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Abstract

This paper intends to show that the time needed to solve mixed integer programming
problems by branch and bound can be roughly predicted early in the solution process. We
construct a procedure that can be implemented as part of an MIP solver. It is based on
analyzing the partial tree resulting from running the algorithm for a short period of time,
and predicting the shape of the whole tree. The procedure is tested on instances from the
literature. This work was inspired by the practical applicability of such a result.

1. Introduction

The effectiveness of the branch-and-bound procedure for solving mixed integer programming
(MIP) problems has made it a method of choice in commercial software for several decades.
Its applicability to large instances has increased in the last ten years with the increased com-
putational power of computers as well as substantial improvements in algorithms. Although
current software packages are able to solve many large instances by branch and bound and its
modifications, there are also many other instances where they fail due to the excessive size of
the enumeration tree.

The branch-and-bound algorithm is a divide-and-conquer approach that dynamically con-
structs a search tree, each node of which represents a subproblem. Upper and lower bounds can
be obtained from feasible solutions and from solving the linear programming relaxation of these
subproblems. These bounds are used to prune the tree. In addition to the bounds, the search
strategies determine the size and shape of the search tree. Good descriptions of the branch-
and-bound algorithm can be found in Nemhauser and Wolsey (1988), and Wolsey (1998). An
extensive study of search techniques is presented in Linderoth and Savelsbergh (1997).

The application of the branch-and-bound algorithm can be limited by both the computing
time and the storage space required (even when storing nodes on a hard disk). The solution
process may take hours or days and there is very little a priori indication of how difficult a
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1 INTRODUCTION

model will be to solve. Unfortunately, there is no known method to extract this information
from the problem formulation. Practice shows that even small modifications in a model can
increase or decrease the solution time by an order of magnitude. On the other hand, many
present day applications require a solution of MIP problems within minutes. Some specialized
commercial software products for solving MIP problems apply only heuristics because speed is
more important than obtaining an optimal solution. Therefore, from a practical point of view,
even a rough estimate of the computating time required by branch and bound would be useful.
It can help decide whether to continue with branch and bound or switch to heuristics.

Memory requirements are also critical. To store the tree may require enormous space and
it is possible for the branch-and-bound algorithm to terminate prematurely after many hours
of work without providing a satisfactory solution due to a lack of memory. For example, some
instances from MIPLIB, a standard library of test problems, require many gigabytes for node
storage.

The CPU time required for a branch-and-bound solution depends roughly linearly on the
number of nodes in the branch-and-bound tree (for simplicity, we will call it the tree). In the
present paper we attempt to devise a method for estimating the total size of the tree at an early
stage of the solution process. We define the following requirements for the method:

• It should function as part of a general-purpose MIP solver. It should provide predictions
without controlling or directing the solution process.

• It should be able to output a prediction with satisfactory precision after a short period
of time (e.g., five seconds for medium size problems). It should be able to update the
prediction as time elapses.

• The additional computations for these predictions should consume a negligible amount
of time compared to the branch-and-bound algorithm. They should not slow down the
solution process. They should rely as much as possible on the data obtained from the MIP
solver.

“Satisfactory precision” can be defined in different ways. We propose to measure the precision
by the error factor—the factor by which the prediction under- or overestimates the actual tree
size. We consider that a prediction within an error factor of five provided after five seconds of
solution time is satisfactory. Such a prediction will allow us to conclude whether the solution
will take minutes, hours, or days. For example, an estimated solution time of 1 hour would be
interpreted as saying that the instance can be solved between 12 minutes and 5 hours. If we
had set a time limit of 10 hours and the actual solution time of an instance exceeded 10 hours,
the 1-hour prediction would not be considered satisfactory, whereas a 4-hour prediction would
be.

We introduce a notion related to the shape and size of a tree called γ-sequence. The nodes at
distance i from the root node are said to occupy level i. Let the width of a level be the number
of nodes at that level. We define γi as the ratio between the width of level i + 1 and that of
level i. The γ-sequence of a tree is the sequence of γi, for all levels i with positive width. Given
the γ-sequence of a tree, we can reproduce the number of nodes at each level. Our main goal is
to obtain a satisfactory approximation to the γ-sequence. After running the branch-and-bound
algorithm for a short period of time, we obtain a subtree of the whole branch-and-bound tree.
One approach is to use the γ-sequence of the partial tree as a basis for the estimation. Our tests
showed that this does not lead to good results. Instead, we will use the partial tree to estimate
three key parameters of the complete tree: the depth, the last full level, and the waist level. We
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will use these parameters for modeling the γ-sequence. We describe and analyze our approach
and present our computational results in Section 3.

In 1975 Knuth proposed a procedure for estimating the size of branch-and-bound trees based
on sampling by random paths. Discussion of this method and its application is included in
Section 2.

The testbed for the experiments described in this paper includes 28 instances from MIPLIB
3.0 (Bixby et at. 1998). The solution of most of them requires building a branch-and-bound
tree of more than 1000 nodes. We also included some of the “smaller” instances. The choice is
aimed at obtaining diversity while concentrating on the nontrivial instances. We also tested our
prediction algorithm on additional instances from the literature. The computations were made
on a Sun Ultra 60 (360MHz UltraSPARC-II processor) with ILOG CPLEX 8.0. Because our
goal in this paper focuses on the branch-and-bound algorithm, we did not apply heuristics and
cuts at nodes other than the root node, except at the very end of Section 3 where we briefly
report on our experience with branch and cut.

2. Earlier work

Knuth (1975) was the first to discuss how to estimate the size of a general backtrack tree. The
method that he proposed is a random exploration of the tree based on a Monte Carlo approach.
The algorithm repeatedly traverses random paths from the root node to the leaves, without
backtracking. At each node, one of its successors is chosen at random according to a uniform
probability. The estimate of the number of nodes in the tree is the average over several runs
of 1 + d1 + d1d2 + ... +

∏k
i=1 di, where di is the number of successors to the chosen node at

level i and k is the depth reached. Furthermore, Knuth generalized the above simple, unbiased
method to allow the selection of random paths under non-uniform probabilities. He proves that
the expected value of both estimates, unbiased and biased, is the size of the search tree, and he
provides upper bounds on the variance of the estimates.

Knuth’s algorithm has been improved in various ways by Purdom (1978) and Chen (1992).
The modified algorithm by Purdom attempts to reduce the variance of the estimate by allow-
ing more than one branch out of a node to be further investigated. Chen adopted a stratified
sampling approach, based on a “heuristic function” (stratifier) supplied by the algorithm de-
signer. Chen proved that, by exploiting the tree structure reflected by the stratifier, the heuristic
sampling method reduces the variance relative to Knuth’s algorithm.

Although he did not present many test results, Knuth provided a good insight into the po-
tential problems that may arise when applying his procedure. He emphasized the large variance
of the estimator, as well as the tendency to get underestimations when the deep levels are visited
with very low probability. Another important remark was that “the estimation procedure does
not apply directly to branch-and-bound algorithms,” unless the optimal objective value is given
a priori as a bound. Thus, the procedure can be used to estimate the amount of work to prove
any given bound for optimality.

Nevertheless, Knuth’s method has been employed for estimating the size of a branch-and-
bound tree. Lobjois and Lemaitre (1998) proposed a method to select, for each instance of the
maximal constraint satisfaction problem, the most appropriate branch-and-bound algorithm
from among several candidates. They compared the running times of the algorithms predicted
by Knuth’s procedure and concluded that, despite the great variability of the estimates, it selects
the best algorithm in most cases. One conclusion was that Knuth’s estimator can be used for
comparison purpose even when it outputs imprecise predictions.

Brüngger et al. (1998) set up such an estimator in their solver to predict the running
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time when tackling large-scale quadratic assignment problems (QAP) by parallel computation.
Anstreicher et al. (2002) also used Knuth’s procedure for estimating the solution time of a
specialized branch-and-bound algorithm for QAP. They reported excellent results of the basic,
unbiased method for instances of size less than 24 but pointed out that the quality of the
estimation rapidly deteriorates as the size of the problems increased. To fix this, they applied
“importance sampling”, identical to the biased sampling proposed by Knuth. They suggested
the use of non-uniform probabilities that depend on the inherited relative gap at a node. In
addition, they proposed a way of reducing the variance of the estimates at deeper levels in the
tree and avoiding wasteful duplication of computations at low levels. Rather than start the
random dives at the root node, they first ran the branch-and-bound algorithm in breadth-first
mode to obtain all nodes at a predetermined level, and then initialized Knuth’s algorithm from
a node at that level. The modified procedure output very good estimations for QAP problems
of up to size 30.

We performed tests with our set of MIPLIB instances but could not observe the good es-
timation properties of Knuth’s procedure reported in the aforementioned papers. We applied
unbiased random sampling with 1000 iterations. Even when the optimal objective value was
provided as a cutoff bound, the error factor of the prediction was greater than 5 in 11 of the
23 instances solved to optimality (cf. Table 1). Five instances were not solved within 10 hours
of computing time and 1GB of storage space. For these instances, a correct prediction should
exceed the number of nodes at interruption. Knuth’s method provided such a prediction in three
cases and produced significant underestimations in the other two cases. The large number of
errors can be attributed to the large variance of the estimator and to the insufficient number of
iterations (1000 while Anstreicher et al. proposed 10,000). In addition, even with this relatively
small number of samples, the estimation time was significant. It was greater than one minute
for all problems but one, and it was greater than five minutes in 10 out of 28 cases. For many
of the instances, this is an unreasonably long period of time devoted solely to time estimation
without contributing to the solution. Moreover, in 11 cases, the number of nodes visited during
the estimation procedure exceeded the size of the branch-and-bound tree, i.e., the estimation
procedure took longer to execute than the solution algorithm itself. Even with this abundant
information, the prediction error factor was greater than five in five of these 11 cases. When we
applied 10,000 samples in order to obtain a more precise estimate, the estimation time became
longer than the solution time for 20 out of 28 instances. This made the price for the increased
precision too high.

Furthermore, starting with information about the optimal objective value is not realistic.
The above experiment, repeated with no cutoff bound, lead to huge overestimations (by factors
of 102 to 1031) for almost all problems while the estimation time was even longer than that
reported in Table 1.

We can see three main reasons for the observed inaccuracy. First, the lack of a good cutoff
bound results in a very small amount of pruning in the second experiment. Second, due to the
exponential growth of the estimate with node depth, the error tends to be small when the tree
is shallow, as those studied by Anstreicher et al., but when the tree is deep, e.g., more than 100
levels, even one or two sample paths that go to the deepest levels can cause a huge overestimation.
Third, it is possible that Knuth’s procedure works much better in some classes of problems and
with some types of branch-and-bound algorithms than with others. (The algorithm employed
by Anstreicher et al. is specialized for QAP.)

Our conclusion is that in most cases Knuth’s method is not practical for early prediction of
the solution time of general MIP problems. We would like to have a much faster routine with
acceptable precision that does not assume prior knowledge of the optimal objective value.

Our exploration in this paper is distinct from Knuth’s work in the following four respects.

4



2 EARLIER WORK

Table 1: Tree size estimation by Knuth’s method with sample size 1000

Predicted Actual Estimation
Problem number number Ratio Time Nodes

of nodes of nodes [seconds] visited

air05 754 1221 0.61 31200 5690
arki001 * 262 1124575 2.3E-4 2838 4695
bell3a 14110 18512 0.76 121 13736
bell4 1.3E+06 13654 95 78 9261
bell5 1362 301146 0.004 61 4451
blend2 365 5750 0.063 201 6683
gesa2 o 6011 1136 5.2 809 11187
harp2 * 22775 786616 0.028 925 9563
lseu 4738 1614 2.9 41 9578
markshare1 * 1.2E+10 52464676 228 94 30855
markshare2 * 5.0E+12 45059758 1.1E+5 129 38200
mas74 8.7E+06 10159496 0.85 182 20251
mas76 1.0E+06 637057 1.6 144 16655
misc07 21697 111784 0.19 1289 10580
mod008 1373 2161 0.63 92 13377
mod011 25945 21788 1.2 12180 9683
modglob 2.0E+06 304 6480 209 11804
noswot 4.1E+07 5614491 7.3 112 13266
pk1 163508 337940 0.48 155 14529
pp08a 9.5E+09 933 1.0E+7 204 28249
pp08aCUTS 4.6E+06 1687 2744 360 19624
qiu 40163 9358 4.3 6081 11556
rgn 1261 3025 0.42 73 9665
rout 34871 1797969 0.019 1643 11024
seymour * 4.4E+15 54713 8.0E+10 128520 42574
stein27 8429 3706 2.3 200 12573
stein45 167466 68093 2.5 889 15508
vpm2 337552 25255 13 216 14180

* Solution procedure interrupted. Column “Actual number of nodes”

contains the number of nodes at time of interruption.

First, it does not rely on an initial bound, although having such a bound would be advan-
tageous. Second, our procedure employs a standard branch-and-bound algorithm, which does
backtracking and updates the bound. Third, our method is based on estimating parameters
of the enumeration tree and extrapolating its γ-sequence from these parameters, rather than
estimating the γ-sequence directly by the number of descendants. Finally, our estimation proce-
dure analyzes the partial tree produced by the branch-and-bound algorithm and then continues
the search. Therefore, the work done in the estimation phase is essentially the beginning of the
solution process. While the random sampling can find a good solution by chance, the time spent
by this sampling procedure is usually lost for the solution of the problem.

Some other means of estimating the termination time of a branch-and-bound algorithm have
been considered as well. One idea is to estimate upper and lower bounds on the objective value
as a function of time and then apply simple regression. A ballpark estimate of running time
can be obtained by extrapolating those curves and predicting when the gap will be zero. One
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could also consider the number of active nodes in the queue as a function of time and, again,
extrapolate the curve. Both approaches require a significant amount of solution time in order to
capture the trend. The gap closes in large steps at the beginning and in much smaller ones later
on. The behavior of the set of active nodes is very problem specific. Our experience shows that
the gap closed in the first 5–10 seconds and the dynamics of the set of active nodes in the same
period hardly provide sufficient information to make a sensible prediction. Howerer, combining
all these methods could lead to a more precise estimator. Further investigation in this direction
should be fruitful.

3. Our method

3.1. General description

In what follows, we assume that the maximum number of descendants of a node is two. By
redefining the last full level, our estimation procedure can accommodate a branching scheme
with any number of descendants.

Definition 1 In a branch-and-bound tree T , let wT (i) be the width of level i, i.e., the number
of nodes at that level. Let dT = max{i : wT (i) > 0} be the depth of the tree. Level lT = min{i :
wT (i+1)

wT (i) < 2, 0 ≤ i ≤ dT } is called the last full level of the tree (assuming that each node has at
most two successors). Up to this level, the tree is a complete binary tree. Let the waist of the
tree be the level with maximum width, bT = arg max{wT (i) : 0 ≤ i ≤ dT }. When this level is
not unique, define bT =

⌈
b1+b2

2

⌉
, where b1 = min{i : wT (i) = t}, b2 = max{i : wT (i) = t}, and

t = max{wT (i) : 0 ≤ i ≤ dT }, i.e., bT is the center of the smallest interval containing all the
levels with maximum width. Let n(T ) =

∑dT

i=0 wT (i) be the number of nodes in T . The sequence
{wT (i) : 0 ≤ i ≤ dT } is called the profile of tree T .

A framework for estimating the size of a branching tree T is given as follows:

Input: A mixed integer programming problem

Initialization. Set counters for the width of the levels,

w(i) = 0, for i = 0, . . . , eD, and eD large enough.

Step 0. Run the branch-and-bound algorithm.

Step 1. At each node of the branching tree, increment the

corresponding counter by 1.

Step 2. Stop when a prespecified event occurs (e.g., a time

or node bound is reached), and let t be the resulting

subtree of T. Set wt(i) = w(i), ∀i.
Step 3. Find lt, bt, and dt.

Step 4. Construct a measurement tree M.

Step 5. If the problem is not solved, output n(M) (an

estimate of n(T )), continue the branch-and-bound

algorithm, and go to Step 1. Otherwise, terminate.

The branch-and-bound algorithm is paused at a given point in time. The resulting tree
of visited nodes, t, also called partial tree, is used to estimate the parameters of the complete
branch-and-bound tree. In Step 3 we find the last full level, the waist, and the depth of the
partial tree, which serve as estimates of the parameters of the complete tree. The measurement
tree constructed in Step 4 is not a real tree but a profile of a tree that is designed to replicate,
as much as possible, the profile of the estimated tree. It is built according to a model to be
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discussed in the next section. The number of nodes in the measurement tree is used as an
estimate of the total number of nodes in the branch-and-bound tree.

We apply this procedure repeatedly in order to output periodic estimations until the branch-
and bound algorithm terminates. We formally divide the solution process into two phases.
Phase I ends with the output of the first prediction. In Phase II, we output periodic predictions.
As a termination criterion for Phase I, we require that both of the following conditions be
satisfied: the solution time is at least 5 seconds and the number of nodes in the partial tree is
at least 20 times the depth of the partial tree (n(t) ≥ 20dt). The second condition is important
because a reasonable level width is necessary in order to obtain a sensible approximation of the
parameters of the complete tree. The factor of 20 is established empirically and can be changed
to reflect tradeoffs between speed and accuracy of the first prediction.

In the above procedure, branch and cut can be used instead of branch and bound. It is
important to note that cuts added after branching has started can change the structure of the
branching tree and affect the validity of the predictions.

3.2. The linear model for estimating the γ-sequence

In this section, we describe a model for the measurement tree needed in Step 4 of the above
procedure. We propose to model the profile of the complete tree using three parameters only,
namely lt, bt, and dt.

A characteristic that uniquely defines a tree profile is its γ-sequence—the ratios that describe
the change of width from one level to the next.

Definition 2 Consider a branch-and-bound tree T and let dT be its depth. The sequence γ0, γ1,
. . . , γdT

is called the γ-sequence of this branch-and-bound tree, where γi = wT (i+1)
wT (i) , for 0 ≤ i ≤

dT .

Given the γ-sequence of a tree T , the width of a particular level i is wi =
∏i−1

j=0 γj . The size

of the tree is n(T ) = 1 +
∑dT

i=1

∏i−1
j=0 γj . A tree model is essentially a model for building the

γ-sequence.
We analyzed the profiles of branch-and-bound trees obtained using the CPLEX default so-

lution settings. The solution algorithm was cut and branch, where cuts are applied only at the
root node. Our tests show that, for almost all of the problems in MIPLIB, the profile of the tree
looks like a bell-shaped curve. The same observation is made by Knuth (1975) for backtrack
algorithms in general. The γ-sequence is generally decreasing for i greater than the last full level
and the value of γi is approximately 1 at the waist and 0 at the deeepest level. This observation
justifies the use of a linear model for the change of γ, defined by the formula:

γi =


2, for 0 ≤ i ≤ lT − 1,

2− i−lT +1
bT−lT +1 , for lT ≤ i ≤ bT − 1,

1− i−bT +1
dT−bT +1 , for bT ≤ i ≤ dT .

This simple model outputs satisfactory estimations in the majority of the cases. Figure 1
shows a typical tree profile (the solid line) and the measurement tree obtained by the linear tree
model (the dashed line). The proximity of the two lines is common for most problems with a
bell-shaped tree profile.

The estimation properties of the linear model are tested in experiments with the set of 28
problems from MIPLIB. In this part, we assume that the exact values of lT , bT , and dT for the
complete trees are available and we study the accuracy of the tree model.
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Figure 1: Profiles of the actual tree and linear model measurement tree. Problems: stein45 and
noswot.

Table 2: Linear model estimation

Actual number Linear model Ratio
Problem of nodes estimation

air05 1221 3017 2.47
arki001 * 1124575 1910566720 1698.92
bell3a 18512 3217 0.17
bell4 13654 20639 1.51
bell5 301146 47977699 159.32
blend2 5750 13401 2.33
gesa2 o 1136 6325 5.57
harp2 * 786616 261277428 332.15
lseu 1614 3023 1.87
markshare1 * 52464676 20885162 0.40
markshare2 * 45059758 925206188 20.53
mas74 10159496 6257366 0.62
mas76 637057 703329 1.10
misc07 111784 6657013 59.55
mod008 2161 39000 18.05
mod011 21788 41535 1.91
modglob 304 472 1.55
noswot 5614491 3336543 0.59
pk1 337940 1532758 4.54
pp08a 933 1171 1.26
pp08aCUTS 1687 3472 2.06
qiu 9358 60458 6.46
rgn 3025 19660 6.50
rout 1797969 27316720 15.19
seymour * 54713 72319299 1321.79
stein27 3706 3996 1.08
stein45 68093 63255 0.93
vpm2 25255 31299 1.24

* Problem not solved to completion.
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Table 2 compares the size of the measurement tree obtained by the linear model with the
actual number of nodes in T . The last column shows the ratio between the two.

The solution of the problems marked with an asterisk has been interrupted after ten hours
and, therefore, the figure in the second column is the size of the branching tree at interruption.
We analyze this group of problems separately. A desirable output of the tree model for these
instances is an estimation greater than the number of nodes processed before interruption. This
is observed in four out of five cases. In the fifth case, the ratio between the predicted number of
nodes and the number of nodes after ten hours of computation is 0.4. In this paper, we consider
this satisfactory (i.e., within a factor of 5) although we do not know the true ratio between the
predicted and the actual number of nodes.

Twenty three problems were solved to completion. For fifteen problems, the error is within
a factor of five. For eleven of them the error is within a factor of two. Our conclusion is that
the linear model provides a satisfactory estimation of the actual tree profile for most instances
and, therefore, can be used to estimate the number of nodes in the tree.

3.3. Computational experience (MIPLIB instances)

We performed computational experiments with the procedure described above and our testbed
of 28 MIPLIB problems. We ran the branch-and-cut algorithm of CPLEX 8.0 with its default
branching and node selection rules but with the restriction that cuts and heuristics were applied
only at the root node. The results are presented in Table 3. The solution process has been
interrupted when solution time exceeded 10 hours or when the branching tree size exceeded
1GB. These instances are marked with an asterisk. We applied the linear tree model for the
construction of the measurement tree based on the parameters lt, bt, and dt of the partial tree
obtained at the end of Phase I. The predicted tree size is reported in the second column of Table
3. The third column contains the actual tree size and the ratio between the prediction and the
true value is shown in the fourth column. The fifth column contains the time to obtain the
prediction.

We compute a time estimate for solving the instance. This time estimate θ equals the size
of the measurement tree times the average solution time of a node in the partial tree, based
on the assumption that the average running time at a node is relatively constant during the
solution. Instead of the point estimate θ, we output a range [α, β] for the solution time, shown
in column six. The width of this range corresponds to an estimation error of five. Specifically,
α = max{Phase I time, 0.2θ}, β = 5θ (or +∞ when 5θ > 10 hours), and we round seconds and
minutes to the nearest multiple of five, and hours (or minutes smaller than five) to the nearest
integer. The true solution time or the time until interruption is given in the last column.
Incorrect predictions are marked by a dagger. For instances solved to completion, a dagger
marks the cases for which our prediction interval does not contain the actual solution time. For
the instances that are not solved to completion, a dagger marks the cases where we predicted
that the instance could be solved in less than 10 hours. Note that, when an instance was
interrupted because of space limitation, it could happen that our time prediction is within a
factor of 5 of the actual unknown solution time but we still consider these to be incorrect
predictions. For example, if the predicted solution time is between 15 minutes and 6 hours and
the solution process is interrupted after 2 hours because of space limitation, we consider the
prediction incorrect.

Five instances, lseu, mod008, modglob, rgn, and stein27, were solved during Phase I. They
are not present in the table. Eighteen of the remaining instances were solved to optimality. For
ten of them the prediction is correct. For two instances, bell3a and gesa2 o, the error is small.
There are four cases, mas74, misc07, noswot, and rout, with a considerable error. The solution

9



3.4 Computational experience (additional instances) 3 OUR METHOD

Table 3: Predictions by our estimation procedure

Predicted Actual Actual
Problem number number Ratio Phase I Predicted solution

of nodes of nodes time [s] time range time

air05 2043 1221 1.7 291 5 m – 40 m 5 m
arki001 * 26808093 1124575 23 61 > 10 h > 10 h
bell3a 3217 18512 0.17 5 5 s – 15 s 20.7 s †
bell4 13980 13654 1 5 5 s – 1 m 12.2 s
bell5 987629 301146 3.2 5 2 m – 1 h 4.2 m
blend2 59796 5750 10 7 40 s – 15 m 15.5 s †
gesa2 o 6325 1136 5.6 8 10 s – 5 m 8.4 s †
harp2 * 3644539 786616 4.6 45 > 1 h > 1.2 h
markshare1 * 13480899 52464676 0.26 5 > 30 m > 10 h
markshare2 * 925206188 45059758 21 5 > 10 h > 10 h
mas74 118255 10159496 0.01 5 30 s – 15 m 3.9 h †
mas76 69963 637057 0.11 5 15 s – 10 m 10.0 m
misc07 1437454696 111784 13000 14 > 10 h 10.7 m †
mod011 9576 21788 0.44 429 15 m – 6 h 2.0 h
noswot 74866 5614491 0.01 5 25 s – 10 m 2.2 h †
pk1 31044 337940 0.09 5 10 s – 5 m 9.4 m †
pp08a 786 933 0.84 5 5 s – 25 s 5.6 s
pp08aCUTS 2355 1687 1.4 5 5 s – 1 m 9.1 s
qiu 2085 9358 0.22 65 1 m – 20 m 9.5 m
rout 8758 1797969 0.01 21 20 s – 10 m 2.9 h †
seymour * 182659036 54713 3300 2171 > 10 h > 10 h
stein45 43822 68093 0.64 5 30 s – 10 m 2.2 m
vpm2 9176 25255 0.36 5 5 s – 1 m 40.6 s

* Instance not solved to completion.

† Incorrect time prediction.

of five instances was interrupted after exceeding the time or space limit, and this was predicted
correctly. Overall, the results are satisfactory considering the great diversity of the instances.

3.4. Computational experience (additional instances)

Our procedure for estimating the number of nodes in a branch-and-bound tree was designed
based on observations from a diverse sample of 28 instances from the MIPLIB. In order to
validate the procedure, we applied it to an independent test set. We used MIP benchmarks
from the literature representing several different problem types. The results are reported in
Tables 4 and 5.

The first group of instances are multidimensional knapsack problems from Beasley (1990b)
and Chu (1998). Due to a significant amount of pruning, the branch-and-bound trees tend to
be slim and deep. Our procedure deals relatively well with the lower dimensional instances
(mknapcb1, mknapcb4, mknapcb7) but not as well with higher dimensional problems. Overall,
13 out of 27 instances are solved to completion. Correct predictions are obtained for seven of
them, for two instances the error in prediction is small, and in four cases the error is significant.
The solution of 14 instances was interrupted, in most cases because of the space limit. For 11
of them, this interruption was predicted correctly.
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Table 4: More test results

Phase I Predicted Solution
Problem time [s] time range time

Multidimensional Knapsack Problems

mknapcb1-1 5 5 s – 2 m 1.3 m
mknapcb1-11 5 5 s – 20 s 7.7 s
mknapcb1-21 5 5 s – 50 s 5.3 s
mknapcb2-1 5 > 1 h 8.2 m †
mknapcb2-11 5 > 10 h 20.1 m †
mknapcb2-21 5 > 10 h 15.3 m †
mknapcb3-1 * 15 > 10 h > 2.6 h
mknapcb3-11 * 15 > 10 h > 2 h
mknapcb3-21 16 > 10 h 6.4 m †
mknapcb4-1 5 15 s – 10 m 13.4 m †
mknapcb4-11 5 35 s – 15 m 5.9 m
mknapcb4-21 5 5 s – 50 s 17.9 s
mknapcb5-1 * 7 15 m – 6 h > 2.5 h †
mknapcb5-11 * 7 > 2 h > 2.3 h
mknapcb5-21 * 7 10 m – 4 h > 2.6 h †
mknapcb6-1 * 22 > 10 h > 2.8 h
mknapcb6-11 * 25 25 m – 10 h > 2.9 h †
mknapcb6-21 * 23 > 10 h > 2.1 h
mknapcb7-1 5 5 m – 1 h 23.2 m
mknapcb7-11 5 10 m – 3 h 3.3 h †
mknapcb7-21 5 5 m – 1 h 7.9 m
mknapcb8-1 * 18 > 10 h > 10 h
mknapcb8-11 * 14 > 1 h > 10 h
mknapcb8-21 * 15 > 4 h > 8.8 h
mknapcb9-1 * 74 > 10 h > 5.6 h
mknapcb9-11 * 63 > 10 h > 4.8 h
mknapcb9-21 * 50 > 8 h > 4.3 h

Set Covering Problems

scpnre1 581 10 m – 3 h 58.3 m
scpnre2 654 > 30 m 7.6 h
scpnre3 707 15 m – 7 h 1.1 h
scpnre4 188 5 m – 1 h 37.1 m
scpnre5 87 2 m – 40 m 21.7 m
scpnrf1 1311 20 m – 7 h 29.7 m
scpnrf2 860 15 m – 3 h 19.9 m
scpnrf3 625 10 m – 3 h 13.6 m
scpnrf4 635 15 m – 6 h 1.4 h
scpnrf5 407 15 m – 7 h 2.1 h
scpnrg1 * 1625 > 1 h > 10 h
scpnrg2 * 558 15 m – 5 h > 10 h †
scpnrg3 * 846 > 4 h > 10 h
scpnrg4 * 1166 > 10 h > 10 h
scpnrh1 * 3429 > 10 h > 10 h
scpclr10 * 106 > 10 h > 10 h
scpclr11 * 2203 > 10 h > 10 h
scpclr12 * 12501 > 10 h > 10 h

* Instance not solved to completion.

† Incorrect time prediction.
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Table 5: More test results

Phase I Predicted Solution
Problem time [s] time time

Bin Packing Problems

t60 00 * 174 > 10 h > 10 h
t60 05 * 93 > 10 h > 10 h
t60 10 * 238 > 10 h > 10 h
t60 15 * 432 > 10 h > 10 h
t120 00 * 1487 > 10 h > 10 h
t120 05 * 7329 > 10 h > 10 h
t120 10 * 8125 > 10 h > 10 h
t120 15 * 1681 > 10 h > 10 h
u120 00 * 663 > 10 h > 10 h
u120 05 * 1010 > 10 h > 10 h
u120 10 * 1229 > 10 h > 10 h
u120 15 * 951 > 10 h > 10 h

Capacitated Facility Location Problems

capa1 * 242 > 10 h > 2.8 h
capa2 * 241 > 10 h > 2.8 h
capa3 * 238 > 10 h > 2.8 h
capa4 * 237 > 10 h > 2.8 h
capb1 * 209 > 10 h > 2.5 h
capb2 * 209 > 10 h > 2.5 h
capb3 * 209 > 10 h > 2.5 h
capb4 * 209 > 10 h > 2.5 h
capc1 * 200 > 10 h > 2.5 h
capc2 * 201 > 10 h > 2.5 h
capc3 * 222 > 10 h > 2.6 h
capc4 * 219 > 10 h > 2.6 h

MIP Benchmarks

bc * 1315 > 10 h > 10 h
binkar10 1 * 21 5 m – 3 h > 6.4 h †
eilD76 469 > 10 h 30.1 m †
mas284 10 10 s – 5 m 1.2 m
mkc1 159 > 10 h 4.3 h †
prod1 5 1 m – 25 m 11.2 m
ran14x18 1 * 24 > 10 h > 10 h

* Instance not solved to completion.

† Incorrect time prediction.
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The second group consists of set covering instances from Beasley (1990a, 1990b). For these
instances, the estimation requires typically more than one minute, in some cases more than ten
minutes. The reason is the long solution time at a node (on average, 40 times longer than for
the group of multidimensional knapsack problems). The estimation procedure performs well for
these instances. There is only one incorrect prediction out of 18.

The third group of instances are bin packing problems from Falkenauer (1994), Beasley
(1990b). The solution of all these instances takes more than 10 hours and our method provides
correct estimations in all cases. Due to the long solution time of a single subproblem, the Phase I
time is much longer than five seconds, reaching more than two hours in two cases. This may
seem too long for a prediction but this is the time to make only about 20–30 dives in the tree.
If Knuth’s estimation method was applied with 1000 or 10,000 dives, the prediction procedure
would hardly be practical.

The fourth type of instances we tested are capacitated facility location problems from Beasley
(1988, 1990b). A huge solution tree is typical, which leads to exceeding the space limit after
less than three hours in all of the cases. (The space limit applied to this group of instances was
3GB.) Interruption was predicted correctly for all these instances.

Finally, we tested seven other MIP benchmark instances from the web site of Argonne Na-
tional Laboratory and H. Mittelmann’s web site. The prediction is correct for four of them.

In this section, 76 additional instances were tested. Twenty seven of them were solved to
completion. For these 27 instances, the number of correct predictions was 19. In two cases,
the prediction is close to the actual solution time and in six cases the error of prediction is
significant. The solution of 49 instances was interrupted due to the time or space limit. For
them, there are only 5 cases of incorrect prediction.

Overall, we tested 99 MIP instances. The predicted time range was correct for 78 instances.
(In this summary, we exclude the five MIPLIB problems that were solved during Phase I.) In
particular, there were 54 instances that required excessive time (more than 10 hours) or space
(more than 1GB) and this was predicted correctly in 49 cases. For the 45 instances that could
be solved within the 10 hour and 1GB limits, this fact was predicted correctly for 39 of them.
In other words, given the time and space limitations that we set for these experiments, the
estimation procedure estimated correctly whether an instance could be solved in 88 out of 99
cases. We conclude that, although not precise, this method often provides a reasonable early
estimate of the computing time of a branch-and-bound algorithm.

3.5. Analysis and refinements

In this section we identify several sources of imprecision in our estimation procedure and we
discuss possible remedies. We also discuss our experience with branch and cut.

3.5.1. The linear model

The results reported in Section 3.2 show that for most problems, the linear model has satisfactory
precision. However, it does not perform well when the tree is deep and slim. The problem stems
from the fact that the linear model uses only three parameters, the last full level, the waist,
and the depth. The model does not incorporate an estimate of the maximum width of the tree,
which we might call the waistline, i.e., the width at the waist. If a slim tree and a fat tree have
identical last full level, waist, and depth, the model will output the same estimation. The linear
model assumes that γ decreases linearly from 2 to 1, which reproduces satisfactorily the profiles
of most of the branching trees we tested. But if the actual decrease is faster in the beginning, as
is the case with deep and slim trees like those of bell5, misc07, and mod008, the waistline will be
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much less in the real tree than in the measurement tree. This causes significant overestimations
by the linear model.

One approach to better model the behavior of γ observed in the slim trees is to use a nonlinear
model of the γ-sequence. For example, one could use a convex combination of the linear model
γ and its cubic perturbation:

γ̃i = λ(γ̄i − 1)3 + (1− λ)(γ̄i − 1) + 1, for 0 ≤ i ≤ dT

where λ ∈ [0, 1] and γ̄i is the γ-sequence obtained by the linear model. This model has the linear
model as a special case, when λ = 0. Increasing λ, it can be tuned to output good estimations
to γ-sequences of slim trees, but it does not provide good results for the most common tree
profiles when λ is far from 0. The linear model performs better for general MIP problems but if
we deal with a special class of problems, it might be worth analyzing the tree profile and tuning
the model.

To illustrate the above, we performed tests with the 30 multidimensional knapsack problem
instances of the group mknapcb1 (100 variables, 5 constraints) from Beasley 1990b, Chu 1998.
As we observed in Section 3.3, the branch-and-bound trees of this type of problems are usually
slim and the linear model overestimates their size. We tried the cubic model with λ = 0.5. For
this choice of λ, in 28 of the 30 cases, the prediction by the cubic model is closer to the actual
number of nodes than that of the linear model. The mean error factor of the estimations by the
linear model is 1.84, while that of the cubic model estimation is 1.28. (Value of 1 means exact
estimation.)

The cubic model is only one example of improvement. Different models based on different
sets of parameters can also prove useful.

3.5.2. Estimating the waist

Another concern is the quality of the estimation of the tree parameters. Tests of the sensitivity
of the linear model to changes in the parameters show that the waist is the most important one.
Even small changes in it cause large variations in the number of nodes in the measurement tree,
while the variations caused by changes in the depth and the last full level are less significant.
On the other hand, our experiments show that dt and lt of a small (with respect to the complete
tree T ) partial tree t are better estimates of dT and lT , respectively, than bt is an estimate of
bT .

State-of-the-art branch-and-bound algorithms employ node selection rules that are a combi-
nation of depth-first search and best bound search. For example, the default branch-and-bound
algorithm of CPLEX 8.0 dives along a path until a node gets pruned and then continues from a
best bound node. As a consequence, shortly after the start of the algorithm, the top levels are
well studied and the depth is estimated with a good precision. The sampling error present in
the partial tree affects mainly the determination of the waist.

The variability of bt is shown in Figure 2. The left figure depicts the tree profiles after 320,
640, 1280, 2560, 5120, 10715 seconds of solution time of the problem called rout. It can be seen
that the waist gradually increases with time up to its final value of 33. This is shown also in the
figure on the right, where the thin horizontal line is the waist of the complete tree, bT , and the
thick solid line represents the waist of the partial trees as a function of solution time. As time
elapses, the waist approaches that of the complete tree. Greater fluctuations are typical at the
beginning of the solution procedure. Tests show that usually bt < bT for a small partial tree t,
and sometimes the difference is significant. Therefore, often bt is not a good estimate of bT .

In some cases, the error in waist estimation can be reduced by considering the levels with
large width and taking the estimate of the waist to be the midpoint of these levels. We call this
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Figure 2: Evolution of the profile, the waist, and the average waist. Plotted profiles after 320,
640, 1280, 2560, 5120, 10715 seconds of solution time. Problem: rout.

the average waist and define it as follows:

Definition 3 The average waist of a tree T is the level b̄T =
⌈

b1+b2
2

⌉
, where b1 = min{i :

wT (i) ≥ 0.5t}, b2 = max{i : wT (i) ≥ 0.5t}, and t = max{wT (i) : 0 ≤ i ≤ dT }, i.e., b̄T is the
center of the smallest interval containing the levels with width at least 50% of the maximum
width.

It is not uncommon that b̄T 6= bT for the complete tree T , but our tests indicate that both
values are close. Early on in the solution process, the average waist is often a better estimate
of the waist of the complete tree. Additionally, compared to bt, the average waist b̄t shows less
variation during the solution process. Therefore, the average waist can be used to improve the
prediction when there is a large variation in the waist. The average waist of the partial tree of
problem rout is plotted with a dash line in the right graph of Figure 2.

Repeating the experiments on the same 99 test instances by using the average waist instead
of the waist, the number of correct predictions increased from 78 to 85. This is a reduction of
the incorrect predictions by one third. Further research in this direction would be worthwhile.

3.5.3. Effect of the bound from the best feasible solution found

If a good upper bound (for a minimization problem) is not found early in the solution process,
the method can produce very poor and erratic estimates. Even after a good upper bound
is found, the method could still produce poor estimates if it is biased by early “deep dives.”
Depending on the diving strategy, the first few dives into the tree can be very deep compared
to what they would have been with a good a priori upper bound. This biases the estimate of
the depth. One simple idea to avoid this problem is to eliminate (post facto) any node whose
lower bound exceeds the current upper bound, even though such nodes are technically part of
the search tree. This method will produce the same estimate that would have been produced
had the bound been known a priori and should reduce the bias.

3.5.4. Experiments with branch and cut

We repeated the experiment from Section 3.3 with the default settings of the CPLEX branch-
and-cut algorithm. The results are reported in Table 6.
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Table 6: Predictions by our estimation procedure for a branch-and-cut algorithm.

Predicted Actual Actual
Problem number number Ratio Phase I Predicted solution

of nodes of nodes time [s] time range time

air05 1576 720 2.2 169 1 m – 35 m 2.8 m
arki001 396870541 347635 1100 74 > 10 h 3.2 h †
bell3a 4818 19001 0.25 5 5 s – 35 s 29.6 s
bell4 11403 19599 0.58 5 5 s – 1 m 20.6 s
bell5 302597 582887 0.52 5 1 m – 25 m 9.6 m
blend2 1434224 3973 360 8 20 m – 7 h 13 s †
gesa2 o 1511 670 2.3 5 5 s – 1 m 6 s
harp2 * 168082 320884 0.52 41 5 m – 3 h > 54 m †
markshare1 * 54252828 54563771 1 5 > 2 h > 10 h
markshare2 * 789981661 41189904 19 5 > 10 h > 8.4 h
mas74 56129 6518567 0.01 5 20 s – 10 m 3.1 h †
mas76 35890 559528 0.06 5 10 s – 4 m 10.5 m †
misc07 1.07e+11 79952 1.3e+6 17 > 10 h 9.5 m †
mod011 4190 9635 0.43 985 15 m – 6 h 2.1 h
noswot 83316 8308673 0.01 5 30 s – 10 m 4.8 h †
pk1 9251 540710 0.02 5 5 s – 2 m 18.1 m †
pp08aCUTS 1715 1910 0.9 6 5 s – 1 m 14 s
qiu 3355 10098 0.33 118 2 m – 45 m 14.5 m
rout 93362 99119 0.94 34 5 m – 2 h 42.8 m
seymour * 119836809 57420 2087 2504 > 10 h > 10 h
stein45 26468 60717 0.44 5 20 s – 5 m 2 m
vpm2 2418 4328 0.56 5 5 s – 30 s 10 s

* Instance not solved to completion.

† Incorrect time prediction.

Six instances, lseu, mod008, modglob, pp08a, rgn, and stein27, were solved during Phase I.
They are not present in the table. Eighteen of the remaining instances were solved to optimality.
For eleven of them the prediction is correct. There are six cases, arki001, blend2, mas74, misc07,
pk1, and pp08aCUTS, with considerable error. The solution of four instances was interrupted
after exceeding the time or space limit, and this was predicted correctly for three of them.

Compared with Table 3, there is a deterioration in the prediction in some cases but there
are some improvements too (like with problem rout). Overall, the quality of the estimate is not
significantly different.

4. Conclusion

We showed empirically that the branch-and-bound solution time of an MIP solver can be roughly
estimated in the early stages of the solution process. We proposed a procedure for this estimation
based on parameters of a small subtree. Our experiments showed that in a relatively short time,
we can obtain sufficient information to predict the total running time with an error within a
factor of five. This procedure can easily be built into an MIP solver. It is fast and does not
interfere with the branch-and-bound algorithm.

It might be worth exploring γ-sequence models that are contingent on particular types of
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integer programming problems. One might also be able to obtain relevant information on the
whole tree profile using other parameters of the tree. Our attempts to use the amount of pruning
in the subtree were fruitless but more research in this direction would be interesting.
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