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Università di Padova, conforti@math.unipd.it

Gérard Cornuéjols ∗
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Abstract

This survey presents tools from polyhedral theory that are used in
integer programming. It applies them to the study of valid inequalities
for mixed integer linear sets, such as Gomory’s mixed integer cuts.
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1 Introduction

1.1 Mixed integer linear programming

In this tutorial we consider mixed integer linear programs. These are prob-
lems of the form

∗Supported by NSF grant CMMI0653419, ONR grant N00014-03-1-0188 and ANR
grant ANR06-BLAN-0375.
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max cx + hy
Ax + Gy ≤ b

x ≥ 0 integral
y ≥ 0,

(1)

where the data are the row vectors c ∈ Qn, h ∈ Qp, the matrices A ∈ Qm×n,
G ∈ Qm×p and the column vector b ∈ Qm; and the variables are the column
vectors x ∈ Rn and y ∈ Rp. The set S of feasible solutions to (1) is called
a mixed integer linear set when p ≥ 1 and a pure integer linear set when
p = 0.
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Figure 1: A mixed integer set

The polyhedral approach is a powerful tool for solving mixed integer
linear programs (1). This is the topic of this tutorial.

1.2 Historical perspective

Babylonian tablets show that mathematicians were already solving systems
of linear equations over 3000 years ago. The eighth book of the Chinese Nine
Books of Arithmetic, written over 2000 years ago, describes the Gaussian
elimination method. In 1809, Gauss [29] used this method in his work
and presented it as a ”standard technique”. Surprisingly, the method was
subsequently named after him.

A major breakthrough occurred when mathematicians started analyzing
systems of linear inequalities. This is a fertile ground for beautiful theories.
In 1826 Fourier [28] gave an algorithm for solving such systems by eliminat-
ing variables one at a time. Other important contributions are due to Farkas
[26] and Minkowski [39]. Systems of linear inequalities define polyhedra and
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it is natural to optimize a linear function over them. This is the topic of
linear programming, arguably one of the greatest successes of computational
mathematics in the twentieth century. The simplex method, developed by
Dantzig [20] in 1951, is currently used to solve large-scale applications in all
sorts of human endeavors. It is often desirable to find integer solutions to
linear programs. This is the topic of this tutorial. The first algorithm for
solving (1) in the pure integer case was discovered in 1958 by Gomory [31].

When considering algorithmic questions, a fundamental issue is the in-
crease in computing time when the size of the problem instance increases. In
the 1960s Edmonds [23] was one of the pioneers in stressing the importance
of polynomial-time algorithms. These are algorithms whose computing time
is bounded by a polynomial function of the instance size. In particular Ed-
monds [24] pointed out that, by being a bit careful with the intermediate
numbers that are generated, the Gaussian elimination method can be turned
into a polynomial-time algorithm. The existence of a polynomial-time al-
gorithm for linear programming remained a challenge for many years. This
question was resolved positively by Khachiyan [34] in 1979, and later by
Karmarkar [33] using a totally different algorithm. Both algorithms were
(and still are) very influential, each in its own way. In integer program-
ming, Lenstra [36] found a polynomial-time algorithm when the number of
variables is fixed. Although integer programming is NP-hard in general, the
polyhedral approach has proved successful in practice. It can be traced back
to the work of Dantzig, Fulkerson and Johnson [21]. Research is currently
very active in this area. Also very promising are non-polyhedral approx-
imations that can be computed in polynomial-time, such as semidefinite
relaxations (Lovász and Schrijver [37], Goemans and Williamson [30]).

In the next section, we motivate the polyhedral approach by presenting
a cutting plane method for solving mixed integer linear programs (1).

1.3 Cutting Plane Methods

Solving a mixed integer linear program (MILP) such as (1) is NP-hard (Cook
[16]). One approach that has been quite successful in practice is based
on an idea that is commonly used in computational mathematics: Find a
relaxation that is easier to compute and gives a tight approximation. We
focus on linear programming (LP) relaxations.

Given a mixed integer linear set S := {(x, y) ∈ Zn
+×Rp

+ : Ax+Gy ≤ b}, a
linear programming relaxation of S is a set P ′ = {(x, y) : A′x+G′y ≤ b′} that
contains S. Why LP relaxations? Mainly for two reasons: As mentioned
already, there are efficient practical algorithms for solving linear programs
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[20], [33]. Second, one can generate a sequence of LP relaxations that provide
increasingly tight approximations of the set S.

For a mixed integer set S, there is a natural LP relaxation:

P0 := {(x, y) : Ax + Gy ≤ b, x ≥ 0, y ≥ 0}

which is obtained from the system that defines S by discarding the integrality
requirement on the vector x.

Let (x0, y0) be an optimal solution and z0 the value of the linear program

max{cx + hy : (x, y) ∈ P0} (2)

whose constraint set is the natural linear programming relaxation of S. We
will assume that we have a linear programming solver at our disposal, thus
(x0, y0) and z0 are available to us. Let z∗ be the optimal value of (1). Since
S ⊆ P0, it follows that z0 ≥ z∗. Furthermore if x0 is an integral vector, then
(x0, y0) ∈ S, z∗ = z0 and the MILP (1) is solved.

A strategy for dealing with an optimal solution (x0, y0) of (2) that is not
in S is to find an inequality αx + γy ≤ β that is satisfied by every point
in S and such that αx0 + γy0 > β. The existence of such an inequality is
guaranteed when (x0, y0) is an optimal basic solution of (2), which can be
found by standard LP algorithms.

An inequality αx+ γy ≤ β that is satisfied by every point in S is a valid
inequality for S. If such an inequality is violated by (x0, y0), it is a cutting
plane separating (x0, y0) from S.

Define now
P1 = P0 ∩ {(x, y) : αx + γy ≤ β}.

Since S ⊆ P1 ⊂ P0, a linear programming relaxation for MILP based on
P1 is stronger than the natural relaxation based on P0 in the sense that the
solution (x0, y0) of the natural LP relaxation does not belong to P1. So the
optimal value of the LP

max{cx + hy : (x, y) ∈ P1}
is at least as good an approximation of the value z∗ as z0. The recursive
application of this idea leads to the cutting plane approach:

Starting with i = 0, repeat:
Recursive Step: Solve the linear program max{cx + hy : (x, y) ∈ Pi}. If
the associated optimal basic solution (xi, yi) belongs to S , Stop.
Otherwise solve the following separation problem:
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Find a cutting plane αx + γy ≤ β separating (xi, yi) from S.
Set Pi+1 := Pi ∩ {(x, y) : αx + γy ≤ β} and repeat the recursive step.

If (xi, yi) is not in S, there are infinitely many cutting planes separating
(xi, yi) from S. So the separation problem that is recursively solved in the
above algorithm has many solutions. There is usually a tradeoff between
the running time of a separation procedure and the quality of the cutting
planes it produces. We will discuss several possibilities in this survey.

For now, we illustrate the cutting plane approach on a two variable
example (see Figure 2):

max z = 11x1 + 4.2x2

−x1 + x2 ≤ 2
8x1 + 2x2 ≤ 17

x1, x2 ≥ 0 integer.

(3)

We first add slack variables x3 and x4 to turn the inequality constraints into
equalities. The problem becomes:

z − 11x1 − 4.2x2 = 0
−x1 + x2 + x3 = 2
8x1 + 2x2 + x4 = 17

x1, x2, x3, x4 ≥ 0 integer.

Solving the LP relaxation, we get the optimal tableau:

z + 1.16x3 + 1.52x4 = 28.16
x2 + 0.8x3 + 0.1x4 = 3.3
x1 − 0.2x3 + 0.1x4 = 1.3

x1, x2, x3, x4 ≥ 0

The corresponding basic solution is x3 = x4 = 0, x1 = 1.3, x2 = 3.3 with
objective value z = 28.16. Since the values of x1 and x2 are not integer,
this is not a solution of (3). We can generate a cut from the constraint
x2 +0.8x3 +0.1x4 = 3.3 using the following reasoning. Since x2 is an integer
variable, we have

0.8x3 + 0.1x4 = 0.3 + k where k ∈ Z.

Since the left-hand-side is nonnegative, we must have k ≥ 0, which implies

0.8x3 + 0.1x4 ≥ 0.3

This is the famous Gomory fractional cut [31]. Note that it cuts off the
above fractional LP solution x3 = x4 = 0.
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Figure 2: The first two cuts in the cutting plane algorithm

Since x3 = 2+x1−x2 and x4 = 17−8x1−2x2, we can express Gomory’s
fractional cut in the space (x1, x2). This yields x2 ≤ 3 (see Figure 2).

Adding this cut to the linear programming relaxation, we get the follow-
ing formulation.

max 11x1 + 4.2x2

−x1 + x2 ≤ 2
8x1 + 2x2 ≤ 17
x2 ≤ 3
x1, x2 ≥ 0.

Solving this linear program, we find the basic solution x1 = 1.375, x2 = 3
with value z = 27.725. From the optimal tableau, we can generate a new
fractional cut:

x1 + x2 ≤ 4.

Adding this cut to the LP, we find a new LP optimum x1 = 1.5, x2 = 2.5
with value z = 27. Two more iterations are needed to obtain the optimal
integer solution x1 = 1, x2 = 3 with value z = 23.6.

2 Polyhedra and the Fundamental Theorem of In-
teger Programming

A polyhedron in Rn is a set of the form P := {x ∈ Rn : Ax ≤ b} where A
is a real matrix and b a real vector. If A and b have rational entries, P is a
rational polyhedron. A polyhedron of the form {x ∈ Rn : Ax ≤ 0} is called
a polyhedral cone. Note that a polyhedral cone is always nonempty since it
contains the null vector 0.
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For S ⊆ Rn, the convex hull of S is the set conv(S) := {x ∈ Rn : x =∑k
i=1 λix

i where k ≥ 1, λ ∈ Rk
+,

∑k
i=1 λi = 1 and x1, . . . , xk ∈ S}. This is

the smallest convex set that contains S. Note that conv(∅) = ∅. The convex
hull of a finite set of points in Rn is called a polytope. It will sometimes be
useful to work with conv(S), the closure of conv(S), which is the smallest
closed convex set that contains S. The conic hull of a nonempty set S ⊆ Rn is
cone(S) := {x ∈ Rn : x =

∑k
i=1 λix

i where k ≥ 1, λ ∈ Rk
+ and x1, . . . , xk ∈

S}. If S is a finite set, cone(S) is said to be finitely generated. It will be
convenient to define cone(∅) = {0}.

Given a cone C and r ∈ C\{0}, the set cone(r) = {λr : λ ≥ 0} is called a
ray of C. Since cone(λr) = cone(r) for every λ > 0, we will sometimes simply
refer to a vector r ∈ C as a ray, to denote the corresponding ray cone(r).
So when we say that r and r′ are distinct rays, we mean cone(r) 6= cone(r′).
We say that r ∈ C \{0} is an extreme ray if there are no distinct rays r1 and
r2 such that r = r1 + r2. We say that C is pointed if, for every r ∈ C \ {0},
−r /∈ C. One can verify that if C is a finitely generated pointed cone, then
C is generated by its extreme rays.

An important theorem, due to Minkowski and Weyl, states that every
polyhedron P can be written as the sum of a polytope Q and a finitely
generated cone C. Here Q + C := {x ∈ Rn : x = y + z for some y ∈
Q and z ∈ C}. Note that P = ∅ if and only if Q = ∅. If P := {x ∈ Rn :
Ax ≤ b} is nonempty, then C is the cone {x ∈ Rn : Ax ≤ 0}, which is called
the recession cone of P and denoted by rec(P ). We will prove this theorem
in Section 2.3.

Using the Minkowski-Weyl theorem, we will prove the fundamental the-
orem of integer programming, due to Meyer [38]:

Given rational matrices A, G and a rational vector b, let P := {(x, y) :
Ax + Gy ≤ b} and S := {(x, y) ∈ P : x integral}. Then there exist rational
matrices A′, G′ and a rational vector b′ such that conv(S) = {(x, y) : A′x +
G′y ≤ b′}.

In other words, when P is a rational polyhedron, then the convex hull of
S is also a rational polyhedron. Note that, if matrices A, G are not rational,
then conv(S) may not be a polyhedron as shown by the following example
S := {x ∈ Z2 : 1 ≤ x2 ≤

√
2x1}. In this case, infinitely many inequali-

ties are required to describe conv(S) by a system of linear inequalities. In
this survey we assume that the data A,G, b are rational. Meyer’s theorem is
the theoretical underpinning of the polyhedral approach to integer program-
ming. Indeed, it shows that (1), the problem of optimizing a linear function
over a mixed integer set S is equivalent to solving a linear program. The
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main difficulty is that the polyhedron conv(S) is not known explicitly. In
the later sections of the tutorial, we will address the constructive aspects of
conv(S).

2.1 Farkas’ lemma and linear programming duality

The following is a fundamental fact in linear algebra:

Theorem 2.1. A system of linear equations Ax = b is infeasible if and only
if the system uA = 0, ub < 0 is feasible.

A constructive proof of Theorem 2.1 is straightforward using Gaus-
sian elimination on the system Ax = b. Furthermore, one can decide
in polynomial time which of the two systems is feasible, and find a so-
lution, again using Gaussian elimination (Edmonds [24], see e.g. Schri-
jver [45] p.27). Farkas’ lemma [26] provides a certificate of the solvabil-
ity of a system of linear inequalities Ax ≤ b in the same spirit as The-
orem 2.1. However its proof is not as straightforward. This is not sur-
prising since checking feasibility of a system of linear inequalities is a lin-
ear programming problem. In fact, Farkas’ lemma can be used to derive
the strong duality theorem of linear programming, as we will show later
in this section. We first give a proof of Farkas’ lemma based on Theo-
rem 2.1, following Conforti, Di Summa and Zambelli [15]. A linear system
aix = bi, i = 1, . . . , p, aix ≤ bi, i = p + 1, . . . , m is minimally infeasible if
it has no solution but each of the m linear systems obtained by removing a
single constraint has a solution.

Theorem 2.2. (Farkas’ lemma) The system of linear inequalities Ax ≤ b
is infeasible if and only if the system uA = 0, ub < 0, u ≥ 0 is feasible.

Proof. Assume uA = 0, ub < 0, u ≥ 0 is feasible. Then 0 = uAx ≤ ub < 0
for any x satisfying Ax ≤ b. It follows that Ax ≤ b is infeasible and this
proves the ”if” part.

Now we prove the “only if” part. Let A′x ≤ b′ be an infeasible system.
Let ai, i ∈ R, denote the rows of A′. Remove inequalities from the system
A′x ≤ b′ until it becomes minimally infeasible. Let Ax ≤ b be the resulting
system and let M ⊆ R index the rows of A. We will show that there exists
u ≥ 0 such that uA = 0 and ub < 0. Setting ui = 0 for all i ∈ R \M , this
will show that there exists u ≥ 0 such that uA′ = 0 and ub′ < 0, proving
the “only if” part. Given S ⊆ M , define S̄ := M \ S.
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Claim. For every S ⊆ M the system aix = bi, i ∈ S, aix ≤ bi, i ∈ S̄ is
minimally infeasible.

The proof is by induction on |S|. The claim is true when S = ∅. Consider
S ⊆ M with |S| ≥ 1 and assume by induction that the claim holds for any
set of smaller cardinality than |S|.

The system aix = bi, i ∈ S, aix ≤ bi, i ∈ S̄ is infeasible. Let k ∈ M .
By the induction hypothesis applied to S \ {k}, the system

aix = bi, i ∈ S \ {k}, aix ≤ bi, i ∈ S̄ (4)

is feasible for any k ∈ S. Therefore, to prove the claim, we only need to
show that

aix = bi, i ∈ S, aix ≤ bi, i ∈ S̄ \ {k} (5)

is feasible for any k ∈ S̄. Let h ∈ S. By induction, there exist xh and xk

such that
aix

h = bi, i ∈ S \ {h}, aix
h ≤ bi, i ∈ S̄

and
aix

k = bi, i ∈ S \ {h}, aix
k ≤ bi, i ∈ S̄ ∪ {h} \ {k}.

Notice that ahxk ≤ bh and ahxh > bh, so, setting α = ahxh − bh > 0 and
β = bh−ahxk ≥ 0, the vector y = α

α+β xk + β
α+β xh is a solution for (5). This

proves the claim.

Now, since aix ≤ bi, i ∈ M , is infeasible, then clearly aix = bi, i ∈ M ,
is infeasible and by Theorem 2.1, there exists a vector u such that uA =
0, ub < 0. The lemma holds if u ≥ 0. So suppose u1 < 0. According to
the Claim, there is a vector x∗ such that aix

∗ = bi, i ∈ M \ {1}. Since
Ax ≤ b is an infeasible system, a1x

∗ > b1. This (together with u1 < 0)
shows u(Ax∗ − b) < 0, contradicting

u(Ax∗ − b) = (uA)x∗ − ub > 0

where the inequality follows from uA = 0 and ub < 0.

Equivalently, Farkas’ lemma can be written as:

Corollary 2.3. The system of linear inequalities Ax ≤ b is feasible if and
only if ub ≥ 0 for every vector u satisfying uA = 0, u ≥ 0.

Farkas’ lemma can also be restated as follows:

Theorem 2.4. The system Ax = b, x ≥ 0 is feasible if and only if ub ≥ 0
for every u satisfying uA ≥ 0.
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Proof. The system Ax = b, x ≥ 0 is equivalent to Ax ≤ b, −Ax ≤
−b, −x ≤ 0. The theorem follows by applying Corollary 2.3 to this lat-
ter system.

The following is a more general, yet still equivalent, form of Farkas’
lemma.

Theorem 2.5. The system Ax+By ≤ f, Cx+Dy = g, x ≥ 0 is feasible if
and only if uf + vg ≥ 0 for every (u, v) satisfying uA+ vC ≥ 0, uB + vD =
0, u ≥ 0.

Checking the feasibility of a system of linear inequalities can be done
in polynomial time (Khachiyan [34], Karmarkar [33]). Next we derive the
fundamental theorem of Linear Programming from Farkas’ lemma.

Theorem 2.6. (Linear Programming Duality) Let

P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0}.
If P and D are both nonempty, then

max{cx : x ∈ P} = min{ub : u ∈ D}. (6)

Proof. For x̄ ∈ P and ū ∈ D we have that cx̄ = ūAx̄ ≤ ūb. Therefore
”max ≤ min ” always holds. To prove equality, we need to prove that the
system

−cx + bT uT ≤ 0, Ax ≤ b, AT uT = cT , uT ≥ 0 (7)

is feasible. By Farkas’ lemma (Theorem 2.5), (7) is feasible if and only
µb + νcT ≥ 0 for every vector (λ, µ, ν) satisfying

µA− λc = 0, νAT + λbT ≥ 0, λ, µ ≥ 0.

If λ > 0, then µb = λ−1λbT µT ≥ −λ−1νAT µT = −λ−1νcT λ = −νcT .
If λ = 0, let x̄ ∈ P and ū ∈ D. Then µb ≥ µAx̄ = 0 ≥ −νAT uT = −νcT .

Therefore in both cases we have µb+νcT ≥ 0 and the proof is complete.

Theorem 2.7. (Complementary slackness) Let Xopt and Uopt be subsets of
P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0} respectively. Define
I = {i : ui > 0 for some u ∈ Uopt}.

Then Xopt and Uopt are the sets of optimal solutions of the pair of dual
LPs

max{cx : x ∈ P} and min{ub : u ∈ D}
if and only if

Xopt = {x : aix = bi, i ∈ I, aix ≤ bi, i 6∈ I}.
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Proof. By Theorem 2.6, the sets Xopt and Uopt are the sets of optimal solu-
tions of the pair of dual LPs above if and only if cx = ub for every x ∈ Xopt,
u ∈ Uopt. For every x ∈ P and u ∈ D, cx = uAx ≤ ub, hence equality holds
throughout if and only if aix = bi for every i ∈ I and every x ∈ Xopt.

Here is another well-known consequence of Farkas’ lemma:

Remark 2.8. Let P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0}. If
D = ∅ and P 6= ∅, then max{cx : x ∈ P} is unbounded.

Proof. Since D = ∅, by Farkas’ lemma, the system Ay ≤ 0, cy > 0 is
feasible: Let ȳ be a solution of this system and x̄ ∈ P . Then x̄ + λȳ ∈ P for
every λ ≥ 0. Since cȳ > 0, max{cx : x ∈ P} is unbounded.

2.2 Caratheodory’s theorem

Theorem 2.9. (Caratheodory’s theorem) If the linear system Ax = b, x ≥ 0
is feasible, then it has a solution x̄ where the columns of A corresponding to
the positive entries of x̄ are linearly independent.

Proof. Let x̄ be a solution with the minimum number of positive entries and
let Ā be the column submatrix of A corresponding to the positive entries of
x̄. If the columns of Ā are linearly dependent, there exists a vector y 6= 0
such that Ay = 0 and yj = 0 whenever x̄j = 0. We assume w.l.o.g. that y
has at least one positive component. Let λ = minyj>0

x̄j

yj
, let j∗ be an index

for which this minimum is attained and define x∗ = x̄−λy. Clearly Ax∗ = b.
By the choice of λ, x∗ ≥ 0 and x∗j = 0 whenever x̄j = 0. Furthermore x∗j∗ = 0
while x̄j∗ > 0, a contradiction to our choice of x̄.

The next theorem combines Caratheodory’s Theorem 2.9 with a strength-
ening of Farkas’ lemma.

Theorem 2.10. For a linear system Ax = b, x ≥ 0 exactly one of the
following two alternatives holds:

• Ax = b, x ≥ 0 admits a solution x̄ where the columns of A, correspond-
ing to the positive entries of x̄, are linearly independent.

• There is a vector u such that uA ≥ 0, ub < 0 and there is a column
submatrix A0 of A such that uA0 = 0 and rank(A0) = rank(A|b)− 1.
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Proof. If Ax = b, x ≥ 0 admits a solution, then Theorem 2.9 shows that the
first outcome holds. So we assume that Ax = b, x ≥ 0 is infeasible and we
show that the second outcome holds.
If rank(A) = rank(A|b) − 1, then by standard linear algebra Ax = b is
infeasible, so by Theorem 2.1 there exists a vector u such that uA = 0,
ub < 0 and the theorem obviously holds in this case.
So we consider the case rank(A) = rank(A|b) and we can assume that A has
full row-rank m. By Theorem 2.4, there exists a vector u such that uA ≥ 0,
ub < 0. Among such vectors, choose u such that the column submatrix A0

of A where uA0 = 0 has maximum rank. Suppose by contradiction that
rank(A0) ≤ m− 2. Then rank(A0|A1) ≤ m− 1 where 1 denotes the vector
of all 1s. So there exists a vector v 6= 0 such that vA0 = 0, vA1 = 0, and
we may choose v such that vb ≥ 0.
Let J be the set of column-indices of A = (a1, . . . , an) and J0 be the subset
of J , corresponding to the column indices of A0. Since v 6= 0 and A has full
row-rank, there is an index j such that vaj 6= 0. Since vA1 = 0, then there
is an index j such that vaj > 0. (Note that such an index j is in J \ J0).
Let λ = minj∈J :vaj>0

uaj

vaj and let j∗ be an index for which this minimum
is attained. Then by the choice of λ, (u − λv)A ≥ 0 and (u − λv)b <
0. Furthermore (u − λv)A0 = 0 and (u − λv)aj∗ = 0. Since vA0 = 0
and vaj∗ > 0, then A0x = aj∗ is infeasible by Theorem 2.1. This implies
rank(A0|aj∗) = rank(A0) + 1. Therefore u − λv contradicts the choice of
u.

2.3 The theorem of Minkowski-Weyl

We first present the Minkowski-Weyl theorem for cones.

Theorem 2.11. (Minkowski-Weyl theorem for cones) For a set C ⊆ Rn,
the two following conditions are equivalent:

1. There is a matrix A such that C = {x ∈ Rn : Ax ≥ 0}.
2. There is a matrix R such that C = {x ∈ Rn : x = Rµ, µ ≥ 0}.
In the terminology introduced in Section 2, Theorem 2.11 states that a

cone is polyhedral if and only if it is finitely generated. The columns of R
are the generators of the cone C.

We first show that any one of the two conditions of the theorem is implied
by the other. A pair of matrices (A,R) that satisfy {x ∈ Rn : Ax ≥ 0} =
{x ∈ Rn : x = Rµ, µ ≥ 0} will be called an MW-pair. Note that if (A,R)
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is an MW-pair, then all entries of AR are nonnegative (since ARej ≥ 0 for
the unit vectors ej).

Lemma 2.12. A pair of matrices (A,R) is an MW-pair if and only if
(RT , AT ) is an MW-pair.

Proof. By Farkas’ lemma (Theorem 2.4), {x ∈ Rn : x = Rµ, µ ≥ 0} =
{x ∈ Rn : xT y ≥ 0 for every y satisfying RT y ≥ 0}. Therefore (A,R) is an
MW-pair if and only if:

{x : Ax ≥ 0} = {x ∈ Rn : xT y ≥ 0 for every y s.t. RT y ≥ 0}. (8)

Assuming that (8) holds, we show that {y : RT y ≥ 0} = {y : y = AT µ, µ ≥
0}. This is the condition for (RT , AT ) to be an MW-pair.
Given ȳ such that RT ȳ ≥ 0, then by (8), ȳT x ≥ 0 for every x satisfying
Ax ≥ 0. By Farkas’ Lemma (Theorem 2.4) the system ȳ = AT µ, µ ≥ 0 is
feasible. This shows that {y : RT y ≥ 0} ⊆ {y : y = AT µ, µ ≥ 0}.
We show the reverse inclusion. Given ȳ such that ȳ = AT µ for some µ ≥ 0,
RT ȳ = RT AT µ ≥ 0, because all entries of AR are nonnegative since (A,R)
is an MW-pair.

Proof of Theorem 2.11
By Lemma 2.12 it is enough to prove that 2 implies 1.
Let r1, . . . , rk be the columns of R. We may assume that the vectors
r1, . . . , rk span Rn, else all these vectors satisfy an equation dr = 0 where
d 6= 0 and one variable can be eliminated (i.e. the dimension can be re-
duced). Now consider the half spaces {x ∈ Rn : ax ≥ 0} that contain
{r1, . . . , rk} such that the hyperplane {x ∈ Rn : ax = 0} contains n − 1
linearly independent vectors among r1, . . . , rk. Since these vectors span Rn,
there is a finite number of such half-spaces. (In fact, at most

(
k

n−1

)
). Let A

be the matrix whose rows contain the incidence vector a of all such subspaces
and consider the cones

CA := {x ∈ Rn : Ax ≥ 0}, CR := {x ∈ Rn : x = Rµ, µ ≥ 0}.
Since every inequality of the system Ax ≥ 0 is valid for r1, . . . , rk, CR ⊆

CA.
Let x̄ 6∈ CR. Then the system x̄ = Rµ, µ ≥ 0 is infeasible. By Theorem

2.10, there exists u such that uR ≥ 0, ux̄ < 0 and there exists a column
submatrix R0 of R such that uR0 = 0 and rank(R0) = rank(R|x̄)−1 = n−1
(because r1, . . . , rk span Rn). Therefore u is one of the vectors a from
Ax ≥ 0. But then ax̄ < 0, i.e. x̄ 6∈ CA. So CR coincides with CA and the
theorem follows. ¤
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Remark 2.13. The proof of Theorem 2.11 shows that, if A is a rational
matrix, there exists a rational matrix R such that (A,R) is an MW-pair.

We now present the Minkowski-Weyl theorem for polyhedra. Given sub-
sets V , R of Rn, the Minkowski sum of V, R is the set:

V + R := {x ∈ Rn : there exist v ∈ V, r ∈ R such that x = v + r}.

If one of V , R is empty, the Minkowski sum of V, R is empty.

Theorem 2.14. (Minkowski-Weyl theorem for polyhedra) For a subset P
of Rn, the following two conditions are equivalent:

1. P is a polyhedron, i.e. there is a matrix A and a vector b such that
P = {x ∈ Rn : Ax ≤ b}.

2. There are finite sets of vectors v1, . . . , vp, r1, . . . , rq such that

P = conv(v1, . . . , vp) + cone(r1, . . . , rq).

Proof. We show that 1 implies 2. Consider the polyhedral cone CP :=
{(x, y) ∈ Rn+1 : by − Ax ≥ 0, y ≥ 0}. Notice that P = {x : (x, 1) ∈ CP }.
By Theorem 2.11, the cone CP is finitely generated. Since y ≥ 0 for every
vector (x, y) ∈ CP , we can assume that y = 0 or 1 for all the rays that
generate CP . That is,

CP = cone
{(

v1

1

)
, . . . ,

(
vp

1

)
,

(
r1

0

)
, . . . ,

(
rq

0

)}
.

Therefore P = conv{v1, . . . , vp}+ cone{r1, . . . , rq}.
The converse statement follows analogously from Theorem 2.11.

Corollary 2.15. (Minkowski-Weyl theorem for polytopes) For a set P ⊆
Rn, the following two conditions are equivalent:

1. P is bounded and there is a matrix A and a vector b such that P =
{x ∈ Rn : Ax ≤ b}.

2. There is a finite set of vectors v1, . . . , vp such that P = conv(v1, . . . , vp).

For a matrix V := (v1, . . . , vp) whose columns are the vectors vj , it
will be convenient to denote by conv(V ) the set conv(v1, . . . , vp). Similarly
cone(V ) will denote the set cone(v1, . . . , vp).

14



2.4 Projections

Let P ⊆ Rn+p where (x, y) ∈ P will be interpreted as meaning x ∈ Rn and
y ∈ Rp. The projection of P onto the x-space Rn is

projx(P ) := {x ∈ Rn : ∃y ∈ Rp with (x, y) ∈ P}.

x

y

P

projx(P )

Figure 3: Projection

Theorem 2.16. Let P := {(x, y) ∈ Rn × Rp : Ax + Gy ≤ b}. Then
projx(P ) = {x ∈ Rn : vt(b−Ax) ≥ 0 for all t ∈ T} where {vt}t∈T is the set
of extreme rays of Q := {v ∈ Rm : vG = 0, v ≥ 0}.
Proof. Let x ∈ Rn. By Farkas’s Lemma, Gy ≤ b − Ax has a solution y if
and only if vt(b− Ax) ≥ 0 for all v ∈ Q. Since v ≥ 0 for every v ∈ Q, then
Q is pointed, hence it is generated by its extreme rays, and the statement
follows.

Remark 2.17. Variants of Theorem 2.16 can be proved similarly:
If y ≥ 0 in P , then the relevant cone Q is {v : vG ≥ 0, v ≥ 0}.
If y ≥ 0 and Ax + Gy = b in P , the relevant cone is {v : vG ≥ 0} with

v unrestricted in sign.

Enumerating the extreme rays of Q may not be an easy task in appli-
cations. Another way of obtaining the projection of P is to eliminate the
variables yi one at a time (Fourier elimination procedure):

Consider a polyhedron P ⊆ Rn+1 defined by the system of inequalities:
n∑

j=1

aijxj + giz ≤ bi for i ∈ I. (9)

Let I0 = {i ∈ I : gi = 0}, I+ = {i ∈ I : gi > 0}, I− = {i ∈ I : gi < 0}.
The Fourier procedure eliminates the variable z as follows: It keeps the
inequalities of (9) in I0, and it combines each pair of inequalities i ∈ I+ and
l ∈ I− to eliminate z.
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Theorem 2.18. The system of |I0| + |I+||I−| inequalities obtained by the
Fourier procedure is the projection projx(P ) of P in the x-space Rn.

We leave the proof as a (fairly easy) exercise to the reader.

2.5 The fundamental theorem for MILP

Let S := {(x, y) : Ax + Gy ≤ b, x integral} be a mixed integer set, where
matrices A, G and vector b have rational entries. Meyer [38] proved that
conv(S) is a rational polyhedron, i.e. there exist rational matrices A′ and
G′ and a rational vector b′ such that conv(S) = {(x, y) : A′x + G′y ≤ b′}.

Note first that if S contains finitely many vectors (for instance this hap-
pens when S is the set of integral vectors contained in a polytope), the above
result follows from Corollary 2.15, without the need for the assumption that
A, G and b have rational entries.

Theorem 2.19. (Meyer [38]) Given rational matrices A, G and a rational
vector b, let P := {(x, y) : Ax + Gy ≤ b} and let S := {(x, y) ∈ P :
x integral}.

1. There exist rational matrices A′, G′ and a rational vector b′ such that
conv(S) = {(x, y) : A′x + G′y ≤ b′}.

2. If S is nonempty, the recession cones of conv(S) and P coincide.

Proof. If S = ∅, the existence of rational A′, G′ and b′ satisfying the the-
orem is obvious. So we assume that S and P are both nonempty. By the
Minkowski-Weyl theorem (Theorem 2.14), P = conv(V ) + cone(R) where
V = (v1, . . . , vp), R = (r1, . . . , rq). Since A, G and b are rational, by Re-
mark 2.13 we can assume that V is a rational matrix and R is an integral
matrix.
Consider the following truncation of P

T := {(x, y) : (x, y) =
p∑

i=1

λiv
i +

q∑

j=1

µjr
j ,

p∑

i=1

λi = 1, λ ≥ 0, 0 ≤ µ ≤ 1}.

T is bounded and is the projection of a rational polyhedron. Therefore it is
a rational polytope (Corollary 2.15). Let TI := {(x, y) ∈ T : x integral}.
Claim. conv(TI) is a rational polytope.

Since T is a polytope, the set X := {x : there exist y s.t. (x, y) ∈ TI} is
a finite set. For fixed x̄ ∈ X, the set Tx̄ := {(x̄, y) : (x̄, y) ∈ TI} is a
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rational polytope and therefore by Corollary 2.15, Tx̄ = conv(Vx̄) for some
rational matrix Vx̄. Since X is a finite set, there is a rational matrix VTI

which contains all the columns of all the matrices Vx̄, for x̄ ∈ X. Therefore
conv(TI) = conv(VTI

) and this proves the claim.
A point (x̄, ȳ) belongs to S if and only if x̄ is integral and there exist

multipliers λ ≥ 0,
∑p

i=1 λi = 1 and µ ≥ 0 such that

(x̄, ȳ) =
p∑

i=1

λiv
i +

q∑

j=1

(µj − bµjc)rj +
q∑

j=1

bµjcrj .

The point
∑p

i=1 λiv
i +

∑q
j=1(µj − bµjc)rj belongs to T and therefore it

also belongs to TI since x̄ and
∑q

j=1bµjcrj are integral vectors. Thus

S = TI + RI (10)

where RI is the set of integral conic combinations of r1, . . . , rq.
This shows in particular that TI is nonempty. Equation (10) implies that
conv(S) = conv(TI) + cone(R). By the above claim, conv(TI) is a rational
polytope. Thus conv(S) = conv(TI) + cone(R) is a rational polyhedron
having the same recession cone (namely cone(R)) as P .

Remark 2.20. In Theorem 2.19:

• If matrices A, G are not rational, then conv(S) may not be a polyhe-
dron. One such example is the set S := {x ∈ Z2 : 1 ≤ x2 ≤

√
2x1}.

• If A, G are rational matrices but b is not rational, then conv(S) is a
polyhedron that has the same recession cone as P . However conv(S) is
not always a rational polyhedron. (This can be inferred from the above
proof).

2.6 Valid Inequalities

An inequality cx ≤ δ is valid for the set P ⊆ Rn if cx ≤ δ is satisfied by
every point in P .

Theorem 2.21. Let P := {x : Ax ≤ b} be a nonempty polyhedron. An
inequality cx ≤ δ is valid for P if and only if the system uA = c, ub ≤ δ, u ≥ 0
is feasible.
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Proof. Consider the linear program max{cx : x ∈ P}. Since P 6= ∅ and
cx ≤ δ is a valid inequality for P , the above program admits a finite optimum
and its value is δ′ ≤ δ.
By Remark 2.8, the set D = {u : uA = c, u ≥ 0} is nonempty. Therefore by
Theorem 2.6, δ′ is the common value of the equation (6). Thus an optimum
solution u of min{ub : u ∈ D} satisfies uA = c, ub ≤ δ, u ≥ 0.

Conversely, assume uA = c, ub ≤ δ, u ≥ 0 is feasible. Then, for all
x ∈ P , we have cx = uAx ≤ ub ≤ δ. This shows that cx ≤ δ is valid for
P .

2.7 Facets

Let P := {x ∈ Rn : Ax ≤ b} be a polyhedron. A face of P is a set of the
form

F := P ∩ {x ∈ Rn : cx = δ}
where cx ≤ δ is a valid inequality for P (the inequality is said to define
the face F ). A face is itself a polyhedron since it is the intersection of the
polyhedron P with another polyhedron (the hyperplane cx = δ). A face of
P is said proper if it is nonempty and properly contained in P . Maximal
proper faces of P are called facets.

Theorem 2.22. Let P := {x ∈ Rn : Ax ≤ b} be a nonempty polyhedron.
Let M be the set of row indices of A and let I ⊆ M . The set

FI := {x ∈ Rn : aix = bi, i ∈ I, aix ≤ bi, i ∈ M \ I}.

is a face of P . Conversely, if F is a nonempty face of P , then F = FI for
some I ⊆ M .

Proof. Let u be a vector such that ui > 0, i ∈ I, ui = 0, i ∈ M \ I, and let
c := uA, δ := ub. Then, given x ∈ P , clearly x satisfies cx = δ if and only
if it satisfies aix = bi, i ∈ I. Thus FI = P ∩ {x ∈ Rn : cx = δ}, so FI is a
face.

Conversely, let F := {x ∈ P : cx = δ} be a nonempty face of P . Then
F is the set of optimal solutions of the LP max{cx : x ∈ P}. Let I be the
set of indices defined as in Theorem 2.7. Then by Theorem 2.7, F = FI .

Theorem 2.22 has important consequences:

• The number of faces of P is finite.

18



• The intersection of faces of P is a face of P .

• If F is a face of P and F ′ is a face of F , then F ′ is also a face of P .

• If F1, F2 are faces of P , there is a unique minimal face F of P that
contains both F1 and F2 (The system of equalities that defines F is
the intersection of the systems of equalities that define F1 and F2).

Furthermore, by Theorem 2.22, we can express a face F of P as follows. Let
A=

F x ≤ b=
F be the set of all the inequalities aix ≤ bi in Ax ≤ b such that

F ⊆ {x ∈ Rn : aix = bi}. Then

F = P ∩ {x ∈ Rn : A=
F x = b=

F }.

An inequality aix ≤ bi from Ax ≤ b such that aix = bi for all x ∈ P
is called an implicit equality of P . Let us partition the inequalities Ax ≤ b
defining P into the implicit equalities A=x ≤ b= and the rest A<x ≤ b<

(either of these two families of inequalities could be empty). Thus P = {x ∈
Rn : A=x = b=, A<x ≤ b<} and for each inequality aix ≤ bi in A<x ≤ b<,
there exists x̄ ∈ P such that aix̄ < bi.

Remark 2.23. P contains a point x̄ such that A=x̄ = b=, A<x̄ < b<.

Proof. Indeed, for every inequality aix ≤ bi in A<x ≤ b<, there is a point
xi ∈ P such that aix

i < bi. Let r be the number of these points. Then
x̄ := 1

r

∑r
i=1 xi satisfies the statement.

An inequality aix ≤ bi of the system Ax ≤ b is redundant if aix ≤ bi

is a valid inequality for the system obtained from Ax ≤ b by removing the
inequality aix ≤ bi. Theorem 2.21 provides a characterization of redundant
inequalities.

Let I< denote the set of indices of the rows of A<x ≤ b<. For every
i ∈ I<, denote by A<

−ix ≤ b<
−i the system obtained from A<x ≤ b< by

removing the inequality a<
i x ≤ b<

i .

Lemma 2.24. Assume that A<x ≤ b< contains no redundant inequality.
Then for every i ∈ I<, the polyhedron P contains a point xi satisfying

A=x = b=, A<
−ix < b<

−i, a<
i x = b<

i .

Proof. Let i ∈ I<. Since no inequality in A<x ≤ b< is redundant, the
system:

A=x = b=, A<
−ix ≤ b<

−i, a<
i x > b<

i
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is feasible. Let x̄i be a point satisfying this system. By Remark 2.23, there
is a point x̄ satisfying A=x = b=, A<x < b<. Then a point on the segment
having x̄ and x̄i as endpoints satisfies the above property.

Theorem 2.25. Let P ⊆ Rn be a polyhedron. Partition the inequalities
defining P into the implicit equalities and the rest P = {x ∈ Rn : A=x =
b=, A<x ≤ b<}. Assume that A<x ≤ b< contains no redundant inequality.
Then the facets of P are the elements in the family:

F = {Fi := {x ∈ P, a<
i x = b<

i }, i ∈ I<}.

Proof. Let F be a facet of P . Since no inequality in A<x ≤ b< is an implicit
equality for P , by Theorem 2.22 and the maximality of F , we have that
F = Fi, for some i ∈ I<. Therefore F contains all the facets of P .
Conversely, let Fi ∈ F . Then by Lemma 2.24, Fi is a proper face of P and
it is not contained in any other face Fj ∈ F . Since F contains all the facets
of P , Fi is a proper face of P that is maximal with respect to inclusion, i.e.
Fi a facet of P .

This result states that, if a polyhedron in Rn has m facets, any represen-
tation by a system of linear inequalities in Rn contains at least m inequal-
ities. In integer linear programming, we often consider polyhedra that are
given implicitly as conv(S). It is not unusual for such polyhedra to have
a number of facets that is exponential in the size of the input. Thus their
representation by linear inequalities in Rn is large. In some cases, there is
a way to get around this difficulty: a polyhedron with a large number of
facets can sometimes be obtained as the projection of a polyhedron with a
small number of facets. We illustrate this idea in the next section.

3 Union of Polyhedra

In this section, we prove a result of Balas [2, 3] about the union of k polyhe-
dra. Consider k polyhedra Pi := {x ∈ Rn : Aix ≤ bi}, i = 1, . . . , k and their
union ∪k

i=1Pi. We will show that conv(∪k
i=1Pi), the smallest closed convex

set that contains ∪k
i=1Pi, is a polyhedron. Furthermore we will show that

this polyhedron can be obtained as the projection onto Rn of a polyhedron
with polynomially many variables and constraints in a higher-dimensional
space.

The closure is needed as shown by the following example: P1 consists
of a single point, and P2 is a line that does not contain the point P1 (see
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Figure 4). Let P3 denote the line going through P1 that is parallel to P2. It
is easy to verify that conv(P1∪P2) = conv(P2∪P3) and that conv(P1∪P2) =
conv(P2∪P3)\(P3\P1) (indeed, a point x∗ in P3\P1 is not in conv(P1∪P2),
but there is a sequence of points xk ∈ conv(P1 ∪ P2) that converges to x∗).
Here conv(P1∪P2) is not a closed set, and therefore it is not a polyhedron.

������������������������������

P2

P3

conv(P1 ∪ P2)

P1

Figure 4: conv(P1 ∪ P2) 6= conv(P1 ∪ P2)

We recall that, by Minkowski-Weil’s Theorem 2.14, Pi = Qi + Ci, where
Qi is a polytope and Ci a finitely generated cone.

Theorem 3.1. Let Pi = Qi + Ci be nonempty polyhedra i = 1, . . . , k. Then
Q = conv(∪k

i=1Qi) is a polytope, C = conv(∪k
i=1Ci) is a finitely generated

cone, and conv(∪k
i=1Pi) is the polyhedron

conv(∪k
i=1Pi) = Q + C.

Proof. We first show that Q is a polytope and C a finitely generated cone.
For i = 1, . . . , k, let Vi and Ci be finite sets in Rn such that Qi = conv(Vi)
and Ci = cone(Ri). Then it is straightforward to show that Q = conv(∪k

i=1Vi)
and C = cone(∪k

i=1Ri), thus Q is a polytope and C a finitely generated cone.

We show conv(∪k
i=1Pi) ⊆ Q + C.

We just need to show conv(∪k
i=1Pi) ⊆ Q+C, because Q+C is a polyhedron,

and so it is closed. Let x ∈ conv(∪k
i=1Pi). Then x is a convex combination

of a finite number of points in ∪k
i=1Pi. Since Pi is convex, we can write x

as a convex combination of points zi ∈ Pi, say x =
∑k

i=1 yiz
i where yi ≥ 0

for i = 1, . . . , k and
∑k

i=1 yi = 1. Since Pi = Qi + Ci, then zi = wi + xi

where wi ∈ Qi, xi ∈ Ci, thus x =
∑k

i=1 yiw
i +

∑k
i=1 yix

i, so x ∈ Q+C since∑k
i=1 yiw

i ∈ Q and
∑k

i=1 yix
i ∈ C.

We show Q + C ⊆ conv(∪k
i=1Pi).

Let x ∈ Q + C. Then x =
∑k

i=1 yiw
i +

∑k
i=1 xi where wi ∈ Qi, yi ≥ 0,

xi ∈ Ci for i = 1, . . . , k, and
∑k

i=1 yi = 1.
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Define I := {i : yi > 0} and consider the point

xε :=
∑

i∈I

(yi − k

|I|ε)w
i +

k∑

i=1

ε(wi +
1
ε
xi)

for ε > 0 small enough so that yi − k
|I|ε ≥ 0 for all i ∈ I.

Notice that xε ∈ conv(∪k
i=1Pi) since

∑
i∈I(yi − k

|I|ε) +
∑k

i=1 ε = 1 and
wi + 1

ε x
i ∈ Pi.

Since limε→0+ xε = x, x ∈ conv(∪k
i=1Pi).

Corollary 3.2. If P1, . . . , Pk are polyhedra with identical recession cones,
then conv(∪k

i=1Pi) is a polyhedron.

Proof. We leave it as an exercise to the reader to check how the last part of
the proof of Theorem 3.1 simplifies to show Q + C ⊆ conv(∪k

i=1Pi).

Although conv(∪k
i=1Pi) may have exponentially many facets, Balas [2],

[3] proved that it is the projection of a higher-dimensional polyhedron Y
with a polynomial size representation:

Y :=





Aix
i ≤ biyi∑

xi = x∑
yi = 1
yi ≥ 0 for i = 1, . . . , k.

(11)

In this formulation, xi is a vector in Rn and yi is a scalar, for i = 1, . . . , k.
The vector x ∈ Rn corresponds to the original space onto which Y is pro-
jected. Thus, the polyhedron Y is defined in Rkn+n+k. A formulation with
a polynomial number of variables and constraints is said to be compact. The
gist of Balas’s result is that conv(∪k

i=1Pi) has a compact representation with
respect to the systems Aix ≤ bi, i = 1, . . . , k. This fact will be fundamental
in the development of this survey.

Since it is convenient to consider also the case where some of the systems
Aix ≤ bi are infeasible, we need a condition that is typically satisfied in the
context of integer programming.

Given the polyhedra Pi := {x ∈ Rn : Aix ≤ bi}, i = 1, . . . , k, let
Ci := {x ∈ Rn : Aix ≤ 0}. So Ci is the recession cone of Pi when Pi 6= ∅.

Cone Condition: If ∪Pi 6= ∅, then Cj ⊆ conv(∪i:Pi 6=∅Ci) for j = 1, . . . , k.
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By Minkowski-Weil’s Theorem 2.14, if Pi 6= ∅ then Pi = Qi + Ci for
some polytope Qi. If we let Qi = ∅ whenever Pi = ∅, then Pi = Qi + Ci,
i = 1 . . . , k.

Theorem 3.3. (Balas [2, 3]) Consider k polyhedra Pi := {x ∈ Rn : Aix ≤
bi} and let Y be the polyhedron defined in (11). Then

projxY = Q + C.

where Q = conv(∪k
i=1Qi) and C = conv(∪k

i=1Ci).
Furthermore, if the Cone Condition is satisfied, then

projxY = conv(∪k
i=1Pi).

Proof. Notice that, if the Cone Condition is satisfied, then C = conv(∪i:Pi 6=∅Ci),
therefore by Theorem 3.1 Q + C = conv(∪k

i=1Pi). Thus, if projxY = Q + C,
then projxY = conv(∪k

i=1Pi). So we only need to show projxY = Q + C.

(a) Q + C ⊆ projxY .
The result holds trivially when ∪k

i=1Pi = ∅, so we assume ∪k
i=1Pi 6= ∅.

Without loss of generality, P1, . . . , Ph are nonempty and Ph+1, . . . , Pk are
empty, where 1 ≤ h ≤ k.

Let x ∈ Q + C. Then there exist wi ∈ Qi, i = 1, . . . , h, and zi ∈ Ci,
i = 1, . . . , k, such that x =

∑h
i=1 yiw

i+
∑k

i=1 zi, where yi ≥ 0 for i = 1, . . . , h

and
∑h

i=1 yi = 1. Let xi = yiw
i + zi for i = 1, . . . , h and yi = 0, xi = zi for

i = h + 1, . . . , k. Then Aix
i ≤ biyi for i = 1, . . . k and x =

∑k
i=1 xi. This

shows that x ∈ projxY and therefore (a) holds.

(b) projxY ⊆ Q + C.
The result holds if Y = ∅, so we assume Y 6= ∅. Let x ∈ projxY . By

the definition of projection, there exist x1, . . . , xk, y such that x =
∑k

i=1 xi

where Axi ≤ biyi,
∑

yi = 1, y ≥ 0. Let I := {i : yi > 0}.
For i ∈ I, let zi := xi

yi
. Then zi ∈ Pi. Since Pi = Qi + Ci, we can write

zi = wi + yiri where wi ∈ Qi and ri ∈ Ci.
For i 6∈ I, we have Aix

i ≤ 0, that is xi ∈ Ci. Let ri = xi if i /∈ I. Then

x =
∑

i∈I

yiz
i +

∑

i6∈I

xi =
∑

i∈I

yiw
i

︸ ︷︷ ︸
∈Q

+
k∑

i=1

ri

︸ ︷︷ ︸
∈C

∈ Q + C.
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Remark 3.4. The Cone Condition assumption in Theorem 3.3 is necessary
as shown by the following example (see Figure 5): P1 := {x ∈ R2 : 0 ≤ x ≤
1} and P2 := {x ∈ R2 : x1 ≤ 0, x1 ≥ 1}. Note that P2 = ∅ and C2 = {x ∈
R2 : x1 = 0}. So in this case projxY = P1 + C2 = {x ∈ R2 : 0 ≤ x1 ≤ 1},
which is different from conv(P1 ∪ P2) = P1.
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C2

0

1

1 x1

x2

projxY

P1

Figure 5: conv(P1 ∪ P2) 6= projxY

Remark 3.5. The Cone Condition assumption in Theorem 3.3 is automat-
ically satisfied if
(i) Ci = {0} whenever Pi = ∅, or
(ii) all the cones Ci are identical.
For example (i) holds when all the Pis are nonempty, or when Ci = {0} for
all i.

4 Split disjunctions

Let P := {(x, y) ∈ Rn×Rp : Ax+Gy ≤ b} and let S := P ∩ (Zn×Rp). For
π ∈ Zn and π0 ∈ Z, define

Π1 = P ∩ {(x, y) : πx ≤ π0}
Π2 = P ∩ {(x, y) : πx ≥ π0 + 1}. (12)

Clearly S ⊆ Π1 ∪ Π2 and therefore conv(S) ⊆ conv(Π1 ∪ Π2). We call this
latter set P (π,π0).

Theorem 4.1. P (π,π0) is a polyhedron.
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Proof. It follows from Theorem 3.1 that P (π,π0) is a polyhedron, thus we
only need to show that P (π,π0) is closed. This is obvious if at least one of Π1

and Π2 is empty, so we assume Π1, Π2 6= ∅. Because Π1 ∪Π2 ⊂ P (π,π0) ⊆ P ,
Π1 = P (π,π0) ∩{(x, y) : πx ≤ π0} and Π2 = P (π,π0) ∩{(x, y) : πx ≥ π0 +1}.
Thus P (π,π0) = Π1∪Π2∪Π, where Π = P (π,π0)∩{(x, y) : π0 ≤ πx ≤ π0+1}.
By definition, Π1 and Π2 are polyhedra, so they are closed. We show that
Π is a polyhedron, thus P (π,π0) is closed because it is the union of a finite
number of closed sets.

Let P1 := Π1∩{(x, y) : πx = π0} and P2 := Π2∩{(x, y) : πx = π0 +1}.
Notice that P1 and P2 have the same recession cone C := {(x, y) : Ax+Gy ≤
0, πx = 0}, thus, by Corollary 3.2, conv(P1 ∪ P2) is a polyhedron.

We show that Π = conv(P1 ∪ P2), thus showing that Π is a polyhedron.
The inclusion Π ⊇ conv(P1 ∪ P2) comes from the definition. We prove

Π ⊆ conv(P1∪P2). If (x̄, ȳ) ∈ Π, then there exist (x′, y′) ∈ Π1, (x′′, y′′) ∈ Π2

such that (x̄, ȳ) is contained in the line segment L joining (x′, y′) and (x′′, y′′).
Since π0 ≤ πx̄ ≤ π0 + 1, L intersect {(x, y) : πx = π0} in a point (x̄′, ȳ′) ∈
Π1, and {(x, y) : πx = π0 + 1} in a point (x̄′′, ȳ′′) ∈ Π2. Furthermore,
(x̄, ȳ) is contained in the line segment joining (x̄′, ȳ′) and (x̄′′, ȳ′′). Thus
(x̄, ȳ) ∈ conv(P1 ∪ P2).

Lemma 4.2. The polyhedra Π1 and Π2 satisfy the Cone Condition of The-
orem 3.3.

Proof. The conditions of Theorem 3.3 trivially hold when Π1 and Π2 are
either both empty or both nonempty.

Assume now that Π1 = ∅ and Π2 6= ∅. For the conditions of Theorem
3.3 to hold, we need to show that C1 ⊆ C2 where C1 := {(x, y) : Ax+Gy ≤
0, πx ≤ 0} and C2 := {(x, y) : Ax + Gy ≤ 0, πx ≥ 0}.

We claim that C1 = {(x, y) : Ax+Gy ≤ 0, πx = 0}. Suppose not. Then
there exists (x̄, ȳ) such that Ax̄ + Gȳ ≤ 0 and πx̄ < 0. Since Π2 6= ∅, there
exists (x̂, ŷ) such that Ax̂ + Gŷ ≤ b. Now consider the point (xλ, yλ) =
(x̂, ŷ) + λ(x̄, ȳ). We have Axλ + Gyλ ≤ b and, for λ ≥ πx̂−π0

|πx̄| , we have
πxλ ≤ π0. But then (xλ, yλ) is in Π1, contradicting the assumption that
Π1 = ∅. This proves the claim.

The claim implies C1 ⊆ C2.

Thus, by Theorem 3.3, P (π,π0) has the following extended formulation,
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with additional vectors of variables (x1, y1), (x2, y2) and variable λ.

Ax1 + Gy1 ≤ λb
πx1 ≤ λπ0

Ax2 + Gy2 ≤ (1− λ)b
πx2 ≥ (1− λ)(π0 + 1)

x1 + x2 = x
y1 + y2 = y
0 ≤ λ ≤ 1.

(13)

If the system Ax+Gy ≤ b has m constraints, the extended formulation (13)
has 2m + n + p + 4 constraints. By contrast, a formulation of P (π,π0) in the
original space (x, y) may be considerably more complicated, as P (π,π0) may
have a large number of facets (Recall from Section 2.7 that any description
of a polyhedron must have at least one inequality for each facet).

Π1 Π2P

πx ≤ π0 πx ≥ π0 + 1

split inequality

Figure 6: A split inequality

A split is a disjunction πx ≤ π0 or πx ≥ π0 +1 where π ∈ Zn and π0 ∈ Z.
We will also say that (π, π0) defines a split. An inequality cx + hy ≤ c0 is
called a split inequality [17] if it is valid for some polyhedron P (π,π0) where
(π, π0) ∈ Zn × Z defines a split (see Figure 6).

The split closure PSplit of P is
⋂

(π,π0)∈Zn×Z
P (π,π0). (14)

Clearly S ⊆ PSplit ⊆ P . In general PSplit provides a tighter relaxation of
S than P . Although each of the sets P (π,π0) is a polyhedron, it is not clear
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however that PSplit is a polyhedral set, for it is the intersection of infinitely
many of them. This will be discussed in Section 6.

4.1 One-side splits, Chvátal inequalities

Given a polyhedron P := {(x, y) ∈ Rn × Rp : Ax + Gy ≤ b}, we consider
the mixed integer set S = P ∩ (Zn × Rp). Let π ∈ Zn and z := max{πx :
(x, y) ∈ P}. A split defined by (π, π0) ∈ Zn × Z is a one-side split for P if

π0 ≤ z < π0 + 1. (15)

This is equivalent to:
Π1 ⊆ P and Π2 = ∅

where Π1 and Π2 are the polyhedra defined in (12). Note that, if (π, π0)
defines a one-side split, then the polyhedron P (π,π0) can be easily described
in its original space, for P (π,π0) = Π1 = {(x, y) : Ax + Gy ≤ b, πx ≤ π0}.
The inequality πx ≤ π0 is valid for S. It is called a Chvátal inequality.

The Chvátal closure PCh of P is
⋂

(π,π0)∈Zn×Z defines a one-side split
P (π,π0). (16)

Equivalently, PCh is the set of vectors (x, y) that satisfy the system Ax +
Gy ≤ b and all the Chvátal inequalities. Note that S ⊆ PSplit ⊆ PCh ⊆ P .

Notice that inequality πx ≤ π0 satisfies (15) if and only if bzc = π0.
Since π is an integral vector and πx ≤ z is a valid inequality for P , by
Theorem 2.21, πx ≤ π0 is a Chvátal inequality if and only if the system:

u ≥ 0, uA = π ∈ Zn, uG = 0, ub ≤ z (17)

is feasible. By Theorem 2.16, condition u ≥ 0, uG = 0 shows that πx ≤ z
is valid for the projection projx(P ) of P onto the x-space.

We can assume that u is chosen so that the coefficients of π are relatively
prime: If not, let m be the G.C.D. of the components of π: The inequality
π
mx ≤ bπ0

m c is a Chvátal inequality that dominates πx ≤ π0. The equation
πx = π0 = bzc admits infinitely many integral solutions, while the equation
πx = α, has obviously no integral solution for bzc < α ≤ z.

Therefore the Chvátal closure is obtained by taking any rational inequal-
ity πx ≤ z that is valid for the projection projx(P ) of P (which is generated
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P
Chvátal inequality

πx ≤ z

πx ≤ π0

Figure 7: Chvátal inequality

without loss of generality by a vector u such that u ≥ 0, uA = π ∈ Zn, uG =
0 such that the coefficients of π are relatively prime) and then tightening
the inequality by decreasing the right-hand side until an integral point (and
hence infinitely many integral points) are encountered. See Figure 7.

5 Gomory’s mixed-integer inequalities

We consider a polyhedron P := {(x, y) ∈ Rn
+ × Rp

+ : Ax + Gy ≤ b} and
the set S := P ∩ (Zn

+ × Rp
+). Note that, here, P is defined by a system

of inequalities together with nonnegativity constraints on the variables, and
this is important in this section. By standard linear algebra, any system of
linear inequalities can be converted into a system of the above type (vari-
ables that are unrestricted in sign can be replaced by the difference of two
nonnegative variables, etc).

We consider the following equality form of the system defining P :

Ax + Gy + Is = b, x, y, s ≥ 0. (18)

For λ ∈ Qm, we consider the equation λAx + λGy + λIs = λb, which we
denote by

n∑

j=1

aλ
j xj +

p∑

j=1

gλ
j yj +

m∑

i=1

λisi = βλ. (19)

Let f0 = βλ − bβλc and fj = aλ
j − baλ

j c. We consider the following
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Gomory mixed-integer (GMI) inequality [32] :

n∑

j=1

(baλ
j c+

(fj − f0)+

1− f0
)xj +

1
1− f0

(
∑

j:gλ
j <0

gλ
j yj +

∑

i:λi<0

λisi) ≤ bβλc (20)

where (fj − f0)+ = max{fj − f0, 0}. By substituting s = b− (Ax + Gy) we
get an inequality in the (x, y)-space.

We denote by (πλ, πλ
0 ) the vector in Zn × Z defining the following split:

Either
∑

fj≤f0

baλ
j cxj +

∑

fj>f0

daλ
j exj ≤ bβλc (21)

or
∑

fj≤f0

baλ
j cxj +

∑

fj>f0

daλ
j exj ≥ bβλc+ 1; (22)

where (21) is πλx ≤ πλ
0 while (22) is πλx ≥ πλ

0 + 1.

Lemma 5.1. Inequality (20) is a split inequality, valid for P (πλ,πλ
0 ).

Proof. Consider the sets

Π1 = P ∩ {(x, y) : πλx ≤ πλ
0}, Π2 = P ∩ {(x, y) : πλx ≥ πλ

0 + 1}.

To prove that inequality (20) is a split inequality, we will show that it is
valid for Π1 ∪Π2.

Since the constraints x ≥ 0, y ≥ 0, s ≥ 0 are valid for Π1 and Π2, it is
enough to show that each of Π1 and Π2 admits a valid inequality ax + gy +
ls ≤ bβλc whose coefficients are greater than or equal to the corresponding
coefficients in inequality (20). (This is where the nonnegativity plays a role).

Since inequality πλx ≤ πλ
0 has this property, inequality (20) is valid for

Π1. Inequality (20) is valid for Π2 since it is implied by the inequality

1
1− f0

(19)− f0

1− f0
(22).

A consequence of the above lemma is that the GMI inequalities (20) are
valid for S.

Lemma 5.2. Chvátal inequalities are GMI inequalities.
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Proof. For λ ≥ 0 such that λA ∈ Zn and λG = 0 the Chvátal inequality
(17) coincides with the inequality given by the formula (20).

The Gomory mixed integer closure PGMI of P is the set of points in P
that satisfy all the GMI inequalities (20). It follows from Lemmas 5.1 and
5.2 that PSplit ⊆ PGMI ⊆ PCh. In light of the particular derivation of the
GMI inequalities, it may appear that the first containment can be strict.
This is not the case: In the next section we show that PSplit coincides with
PGMI .

5.1 Equivalence between split closure and Gomory mixed
integer closure

In this section we will need the following.

Lemma 5.3. Let P := {x ∈ Rn : Ax ≤ b} be a polyhedron and let Π :=
P ∩ {x : πx ≤ π0}. If Π 6= ∅ and αx ≤ β is a valid inequality for Π, then
there exists a scalar λ ∈ R+ such that

αx− λ(πx− π0) ≤ β

is valid for P .

Proof. By Theorem 2.21, since Π 6= ∅, there exist u ≥ 0, λ ≥ 0 such that

α = uA + λπ and β ≥ ub + λπ0.

Since uAx ≤ ub is valid for P , so is uAx ≤ β−λπ0. Since uAx = αx−λπx,
the inequality αx− λ(πx− π0) ≤ β is valid for P .

Remark 5.4. The assumption Π 6= ∅ is necessary in Lemma 5.3, as shown
by the following example: P := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} and Π := P ∩{x :
x2 ≤ −1}. Thus Π is empty. The inequality x1 ≤ 1 is valid for Π but there
is no scalar λ such that x1 − λ(x2 + 1) ≤ 1 is valid for P .

Theorem 5.5. (Nemhauser and Wolsey [40]) Let P := {(x, y) ∈ Rn
+×Rp

+ :
Ax + Gy ≤ b} be a polyhedron and let S := P ∩ (Zn

+ × Rp
+). Then PSplit

coincides with PGMI .

Proof. (Cornuéjols and Li [18]) Lemma 5.1 shows that PSplit ⊆ PGMI . To
prove the reverse inclusion, we show that every split inequality is a GMI
inequality.
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ΠP

αx− λ(πx− π0) ≤ β

πx ≤ π0

αx ≤ β

Figure 8: Illustration of Lemma 5.3

We assume that the constraints x ≥ 0 and y ≥ 0 are part of the system
Ax + Gy ≤ b that defines P . Let cx + hy ≤ c0 be a split inequality. Let
(π, π0) ∈ Zn × Z define the split disjunction used in deriving this inequality
and let Π1, Π2 be the corresponding intersections with P as defined in (12).

First assume that one of Π1, Π2 is empty. Then the inequality cx+hy ≤
c0 is a Chvátal inequality and by Lemma 5.2 it is also a GMI inequality.

We now assume that both Π1, Π2 are nonempty. By Lemma 5.3, there
exist α, β ∈ R+ such that

cx + hy − α(πx− π0) ≤ c0 and (23)

cx + hy + β(πx− (π0 + 1)) ≤ c0 (24)

are both valid for P . We can assume α > 0 and β > 0 since, otherwise,
cx + hy ≤ c0 is valid for P and therefore also for PGMI . We now introduce
slack variables s1 and s2 in (23) and (24) respectively and subtract (23) from
(24). We obtain

(α + β)πx + s2 − s1 = (α + β)π0 + β.

Dividing by α + β we get

πx +
s2

α + β
− s1

α + β
= π0 +

β

α + β
. (25)

We now derive the GMI inequality associated with equation (25). Note that
the fractional part of the right-hand side is β

α+β and that the continuous
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variable s2 has a positive coefficient while s1 has a negative coefficient. So
the GMI inequality is

πx +
1
α

s1 ≤ π0.

We now use (23) to eliminate s1 to get the GMI inequality in the space of
the x, y variables. The resulting inequality is cx + hy ≤ c0 and therefore
cx + hy ≤ c0 is a GMI inequality.

6 Polyhedrality of closures

In this section we show that the GMI closure (or equivalently, the split
closure) of a rational polyhedron is a rational polyhedron. This result is due
to Cook, Kannan and Schrijver [17]. Simpler proofs appear in [1], [22] and
[47]. In this section, we follow the approach of Dash, Günlük and Lodi [22].
The idea is to prove that a finite number of splits are sufficient to generate
PSplit defined in (14). The result follows, since then PSplit is the intersection
of a finite number of polyhedra and therefore is a polyhedron.
For this idea to work, it is fundamental to assume that the polyhedra that we
deal with are rational. We first illustrate this in an easy case: The Chvátal
closure of a pure integer set.

6.1 The Chvátal closure of a pure integer set

We consider here pure integer sets of the type S := P ∩ Zn, where P :=
{x ∈ Rn : Ax ≤ b} is a rational polyhedron. Therefore we can assume that
A, b have integral entries.
In the pure integer case, a Chvátal inequality πx ≤ π0 is derived from a
vector u satisfying:

u ≥ 0, uA = π ∈ Zn, bubc = π0. (26)

Lemma 6.1. Let (π, π0) ∈ Zn+1 and u ∈ Q satisfying (26) such that πx ≤
π0 is not valid for P and not redundant for PCh. Then u < 1.

Proof. Suppose u does not satisfy u < 1. We will show that πx ≤ π0 is the
sum of a Chvátal inequality π1x ≤ π1

0 and an inequality π2x ≤ π2
0 valid for

P such that π2 6= 0. This contradicts the assumption that πx ≤ π0 is not
valid for P and not redundant for PCh.

Let f = u − buc, and let π1 = fA, π1
0 = bfbc, π2 = bucA, π2

0 = bbucbc.
Since A is an integral matrix, π2 is an integral vector. Since π is an integral
vector, π1 = π − π2 is integral as well.
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Since b is integral, π2
0 = bucb, therefore π2x ≤ π2

0 is valid for P . Fur-
thermore, πx ≤ π0 is the sum of π1x ≤ π1

0 and π2x ≤ π2
0. Since πx ≤ π0 is

not valid for P , then f 6= 0. Since u does not satisfy u < 1, then buc 6= 0,
thus π2 6= 0.

Theorem 6.2. (Chvátal [13]) PCh is a rational polyhedron.

Proof. By Lemma 6.1, any irredundant valid inequality for PCh that is not
valid for P is of the form (uA)x ≤ bubc for some u satisfying uA ∈ Zn, 0 ≤
u < 1. Since {uA ∈ Rn : 0 ≤ u < 1} is bounded, {uA ∈ Zn : 0 ≤ u < 1}
is finite. Thus there is only a finite number of such inequalities, hence PCh

is a polyhedron.

6.2 The split closure of a mixed integer set

This is more tricky, uses the fact that PSplit = PGMI (Theorem 5.5) but
the idea is the same.

Throughout this section, P := {(x, y) ∈ Rn
+ × Rp

+ : Ax + Gy ≤ b} is a
rational polyhedron, and S := P ∩ (Zn

+ ×Rp
+). We will also assume that A,

G, b are integral. We let s = b− (Ax + Gy) be the slacks of Ax + Gy ≤ b.
Recall from Section 5 that a vector λ ∈ Qm yields the GMI inequality:

n∑

j=1

(baλ
j c+

(fj − f0)+

1− f0
)xj +

1
1− f0

∑

j:gλ
j <0

gλ
j yj +

∑

i:λi<0

+λisi ≤ bβλc

which is valid for S. We denote it by GM(λ).
Given λ ∈ Qm and the corresponding GMI inequality GM(λ), we con-

sider the following partitions of M := {1, . . . , m} and P := {1, . . . , p}:
M+ = {i ∈ M : λi ≥ 0} M− = {i ∈ M : λi < 0}
P+ = {j ∈ P : gλ

j ≥ 0} P− = {j ∈ P : gλ
j < 0}

and the following cone:

Cλ = {µ ∈ Rm : gµ
j ≥ 0, j ∈ P+, gµ

j ≤ 0, j ∈ P−, µi ≥ 0, i ∈ M+, µi ≤ 0, i ∈ M−}
(27)

Lemma 6.3. Let λ ∈ Qm. Let λ1, λ2 ∈ Cλ such that λ = λ1 + λ2 and
λ2 ∈ Zm \ {0}. Then

GM(λ) = GM(λ1) + GM(λ2)

and either GM(λ) is valid for P or it is redundant for PGMI .
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Proof. Since λ2b is an integer, f0 = 0 and GM(λ2) is the following inequality:
n∑

j=1

aλ2

j xj +
∑

j:gλ2
j <0

gλ2

j yj +
∑

i:λ2
i <0

+λ2
i si ≤ βλ2

.

Therefore GM(λ2) is implied by the following inequalities, valid for P :

n∑

j=1

aλ2

j xj +
p∑

j=1

gλ2

j yj +
m∑

i=1

λ2
i si = βλ2

, s ≥ 0, y ≥ 0.

Hence GM(λ2) is valid for P . Moreover, since A, G, b are integral, all
coefficients of GM(λ2) are integral.

Since λ1, λ2 ∈ Cλ, gλ
j < 0 implies gλ1

j ≤ 0 and gλ2

j ≤ 0; and λi < 0
implies λ1

i ≤ 0 and λ2
i ≤ 0. This shows that GM(λ) = GM(λ1) + GM(λ2).

Thus, since GM(λ2) is valid for P , either GM(λ) is valid for P , or it is
redundant for PGMI .

Let ∆ be the largest of the absolute values of the determinants of the
square submatrices of G.

Lemma 6.4. Let λ ∈ Qm such that GM(λ) is not valid for P and it is
irredundant for PGMI . Then

−m∆ ≤ λi ≤ m∆, i = 1, . . . , m. (28)

Proof. We will show that if λ does not satisfy (28), then there exist λ1, λ2 ∈
Cλ such that λ = λ1 + λ2 and λ2 ∈ Zm \ {0}. This will prove the lemma
since then, by Lemma 6.3, either GM(λ) is valid for P or it is redundant
for PGMI , a contradiction.

Assume λ violates (28). Let r1, . . . , rq be a set of vectors generating
Cλ. By Remark 2.13, we can choose r1, . . . , rq integral, and by standard
linear algebra we can choose them so that −∆1 ≤ rt ≤ ∆1, t = 1, . . . , q (we
leave this as an exercise). Since λ ∈ Cλ, by Caratheodory’s Theorem 2.9,
λ =

∑q
t=1 νtr

t, and at most m of the νt are positive, while the others are 0.
Let

λ1 =
q∑

t=1

(νt − bνtc)rt, λ2 =
q∑

t=1

bνtcrt.

Clearly λ1, λ2 ∈ Cλ and λ = λ1 + λ2. Since r1, . . . , rq are integral vectors,
λ2 is integral. We show that λ2 6= 0. Since at most m of the νt are positive,
and by definition −∆1 ≤ rt ≤ ∆1, t = 1, . . . , q, then −∆m ≤ λ1 ≤ ∆m.
Thus λ2 6= 0, as λ violates (28).
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Theorem 6.5. (Cook, Kannan and Schrijver [17]) PGMI(= PSplit) is a
rational polyhedron.

Proof. By Lemma 5.1, for every λ ∈ Qm, GM(λ) is a split inequality valid
for P (πλ,πλ

0 ), where the split (πλ, πλ
0 ) ∈ Zn+1 is defined by (21)-(22). By

Lemma 6.4, if GM(λ) is irredundant for PGMI and not valid for P , then
λ satisfies (28). By Theorem 5.5, PGMI = PSplit, thus any inequality valid
for P (πλ,πλ

0 ) is valid for PGMI . Therefore

PGMI =
⋂

(πλ,πλ
0 )∈Zn+1 s.t.

λ satisfies (28)

P (πλ,πλ
0 ).

Since the set {λ ∈ Rm : λ satisifes (28)} is bounded, then the set {(πλ, πλ
0 ) ∈

Zn+1 : λ satisifes (28)} is finite. Therefore PGMI is the intersection of a
finite number of polyhedra, hence it is a polyhedron.

A natural question is whether one can optimize a linear function over
PGMI in polynomial time. It turns out that this problem is NP-hard
(Caprara and Letchford [12], Cornuéjols and Li [19]). Equivalently, given a
point (x, y) ∈ P , it is NP-hard to find a GMI inequality that cuts off (x, y)
or show that none exists. A similar NP-hardness result was proved earlier
by Eisenbrand [25] for the Chvátal closure PCh.

Note that this is in contrast with the problem of finding a GMI inequality
that cuts off a basic solution (x, y) ∈ P \ S. Indeed, any row of the simplex
tableau where xj is fractional generates a GMI inequality that cuts off (x, y).

Although it is NP-hard to optimize over the Chvátal closure, there are
empirical results on its strength. For 24 instances from the MIPLIB library
[8] (all the pure integer programs in MIPLIB 3 with nonzero integrality gap),
Fischetti and Lodi [27] found that the Chvátal closure closes at least 63 % of
the integrality gap on average (The integrality gap is the difference between
the values of the objective function when optimized over conv(S) and over
P respectively). Bonami, Cornuéjols, Dash, Fischetti, Lodi [10] found that
the Chvátal closure closes at least 29 % of the integrality gap on average on
the remaining 41 MIPLIB instances (all the MIPLIB 3 instances that have
at least one continuous variable and nonzero integrality gap).

The split closure and the GMI closure are identical. How tight is it in
practice? Balas and Saxena [7] addressed this question by formulating the
separation problem for the split closure as a parametric mixed integer linear
program with a single parameter in the objective function and the right
hand side. They found that the split closure closes 72 % of the integrality
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gap on average on the MIPLIB instances. This experiment shows that the
split closure is surprisingly strong. Finding deep split inequalities efficiently
remains a challenging practical issue.

7 Lift-and-Project

In this section, we consider mixed 0,1 linear programs. These are mixed
integer linear programs where the integer variables are only allowed to take
the values 0 or 1. It will be convenient to write mixed 0,1 linear programs
in the form

min cx
Ax ≥ b
xj ∈ {0, 1} for j = 1, . . . , n
xj ≥ 0 for j = n + 1, . . . , n + p,

where the matrix A ∈ Qm×(n+p), the row vector c ∈ Qn+p and the column
vector b ∈ Qm are data, and x ∈ Rn+p is a column vector of variables.

Consider the polyhedron P := {x ∈ Rn+p
+ : Ax ≥ b} and the mixed 0,1

linear set S := {x ∈ {0, 1}n × Rp
+ : Ax ≥ b}. Without loss of generality,

throughout this section we assume that the constraints Ax ≥ b include
−xj ≥ −1 for j = 1, . . . , n, but not x ≥ 0.

Balas, Ceria and Cornuéjols [4] study the following ”lift-and-project”
relaxation for S: given an index j ∈ {1, . . . , n}, let

Pj = conv{(Ax ≥ b, x ≥ 0, xj = 0) ∪ (Ax ≥ b, x ≥ 0, xj = 1)}.

Clearly S ⊆ Pj ⊆ P , so Pj is a relaxation of S tighter than P , and by
definition it is the tightest possible among the relaxations that ignore the
integrality of all the variables xi for i 6= j.

The set
⋂n

j=1 Pj is called the lift-and-project closure. It is a better ap-
proximation of conv(S) than P :

conv(S) ⊆
n⋂

j=1

Pj ⊆ P.

How much better is it in practice? Bonami and Minoux [11] performed com-
putational experiments (see also Bonami’s dissertation [9]). On 35 mixed 0,1
linear programs from MIPLIB, they found that the lift-and-project closure
reduces the integrality gap by 37 % on average.
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7.1 Lift-and-project cuts

Optimizing a linear function over Pj amounts to solving a linear program.
In fact, it is possible to express Pj using Theorem 3.3 and then projecting
onto the x-space. Pj is the convex hull of the union of two polyhedra:

Ax ≥ b
x ≥ 0

−xj ≥ 0
and

Ax ≥ b
x ≥ 0

xj ≥ 1

By Theorem 3.3,

Pj = projx





Ax0 ≥ by0

−x0
j ≥ 0

Ax1 ≥ by1

x1
j ≥ y1

x0 + x1 = x
y0 + y1 = 1

x, x0, x1, y0, y1 ≥ 0.

Let ej denote the j-th unit vector. Using the projection theorem (The-
orem 2.16), we get that Pj is defined by the inequalities αx ≥ β such that

α −uA +u0ej ≥ 0
α −vA −v0ej ≥ 0

β −ub ≤ 0
β −vb −v0 ≤ 0

u, u0, v, v0 ≥ 0.

(29)

The inequality αx ≥ β is called a lift-and-project inequality. Clearly
lift-and-project inequalities are special type of split inequalities, relative to
splits of the type xj ≤ 0 or xj ≥ 1.

Given a fractional point x̄, we can determine if there exists a lift-and-
project inequality αx ≥ β valid for Pj that cuts off x̄. In fact, this problem
amounts to finding (α, β, u, u0, v, v0) satisfying (29) such that αx̄ − β < 0.
In order to find a ”best” cut in cone (29), one usually adds a normalization
constaint to truncate the cone. We then obtain the following cut generating
LP:
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min αx −β
α −uA +u0ej ≥ 0
α −vA −v0ej ≥ 0

β −ub ≤ 0
β −vb −v0 ≤ 0∑m

i=1 ui +u0 +
∑m

i=1 vi +v0 = 1
u, u0, v, v0 ≥ 0.

(30)

Balas and Perregaard [6] give a precise correspondence between the basic
feasible solutions of (30) and the basic solutions (possibly infeasible) of the
usual LP relaxation

(R) min{cx : Ax ≥ b, x ≥ 0}.

0 1

cut 2

cut 1

basic solution 2

basic solution 1

P

Figure 9: Correspondence between basic solutions and lift-and-project cuts

A geometric view of this correspondence may be helpful: The n + p ex-
treme rays emanating from a basic solution of (R) intersect the hyperplanes
xj = 0 and xj = 1 in n + p points (some of these points may be at infinity).
These points uniquely determine a hyperplane αx = β where (α, β) are as-
sociated with a basic feasible solution of the cut generating LP (30). For
example, in Figure 9, cut 1 corresponds to the basic solution 1 of (R) and
cut 2 corresponds to the basic (infeasible) solution 2 of (R).

Using the correspondence, Balas and Perregaard [6] show how simplex
pivots in the cut generating LP (30) can be mimicked by pivots in (R). The
major practical consequence is that the cut generating LP (30) need not be
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formulated and solved explicitly. A sequence of increasingly deep lift-and-
project cuts can be computed by pivoting directly in (R). We elaborate on
these pivoting rules in section 7.3.

7.2 Strengthened lift-and-project cuts

Again we consider the mixed 0,1 linear set S := {x ∈ {0, 1}n × Rp
+ : Ax ≥

b}. We assume that the constraints Ax ≥ b contain −xj ≥ −1 for j =
1, . . . , n, but not x ≥ 0. The cut generating LP (30) produces a lift-and-
project inequality αx ≥ β that is valid for Pj . The derivation only uses the
integrality of variable xj , not of the variables xk for k = 1, . . . , n and k 6= j.
Balas and Jeroslow [5] found a simple way to use the integrality of the other
variables to strengthen the lift-and-project cut. This strengthening has the
nice property that it is straightforward to implement once the cut generating
LP (30) has been solved.

Note that, given u, u0, v, v0, the optimal values of αk and β in (30) are:

αk =
{

max(uak, vak) for k 6= j
max(uaj − u0, vaj + v0) for k = j,

(31)

where ak denotes the k-th column of A, and

β = min(ub, vb + v0).

To strengthen the inequality αx ≥ β, one can try to decrease the coeffi-
cients αk. Balas and Jeroslow [5] found a way to do just that by using the
integrality of the variables xk for k = 1, . . . , n.

Theorem 7.1. (Balas and Jeroslow [5]) Let x̄ satisfy Ax ≥ b, x ≥ 0. Given
an optimal solution u, u0, v, v0 of the cut generating LP (30), define mk =
vak−uak

u0+v0
,

αk =
{

min(uak + u0dmke, vak − v0bmkc) for k = 1, . . . , n
max(uak, vak) for k = n + 1, . . . , n + p

and β = min(ub, vb + v0). Then the inequality αx ≥ β is valid for conv(S).

Proof. For π ∈ Zn, the following disjunction is valid for conv(S):

either
n∑

k=1

πkxk ≥ 0 or −
n∑

k=1

πkxk ≥ 1.
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Let us repeat the derivation of (30) with this disjunction in place of −xj ≥ 0
or xj ≥ 1 as before. We consider the union of

Ax ≥ b
x ≥ 0∑n

k=1 πkxk ≥ 0
and

Ax ≥ b
x ≥ 0

−∑n
k=1 πkxk ≥ 1.

Using Theorem 3.3 and the projection theorem (Theorem 2.16), we get that
any inequality αx ≥ β that satisfies

α −uA −u0(
∑n

k=1 πkek) ≥ 0
α −vA +v0(

∑n
k=1 πkek) ≥ 0

β −ub ≤ 0
β −vb −v0 ≤ 0

u, u0, v, v0 ≥ 0

is valid for conv(S). We can choose u, u0, v, v0 to be an optimal solution
of the original cut generating LP (30). This implies that, for k = 1, . . . , n,
we can choose αk = max(uak + u0πk, vak − v0πk). Smaller coefficients αk

produce stronger inequalities since the variables are nonnegative. What is
the best choice of πk ∈ Z to get a small αk? It is obtained by equating
uak + u0πk and vak − v0πk, which yields the value mk in the statement of
the theorem (both u0 and v0 are strictly positive since otherwise αx ≥ β
is valid for P , contradicting that it is a cut for x̄), and then rounding this
value mk either up or down since πk must be integer. The best choice is the
minimum stated in the theorem.

Bonami and Minoux [11] found that applying the Balas-Jeroslow strength-
ening step improves the average gap closed by an additional 8 %, as com-
pared to the lift-and-project closure, on the 35 MIPLIB instances in their
experiment. Specifically, the integrality gap closed goes from 37 % to 45 %.
The time to perform the strengthening step is negligible.

7.3 Improving mixed integer Gomory cuts by lift-and-project

In this section we discuss the correspondence between basic feasible solutions
of the cut generating LP (30) and basic solutions (possibly infeasible) of the
usual LP relaxation (R) introduced in Section 7.1. The simplex tableaux of
(30) and (R) will be referred to as large and small respectively.

Let
xj = aj0 −

∑

h∈J

ajhxh (32)

40



be a row of the small optimal simplex tableau such that 0 < aj0 < 1. The
GMI cut from this row is equivalent to the strengthened lift-and-project cut
from some basic feasible solution of (30), where index j in (30) is the same
as in (32). To identify this solution, partition J into subsets M1 and M2,
such that h ∈ M1 if ajh < 0, and h ∈ M2 if ajh > 0 (h ∈ J such that
ajh = 0 can go into either subset). Then eliminating α, β from (30), the n
columns indexed by M1 ∪M2 together with the two columns indexed by u0

and v0 define a feasible basis of the resulting system of n+2 equations. The
strengthened lift-and-project cut associated with this basic feasible solution
to (30) is equivalent to the GMI cut from (32).

To evaluate the GMI cut generated from the small simplex tableau (32)
as a lift-and-project cut, we calculate the reduced costs in the large tableau
of the nonbasic variables of the above solution to (30). Each row xi of
the small tableau corresponds to a pair of columns of the large tableau,
associated with variables ui and vi. The reduced costs r(ui), r(vi) of these
variables in the large tableau are known simple functions of the entries aih

and ajh, for h ∈ J , of rows j and i of the small tableau. If they are all
nonnegative, the current large tableau is optimal, hence the GMI cut from
(32) cannot be improved. Otherwise, the cut can be improved by executing
a pivot in a row i of the small tableau, such that r(ui) < 0 or r(vi) < 0.

To identify the nonbasic variable xk to replace xi in the basis of the small
tableau, we calculate for each h ∈ J the objective function value f(aih) of
(30) resulting from the corresponding exchange in the large tableau. This
value is a known simple function of the ratio ajh/aih and of the coefficients
of rows j and i of the small tableau. Any column h for which f(aih) < 0 is
a candidate for an improving pivot, and the most negative value indicates
the best column k.

Executing the pivot in the small tableau that exchanges xi for xk yields
a new simplex tableau (whose solution is typically infeasible), whose j-th
row (the same j as before!) is of the form

xj = aj0 + tai0 −
∑

h∈J∪i\k
(ajh + taih)xh, (33)

with t := ajk/aik. The GMI cut from (33) is then stronger than the one
from (32), in the sense that it cuts off the LP optimum of (R) by a larger
amount.

These steps can then be repeated with (33) replacing (32) for as long as
improvements are possible.

Practical experience shows that in about three quarters of the cases GMI
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cuts from the optimal simplex tableau can be improved by the pivoting
procedure described above. On the other hand, improvements beyond 10
pivots are not frequent, and beyond 20 pivots they are very rare.

This procedure was extensively tested and has been incorporated into
the mixed integer module of XPRESS, with computational results reported
in [42].

7.4 Sequential convexification

Theorem 7.2. (Balas [2]) Pn(Pn−1(. . . P2(P1) . . .)) = conv(S).

Before proving Theorem 7.2, we need a lemma. Let H ⊆ Rn be a
hyperplane and S ⊆ Rn. In general, conv(S) ∩H 6= conv(S ∩H), as shown
by the example where S consists of two points not in H but the line segment
connecting them intersects H. The following lemma shows that equality
holds when S lies entirely in one of the closed half spaces defined by the
hyperplane H (see Figure 10).

Lemma 7.3. Let H := {x ∈ Rn : ax = b} be a hyperplane and S ⊆ {x :
ax ≤ b}. Then conv(S) ∩H = conv(S ∩H).

H

S

conv(S)

Figure 10: Illustration of Lemma 7.3

Proof. Clearly conv(S ∩H) ⊆ conv(S) and conv(S ∩H) ⊆ H so conv(S ∩
H) ⊆ conv(S) ∩H.

We show conv(S)∩H ⊆ conv(S∩H). Let x ∈ conv(S)∩H. This means
ax = b and x =

∑k
i=1 λix

i where x1, . . . , xk ∈ S, λ ≥ 0 and
∑k

i=1 λi = 1.

b = ax =
k∑

i=1

λiaxi ≤
k∑

i=1

λib = b (34)
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where the inequality follows from axi ≤ b and λi ≥ 0. Relation (34) implies
that these inequalities are in fact equations, i.e. axi = b for i = 1, . . . , k.
Therefore xi ∈ S ∩H. This implies x ∈ conv(S ∩H).

Proof of Theorem 7.2. By induction. Let St := {x ∈ {0, 1}t×Rn−t+p
+ : Ax ≥

b}. We want to show Pt(Pt−1(. . . P2(P1) . . .)) = conv(St). By definition, this
is true for t = 1, so consider t ≥ 2. Suppose that this is true for t − 1. By
the induction hypothesis we have

Pt(Pt−1(. . . P2(P1) . . .)) = Pt(conv(St−1))

= conv(conv(St−1) ∩ {xt = 0}) ∪ (conv(St−1) ∩ {xt = 1}).
By Lemma 7.3, conv(St−1) ∩ {xt = 0} = conv(St−1 ∩ {xt = 0}) and
conv(St−1) ∩ {xt = 1} = conv(St−1 ∩ {xt = 1}). Thus

Pt(Pt−1(. . . P2(P1) . . .)) = conv((St−1 ∩ {xt = 0}) ∪ (St−1 ∩ {xt = 1}))
= conv(St).

¤

8 Rank

8.1 Chvátal Rank

In this section, we consider a pure integer set S := P ∩Zn where P := {x ∈
Rn : Ax ≤ b} is a rational polyhedron. We denote conv(S) by PI . The
Chvátal closure PCh introduced in Section 4.1 will be denoted by P (1) in this
section. We can iterate the closure process to obtain the Chvátal closure of
P (1). We denote by P (2) this second Chvátal closure. Iteratively, we define
the tth Chvátal closure of P to be the Chvátal closure of P (t−1), for t ≥ 2
integer. An inequality that is valid for P (t) but not P (t−1) is said to have
Chvátal rank t. Are there inequalities of arbitrary large Chvátal rank or is
there a value t after which P (t) = P (t+1)? The main result of this section
is that the second statement is the correct one. In fact, we will prove that
there exists a finite t such that P (t) = PI . Therefore, every valid inequality
for PI := conv(S) has a bounded Chvátal rank. This result for the pure
integer case is in contrast with the situation for the mixed case, as we will
see in the next section.

We will need the following theorem, whose proof can be found in text-
books such as [45].
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Theorem 8.1. (Integer Farkas Lemma or Kronecker Approximation Theo-
rem) Let A be a rational matrix and b a rational vector. The system Ax = b
has an integral solution if and only if for every rational vector u such that
uA is integral, ub is an integer.

Given a set P ⊂ Rn, we denote by aff(P ) the affine hull of P , that is the
minimal affine subspace of Rn containing P .

Lemma 8.2. Let P ⊆ Rn be a nonempty rational polyhedron such that
aff(P ) ∩ Zn 6= ∅. If PI = ∅, then dim(rec(P )) < dim(P ).

Proof. Let d = dim(P ) = dim(aff(P )). Suppose, by contradiction, that
PI = ∅ and there are d linearly independent integral vectors r1, . . . , rd ∈
rec(P ). Let z ∈ P . Since aff(P ) ∩ Zn 6= ∅, and z + r1, . . . , z + rd is a
basis of aff(P ), there exist µ1, . . . , µd such that z +

∑d
i=1 µir

i ∈ Zn. Thus
z +

∑d
i=1(µi − bµic)ri is an integral point in P , contradicting the fact that

PI = ∅.
A consequence of the above lemma is that every rational polyhedron

having full-dimensional recession cone contains an integer point.

Lemma 8.3. Let P ⊆ Rn be a rational polyhedron such that aff(P )∩Zn 6= ∅.
Then PI = {x : Ax ≤ b} ∩ aff(P ) for some integral A and b such that, for
every row ai of A,

1. ai is not orthogonal to aff(P );

2. there exists di ∈ R such that aix ≤ di is valid for P .

Proof. Assume first PI 6= ∅. Then clearly there exist an integral matrix A
and an integral vector b such that PI = {x : Ax ≤ b} ∩ aff(P ) and no
row of A is orthogonal to aff(P ). We prove 2): Since rec(PI) = rec(P ) by
Theorem 2.19, for every row ai, di = max{aix : x ∈ P} is finite, thus
aix ≤ di is valid for P .
Assume now PI = ∅. By standard linear algebra, aff(P ) = z + L where
z ∈ P and L is a linear subspace of Rn such that dim(L) = dim(P ). Notice
that rec(P ) ⊂ L. By Lemma 8.2, dim(rec(P )) < dim(P ), thus there exists
an integral a ∈ L such that a is orthogonal to rec(P ). Thus both u =
max{ax : x ∈ P} and l = min{ax : x ∈ P} are finite, hence PI = {x :
ax ≤ −1, −ax ≤ 0} = ∅, a,−a are not orthogonal to aff(P ), and ax ≤ u,
−ax ≤ −l are valid for P .

Lemma 8.4. Let P be a rational polyhedron and F a nonempty face of P .
Then F (s) = P (s) ∩ F for every s ∈ Z+.
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Proof. It suffices to show that F (1) = P (1)∩F . This is a consequence of the
following statement, which we prove next:

If cx ≤ bdc is a Chvátal inequality for F , there is a Chvátal inequality
c∗x ≤ bd∗c for P such that F ∩ {x : cx ≤ bdc} = F ∩ {x : c∗x ≤ bd∗c}.

Since P is rational, by Theorem 2.22, we can write P as {x : A′x ≤
b′, A′′x ≤ b′′}, where A′, A′′, b′, b′′ are integral, so that F = {x : A′x ≤
b′, A′′x = b′′}. We can assume that d = max{cx : x ∈ F}. By the duality
theorem 2.6 there exist vectors y′, y′′ such that

y′A′ + y′′A′′ = c, y′b′ + y′′b′′ = d, y′ ≥ 0.

Note that y′′ is unrestricted in sign. To obtain a Chvátal inequality for P ,
we have to use nonnegative multipliers. Define c∗ and d∗ as:

c∗ = y′A′ + (y′′ − by′′c)A′′, d∗ = y′b′ + (y′′ − by′′c)b′′.

The multipliers y′ and y′′ − by′′c are nonnegative. We have c∗ = c −
(by′′c)A′′), d∗ = d− (by′′c)b′′). Since A′′ is an integral matrix and b′′, c are
integral vectors, then c∗ is integral and bdc = bd∗c− (by′′c)b′′. So c∗x ≤ bd∗c
is a Chvátal inequality for P and F ∩{x : c∗x ≤ bd∗c} = F ∩{x : by′′cA′′x =
by′′cb′′, c∗x ≤ bd∗c}F ∩ {x : cx ≤ bdc}.
Theorem 8.5. (Chvátal [13], Schrijver [44]) Let P be a rational polyhedron.
Then there exists t ∈ Z+ such that P (t) = PI .

Proof. The proof is by induction on d = dim(P ), the cases d = −1, d = 0
being trivial. If aff(P ) ∩ Zn = ∅, by Theorem 8.1 there exists an integral
vector a and a scalar d 6∈ Z such that P ⊆ {x : ax = d}, hence PI = ∅ = {x :
ax ≤ bdc, −ax ≤ −dde} = P (1). Therefore we may assume aff(P )∩Zn 6= ∅.
By Lemma 8.3, PI = {x : Ax ≤ b} ∩ aff(P ) for some integral A and b such
that, for every row ai of A, ai is not orthogonal to aff(P ) and aix ≤ di is
valid for P for some di ∈ R.
We only need to show that, for any row ai of A, there exists a nonnegative
integer t such that the inequality aix ≤ bi is valid for P (t). Suppose not,
then, since aix ≤ di is valid for P , there exists an integer d > bi and r ∈ Z+

such that, for every s ≥ r, aix ≤ d is valid for P (s) but aix ≤ d−1 is not valid
for P (s). Then F = P (r) ∩ {x : aix = d} is a face of P (r) and FI = ∅. Since
ai is not orthogonal to aff(P ), dim(F ) < dim(P ), therefore, by induction,
there exists h such that F (h) = ∅. By Lemma 8.4, F (h) = P (r+h) ∩F , hence
aix < d for every x ∈ P (r+h), therefore aix ≤ β − 1 is valid for P (r+h+1),
contradicting the choice of d and r.
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8.2 Split Rank

Let P := {(x, y) ∈ Rn ×Rp : Ax + Gy ≤ b} and let S := P ∩ (Zn ×Rp). In
this section, we denote the split closure PSplit of P by P 1.

For k ≥ 2, P k denotes the split closure relative to P k−1 and it is called
the k-th split closure relative to P . It follows from Theorem 6.5 that P k is
a polyhedron. Unlike for the pure integer case, there is in general no finite r
such that P r = conv(S) in the mixed integer case, as shown by the following
example [17].

Example 8.6. Let S := {(x, y) ∈ Z2
+×R+ : x1 ≥ y, x2 ≥ y, x1+x2+2y ≤

2}. Starting from P := {(x1, x2, y) ∈ R3
+ : x1 ≥ y, x2 ≥ y, x1 + x2 + 2y ≤

2}, we claim that there is no finite r such that P r = conv(S).
To see this, note that P is a simplex with vertices O = (0, 0, 0), A =

(2, 0, 0), B = (0, 2, 0) and C = (1
2 , 1

2 , 1
2) (see Figure11). S is contained in

the plane y = 0. More generally, consider a simplex P with vertices O,A, B
and C = (1

2 , 1
2 , t) with t > 0. Let C1 = C, let C2 be the point on the edge

from C to A with coordinate x1 = 1 and C3 the point on the edge from C
to B with coordinate x2 = 1. Observe that no split disjunction removes all
three points C1, C2, C3. Let Qi be the intersection of all split inequalities
that do not cut off Ci. All split inequalities belong to at least one of these
three sets, thus P 1 = Q1 ∩ Q2 ∩ Q3. Let Si be the simplex with vertices
O,A, B, Ci. Clearly, Si ⊆ Qi. Thus S1 ∩ S2 ∩ S3 ⊆ P 1. It is easy to verify
that (1

2 , 1
2 , t

3) ∈ Si for i = 1, 2 and 3. Thus (1
2 , 1

2 , t
3) ∈ P 1. By induction,

(1
2 , 1

2 , t
3k ) ∈ P k.

O A

B

C

Figure 11: Example showing that the split rank can be unbounded

Remark 8.7. For mixed 0,1 programs, Theorem 7.2 implies that Pn =
conv(S).
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Example 8.8. Cornuéjols and Li [18] observed that the n-th split closure
is needed for 0,1 programs, i.e. there are examples where P k 6= conv(S) for
all k < n. They use the following well-known polytope studied by Chvátal,
Cook, and Hartmann [14]:

PCCH := {x ∈ [0, 1]n :
∑

j∈J

xj+
∑

j 6∈J

(1−xj) ≥ 1
2
, for all J ⊆ {1, 2, · · · , n}}

Let Fj be the set of all vectors x ∈ Rn such that j components of x are
1
2 and each of the remaining n − j components are equal to 0 or 1. The
polytope PCCH is the convex hull of F1.

Lemma 8.9. If a polyhedron P ⊆ Rn contains Fj, then its split closure P 1

contains Fj+1.

Proof. It suffices to show that, for every (π, π0) ∈ Zn × Z, the polyhedron
Π = conv((P ∩ {x : πx ≤ π0}) ∪ (P ∩ {x : πx ≥ π0 + 1})) contains Fj+1.
Let v ∈ Fj+1 and assume w.l.o.g. that the first j +1 elements of v are equal
to 1

2 . If πv ∈ Z, then clearly v ∈ Π. If πv 6∈ Z, then at least one of the
first j + 1 components of π is nonzero. Assume w.l.o.g. that π1 > 0. Let
v1, v2 ∈ Fj be equal to v except for the first component which is 0 and 1
respectively. Notice that v = v1+v2

2 . Clearly, each of the intervals [πv1, πv]
and [πv, πv2] contains an integer. Since πx is a continuous function, there
are points ṽ1 on the line segment conv(v, v1) and ṽ2 on the line segment
conv(v, v2) with πṽ1 ∈ Z and πṽ2 ∈ Z. This means that ṽ1 and ṽ2 are in Π.
Since v ∈ conv(ṽ1, ṽ2), this implies v ∈ Π.

Starting from P = PCCH and applying the lemma recursively, it follows
that the (n − 1)-st split closure relative to PCCH contains Fn, which is
nonempty. Since conv(PCCH ∩ {0, 1}n) is empty, the n-th split closure is
needed to obtain conv(PCCH ∩ {0, 1}n). End of Example 8.8.

Remark 8.10. In view of Example 8.6 showing that no bound may exist on
the split rank when the integer variables are general, and Remark 8.7 showing
that the rank is always bounded when they are 0,1 valued, one is tempted to
convert general integer variables into 0,1 variables. For a bounded integer
variable 0 ≤ x ≤ u, there are several natural transformations:

(i) a binary expansion of x (see Owen and Mehrotra [41]);
(ii) x =

∑u
i=1 izi,

∑
zi ≤ 1, zi ∈ {0, 1} (see Sherali and Adams [46] and

Köppe, Louveaux and Weismantel [35]);
(iii) x =

∑u
i=1 zi, zi ≤ zi−1, zi ∈ {0, 1} (see Roy [43]).

More studies are needed to determine whether any practical benefit can be
gained from such transformations.

47



References
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inégalités, Nouveau Bulletin des Sciences par la Société Philomatique
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