a small value ε to
ensure that when uTb integral, α0 = uTb and not uTb − 1.

Model (2)–(6) can also be explained by observing that αTx ≤ α0 is a CG cut
if and only if (α, α0) is an integral vector, as stated in (6), and αTx ≤ α0 + 1 − ε

is a valid inequality for P, as stated in (3)–(5) by using the well-known charac-
terization of valid inequalities for a polyhedron due to Farkas.

Unfortunately, model (2)–(6) does not extend immediately to the mixed
integer case, where one typically concentrates on the stronger Gomory Mixed
Integer (GMI) cuts [18]. Although it is easy to find a GMI cut that separates
an integer infeasible basic solution of the linear programming relaxation, sep-
arating other points by GMI cuts is NP-hard [7,13]. Define the Gomory mixed
integer closure as the intersection of all the GMI cuts with the nonnegative orth-
ant. Not only is the separation problem for the Gomory mixed integer closure
NP-hard, but there is no MILP model like (2)–(6) known for it. Indeed, one
faces the solution of a nonlinear [7,14] or parametric [4] mixed integer problem
for the separation of GMI cuts. In this paper we introduce a projected version
of the classical CG cuts, and study their strength on general instances of MILP
as well as on some specific classes. The idea is to project first the linear program-
ming relaxation of the MILP at hand onto the space of the integer variables,
and then to derive Chvátal–Gomory cuts for the projected polyhedron. Though
theoretically dominated by GMI cuts, projected CG cuts have the advantage of
producing an MILP separation model very similar to (2)–(6), hence its solution
can typically be carried out in a reasonable amount of computing time. Also, it
can be conjectured that projected CG cuts are more “combinatorial” in nature
than GMI cuts, and can be quite effective for a large class of MILPs—notably,
those where the continuous variables are only used to model some feasibil-
ity condition, possibly by using big-M coefficients, and are not present in the
objective function, as, e.g., those addressed in [9].

The present paper is organized as follows. In Sect. 2 we define more pre-
cisely our projected CG cuts, and give an MILP formulation of the associated
separation problem. In Sect. 3, we prove a theorem showing that projected CG
cuts are equivalent to split cuts [11] in which one term of the disjunction has an

244 P. Bonami et al.

empty intersection with the original formulation. In Sect. 4 we consider classes
of problems where projected CG cuts are likely to be effective. Computational
results on all the mixed MILP instances taken from the MIPLIB 3.0 library [5]
are presented in Sect. 5, as well as on instances of the asymmetric traveling
salesman with time windows. These results show the effectiveness of projected
CG cuts both on general instances and on instances arising in specific contexts.
Section 6 contains concluding remarks and future directions of research.

2 Projected Chvátal–Gomory cuts

The computational results reported in [16] show that P1 often gives a surpris-
ingly tight approximation of PI , so a natural question is whether the same result
generalizes to mixed integer linear programming problems.

In this paper, we consider a Mixed Integer Linear Program (MILP) of the
form

min{cTx + f Ty : Ax + Cy ≤ b, x ≥ 0, x integral, y ≥ 0}, (7)

where A and C are m × n and m × r rational matrices respectively, b ∈ Qm,
c ∈ Qn, and f ∈ Qr. We also consider the two following polyhedra in the
(x, y)-space:

P(x, y) := {(x, y) ∈ Rn+ × Rr+ : Ax + Cy ≤ b}, (8)

PI(x, y) := conv({(x, y) ∈ P(x, y) : x integral}). (9)

Our first order of business is to extend the classical definition of Chvátal–
Gomory cuts to the mixed integer case, in such a way that the resulting separa-
tion problem retains as much as possible the simple structure of model (2)–(6).
To this end, we define the projection of P(x, y) onto the space of the x variables
as:

P(x) := {x ∈ Rn+ : there exists y ∈ Rr+ s.t. Ax + Cy ≤ b} (10)

= {x ∈ Rn+ : ukAx ≤ ukb, k = 1, . . . , K} (11)

=: {x ∈ Rn+ : Āx ≤ b̄}, (12)

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone
{u ∈ Rm+ : uTC ≥ 0T}. Note that the rows of the linear system Āx ≤ b̄ are of
Chvátal rank 0 with respect to P(x, y), i.e, no rounding argument is needed to
prove their validity.

We then define a projected Chvátal–Gomory (pro-CG) cut as a CG cut
derived from the system Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form
�wTĀ�x ≤ �wTb̄� for some w ≥ 0. We denote by P1(x) the Chvátal closure
of P(x) and by PI(x) the convex hull of P(x) ∩ Zn. Since any row of Āx ≤ b̄
can be obtained as a linear combination of the rows of Ax ≤ b with multipliers

Projected Chvátal–Gomory for mixed integer linear programs 245

ū ≥ 0 such that ūTC ≥ 0T , it follows that a pro-CG cut can equivalently (and
more directly) be defined as an inequality of the form

�uTA�x ≤ �uTb� for any u ≥ 0 such that uTC ≥ 0T . (13)

As such, its associated separation problem can be modeled as a simple extension
of (2)–(6), through the following MILP:

max αTx∗ − α0, (14)

αj ≤ uTAj, for j = 1, . . . , n, (15)

0 ≤ uTCj, for j = 1, . . . , r, (16)

α0 + 1 − ε ≥ uTb, (17)

ui ≥ 0, for i = 1, . . . , m, (18)

αj integer, for j = 0, . . . , n. (19)

3 Connection with split cuts

In this section, we relate the projected Chvátal–Gomory cuts to known cuts for
MILP. For this, it will be convenient to define the Chvátal–Gomory closure of
P(x, y) as the intersection of P(x, y) with all the pro-CG cuts (viewed as inequal-
ities αTx + 0Ty ≤ α0 in Rn × Rr). We denote the Chvátal–Gomory closure of
P(x, y) by P1(x, y). Since the intersection of all pro-CG cuts is a polyhedron, it
follows that so is P1(x, y).

Split cuts were introduced by Cook, Kannan and Schrijver [11]. They are
obtained as follows. For any π ∈ Zn and π0 ∈ Z, the disjunction πTx ≤ π0 or
πTx ≥ π0 +1 is valid for MILP. In other words, PI(x, y) ⊆ conv(�0 ∪�1) where

�0 := P(x, y) ∩ {(x, y) : πTx ≤ π0}, (20)

�1 := P(x, y) ∩ {(x, y) : πTx ≥ π0 + 1}. (21)

A valid inequality for conv(�0 ∪ �1) is called a split cut. The split closure
of P(x, y) is the convex set obtained by intersecting all the split cuts for all
(π , π0) ∈ Zn+1. Cook, Kannan and Schrijver proved that the split closure of
P(x, y) is a polyhedron. Nemhauser and Wolsey [24] proved that the split clo-
sure and the Gomory mixed integer closure are identical sets. See [12] for
a direct proof of this result. Projected Chvátal–Gomory cuts are dominated
by GMI cuts, and therefore P1(x, y) contains the split closure of P(x, y). The
following result gives the precise relation between the two classes of cuts.

Theorem 1 Let S(x, y) denote the intersection of P(x, y) with all the split cuts for
all (π , π0) ∈ Zn+1 where one of the sets �0, �1 defined in (20) and (21) is empty.

246 P. Bonami et al.

Then

P1(x, y) = S(x, y).

Proof First we prove S(x, y) ⊆ P1(x, y). Consider an inequality that defines a
facet of P1(x, y). If it is valid for P(x, y), then it is clearly valid for S(x, y). So we
may assume that the facet of P1(x, y) is defined by a pro-CG cut πTx ≤ π0. By
the Chvátal–Gomory procedure πTx ≤ β must be a valid inequality for P(x, y)

for some β < π0 + 1. This implies that �1 := P(x, y) ∩ {(x, y) : πTx ≥ π0 + 1} is
empty. Therefore conv(�0 ∪ �1) = �0. This implies that πTx ≤ π0 is valid for
conv(�0 ∪ �1), proving that it is a split cut. Furthermore this split cut is valid
for S(x, y) since �1 = ∅.

Conversely, we prove P1(x, y) ⊆ S(x, y). Consider a valid inequality for
S(x, y). If it is valid for P(x, y), then it is clearly valid for P1(x, y). So we only need
to consider a valid inequality for S(x, y) that arises from a split cut where one of
the sets �0, �1 is empty, for some π ∈ Zn and π0 ∈ Z. Without loss of generality
we may assume that �1 = ∅. In other words, the inequality under consideration
is valid for �0. We will show that P1(x, y) ⊆ �0. Since all the inequalities that
define �0 are valid for P(x, y) except possibly for the inequality πTx ≤ π0, it
suffices to show that πTx ≤ π0 is a pro-CG cut. Let

β = max πTx

x ∈ P(x, y).

Since �1 = ∅, it follows that β < π0 +1. Therefore πTx ≤ β is a valid inequality
for P(x, y). Since y does not appear in this inequality, it is also valid for P(x).
The Chvátal–Gomory procedure implies that πTx ≤ �β� ≤ π0 is a pro-CG cut.

4 On the strength of projected CG cuts

In this section we address the issue of the expected strength of the projected
CG cuts. For this it is useful to distinguish between two extreme cases of MILPs:
those where the essence of the problem is in the optimization of the integer
variables x, and those where optimizing over the continuous variables is the
key. This can be illustrated by the following simple example in two variables
x and y (with x integer and y continuous): P(x, y) is the polytope defined by
the inequalities x + y ≤ 3/2, y ≤ x and x, y ≥ 0. Observe that the pro-CG cut
x ≤ 1 cuts off the integer infeasible vertex (3/2, 0), but there is no pro-CG cut
which cuts off the integer infeasible vertex (3/4, 3/4). Thus, if the objective is
to maximize x, pro-CG cuts help, and optimizing over P1(x) = PI(x) yields the
optimal solution. On the other hand, if the objective is to maximize y, pro-CG
cuts do not help in this example. More generally, suppose that the projection
x∗ of the optimum (x∗, y∗) of the MILP relaxation belongs to the first Chvátal
closure P1(x). In this case, no pro-CG cut can cut off that point, although there
might possibly be a huge gap between the MILP and its relaxation.

Projected Chvátal–Gomory for mixed integer linear programs 247

On the other hand, pro-CG cuts are well suited to handle those MILPs
where the continuous variables are only used to model some feasibility con-
dition, possibly by using big-M coefficients, but are not present in the objec-
tive function. Indeed, take any inequality of the form gTx + 0Ty ≤ g0 that
is valid for PI(x, y). Then gTx ≤ g0 is also a valid inequality for the pro-
jected integer polyhedron PI(x), hence it is of finite Chvátal rank, say q, with
respect to system Āx ≤ b̄, x ≥ 0 (Chvátal [8], Gomory [18]). This implies that
gTx ≤ g0 is a pro-CG cut (of the same rank q) with respect to the original sys-
tem Ax + Cy ≤ b, (x, y) ≥ 0. In particular, if f = 0 in the objective function of
MILP (7) and z∗ denotes the optimum objective value of MILP, the inequality
cTx + f Ty ≥ z∗ is valid for PI(x, y) and therefore it is a pro-CG cut of finite
rank. We have just proved the following result.

Theorem 2 MILPs where the continuous variables do not appear in the objective
function can be optimized to proven optimality by using only pro-CG cuts (in an
iterative way of course).

A class of problems where (even rank 1) pro-CG cuts are likely to be really
effective has been recently addressed by Codato and Fischetti [9]. These authors
considered a basic 0-1 ILP of the form

min{cTx : Fx ≤ g, x ∈ {0, 1}n } (22)

amended by a set of “conditional” linear constraints involving additional con-
tinuous variables y, of the form

xi = 1 ⇒ wT
i y ≤ wi0, for all i ∈ I (23)

plus a (possibly empty) set of k (say) “unconditional” constraints on the con-
tinuous variables y, namely

Dy ≤ d. (24)

Note that the continuous variables y do not appear in the objective function—
they are only introduced to force some feasibility properties of the x’s. A familiar
example of a problem of this type is the classical Asymmetric Traveling Sales-
man Problem (ATSP) with time windows, called TW-ATSP in the sequel. Here
the binary variables xij are the usual arc variables, and the continuous variables
yi give the arrival time at city i. Each arc (i, j) has duration dij, and each city i
has to be visited within the time window [ei, li]. For this problem, the basic for-
mulation (22) contains the standard ATSP out- and in-degree equations (plus
any other ATSP constraints such as subtour elimination etc.). Implications (23)
are of the form

xij = 1 ⇒ yj ≥ yi + dij (25)

whereas (24) bounds the arrival time at city i

ei ≤ yi ≤ li for all i ∈ I. (26)

248 P. Bonami et al.

Another example is the map labeling problem [21], where the binary variables
are associated with the relative position of two labels to be placed on a map,
the continuous variables give their placement coordinates, and the conditional
constraints impose non-overlapping conditions of the type “if label i is placed
on the right of label j, then the placement coordinates of i and j must obey a
certain linear inequality giving a suitable separation condition”.

The usual way implications (23) are modeled within the MILP framework
is to use the famous big-M method, where large positive coefficients M are
introduced to activate/deactivate the conditional constraints to be added to the
basic model (22), as in:

wT
i y + M(xi − 1) ≤ wi0 for all i ∈ I. (27)

For example, the TW-ATSP implications (25) are usually modeled as:

yi − yj + Mxij ≤ M − dij. (28)

It is known however that, due to the presence of the big-M coefficients, the
LP relaxation of the resulting MILP model is typically very poor. As a matter
of fact, the x solutions of the LP relaxation are only marginally affected by
the addition of the y variables and of the associated constraints. To remedy this
behavior, Codato and Fischetti proposed the use of the so-called Combinatorial
Benders’ (CB) cuts: ∑

i∈Q

xi ≤ |Q| − 1, (29)

where Q ⊆ I induces a minimal (irreducible) infeasible subsystem of (23)–(24),
i.e., an inclusion-minimal set of row-indices of system (23) such that the linear
subsystem

wT
i y ≤ wi0, for all i ∈ Q, (30)

Dy ≤ d (31)

has no feasible (continuous) solution y. In a sense, CB cuts try to project in
a purely combinatorial way the feasibility requirement in the x space (hence
their name). They can be viewed as an attempt to distill automatically some
combinatorial information from the input MILP model. In this process, the role
of the big-M terms in the MILP model vanishes—only implications (23) are
relevant, no matter how they are modeled. The computational results reported
in [9] show that CB cuts can be really effective for specific classes of MILPs
that are notoriously very hard to solve: even with a simple implementation of
the CB cut separation procedure, the use of CB cuts results in a speed-up by
several orders of magnitude compared to the best commercial MILP solvers on
some important classes of MILPs.

The next proposition shows that CB cuts are a special case of projected CG
cuts.

Projected Chvátal–Gomory for mixed integer linear programs 249

Theorem 3 Combinatorial Benders cuts are projected CG cuts.

Proof Consider a combinatorial Benders cut
∑

i∈Q xi ≤ |Q|−1 where Q induces
a minimal infeasible system of (23)–(24). Maximizing

∑
i∈Q xi over the fea-

sible region P(x, y) of the big-M MILP yields an objective value β < |Q|,
since all xi cannot be 1. Therefore the Chvátal–Gomory procedure implies that∑

i∈Q xi ≤ |Q| − 1 is a CG cut for P(x, y). Since the y variables do not appear in∑
i∈Q xi ≤ |Q| − 1, it is also a projected CG cut.

Projected CG cuts can however be much stronger than CB cuts, in that they
can exploit all the information contained in the basic model (22). We illus-
trate this through the TW-ATSP example. Suppose you have a simple dipath
P of cardinality k (say) from a certain node a to a certain node b, whose
total duration exceeds the difference lb − ea. To fix the ideas, let the dipath be
P := {(0, 1), (1, 2), (2, 3), (3, 4)}, hence k = 4, and let dij = 10 for all (i, j) ∈ P,
with e0 = 5 and l4 = 40. The TW-ATSP model includes the following constraints
(we choose M = 100), plus the nonnegativity constraints on the x variables:

out0: x01 + x02 + x03 + x04 ≤ 1
out1: x10 + x12 + x13 + x14 ≤ 1
out2: x20 + x21 + x23 + x24 ≤ 1
out3: x30 + x31 + x32 + x34 ≤ 1

in1: x01 + x21 + x31 + x41 ≤ 1
in2: x02 + x12 + x32 + x42 ≤ 1
in3: x03 + x13 + x23 + x14 ≤ 1
in4: x04 + x14 + x24 + x34 ≤ 1

t01: y0 − y1 + 100x01 ≤ 90
t12: y1 − y2 + 100x12 ≤ 90
t23: y2 − y3 + 100x23 ≤ 90
t34: y3 − y4 + 100x34 ≤ 90
early0: −y0 ≤ −5
late4: y4 ≤ 40

Clearly, every feasible TW-ATSP solution has to satisfy the infeasible path
constraint

x(P) :=
∑

(i,j)∈P

xij ≤ |P| − 1, i.e., x01 + x12 + x23 + x34 ≤ 3

in our case. This cut is a CB cut, since clearly P induces an infeasible subset of
system (25)–(26). Because of the discussion above, the cut is also a projected
CG cut. This can easily be verified by maximizing the left-hand-side of the cut
(namely, x01 + x12 + x23 + x34) over the above system of linear constraints,
obtaining an optimal value of 3.95 (to be rounded down to 3). However, the
path infeasibility constraint is rather weak in that it does not take into account
the presence of the out- and in-degree constraints, as in the stronger tournament
inequality x([P]) ≤ |P| − 1 proposed by Ascheuer, Fischetti and Grötschel [2],

250 P. Bonami et al.

where P is any infeasible path, and [P] := {(i, j) : node i precedes node j in P} is
its transitive closure. In our example, the tournament inequality reads

x01 + x02 + x03 + x04 + x12 + x13 + x14 + x23 + x24 + x34 ≤ 3.

Optimizing the left-and-side over the LP system above produces an optimal
solution value of 3.9875 (still rounded down to 3) showing that the tournament
inequality is a projected CG cut.

5 Computational results

In this section we report the outcome of our experiments on a test-bed made up
of 43 mixed-integer problems from MIPLIB 3.0 [5]. The approach follows the
scheme used in [16], i.e., we implemented a pure cutting plane algorithm where,
at each iteration, pro-CG cuts are generated by solving the separation problem
(14)–(19) through a standard MILP solver. In order to speedup the overall
computation, the MILP solver is aborted whenever its incumbent solution does
not improve for a certain number of branching nodes (100 nodes when the cut
violation is greater than 0.2 and 1000 nodes otherwise). Our implementation of
the cutting-plane method uses the commercial software ILOG-Cplex 9.0 as the
LP solver, whereas the separation problem is solved through ILOG-Cplex 9.0
MILP solver with “mip emphasis 4” parameter; see [20]. All computing times
refer to a 3.2 Ghz Pentium 4 PC with 2 GB of RAM.

In particular, Table 1 reports the results for the cutting plane algorithm using
pro-CG cuts while Tables 2–3 compare those results with other general-purpose
cuts.

Table 1 is partitioned into three parts: at the top we report 10 instances
for which we have been able to optimize over the Chvátal–Gomory closure
in the time limit of 20 CPU minutes (1,200 CPU seconds1), then we have 26
instances in which our cutting plane procedure exceeded such a time limit, and
finally, we report 7 instances for which the algorithm did not find any pro-
CG cut and proved that none exists. More precisely, on the 10 instances in
which our algorithm completes the optimization over the pro-CG closure, no
time/node limit is imposed on the solution of the separation MIP which is how-
ever optimized—without finding any feasible solution, i.e., any violated pro-CG
inequality—with some degree of tolerance. For each instance, we report besides
its name (instance), the numbers of integer (n) and continuous variables (r) and
the number of continuous variables with a nonzero coefficient in the objective
function (rc). Then, we report for the pro-CG cuts, the number of iterations
and the number of separated cuts, the CPU time and the percentage of gap

closed computed as 100 opt_value(P1)−opt_value(P)

opt_value(PI)−opt_value(P)
. For those instances for which

1 Such a time limit has been selected to give a flavor of the practical usefulness of pro-CG cuts,
where this is an amount of time a user might reasonably give.

Projected Chvátal–Gomory for mixed integer linear programs 251

Table 1 Mixed integer linear programs of the MIPLIB 3.0. Note that for instances dsbmip and
noswot there is no gap between the initial LP (though fractional) solution and the optimal value,
while for the optimal solution of instance arki001we used the best known of value 7,580,877.1907

Instance n r rc Pro-CG

CPU Percentage
No. of iterations No. of cuts time of gap closed

bell3a 71 62 46 70 241 65.3 48.10
bell5 58 46 32 36 126 4.4 91.73
egout 55 86 55 35 168 6.8 81.77
fixnet6 378 500 416 34 83 42.9 67.51
khb05250 24 1,326 1,249 5 13 3.5 4.70
noswot 100 28 0 39 118 68.0 –
rentacar 55 9,502 177 7 15 5.1 0.00
set1ch 240 472 232 29 89 34.2 51.41
vpm1 168 210 0 27 53 14.9 100.00
vpm2 168 210 0 89 275 1,021.9 62.86

10teams 1,800 225 225 455 2,001 1,200.0 ≥ 57.14
arki001 538 850 1 62 215 1,200.0 ≥ 28.04
blend2 264 89 0 363 1,032 1,200.0 ≥ 36.40
dano3mip 552 13,321 1 1 0 1,200.0 ≥ 0.00
danoint 56 465 1 4 3 1,200.0 ≥ 0.01
dcmulti 75 473 473 46 132 1,200.0 ≥ 47.25
dsbmip 192 1,694 1,068 186 433 1,200.0 –
fiber 1,254 44 0 289 1,556 1,200.0 ≥ 4.83
flugpl 11 7 7 3 2 1,200.0 ≥ 19.19
gen 150 720 432 171 427 1,200.0 ≥ 86.60
gesa2 408 816 624 383 1,660 1,200.0 ≥ 94.84
gesa2_o 720 504 312 76 306 1,200.0 ≥ 94.93
gesa3 384 768 528 138 381 1,200.0 ≥ 58.96
gesa3_o 672 480 264 49 193 1,200.0 ≥ 64.53
markshare1 50 12 12 3,345 20,686 1,200.0 ≥ 0.00
markshare2 60 14 14 3,111 18,720 1,200.0 ≥ 0.00
mkc 5,323 2 0 87 267 1,200.0 ≥ 1.27
misc03 159 1 1 303 852 1,200.0 ≥ 34.92
misc07 259 1 1 331 889 1,200.0 ≥ 3.86
pp08a 64 176 112 7 8 1,200.0 ≥ 4.32
pp08aCUTS 64 176 112 4 5 1,200.0 ≥ 0.68
qiu 48 792 264 7 8 1,200.0 ≥ 10.71
qnet1 1,417 124 124 214 715 1,200.0 ≥ 7.32
qnet1_o 1,417 124 124 318 1,340 1,200.0 ≥ 8.61
rout 315 241 1 459 1,715 1,200.0 ≥ 0.03
swath 6,724 81 1 354 1,222 1,200.0 ≥ 7.68

mas74 150 1 1 1 0 0.0 0.00
mas76 150 1 1 1 0 0.0 0.00
misc06 112 1,696 1 1 0 0.0 0.00
mod011 96 10,862 7,489 1 0 0.4 0.00
modglob 98 324 324 1 0 0.0 0.00
pk1 55 31 1 1 0 0.0 0.00
rgn 100 80 80 1 0 0.6 0.00

252 P. Bonami et al.

the imposed time limit has been reached the gap closed is reported with a “≥”
symbol to indicate that such a gap is indeed underestimated.

The results in Table 1 show that the projected Chvátal–Gomory closure can
be an effective approximation of the integer hull of MILPs. The average gap
closed over 41 instances2 is around 29%. On the other hand, as expected, there
are several (at least 7) instances for which no pro-CG cut exists. For 11 instances
out of 41, optimizing over the projected Chvátal–Gomory closure (up to the
time limit of 1,200 s) produced absolutely no improvement. For the 30 remaining
instances, however, the average gap closed is around 40%. On certain instances
(bell5, gesa2), the projected Chvátal–Gomory closure closes over 90% of
the gap. On vpm1 the projected Chvátal–Gomory closure even closes 100% of
the gap. This is impressive considering that the pro-CG cuts are also attractive
from a numerical point of view: when used iteratively, they tend to deteriorate
less rapidly than the GMI cuts read from the LP tableau.

In Tables 2 and 3 we report comparisons with classical families of cutting
planes that are valid for the Gomory mixed integer closure: Gomory Mixed Inte-
ger cuts from the optimal tableau of the LP relaxation, MIR cuts (Marchand
and Wolsey [22]) and lift-and-project cuts [3]. Specifically, the columns GMI
and MIR in Table 2 refer to one round of Gomory Mixed Integer cuts, and of
Mixed Integer Rounding cuts respectively, as implemented in the COIN-OR
cut generator [10]. The column L&P in Table 3 refers to the gap closed by the
lift-and-project closure plus a strengthening step, as implemented by Bonami
and Minoux [6]. Note that we set a time limit of 20 CPU minutes on each run:
5 instances were interrupted because of the time limit. Tables 2 and 3 show
the improvement achieved by the projected Chvátal–Gomory closure when it
is applied subsequently to the three other families of cuts, either separately, or
all together (the column GMI+MIR+L&P was obtained by applying first the
GMI and MIR cuts and then, starting from the resulting solution, the L&P
separation step). An additional time limit of 20 CPU minutes was set on gener-
ating projected Chvátal–Gomory cuts, for all the runs. Note that for instances
where we only partially optimize over the projected Chvátal–Gomory closure,
it can happen that the pro-CG gap closed is better than the GMI+pro-CG gap
closed (blend2 is such an instance). We can make the following observations.
The pro-CG cuts can sometimes be vastly superior to the other families of cuts
(bell5, gesa2, vpm1). The average gap closed by the projected Chvátal–
Gomory closure (29%) is comparable to that closed by GMI cuts (24%), MIR
cuts (23%) and the lift-and-project closure (35%). Tables 2 and 3 show that pro-
CG cuts are quite different from the other families of cuts. Adding the pro-CG
cuts to the GMI cuts improves the average closed gap from 24% to 41%. Add-
ing them to MIR cuts improves it from 23% to 40%, and adding them to the
lift-and-project closure improves it from 35% to 49%. Finally, adding the pro-
CG cuts to all the other cuts combined still improves the average gap from
48% to 55%. The case of egout is interesting: the gap is closed completely by

2 Instances dsbmip and noswot are not considered in the average.

Projected Chvátal–Gomory for mixed integer linear programs 253

Table 2 Comparison with GMI cuts and MIR cuts

Instance Percentage of gap closed

GMI + MIR +
GMI Pro-CG MIR Pro-CG

bell3a 45.10 78.71 19.06 60.94
bell5 14.53 92.64 0.40 91.88
egout 40.26 84.18 57.14 92.74
fixnet6 10.27 75.96 69.92 82.48
khb05250 74.91 74.91 77.92 77.92
noswot – – – –
rentacar 0.00 0.00 0.00 0.00
set1ch 38.11 70.41 38.27 69.41
vpm1 10.00 100.00 33.08 100.00
vpm2 13.00 64.70 31.52 68.55

10teams 100.00 100.00 0.00 ≥57.14
arki001 34.72 ≥36.01 7.03 ≥33.19
blend2 16.29 ≥31.39 14.39 ≥32.06
dano3mip 0.01 ≥0.01 0.01 ≥0.01
danoint 0.22 ≥0.22 0.49 ≥0.49
dcmulti 47.25 ≥67.88 7.49 ≥54.23
dsbmip – – – –
fiber 72.18 ≥75.53 25.27 ≥30.12
flugpl 11.74 ≥11.74 0.00 ≥19.19
gen 55.11 ≥91.52 57.17 ≥93.13
gesa2 30.89 ≥98.04 60.69 ≥96.49
gesa2_o 31.02 ≥98.09 24.62 ≥96.54
gesa3 45.76 ≥62.99 65.28 ≥72.24
gesa3_o 49.16 ≥69.98 60.06 ≥71.03
markshare1 0.00 ≥0.00 0.00 ≥0.00
markshare2 0.00 ≥0.00 0.00 ≥0.00
mkc 13.82 ≥14.11 0.00 ≥0.01
misc03 8.62 ≥30.32 0.00 ≥35.11
misc07 0.72 ≥4.12 0.00 ≥4.12
pp08a 52.10 ≥52.31 60.16 ≥60.44
pp08aCUTS 29.73 ≥30.48 79.55 ≥79.59
qiu 0.27 ≥7.85 0.00 ≥10.71
qnet1 10.57 ≥14.41 21.06 ≥25.50
qnet1_o 44.49 ≥47.12 48.33 ≥51.17
rout 0.32 ≥0.32 0.00 ≥0.12
swath 3.06 ≥10.53 0.00 ≥7.92

mas74 6.67 6.67 4.14 4.14
mas76 6.42 6.42 5.15 5.15
misc06 30.39 30.39 0.00 0.00
mod011 1.67 1.67 0.10 0.10
modglob 16.85 16.85 13.22 13.22
pk1 0.00 0.00 0.00 0.00
rgn 1.61 1.61 34.21 34.21

combining the 4 types of cuts but not without the pro-CG cuts. Other interesting
cases are bell3a and flugpl, where the pro-CG cuts improve greatly over
all the other cuts combined. This indicates that the pro-CG cuts are genuinely

254 P. Bonami et al.

Table 3 Comparison with lift-and-project cuts and a combination of cuts. Note that for vpm2 and
misc06, the gap closed by L&P is larger than for GMI+MIR+L&P. This happens because the L&P
cuts are strengthened and therefore there is no domination property

Instance Percentage of gap closed

GMI GMI
+MIR +MIR

L&P L&P +L&P +L&P
+pro-CG +pro-CG

bell3a 43.76 81.47 64.02 91.68
bell5 83.25 92.82 85.40 93.18
egout 93.83 98.84 93.85 100.00
fixnet6 85.38 91.96 86.01 92.33
khb05250 99.39 99.39 98.43 98.43
noswot – – – –
rentacar ≥ 0.00 0.00 ≥ 0.00 0.00
set1ch 39.96 68.88 40.17 69.27
vpm1 31.40 100.00 53.90 100.00
vpm2 54.28 79.05 35.48 69.22

10teams 0.00 ≥ 57.14 100.00 100.00
arki001 34.13 ≥ 34.13 66.67 ≥ 79.19
blend2 21.56 ≥ 35.86 21.71 ≥ 33.44
dano3mip ≥ 0.00 ≥ 0.00 ≥ 0.01 ≥ 0.01
danoint ≥ 1.57 ≥ 1.57 ≥ 1.61 ≥ 1.61
dcmulti 97.22 ≥ 97.30 97.65 ≥ 97.95
dsbmip – – – –
fiber 81.68 ≥ 83.30 89.68 ≥ 91.39
flugpl 0.00 ≥ 19.19 11.74 ≥ 41.75
gen 78.65 ≥ 92.29 81.54 ≥ 97.05
gesa2 37.83 ≥ 96.69 81.55 ≥ 99.21
gesa2_o 37.83 ≥ 98.60 49.27 ≥ 99.27
gesa3 11.21 ≥ 58.30 68.04 ≥ 71.05
gesa3_o 11.21 ≥ 63.19 68.12 ≥ 74.79
markshare1 0.00 ≥ 0.00 0.00 ≥ 0.00
markshare2 0.00 ≥ 0.00 0.00 ≥ 0.00
mkc ≥ 26.82 ≥ 29.07 ≥ 36.65 ≥ 39.35
misc03 39.67 ≥ 44.91 40.21 ≥ 42.70
misc07 12.03 ≥ 12.03 12.25 ≥ 12.25
pp08a 80.46 ≥ 80.46 81.35 ≥ 81.35
pp08aCUTS 69.36 ≥ 69.36 88.87 ≥ 88.87
qiu 0.00 ≥ 10.85 28.79 ≥ 28.95
qnet1 6.61 ≥ 11.99 28.26 ≥ 31.54
qnet1_o 0.00 ≥ 8.61 48.39 ≥ 50.77
rout 30.09 ≥ 31.17 30.51 ≥ 31.57
swath ≥ 0.32 ≥ 8.41 ≥ 17.79 ≥ 21.50

mas74 0.00 0.00 6.84 6.84
mas76 0.00 0.00 7.03 7.03
misc06 79.52 79.52 46.51 46.51
mod011 5.08 5.08 16.23 16.23
modglob 57.08 57.08 60.76 60.76
pk1 0.00 0.00 0.00 0.00
rgn 79.49 79.49 96.14 96.14

Projected Chvátal–Gomory for mixed integer linear programs 255

Table 4 Stacker crane TW-ATSP instances

Opt
Instance |I| value Pro-CG [2]

No. of No. of Percentage Percentage of time Percentage Percentage
iterations cuts of gap closed to get the bound of final gap of final gap

rbg010a 12 149 227 526 ≥ 99.07 7.50 0.67 0.67
rbg017 17 148 255 793 ≥ 78.07 27.89 14.86 0
rbg017.2 17 107 199 504 ≥ 96.90 27.80 1.87 0
rbg016a 18 179 422 1,505 ≥ 97.08 100.00 1.68 1.11
rbg016b 18 142 245 632 ≥ 86.54 31.77 10.56 6.33
rbg017a 19 146 219 636 ≥ 95.07 39.42 2.74 0
rbg019a 21 217 552 1,962 ≥ 97.40 100.00 1.38 0
rbg019b 21 182 675 1,697 ≥ 89.47 100.00 6.59 1.09
rbg019c 21 190 258 792 ≥ 70.21 23.12 20.53 4.21
rbg019d 21 344 608 1,776 ≥ 90.57 100.00 4.94 0.29
rbg021 21 190 257 633 ≥ 72.05 20.27 20.53 4.21
rbg021.2 21 182 300 692 ≥ 77.00 25.32 17.03 0
rbg021.3 21 182 487 1,348 ≥ 74.40 100.00 19.23 2.19
rbg021.4 21 179 416 1,134 ≥ 76.66 77.66 17.88 1.11
rbg021.5 21 169 306 908 ≥ 77.67 81.93 17.16 1.18
rbg021.6 21 134 294 743 ≥ 96.60 58.94 2.24 0.74
rbg021.7 21 133 263 658 ≥ 95.64 53.51 3.01 3.75
rbg021.8 21 132 346 744 ≥ 96.12 36.53 3.03 2.27
rbg021.9 21 132 369 761 ≥ 95.18 56.28 3.79 3.03
rbg020a 22 210 399 1,150 ≥ 77.95 100.00 14.29 0
rbg027a 29 268 667 1,655 ≥ 76.11 100.00 16.04 0.74

different from those that are currently used in MILP solvers and that it is worth
exploring heuristics that generate them more efficiently.

A second set of experiments has been performed to test the effectiveness
of pro-CG cuts in the context of the simple model for the TW-ATSP discussed
in Sect. 4, where the basic ILP model (22) only includes in- and out-degree
equations (no subtour elimination constraints are exploited). Note that no con-
tinuous variables are present in the objective function of this model. Table 4
reports results on TW-ATSP real-world instances introduced by Ascheuer [1],
derived “from an industry project with the aim to minimize the unloaded travel
time of a stacker crane within an automated storage system”.

In particular, we report results on a set of 21 problems of small/medium size,
with up to 30 vertices. The information provided in Table 4 for each instance
is the number of cities (|I|) and the optimal solution value (opt value). For
pro-CG separation, Table 4 gives the same information as in Table 1. As a com-
parison, we provide the final gap obtained by the pro-CG closure and the gap
at the root node in [2] (note that we report the gap instead of the gap closed
because a different initial formulation is used in [2]). Computing time is also
not reported since the 1,200-second time limit is reached for all our TW-ATSP
instances. Instead, we report the percentage of time (with respect to the time
limit) spent to find the final bound. For example, for problem rbg010a the
algorithm improves the bound from 42 to 148 in 90.1 CPU seconds (7.50% of
the total time) and spends the remaining computing time without finding any

256 P. Bonami et al.

new cut. In such a case, we may guess that we are close to the Chvátal–Gomory
closure, but proving that no violated pro-CG cut exists can require a great deal
of enumeration.

The results for TW-ATSP instances are also very encouraging. Although our
initial model is known to be very weak, pro-CG cuts are able to close a very
significant amount (always more than 70%) of the initial gap. This suggests that
pro-CG cuts could be used successfully together with special purpose (polyhe-
dral) separation routines in an attempt to improve the overall behavior of a
cutting plane algorithm.

6 Conclusions

In this paper we have introduced a projected version of the classical Chvátal–
Gomory cuts, and have studied their practical effectiveness for MIPLIB
instances and for some special classes of MILP problems. Our approach is
to project first the linear programming relaxation of the MILP at hand onto
the space of the integer variables, and then to derive CG cuts for the projected
polyhedron.

Although there are cases where they are ineffective, projected CG cuts pro-
vide excellent bounds for a number of MIPLIB instances. Furthermore, they can
be applied successfully on a wide range of combinatorial problems where the
continuous variables do not appear in the objective function. Our experiments
on TW-ATSP confirm this claim–even starting from a very weak formulation
involving big-M coefficients, the use of projected CG cuts is able to close a large
portion of the integrality gap (70% or more, in our test cases). In our view, these
results give a concrete hope that a similar performance can be obtained on other
classes of problems (including scheduling and cutting/packing problems) when
they are modeled through weak formulations involving continuous variables
linked to the integer ones by constraints involving big-M coefficients.

A natural question (and one posed by the editor and referees) is whether
using the multipliers u in a solution of (14)–(19) to write GMI cuts instead of
pro-CG cuts results in a substantial improvement. After all, GMI cuts domi-
nate pro-CG cuts. In our limited experiments with MIPLIB instances, we did
not notice much of an improvement, but we do not claim to have a conclusive
answer.

Acknowledgments We warmly thank Jon Lee and François Margot for friendly and useful dis-
cussions on the subject. We also thank the referees for useful comments and suggestions. Part of
this research has been carried out when the last author was Herman Goldstine Fellow of the IBM
T.J. Watson Research Center whose support is strongly acknowledged.

References

1. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible manufacturing
systems. PhD Thesis, Technische Universität Berlin, Berlin (1995)

2. Ascheuer, N., Fischetti, M., Grötschel, M.: A polyhedral study of the asymmetric travelling
salesman problem with time windows. Networks 36, 69–79 (2000)

Projected Chvátal–Gomory for mixed integer linear programs 257

3. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0-1
programs. Math. Program. 58, 295–324 (1993)

4. Balas, E., Saxena, A.: Optimizing over the Split Closure: Modeling and Theoretical Analysis,
IMA “Hot Topics” Workshop: Mixed Integer Programming, Minneapolis, 25–29 July 2005

5. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: MIPLIB 3.0, http://www.caam.
rice.edu/∼bixby/miplib/miplib.html

6. Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0-1 MIPs, a
computational investigation. Discrete Optim. 2, 288–307 (2005)

7. Caprara, A., Letchford, A.N.: On the separation of split cuts and related inequalities. Math.
Program. 94, 279–294 (2003)

8. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems C73. Discrete
Math. 4, 305–337 (1973)

9. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming.
Oper. Res. 54, 756–766 (2006)

10. COIN-OR. www.coin-or.org
11. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming prob-

lems. Math. Program. 47, 155–174 (1990)
12. Cornuéjols, G., Li, Y.: On the rank of mixed 0,1 polyhedra. Math. Program. 91, 391–397 (2002)
13. Cornuéjols, G., Li, Y.: A connection between cutting plane theory and the geometry of num-

bers. Math. Program. 93, 123–127 (2002)
14. Dash, S., Günlük, O., Lodi, A.: On the MIR closure of polyhedra. IBM, T.J. Watson Research,

Working paper (2005)
15. Eisenbrand, F.: On the membership problem for the elementary closure of a polyhedron. Com-

binatorica 19, 297–300 (1999)
16. Fischetti, M., Lodi, A. : Optimizing over the first Ch closure. In: Jünger, M.,

Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization—IPCO 2005, LNCS
3509., pp. 12–22. Springer, Berlin Heidelberg New York (2005)

17. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull
AMS 64, 275–278 (1958)

18. Gomory, R.E. : An algorithm for integer solutions to linear programs. In: Graves, R.L.,
Wolfe, P. (eds.) Recent Advances in Mathematical Programming., pp. 269–302. McGraw-
Hill, New York (1963)

19. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-
tion. Springer, Berlin Heidelberg New York (1988)

20. ILOG Cplex 9.0: User’s Manual and Reference Manual, ILOG, S.A., http://www.ilog.com/
(2005)

21. Klau, G.W., Mützel, P.: Optimal labelling of point features in rectangular labelling models. Math.
Program. 94, 435–458 (2003)

22. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper.
Res. 49, 363–371 (2001)

23. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wi-
ley, New York (1988)

24. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0-1 mixed integer
programs. Math. Program. 46, 379–390 (1990)

25. Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)

	Projected Chvátal--Gomory cuts for mixed integer linear programs
	Abstract
	Introduction
	Projected Chvátal--Gomory cuts
	Connection with split cuts
	On the strength of projected CG cuts
	Computational results
	Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

