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Abstract

If a Berge graph contains certain wheels, then it contains a ”good”
skew partition.

1 Introduction

A graph G is perfect if, for all induced subgraphs of G, the size of a largest
clique is equal to the chromatic number [1]. Lovasz [8] showed that a graph
G is perfect if and only if its complement G is perfect. A graph is minimally
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imperfect if it is not perfect but all its proper induced subgraphs are. The
only known minimally imperfect graphs are the odd holes and their comple-
ments. Berge [1] conjectured that there are no other (Strong Perfect Graph
Conjecture). A graph is called Beryge if it contains no odd hole or its comple-
ment. Every perfect graph is Berge. The Strong Perfect Graph Conjecture
states that every Berge graph is perfect.

A graph G has a skew partition if the nodes V(G) can be partitioned into
nonempty sets A, B, C, D such that every node of A is adjacent to every node
of B and there is no edge between C' and D. Chvatal [4] conjectured that a
minimally imperfect graph cannot have a skew partition. Chvatal [4] proved
this when A or B has cardinality one (the star cutset lemma).

Hoang [7] proved the conjecture for special types of skew partitions. A
T'-cutset is a skew partition with v € C' and v € D such that every node of
A is adjacent to both u and v.

Theorem 1 (Hoang [7]) No minimally imperfect graph has a T-cutset.
This work was generalized by Robertson, Seymour, Thomas [10]. A skew
partition (A, B,C, D) is good if C'U D contains a node u that is adjacent to

every node of A or B.

Theorem 2 (Robertson, Seymour, Thomas [10]) No minimally imperfect
graph has a good skew partition.

Chvatal’s skew partition conjecture was solved recently in its generality:

Theorem 3 (Chudnovsky, Robertson, Seymour, Thomas [3]) No minimally
imperfect graph has a skew partition.

In these notes, we show that, if a Berge graph contains certain types of
induced subgraphs called wheels, then it has a good skew partition. This
shows that no minimally imperfect graph can contain these types of wheels.

2 The Wonderful Lemma

Given a set X C V(G) and a node x ¢ X, we say that x is universal for X
if x is adjacent to every node of X. We say that an edge e = yz such that
y,z ¢ X, sees X if both y and z are universal for X.
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Given a chordless path (or a hole) P in G'\ S, we denote by Eg(P) the
set of edges in P that see S. |P| denotes the length (number of edges) of P.
int(P) denotes the set of internal nodes of P.

The following lemma, due to Roussel and Rubio [11], plays a fundamental
role in this paper. This lemma was proved independently by Robertson,
Seymour and Thomas [10], who named it The Wonderful Lemma.

Lemma 4 (Roussel and Rubio [11]) Let G be a Berge graph where V(G)
can be partitioned into a co-connected set S and an odd chordless path P =

w, v’y ... v v of length at least 3 such that u, v are both universal for S.
Then one of the following holds:

(i) An odd number of edges of P see S.

(i1) |P| =3 and SU{u/,v'} contains an odd chordless anti-path between u'
and v'.

(111) |P| > 5 and there exist two nonadjacent nodes x, x' in S such that
(V(P)\ {u,v}) U{x, 2"} induces a chordless path.

Proof: The proof is by induction on |S| + | P|.

Note that, for every x € S, there is an odd number of edges in E(P) that
see x, otherwise V' (P) U {x} contains an odd hole. We can therefore assume
that | S| > 2.

Claim 1: Lemma 4 holds if |P| = 3.

If |P| = 3 and (i) does not hold, then S can be partitioned into 3 sets S,
Sy and S3 such that every node in Sy (resp. S) is adjacent to u’ (resp.
v') but not to v’ (resp. u'), every node in S5 is adjacent to u' and v’, and
both S; and Sy are nonempty. Given two nodes x; € S; and z, € S5 with
minimum distance in G[S], let P’ be a shortest y, rp-anti-path in S, then
(x1, P! x9,u' v, u,v, x1) is an anti-hole that is even if and only if P’ has odd
length. But then v, z1, P’ 25,4’ is a chordless odd anti-path in S U {u/, v}
and (ii) holds.
We may assume, then, that |P| > 5 and |S| > 2.

Claim 2: Lemma 4 holds if S contains two nonadjacent nodes x, z’ such
that V(P)\ {u,v} U{x, 2’} contains an odd chordless path P’ between x and
x.



Assume, by contradiction, that such nodes a path P’ between two nodes
z and 2’ in S exists. If (iii) holds then we are done. Therefore = or =/ must
have a neighbor in the interior of P distinct from «' and v’, so w or v has no
neighbors in the interior of P’ say, w.l.o.g., u. But then (u,z, P',2',u) is an
odd hole, a contradiction.

Claim 3: The interior of P does not contain two adjacent nodes y, 3" such
that S U {y, v’} contains a chordless odd anti-path P’ between y and y'.

Assume not. Then, since |P| > 5, either u or v is adjacent to neither y nor ¢/,
say, w.l.o.g., u. But then (u,y, P',y',u) is an odd anti-hole, a contradiction.

Claim 4: For every co-connected nonempty subset S’ of S, and for every
odd subpath P’ = z,...,2" of P such that z, 2/ are universal for S’ and
G[S" UV (P")] is a proper subgraph of G, we may assume that Es/(P,./) has
odd cardinality.

Assume not. Then, by induction, either S’ contains two nonadjacent nodes
x, ' such that V(P,..)\ {z, 2’} U{x, 2’} contains an odd path between = and
x’, and we are done by Claim 2, or the interior of P,., contains two adjacent
nodes y,y’ such that S’ U {y, v’} contains a chordless odd anti-path between
y and ¥, contradicting Claim 3.

Claim 5: No node in int(P) is universal for S.

Assume not. Then P can be partitioned into proper subpaths Pi,...,P; such
that, for every 1 < i < k, P, = uy,...,u;y1, u; is universal for S for every
1 <ié<k+1,u; = u, upy1; = v and no intermediate node of P, is universal for
S. Since P is an odd path, there is an odd number of paths P;, 1 <17 < k of
odd length and, since (i) does not hold, Fg(P) has even cardinality. Therefore
there exists j, 1 < j < k, such that P; is an odd path of length at least 3,
but Eg(P;) = 0, contradicting Claim 4.

Let s1, 89 be two nodes with maximum distance in G[S], and let P’ be
a shortest anti-path between s; and s, contained in S. Let S; = S\ sy,
Sy =85\ s2 and §' = 51 N Sy. By our choice of s; and so, S1, Sy and S’ are
all co-connected.
Claim 6: P’ has odd length.
By Claim 4, Eg,(P) has odd cardinality, ¢ = 1,2, and, by Claim 5, no node
universal for S is also universal for Sy. Therefore, since |P| > 5, there exist
two nonadjacent nodes z; and z, in the interior of P such that z; (resp. z9)



is universal for S; (resp. S;) but not for Sy (resp. Si). Since both z; and
2o are universal for S’, then, if P’ has even length, (21, s1, P’, 2, 22, 21) is an
odd anti-hole, a contradiction.

Since Eg,(P) # 0, ¢ = 1,2, then P can be partitioned into proper subpaths
Py,....P, where, for every 1 < i < k, P; = u;, ..., u;11, u; is universal for S;
or Sy for every 1 < i < k+ 1, u; = u, ugr; = v and no node in int(F;) is
universal for Sy or Ss.

Claim 7: There exists j, 1 < j <k, such that P; is an odd path of length
at least 3, u; is universal for S; and w;4, is universal for Ss.

We first show that for any ¢, 1 < ¢ < k, if P, has length 1 then w;u;; €
Es, (P) U Es,(P). Suppose otherwise. W.l.o.g. s; is adjacent to u; but not
u;+1 and sy is adjacent to w4 but not u;. Since |P| > 5, then either u or
v is adjacent to neither u; nor w; 1, say, w.l.o.g., u. But then, by Claim
6, (u,uiy1,s1, P, s2,u;,u) is an odd anti-hole, a contradiction. Since P is
an odd path, then there is an odd number of paths P;, 1 < ¢ < k of odd
length. By Claim 4, Eg,(P) has odd cardinality for ¢ = 1,2. By Claim 5,
Es, (P)N Eg,(P) =0, so Es,(P)U Eg,(P) has even cardinality. Therefore
there exists j, 1 < j <k, such that P; is an odd path of length at least 3. If
both u; and u;;; are universal for S; (resp. Ss), then by Claim 4, Eg, ()
(resp. Esg,(P;)) has odd cardinality so, since |P;| > 3, there is a node in the
interior of P; that is universal for S; (resp. S5), a contradiction. Hence P;
satisfies Claim 8.

Claim 8: Lemma 4 holds if |S| = 2.

If |S| = 2 then, in the odd path P; of Claim 7, u; is adjacent to s9, and ;41
is adjacent to s;, and no node in int(P;) is adjacent to s; or s,. Since G has
no odd hole, s; is not adjacent to u; and s, is not adjacent to u;;. But then
59, Uj, Pj,uj11, 51 is an odd path and we are done by Claim 2.

Claim 9: S is a stable set.

Consider the odd path P; of Claim 7. Since S’ # (), then by Claim 4, there is
an odd number of edges in P; that see S’. Hence, since |P;| > 3, there exists
a node z in the interior of P; that is universal for S’. If S is not a stable set,
P’ is an odd anti-path of length at least 3, therefore (z, s1, P’ s9, 2) is an odd
anti-hole, a contradiction.

Let s1, 89,53 € Sand let S; =S\ s;,1=1,2,3.
By Claim 4, Eg,(P) is odd, for ¢ = 1,2,3, and, by Claim 5, given e €
Eg,(P), e € Eg,(P),for 1 <i < j <3, eand ¢ have no endnode in common,
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hence there must be some k € {1,2,3} and an edge in yy’ € Es, (P)such that
{v.ytn{u, v} =0.

Assume y is closer to u in P than y'. Let z be the neighbor of s in P,
closest to y and 2’ be the neighbor of s; in Py, closest to 3. By Claim 5,
y # z and y' # 2. P, is even, otherwise (s, z, P../, 2, s,) would be an
odd hole, therefore either P,, and P, are both odd paths, or P, and P,
are both odd paths. Let w € {y,v'} be such that P,, and P, are both
odd paths. Since P is an odd path, then either P,, or P,, has even length.
Assume, w.l.o.g., that P,, is an even path. Let G’ be the graph induced by
S, together with v and the nodes of P,,,, plus a new edge wuv.

Claim 10: G’ is a Berge graph.

Assume not. Then G’ contains either an odd hole or an odd anti-hole. If G’
contains an odd hole H, then H must contain wv (otherwise H would be an
odd hole in G). Since v is universal for S, H must contain exactly one node
in S, and such node must be s, since any other node in S is adjacent to both
w and v. The only hole in G’ containing si, w and v is (z, Py, w, v, Sk, 2),
which, by construction, is even. If G’ contains an odd anti-hole H, then H
contains, at most, two nodes in S, since S is a stable set, and at most four
nodes in P, since every set of nodes of P with at least five elements contains
a stable set of size 3. But then H is a 5-anti-hole, therefore H is also a 5-hole.

By construction, since P,,, and P,, have both length at least 2, G’ has
a number of nodes strictly smaller than G, while P’ = u, P,,,, w,v is an odd
chordless path of length at least 3. Then, by induction, Lemma 4 holds for
G’. Since, by Claim 5, there is no node in int(P’) universal for S, then either
there exist two nodes x and =’ in S such that x,u’, Py, w,z’ is a path, and
we are done by Claim 2, or there exist two adjacent nodes ¢ and ¢’ in int(P’)
such that S U {t,t'} contains an odd anti-path, contradicting Claim 3. O

The following is an easy consequence of Lemma 4.

Lemma 5 Assume G is a Berge graph containing a co-connected set S and
an odd chordless path P = u,u',... v, v disjoint from S of length at least
3 such that u, v are both universal for the set S. Furthermore, assume that
G\ (SUV(P)) contains a node w universal for S such that no intermediate
node of P is adjacent to w. Then an odd number of edges of P see S.

Proof: Assume not. Then, by Lemma 4, either |P| = 3 and S U {u/,v'}
contains an odd anti-path @) between v’ and ¢, or |P| > 5 and there exist
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two nonadjacent nodes x, 2’ in S such that x,u’, Py, v, &', w is a chordless
path. In the first case, w,u’, @, v',w is an odd anti-hole, and in the other
case w, x,u’, Pyy,v', o', w is an odd hole, a contradiction. O

3 Definitions

A wheel, denoted by (H,v), is a graph induced by a hole H and a node
v ¢ V(H) having at least three neighbors in H. A wheel is odd if it contains
an odd number of triangles. A wheel (H,v) is a twin wheel if v has exactly
three neighbors in H and (H,v) contains exactly two triangles; the neighbor
of v in H that is adjacent to all the other neighbors of v in H is said the
twin of v in H. A wheel (H,v) is a line wheel if v has exactly four neighbors
in H and (H,v) contains exactly two triangles and these two triangles have
only the center v in common. A universal wheel is a wheel (H,v) where the
center v is adjacent to all the nodes of H. A triangle-free wheel is a wheel
containing no triangle. These four types of wheels are depicted in Figure 1,
where solid lines represent edges and dotted lines represent paths. A proper
wheel is a wheel that is not any of the above four types.

A 3PC(zywy73,y) is a graph induced by three chordless paths P! =
x1,...,y, P> = x9,...,y and P® = x3,...,y, having no common nodes
other than y and such that the only adjacencies between nodes of P?\ y and
Pi\ vy, for i,j € {1,2,3} distinct, are the edges of the clique of size three
induced by {x1, 7y, z3}. Also, at most one of the paths P!, P?, P3 is an edge.
We say that a graph G contains a 3PC(A,.) if it contains a 3PC(x1z2x3,Yy)
for some x1,xq, 23,y € V(G).

Remark 6 Since both odd wheels and 3PC(A,-)’s contain an odd hole, they
are never contained in a Berge graph as an induced subgraph.

The following graphs will play an important role in this paper.

Definition 7 A 3PC(x1xox3,y192y3) is a graph induced by three chordless
paths PY = x1,...,y1, P? = 29,...,9ys and P? = a5, ...,y3, having no com-
mon nodes and such that, fori,j € {1,2,3} distinct, z; is not adjacent to y,
and the only adjacencies between nodes of V(P')\ {y;} and V(P7)\ {y;} are
the edges of the clique of size three induced by {1, xs, 23} and the only ad-
jacencies between nodes of V(P*)\ {x;} and V(P?)\ {z;}, fori,j € {1,2,3}
distinct, are the edges of the clique of size three induced by {y1,y2,y3}. We
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Figure 2: Connected diamonds



say that a graph G contains a 3PC(A, A) if it contains a 3PC(x122x3, Y1Y2Y3)
for some x1, T2, 23,91, Y2, y3 € V(G). We say that a 3PC(x1x9x3, Y192Y3) 1S
long if Pi, P, and P3 are not all of length 1.

Definition 8 Connected diamonds consist of two node disjoint sets {ay, ..., a4}
and {by,...,bs} each of which induces a diamond (the graph on four nodes
with five edges) such that ayay and biby are not edges, together with four
chordless paths P',..., P* such that fori=1,...,4, P is a path between a;
and b;. Paths P',..., P* are node disjoint and the only adjacencies between
them are the edges of the two diamonds.

Let H be a hole and let x1,xs, 3,91, Y2, y3 be distinct nodes of H such
that x5 is adjacent to x; and x3, and ¥ is adjacent to y; and y3. We say
that (H,z,y) is a double beetle if x and y are not adjacent, x is adjacent to
x1, %9, r3 and 9, and y is adjacent to y1,ys,y3 and x5. Note that a double
beetle is a special case of connected diamonds.

Definition 9 Given a graph G and e = wv € E(G), the graph G’ obtained
by subdividing e is the graph obtained from G by deleting the edge e and
adding one node w adjacent only to u and v. Given two graphs G and G', G’
is a subdivision of G if G’ can be obtained from G by iteratively subdividing
edges of G. We say that G’ is a bipartite subdivision of G if G’ is a bipartite
graph that is a subdivision of G.

A class of graphs that will play an important role in this paper is the
class of line graphs of bipartite subdivisions of K4 (the clique on four nodes).
An example is depicted in Figure 3.

4 Hubs

Let H be a hole and N C V(H). We say that two nodes of N are consecutive
if at least one of the two subpaths of H joining them contains no node of N
in its interior.

Theorem 10 Let G be a Berge graph, H a hole of length at least 6, and S
a co-connected set of nodes in G\ V(H). One of the following holds:

(1) an even number of edges of H see S, or



H L(H)

Figure 3: Bipartite subdivision of a K, and its line graph.

(2) S contains nonadjacent nodes x,y such that (H,x) and (H,y) are twin
wheels and exactly one edge of H sees both x and y or

(3) S contains a node x with exactly 2 neighbors u and v in H, where u
and v are adjacent.

Proof: The proof is by induction on |S|+ |H|. When |S| = 1, the theorem is
immediate, since we already observed that GG cannot contain an odd wheel.
We can therefore assume that S has at least 2 nodes. Also, by inductive
hypothesis, for every co-connected set S" C S, Eg/(H) is even, else (2) or (3)
holds.

If |[Es(H)| is even, then we are done. Hence, assume that |Eg(H)| is odd
and let uwv € Eg(H).

Claim 1 Eg(H) = {uv} and no other node in H is universal for S.
Assume not, then there exists an odd chordless subpath P = x,...,z, of H
such that |P| > 3, z; and z,, are both universal for S and no intermediate

node of P is universal for S. Since P does not contain both u and v, let
w € {u,v} \ V(P). Then the choice of S, P and w contradicts Lemma 5.

Let s; and sy be two nodes at maximum distance in G[S], and let P’ be
a shortest anti-path between s; and ss in S. Let S; = S\ 51, So = S\ s2 and
S" = 51N S,y. By our choice of s; and s,, S1, Sy and S’ are all co-connected.
Claim 2 P’ has odd length.
Since Eg,(H) \ {uv} # 0, for i« = 1,2, and no node universal for S; in
V(H) \ {u,v} is also universal for Sy, then, since |H| > 6, there exist two
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nonadjacent nodes z; and zo in V(H) \ {u,v} such that z; (resp. z) is
universal for S (resp. S3) but not for Sy (resp. Sj). Therefore, if P’ has
even length, then (z1, s1, P’ s9, 29, 21) is an odd anti-hole, a contradiction.

Let uy,...,ur.1 be all the nodes of H that are universal for S; or S in
the order they appear going from u to v in H \ wv. By definition, u; = u,
upy1 = v. Forevery i, 1 <7 <k, let P; be the path from u; to u;y1 in H\ uv.
Obviously, for every ¢, 1 < ¢ < k, no node in the interior of P; is universal
for Sy or Sy. Since Es,(H)\ {uv} # 0, i = 1,2, then k > 2.

Claim 3 There exists j, 1 < j <k, such that P; is an odd path of length at
least 3, u; is unwersal for S but not for Sy and wjy is universal for Sy but
not for Si.

For any i, 1 <14 < k, if P; has length 1 then wu;+1 € (Es,(H) U Es,(H)) \
{uv}, otherwise we may assume, w.l.o.g., that s; is adjacent to u; but not
u;+1 and s9 is adjacent to u;y; but not u;. Since |H| > 6, then either u
or v is not adjacent to u; and w1, say, w.lo.g., u. But then, by Claim 2,
(u, uis1, 81, P', $2,u;,u) is an odd anti-hole, a contradiction.

Since H \ wv is an odd chordless path, then there is an odd number of paths
P, 1 < ¢ < k of odd length. By Claim 1, Es,(H) N Es,(H) = {uv},
so Es,(H) U Eg,(H) \ {uv} has even cardinality, therefore there exists j,
1 < j <k, such that P; is an odd path of length at least 3. If both u; and
u;y1 are universal for Sy (resp. S), then by Lemma 5 applied to Sy (resp.
Ss), P; and either node u or node v (since one of the two has no neighbor
in the interior of P;), P; has an odd number of edges that see Sy (resp. Ss),
so there is a node in the interior of P; that is universal for S; (resp. Ss), a
contradiction. Hence P; satisfies Claim 3.

Let u/, v’ be, respectively, the neighbors of w and v in H \ uv.

Claim 4 Theorem 10 holds if |S| = 2.

Assume |S| = 2. Let P; be the path defined in Claim 3. If u; = ' and

ujy1 = v, then Theorem 10 (2) holds. Hence we may assume, w.lo.g.,

u' # u;, but then (u, s9, u;, Pj, w41, 51,u) is an odd hole, a contradiction.
By Claim 4, we may assume |S| > 3

Claim 5 S is a stable set.

Since S" # 0, then by Lemma 5 applied to S’, P; and u, there is an odd

number of edges in P; that see S’. Hence there exists a node z in the interior

of P; that is universal for S’. If S is not a stable set, P’ is an odd anti-path of

length at least 3, therefore (z, s1, P’, s2, z) is an odd anti-hole, a contradiction.
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Let s1, 89,83 € S and let S; =5\ s;, 7= 1,2,3.

Since Egs,(H) \ {uwv} has odd cardinality, ¢ = 1,2,3, then, given e €
Es,(H) \ {uv}, € € Eg;(H) \ {uv}, for 1 <i < j < 3, by Claim 1 e and
¢’ have no endnode in common, hence there exists k € {1,2,3} and an edge
yy' € Es, (P) such that {y,y'} N {u,v'} = 0. For every pair s,t of nodes
of H, let us denote by Hg the path between s and ¢ in H \ uv. Assume y
is closer to u in H \ wv than y’. Let z be the neighbor of s; closest to y in
H,, and 2’ be the neighbor of s; closest to v’ in Hy,. By Claim 1, y # z
and y' # 2'. H,, is even, otherwise (s, z, H,./, 7, sx) would be an odd hole,
therefore either H,, and H,. are both odd paths, or H,y and Hy . are both
odd paths. Let w € {y,y'} be such that H,, and H,, are both odd paths.
Since H is an even hole, then either H,, or H,, has even length. Assume,
w.l.o.g., that H,, is an even path. Let G’ be the graph induced by S together
with v and H,,, plus a new edge wv. Let H' = (u, Hyy,, w,v,u); H' is an
even hole in G'. In particular, H' must have length at least 6, otherwise z
is adjacent to u, w is adjacent to z and, given any node s in Sy that is not
adjacent to z, (s,w, z, sk, v, s) is a b-hole in G.

Claim 6 G’ is a Berge graph.

Assume not. Then G’ contains either an odd hole or an odd anti-hole. If G’
contains an odd hole @), then ) must contain wwv, otherwise () would be an
odd hole in G. Also, () must contain a node in S, otherwise ) = H' that is
an even hole. Since every node in Sy is adjacent to both w and v, @) must
contain exactly one node in S, namely s,. The only hole in G’ containing sy,
w and v is (2, Py, w, v, sy, ), which, by construction, is even. If G’ contains
an odd anti-hole @), then () contains, at most, two nodes in .S, since S is a
stable set, and at most four nodes in H’, since every subset of nodes of H’
with at least five elements contains a stable set of size 3. But then @ is a
5-anti-hole, therefore () is also a 5-hole, a contradiction.

Since, by construction, H,, and H,, have both length at least 2, H' has
length strictly smaller than H. Therefore, by induction, Theorem 10 holds
in G’ for H and S. Since Es(H') = {uv} and every node of S has at least
three neighbors in H', then the only possibility is that z is adjacent to u and
there exists a node s in S whose only neighbors in H' are u, v and w. But
then, in G, (2, H,, w, 8,0, S, z) is an odd hole, a contradiction a

Note that an edge set C' of H of even cardinality induces a bicoloring of
the nodes of H: two nodes of H are colored with distinct colors if and only
if the subpaths of H connecting them contain an odd number of edges in C.
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Definition 11 Given a Berge graph G, a hub of G is a pair (H,S) where
H is a hole of G of length at least 6 and S is a co-connected set in G\ V(H)
that sees a positive even number of edges of H. A sector of a hub (H,S) is
a mazimal subpath of H containing no edge of Es(H).

Remark 12 Let G be a Berge graph and (H,S) a hub of G. Then the
endnodes of a sector are endnodes of edges of Es(H) and every sector of
(H,S) has even length.

Proof: By maximality in the definition of sector, every endnode of a sector
must be an endnode of an edge in Fg(H). Assume there exists a sector
P=u,...,2, of (H,S) of odd length. Let w be the endnode of some edge
in Fg(H) distinct from 27 and x,,. Since both z; and x, are universal for S
and P has length at least 3, then by Lemma 5 applied to S, P and w, there
is an odd number of edges of P that sees S, a contradiction. a

Corollary 13 Let G be a Berge graph and (H,S) be a hub of G. Lety €
V(G)\ (V(H)US) be a node that sees an odd number of edges in a sector of
(H,S). Assume S Uy is co-connected. Then

(i) y has exactly two neighbors in H and they are adjacent or

(ii) There exists x € S not adjacent to y such that (H,x) and (H,y) are
twin wheels and exactly one edge of H sees both x and y or

(111) S contains a node x not adjacent to y such that (H,y) and (H,x) are
both line wheels and no edge of H sees both x and y or

() |H| = 6, (H,y) is a line wheel and S Uy contains an odd chordless
anti-path Q of length at least 3 between y and a node x such that (H, x)
is a line wheel, no edge of H sees both x and y and every intermediate
node of Q) is adjacent to every node in H.

Proof: 1f y has exactly two neighbors in H then conclusion (7) holds. Assume
then that y has at least 3 neighbors in H. If Egy,(H) has odd cardinality,
then, by Theorem 10, conclusion (ii) holds. So Es.,(H ) has even cardinality.
Since there is an even number of edges of H that sees y and y sees an odd
number of edges in some sector of (H, S), then there are at least 2 sectors P =
xy1,...,xp and P =), ...z} of (H,S) such that an odd number of edges
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of P and P’, respectively, sees y. Let vy, ya, (resp. y1,vy5) be the neighbors
of y in P (resp. P’) closest to z; and z, (resp. #} and z},) respectively.

Since an odd number of edges of P sees y, then P, ,, and P, have
length of distinct parity. We can therefore assume that P, ,, has odd length
and P,,;, has even length. Analogously, assume that P:;,l v, has odd length
and P, has even length.

If y; and y, are nonadjacent, then F' = x1, Py y,, Y1, Y, Y2, Pyozy,, Tn is an odd
path so, by Lemma 5 applied to S, F' and z/, F' has an odd number of edges
that see S, contradicting either the definition of sector or the assumption
that SUy is co-connected. Hence y;ys is an edge and, analogously, yy5 is an
edge. Let now F' = x1, Pyy,, Y1, Y, U5, By . It Fis a chordless path then F'is
odd and by Lemma 5 applied to S, F' and 2/, F' has an odd number of edges
that see S, a contradiction. Therefore F' is not a chordless path, but then
x1 must be adjacent to ;.. Analogously, by repeating the previous argument
for F' =, Py, Y1, U, Yo, Pyoay,» T must be adjacent to 2. Therefore (H,y)
is an L-wheel.

Case 1: |H| > 6

Then, w.lo.g., H = (x, Pury', 41,9, Y2, Pyoey» T, 01) is a hole of length at
least 6. Since Eg(H') = {x}x1}, Theorem 10 applies.

Case 1.1: Conclusion (3) of Theorem 10 holds.

Then there exists a node = in S such that the only neighbors of z in H’
are x, and x]. Since z sees an odd number of edges in a sector of (H,y),
then, by the previous argument, (H,z) is an L-wheel and (iii) holds.

Case 1.2: Conclusion (2) of Theorem 10 holds.

Then there exists two nodes z and 2’ in S such that (H',z) and (H',z')
are both twin wheels. Let w, w’ be, respectively, the neighbors of x and
' in V(H') \ {zpz}} and let F' be the path between w and w’ induced by
V(H') \ {zp,x}}. Since F has odd length, (xy,z,w, F,w' 2/, x) is an odd
hole, a contradiction.

Case 2: |H| =6

Then y, = z), and y) = x},. Since y; and y] are not universal for S and
S Uy is co-connected, let () be a shortest anti-path in S Uy from y to a
node z that is not adjacent to both y; and yj. Assume, w.l.o.g., that x is not
adjacent to yi, then (y,@,x,y1,2},y) is an anti-hole, therefore ) must be
an odd anti-path. If x is adjacent to yi, then (y,Q, z,y1,y1, z1,y) is an odd
anti-hole, a contradiction. Therefore (H,x) is a line wheel. If @ has length
1 then (iii) holds, else (iv) holds. O
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5 Connections from blue to red sectors of a
hub

Let P be a connected subgraph of G\ (H U S). The attachments of P to H
are the nodes of H adjacent to at least one node of P.

Theorem 14 Let (H,S) be a hub of a Berge graph G. Let P = x4,...,x,
be a minimal chordless path in G\ (V(H) U S) containing no node that is
universal for S, such that x1 has a blue neighbor in H and x, has a red
neighbor w.r.t. the bicoloring induced by Es(H) (n =1 is allowed). If there
exist consecutive attachments of P with distinct colors that are not adjacent,
then one of the following holds.

(a) There existsy € S such that V(H)UV(P)U{y} induces the line graph
of a bipartite subdivision of K.

(b) n=1, |H| =6, (H,x;) is a line wheel and S Ux, contains a chordless
odd anti-path Q) of length at least 3 between x1 and a node y € S such
that (H,y) is a line wheel, no edge of H sees both x1 and y and every
intermediate node of () is adjacent to every node in H.

(c) There exists y € S such that V(H) U V(P) U {y} induces connected
diamonds.

(d) n =1 and there exists y € S nonadjacent to x, such that (H,z;) and
(H,y) are twin wheels and exactly one edge of H sees both x1 and y.

(e) There exists y € S such that (H,y) is a twin wheel, no node of P is a
neighbor of y, x1 is adjacent to the twin of y in H and no other node
in H while x, is not adjacent to both the other neighbors of y in H.

(f) n =1, H contains a subpath u, z,w, 2’ u" such that E¢(H) = {wz,wz'},
x1 18 adjacent to u, w and u' but not z and ', SUxy contains a chordless
odd anti-path Q of length at least 3 between x, and a node y € S such
that y is nonadjacent to u and u' and every intermediate node of Q) is
adjacent to both u and u'.

(9) n =1, H contains a subpath w, z,u, ', w’ such that wz and w'z' are
edges of Es(H), =1 is adjacent to u, w and w' but not z and ', S Uz,
contains an even anti-path ¢) between xy and a node y € S such that
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y s nonadjacent to u and every intermediate node of () is adjacent to
u. Furthermore, every node in V(H)\ {z,2'} that is universal for S is
adjacent to xy.

(h) n > 1, H contains a subpath w, z,u,z’,w'" such that wz and w'z’ are
edges of Es(H), xy is adjacent w and w' but not u, z and z', while
x, 18 adjacent to u but not w, z, w' and z'. Furthermore S contains
two nonadjacent nodes y and y' such that the only neighbors of y in
V(P)U{w, z,u,z,w'} are u, z, 2/, w, w' while the only neighbors of
y in V(P)U{w, z,u,z,w'} are xy, z, 2/, w, w'.

(k) n > 1, H = (v,w,z,u,z’,w',v), Es(H) = {wz,w'z'}, z1 is adjacent
only to v in H and x, is adjacent only to w in H. Furthermore, S
contains two nonadjacent nodes y andy’ such thaty andy’ are adjacent
to every node in H except v and u, respectively, and no node in P is
adjacent toy ory’.

Proof: Note that, by the minimality assumption on P, no intermediate node
of P has a neighbor in H.

Case 1: x; or x, sees an odd number of edges in some sector of (H,S).

Assume, w.l.o.g., that z; sees an odd number of edges in some sector
of (H,S): then conclusion (i), (ii), (iii) or (iv) of Corollary 13 holds. If
conclusion (ii) of Corollary 13 holds, then (d) holds. If conclusion (iii) of
Corollary 13 holds, n = 1 and there exists y in S non adjacent to x; such
that (H,x;) and (H,y) are line wheels and no edge in H sees both z; and y,
but then one can verify that V(H) U {x,y} is the line graph of a bipartite
subdivision of Ky, so (a) holds. If conclusion (iv) of Corollary 13 holds,
then (b) holds. Therefore we can assume that conclusion (i) of Corollary 13
holds and z; has exactly two neighbors u,u’ in H, u and v’ are adjacent
and they are both blue. If z,, has exactly one neighbor ¢ in H, then there is
a 3PC(xyuu',t). If z, has two neighbors in H that are not adjacent, then
there is a 3PC(zuv/, x,). Hence x, has exactly two neighbors v and v’ in
H and they are adjacent and both red. Assume that u and v are consecutive
attachments of P and u’, v/ are consecutive attachments of P. W.l.o.g.,
u and v are non adjacent. Let H,, and H,, be, respectively, the paths
between u and v and between v’ and v' in H such that no intermediate node
of H,, or H,.s is an attachment of P. Since u and v are nonadjacent, then
H' = (u, Hyy, v, Ty, P,21) is a hole of length at least 6 and, since u and v
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have distinct colors and no node in P is universal for S, an odd number of
edges of H' see S. Also H" = (u/, Hyny, V', zy, P, 1) is a hole (possibly of
length 4) and an odd number of edges of H” sees S. By Theorem 10, exactly
one edge wz of H' and one edge of w'z’ of H"” sees S and one of the following
cases holds.

Case 1.1: There exists a node y € S such that y has only two neighbors
in H'.

But then y sees an odd number of edges in H,,, so y must see exactly one
edge in Hyy, otherwise V(Hy) UV (P) U {y} would induce an odd wheel.
But then (H,y) is a line wheel and one can verify that V(H) UV (P) U {y}
induces the line graph of a bipartite subdivision of K, hence (a) holds.

Case 1.2: There exist non adjacent nodes y, 3’ € S such that (H',y) and
(H',y') are twin wheels.

Let t and ' be the neighbors of y and y', respectively, in V(H') \ {w, z}.
If v/ and v are nonadjacent, then at least one node among w’ and z’ has
no neighbor in P, say w’, but then (V(H') U {w',y,9'}) \ {w, 2z} induces an
odd hole, a contradiction. In particular, w.lo.g. t = uw and ¢ = v, else
(H,y) or (H,y') is an odd wheel. Since H' is even, P must be odd, therefore
(y,u,x1, P,x,, v, y) is an odd hole, a contradiction.

Case 2: Both z; and z, see an even number of edges in every sector of
(H,S).

Let u and v be two consecutive, nonadjacent attachments of P with dis-
tinct colors in the bicoloring of H induced by Fg(H). Assume, w.l.o.g., v
is adjacent to x; and u to x,. Let H,, be a subpath of H between u and
v containing no attachments of P except u and v. Since u and v have dis-
tinct colors, H,, contains an odd number of edges of Eg(H), therefore the
hole H" = (1, P, zy,u, Hyy, v, x1) has an odd number of edges that see S,
otherwise P would contain some node universal for S. By Theorem 10, H’
must contain a unique edge of Es(H), say edge zw, and no node universal
for S except z and w. Assume, w.l.o.g., that z is one endnode of the sector
Z containing u, and let 2z’ be the other endnode of Z. Let w’ be the neighbor
of 2/ in V(H) \ V(Z); hence z'w’ € Es(H). Since H' is an even hole, H,,
has length of the same parity as P. Since u and v are nonadjacent, we may
assume, w.l.o.g, that v and z are distinct. Let H,, be the path between u
and z in H,, and H,, be the path between w and v in H,,.

Case 2.1: w=w'".
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Then w = w' = v and Eg(H) = {wz,wz'}.
Case 2.1.1: There exists a node y € S whose only neighbors in H' are
w and z.

If (H,y) is a twin wheel, then case (e) applies. If (H,y) is not a twin
wheel, y has at least a neighbor in V(H)\ {w, z, 2’'}. If u is the only neighbor
of x, in Z, then G contains a 3PC(zwy, u), hence x,, has a neighbor in Z
distinct from w. Furthermore, since x, sees an even number of edges in 7,
x, has a neighbor in Z that is not adjacent to u. If y has a neighbor in Z
that is not adjacent to u, then there is a 3PC/(zwy, x,,), hence y has a unique
neighbor ¢ in Z and t is adjacent to u. Furthermore, t is adjacent to x,,
else there is a 3PC(zwy, u). Let u’ be the neighbor of x,, in Z closest to 2/,
then u' # t. If v’ is not adjacent to ¢, then there is a 3PC(x,tu,y). So u' is
adjacent to ¢t and hence V(H)UV(P)U {y} induces connected diamonds, so
conclusion (c¢) holds.

Case 2.1.2: Every node in S has at least 3 neighbors in H'.

If |H’| > 6 then, by Theorem 10, S contains two nonadjacent nodes y

and y' such that (H',y) and (H',y’) are twin wheels and wz is the only edge
of H' that sees both y and 3. But then (V(H')U{y,v'}) \ {w, 2z} induces an
odd path R between y and ¢’ and (2',y, R,v’, 2') is an odd hole unless 2’ is
adjacent to x,. But then, since x,, sees an even number of edges in 7, H,,
must have even length. W.l.o.g. assume that y is not adjacent to x;, then
(V(Hy.) U{y, 7, x,}) \ {2} induces an odd hole, a contradiction.
Hence |H'| = 4, so u is adjacent to z and n = 1. Let u' be the neighbor
of x1 in Z closest to z’. Then, since x; sees an even number of edges in Z
and u is adjacent to z, v/ and 2z’ have odd distance in H. By repeating the
previous argument on the hole H” containing w, v’ and x; in V(Z) U {z,w}
instead of H’', we argue that «' and 2’ must be adjacent. Since u and u’ are
not universal for S, let () be a shortest possible anti-path in S U z; between
x1 and a node y not adjacent to both v and /. Assume, w.l.o.g, that y is not
adjacent to u. ) must have odd length, or else (x1,Q,y,u, 2/, x1) is an odd
anti-hole. Moreover, since every node in S has at least 3 neighbors in H’, ()
has length at least 3. Finally, if v’ is adjacent to y, then (z1, Q,y,u, v, z, 1)
is an odd anti-hole, a contradiction. Hence conclusion (f) holds.

Case 2.2: w # w'.

Note that, since w’ is universal for S and distinct from w and z, then w’ is
not in H,,. Let s be the neighbor of x,, in Z closest to 2z’ and let H,,, be the
path between s and 2’ in Z. Since x,, sees an even number of edges in Z and
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H,, has length of the same parity as H,,/. Let F' = w, Hyy, v, 21, P, s, Hg,r, 2.
Since H’ is an even hole and H., has the same length as H,,/, F' is an odd
path between w and z’. If z is not adjacent to s then, by Lemma 5 applied
to S, F' and z, an odd number of edges of F' see S, a contradiction. Hence
u is the unique neighbor of =, in Z and it is adjacent to z. Also, given any
node ¢ in V(H) \ {z,7,w} universal for S, if ¢ is not an attachment of P
then, by Lemma 5 applied to S, F' and ¢, an odd number of edges of F' see
S, a contradiction. In particular, w’ must be adjacent to z; or to v.

If w" is adjacent to v then F' = w',v, x1, P, x,,u, z is an odd path, there-
fore, by a similar argument, 2’ is adjacent to v and w is also adjacent to v
(since x; sees an even number of edges in every sector, hence w cannot be
adjacent to x1). Therefore |H| = 6 and, since F’ must have length at least
5, by Lemma 4 there exists two nonadjacent nodes nodes y and and ¢’ in S
such that y is adjacent to every node in H except v, ¥’ is adjacent to every
node in H except u and neither y nor ¢’ has a neighbor in P, hence (k) holds.

If w’ is adjacent to xy then F' = w', x, P, x,, u, z is an odd path, therefore,
by the usual argument, 2’ is adjacent to u and w is adjacent to ;. If |F'| = 3,
thenn = 1 and, by Lemma 4, there exists an odd anti-path x, @), y, u between
xp and v in S U {u,x;}, hence case (g) holds. If |F’| > 5, then by Lemma 4
S contains two nonadjacent nodes y and y’ such that y is adjacent to z1, z,
2, w, w" an no other node in V(P)U{w, z,u, 2, w'} while 3’ is adjacent to u,
z, 2, w, w" an no other node in V(P)U{w, z,u, z’,w'}, hence case (h) holds.

(Il

Given a hub (H, S) and an edge ab € Es(H), an ear on ab (with respect
to (H,S)) is a chordless path P = xy,...,x, in G\ (V(H)UJS) such that z;
is adjacent to a, x, is adjacent to b, no node in V(H) \ {a, b} has a neighbor
in P, no node of P is universal for S, and P is minimal with these properties.

Theorem 15 Let (H,S) be a hub of a Berge graph G where S is mazimal
with the property that (H,S) is a hub. Let P = xy,...,x, be a minimal
chordless path in G\ (H U S) containing no node universal for S such that
x1 has a blue neighbor in H and x,, has a red neighbor (n =1 is allowed). If
every pair of consecutive attachments of P with distinct colors are adjacent,
then one of the following holds.

(a) P is an ear on some edge of Es(H).

(b) n > 1, there exist two adjacent edges ab, bc of Es(H) such that b is
the only neighbor of x1 in H and x, is adjacent to a,c and not to b.
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Moreover, if Eg(H) 2 {ab,bc}, then no node of P has a neighbor in
V(H)\ {a,b,c}.

(¢) n > 1, Es(H) contains at least two nonadjacent edges, x1 is adjacent
to all the blue endnodes of the edges of H that see S (and possibly to
other blue nodes of H), x, is adjacent to all the red endnodes of the
edges of H that see S (and possibly to other red nodes of H). If n > 2,
then there exist nonadjacent y,z € S such that y is adjacent to x1 and
to no other node of P, and z is adjacent to x, and to no other node
of P. If n =2, then S U {xy,x2} contains an odd anti-path between x,
and Ts.

Proof: Note that, by the minimality assumption on P, no intermediate node
of P has a neighbor in H. Let a and b be two consecutive attachments
of P with distinct colors. Then, by assumption, a and b are adjacent and
ab € Es(H). Assume, w.l.o.g., that a is adjacent to x, and b is adjacent to ;.
Let ¢ be the neighbor of bin V(H)\{a}. If P has no neighbor in V(H)\{a, b},
then P is an ear of ab and (a) occurs. Therefore we may assume, w.l.o.g., that
x,, has a neighbor in V(H) \ {a,b}. Note that n > 1, otherwise either S Uz,
sees a positive even number of edges of H, contradicting the maximality of S,
or ab is the only edge of H that sees S Uz, and by Theorem 10 there exists
y € S nonadjacent to x; such that (H,z1) and (H,y) are twin wheels and
exactly one edge of H sees both z; and y, thus contradicting the assumption
that every two consecutive attachments of P with distinct colors are adjacent.
Therefore z; has only blue neighbors and z,, has only red neighbors. If z,
sees an odd number of edges in some sector of (H,S) then, by Corollary 13,
the only neighbors of x,, in H are a and the neighbor d of a in V(H) \ {b}.
If z; has no neighbor in V(H) \ {b}, then G contains a 3PC(x,ad,b). If
x1 has two nonadjacent neighbors in H, then G contains a 3PC(z,ad, xy).
Therefore z; is adjacent to b, ¢ and no other node in H. But then ¢ and d
are consecutive, non adjacent attachments of P with distinct colors in the
bicoloring of H induced by Eg(H), a contradiction. Therefore x, sees an
even number of edges in every sector of (H,S) and, by the same argument,
also 1 sees an even number of edges in every sector of (H,S).

We may assume that x,, has at least as many neighbors in H as x; does.
If Es(H) = {ab,bc} then (b) holds. Next we show that if x, has no neighbor
in H\ {a,c}, then (b) holds. Suppose that x,, has no neighbor in H \ {a,c}.
Then z,, is adjacent to c¢. If x; has no neighbors in H \ b then (b) holds.
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Otherwise , z; has exactly two neighbors in H, b and say d. Since all pairs
of consecutive attachments of P having distinct colors are adjacent, then
a,d and ¢, d are adjacent, hence |H| = 4, contradicting the assumption that
(H,S) is a hub. Now we may assume that (b) does not hold, hence there
exists a red sector Z = zy,...,z, of (H,S) such that {a,c} # {z1, 2} and
such that x,, has a neighbor in V(Z)\ {a, c}. Assume, w.l.o.g, that z; ¢ {a,c}
and x,, has a neighbor in V(Z) \ {2x}. Let z; be the neighbor of x,, of lowest
index in Z, and let H,, ., be the subpath between z; and z; in Z. Note that
i < k. Since z,, sees an even number of edges in every sector of (H, S) and x,
has only red neighbors in H, then H.,, ., has even length (since z,, is adjacent
to a) and also 2, and z; have even distance in Z, hence they are not adjacent.
Moreover, H' = (a, b, x1, P, x,, a) is an even hole, therefore P is an odd path.
But then F' = b, 21, P, z,, 2;, H,,,, 21 is an odd chordless path. If there exists
a node w universal for S in V(H) \ {a,b, 2} that has no neighbor in the
interior of F', then Lemma 5 applied to S, F' and w implies that there exists
an odd number of edges in F' that see S, a contradiction. Therefore every
node universal for S in V(H) \ {a,b, z:} is adjacent either to z; or to x,.
Let ¢ be the unique blue neighbor of z; in H. Note that ¢ is adjacent to x;.
Since t and z; are consecutive attachments of P, they must be adjacent. So
x, is adjacent to z;. Hence every node of H that is universal for S must be
adjacent to x; or x,. In particular, x; is adjacent to all the blue endnodes of
the edges of H that see S, x, is adjacent to all the red endnodes of the edges
of H that see S. If n > 2, then F has length at least 5 and by Lemma 4
there exist nonadjacent y, z € S such that y is adjacent to x; and to no other
node of P, and z is adjacent to z, and to no other node of P. If n = 1, then
|F| = 3 and, by Lemma 4, S U {21, 22} contains an odd anti-path between
x1 and z5. So conclusion (c¢) holds. 0

In the bicoloring of H induced by Es(H), we say that a node u of H is
an inner blue (resp. red) node if both neighbors of u in H are blue (resp.
red).

Theorem 16 Let (H,S) be the hub of a Berge graph G. Assume that S is a
mazimal set such that (H,S) is a hub with the further property that S does
not contain any center of a twin wheel w.r.t. H. Let P = xy,...,x, be a
minimal chordless path in G\ (V(H) U S) containing no node universal for
S such that x1 has a red neighbor, no other node of P has a red neighbor and
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ZTpn has a blue neighbor b in H so that neither of the neighbors of b in H is a
red neighbor of x1. Then one of the following holds:

(a) P has two consecutive attachments of different colors that are nonad-
jacent, and P is of one of the types in Theorem 14 (a)-(c) or (f)-(k).

(b) There exist two adjacent edges aby, aby of Es(H) such that a is the
only red neighbor of x1 in H and at least one node of P is adjacent to
both by and by. If Eq(H) 2 {aby, abs} orif S contains a node s with no
neighbors in P, then the path () = a,x1,...,x, contains an odd number
of edges that see both by and b,.

(¢) n > 1, Es(H) contains at least two nonadjacent edges, x1 is adjacent
to all the red endnodes of the edges of H that see S and the node x;
of lowest index adjacent to some blue node is adjacent to all the blue
endnodes of the edges of H that see S. If j > 2, then S contains two
nonadjacent nodes y and z such that y is adjacent to x1 and to no other
node of Py, and z is adjacent to x; and to no other node of Py, .
If j =2, then SU{xy, x5} contains an odd chordless anti-path between
z1 and xs.

Note that every path P = xy, ..., x, such that x; has a red neighbor and
T, has an inner blue neighbor contains a subpath as in the hypothesis of
Theorem 16.

Proof: Let z; be the node of P of lowest index having a blue neighbor. If
the path Py, has consecutive attachments of distinct colors that are not
adjacent, then P, ., satisfies the hypothesis of Theorem 14, hence one the
cases (a)-(c) or (f)-(k) of Theorem 14 apply (cases (d) and (e) cannot occur
since S does not contain any center of a twin wheel w.r.t. H). Since in any
of these cases x; has a blue neighbor that is not adjacent to any red neighbor
of 1 in H, then j = n and case (a) holds .

Hence we may assume that every pair of consecutive attachments with
distinct colors of P, are adjacent, so case (a)-(c) of Theorem 15 occur. If
case (c) occurs, then case (¢) of Theorem 16 holds and we are done. Hence
we may assume that case (a) or (b) of Theorem 15 holds. In particular, z;
has a unique red neighbor, say a and, given b; and by the two neighbors of a
in H, ab; sees S and z; is adjacent to b;. Since x, has a blue neighbor in H
neither of whose neighbors in H is a red neighbor of 1, n > 1.
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Claim 1 ab, sees S and by has a neighbor in P.

Let t be the attachment of P in V(H) \ {a, b} that is closest to a in the
path induced by V(H) \ {b1}. Since a is the unique red attachment of P,
then ¢ is blue. If t = by then aby sees S and we are done. Assume then that
t # by, hence no neighbor of ¢t in H is a red neighbor of z; so t is adjacent
to x;,, and no other node in P. Let Hy,; be the path between b, and ¢ in the
graph induced by V(H)\ {b:}, and let H' = (a, z1, P, y, t, Hy,, ba, a). Then
H' is an hole of length at least 6 and, since a and ¢ have distinct colors in
the bicoloring of H induced by Es(H) and no node in P is universal for S,
an odd number of edges of H' sees S, therefore, by Theorem 10, exactly one
edge of H' sees S and no node of H’ is universal for S except the endnodes
of such edge. Since a is universal for S, then the unique edge in H’' that sees
S must be aby. Also, by Theorem 10, we have two possibilities.

Case 1: There exists a node y € S such that the only neighbors of y in
H' are a and bs.

Then t is not adjacent to by, otherwise (H,y) would be a twin wheel. Let
Z = z1,...,2 be the path induced by V(H) \ (V(Hp,) U {a,b}), where z
is adjacent to ¢ and z; is adjacent to b;. Since (H,y) is not a twin wheel,
then y has a neighbor in Z. If z,, does not have a neighbor in Z, then there
is a 3PC(yaby, t). If both y and z, have a neighbor in Z distinct from z,
then there is a 3PC(yabs, z,,). Note that b; has a neighbor in V(P) \ {z1},
otherwise (y, by, x1, P, xy, t, Hyy, bo, ) is an odd hole.

If z,, has no neighbor in Z except z;, then ¢ and z; are the only neighbors
of x, in H, otherwise (H,x,) is an odd wheel. Since b; has a neighbor in
V(P) \ {z1}, then there is a 3PC(x,tzy, by).

Hence z,, has a neighbor in V(Z)\ {2}, therefore the only neighbor of y in
Z is z. Also z,, is adjacent to z; otherwise there is a 3PC(yabs, t). Consider
now the hole H” = (21,y,a,x1, P,x,, 21). Since b; sees at least one edge in
H" and b, has at least one neighbor in V(P) \ {x,}, then either (H’,b;) or
(H”,by) is an odd wheel since by sees in H” exactly one edge more than in
H'.

Case 2: S contains two nonadjacent nodes y and z such that the only
neighbors of y in H' are a, by and x; and the only neighbors of z in H' are
a, by and the node ¢ # a adjacent to by in H' .

Then ¢ is not adjacent to by, otherwise (H,y) would be a twin wheel. Let
Z = z1,..., 2 be the path induced by V(H)\ (V(Hy,:) U{a, b }), where 2 is
adjacent to t and z is adjacent to b;. Since (H,y) is not a twin wheel, then
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y has a neighbor in Z. Also, since (H, z) is not an odd wheel, also z has a
neighbor in Z. Let p and g be two neighbors in Z of y and z respectively
with minimum distance in Z. Let Z,, be the path between p and ¢ in Z. Z,,
is an even path, otherwise (a, v, p, Z,q, ¢, 2, @) would be an odd hole. If b; has
a neighbor in P\ zy, then (P\ x1)U Hp, U{y, z,b, } contains a 3PC(byzc, by ).
So x; is the unique neighbor of b; in P. If x, has no neighbors in Z, then
H U P induces a 3PC(z1aby,t). If z; is not the unique neighbor of x,, in Z,
then H U P contains a 3PC(zyaby, z,). So z; is the unique neighbor of z, in
Z. If Z,, contains z;, then V(Z,,) UV (P)U{y, z,a} induces a 3PC(x1ay, 21).
Otherwise, V(P)U (V(Hpyt) \ b2) UV (Zy,) U{y, 2} induces an odd hole. This
concludes the proof of Claim 1.

Claim 2 There exists a node in P that is adjacent to both b; and b,.

Assume not. Let x; be the node of P of lowest index that is adjacent to
by. Since we assumed that the node x; of lowest index in P adjacent to some
blue node is adjacent to by, then k > j.

Case 1: z; is the unique neighbor of b, in Py ,.

Then x; must be adjacent to the neighbor ¢ of by in V(H) \ {a} and to
no other node in V(H) \ {ba, c}, or else there is either a 3PC(abyxy,by) or a
3PC(abyxy, xy). Let F' = by, 21, Pyyg,, Tk, ba. F'is an odd path and by and by
are universal for S. Since P does not contain any node universal for .S, then
conclusion (ii) or (iii) of Lemma 4 holds.

If conclusion (ii) holds, then F' has length 3 and SU {x;,z2} contains an
odd anti-path @) between x; and x. Since no node of V(H) \ {a, by, bs, ¢} is
adjacent to x; or x5 and a is universal for all intermediate nodes of ), then
we can apply Lemma 5 in G to the set V/(H) \ {a, by, by, c}, the path Q and
the node a. Therefore there must exists an intermediate node y of () with
no neighbors in V(H) \ {a, by, by, c}. But then the only neighbors of y in H
are a, by and by and (H,y) is a twin wheel, a contradiction.

If conclusion (iii) holds, then S contains two nonadjacent nodes y and z
such that y is adjacent to x; and no other node of P, ,, while z is adjacent
to xj and no other node of P,,,,. Since S does not contain any center of twin
wheels w.r.t. H, then y and z must have neighbors in V(H) \ {a, b, bs, c}.
Let p and ¢ be two neighbors of y and z, respectively, that are closest pos-
sible in V/(H) \ {a,b1,bs,c} and let Z be the path between p and ¢ in the
graph induced by V(H) \ {a, b1, bs,c}. Z must have even length otherwise
(a,y,p, Z,q,z,a) is an odd hole, but then (y,z1, Pyyz,, Tky 2,4, Z,p,y) is an
odd hole, a contradiction.
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Case 2: b; has a neighbor in P, .

Then k£ > 2 and H' = (a, 21, Pyys,,, Tk, b2, @) is a hole of length at least
6. The only edge of H' that sees S is aby hence conclusion (2) or (3) of
Theorem 10 holds.

If conclusion (2) holds, then S contains two nonadjacent nodes y and z
such that y is adjacent to x; and no other node of P, ,, while z is adjacent
to x5 and no other node of P, ,,, but then there exists a 3PC/(2byzy, by).

If conclusion (3) holds, then S contains a node y whose only neighbors in
H' are a and by. Let P’ be the shortest path between z; and y in the graph
induced by (V(P)UV(H)U{y})\{a,b1,b2}. Then H" = (a,x1, P',y,a) is a
hole. Both b; and by see the edge ay of H”, both b; and by have a neighbor
in P, and y is not adjacent to xy, therefore by Theorem 10 b; and by see
an even number of edges in H”, but then there exists a node of P that is
adjacent to both b; and bs.

This concludes the proof of Claim 2.

Claim 3 If Eg(H) 2 {ab;,aby} then the path Q = a,x,, ..., r, contains an
odd number of edges that see both b; and b,.

Assume that Eg(H) 2 {aby,aby}. Suppose it is not the case that an odd
number of edges of () see both b; and b,. Let x; be the node of highest
index that is adjacent to both b; and by. Then [ > 1. Suppose [ is odd. Then
F = a, 1, Py s, 7 is an odd path and hence by Lemma 4 applied to /' and set
{b1,b2}, by is adjacent to z1, z; and no other node in P,,,, while by is adjacent
to x;-1, 2; and no other node in P, ,,. But then (V(H)UV(Py,,_,)) \ {a}
induces an odd hole, a contradiction. Therefore [ is even. Let x;, and x
be the nodes of highest index adjacent to, respectively, b; and by. W.l.o.g.,
h < k. We want to show that P, ,, has even length. Assume not, then [ < h,
therefore, by definition of [, h and k, h < k. Since F,,,, has odd length, then
b; must see an odd number of edges of P, ,,. Let [ =k < ... <k, =k be
all the indexes between [ and k such that b, is adjacent to xy,. Then there
exists ¢, 1 <7 < m —1 such that b; sees an odd number of edges in kaika.
But then Pl’kﬂkm has length at least 2 and C' = (by, xy,, kaika s Thyyqs ) 18
an hole, therefore b; sees exactly one edge wv in C', and V/(C)U{a, by } induces
a 3PC(bjuv,by), a contradiction. Hence we have proven that a,xy, Pz, , Th
has even length.

Case 1: x,, sees an odd number of edges in some sector of (H,S5).

Since x,, has only blue neighbors in H, by Corollary 13, x,, has exactly two
neighbors u and v in H and they are adjacent. Suppose x,, is not adjacent

25



to by. If h < k then there is a 3PC(xyuv,by). If h = k then there is a
3PC(z uv, xi). So x, is adjacent to by. Py, ., has odd length, else (V(H) U
V(Py,2,)) \ {a, b2} induces an odd hole. Let ¢ be the neighbor of by in H \ a.
Then c¢ is adjacent to z,. Let z be the endnode distinct from by of the
sector Z of (H,S) containing ¢, and let F' be the path between ¢ and z in
Z. Since Eg(H) 2 {abi,abs}, then z # b;. Moreover F has odd length,
therefore R = a,x1, P, x,,c, F, z has odd length. Let w be the neighbor of z
in V(H)\V(Z), then zw € Es(H) and, by Lemma 5 applied to S, R and w,
there is an odd number of edges of R that sees S, a contradiction.

Case 2: x, sees an even number of edges in every sector of (H,S).

Let u be the neighbor of x,, closest to b; in the graph induced by V(H) \
{a,b} and H,,, be the path between u and b; in the graph induced by
V(H) \ {a,by}. We want to show that P,,,, has length of the same par-
ity as the length of Hy,. If not then v # b; and z, # x,, but then
(b1, zh, Py s Ty Uy Hypy, by) is an odd hole. Let z be the endnode distinct
from b; and by of the sector Z of (H,S) containing u (the existence of such
a node is guaranteed by the hypothesis Eg(H) 2 {aby,aby}). Let u’ be the
neighbor of x,, closest to z in Z and let F' be the path between v’ and z in Z.
Since x,, sees an even number of edges in Z, then H,;,, and F have lengths
of the same parity, therefore R = a,x, P, z,,u, F, z has odd length. Let w
be the neighbor of z in V(H) \ V(Z), then zw € Eg(H) and, by Lemma 5
applied to S, R and w, there is an odd number of edges of R that sees S, a
contradiction.

This concludes the proof of Claim 3.

Claim 4 If S contains a node s with no neighbors in P, then the path
Q =a,xq,...,z, contains an odd number of edges that see both b; and b,.
Let F' be the shortest path between x; and s in the graph induced by
(V(H)uV(P)U{s})\ {a,b1,b2}. Then H' = (s,a,x,, F,s) is a hole. Since
as sees both b; and by and there exists a further node in P that is adjacent
to both b; and b, then, by Theorem 10, H' contains an even number of edges
that see both b; and by, but then () = a, z1, P, x,, has an odd number of edges
that see both b; and by. This concludes the proof of Claim 4. O

6 Ears on isolated edges of a hub

Given an hub (H,S) in a Berge graph G, an edge uv in Eg(H) is isolated if
no other edge in Fg(H) is adjacent to uv.
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Lemma 17 Let (H,S) be a hub of a Berge graph G such that H contains
an edge wv in Es(H) that is isolated. Assume that S is mazximal with such a
property. Let P = xq,...,x, be an ear on uv. Let QQ =y, ..., Ym be a minimal
path in G\ (V(H)UV(P)US) such that y, has a neighbor in P and y,, has
a neighbor in the interior of some sector of (H,S). Then Q contains a node
that is universal for S.

Proof: By contradiction, let Q) =y, ..., ¥, be a minimal path in G\ (V(H)U
V(P)US) such that y; has a neighbor in P, y,, has a neighbor in the interior
of some sector of (H,S) and no node in @) is universal for S. Note that we
only need to prove the statement in the case in which ) does not contain
any node whose only neighbors in H are u and v. In fact, if ) contains such
a node and y; is the node of highest index whose only neighbors are v and v,
then P’ = y; is an ear on uv and Q" = yi1, Qysy 1ym» Ym 1S a path such that
y;+1 has a neighbor in P’ and y,, has a neighbor in the interior of some sector
of (H,S) but no node of @’ is adjacent to u, v and no other node of H. Let
us assume, then, that ¢) does not contain any node whose only neighbors in
H are u and v.

Claim 1: No node in @) is adjacent to both u and v.

Assume there exists 7, 1 < i < m, such that y; is adjacent to v and v.
Since y; is not universal for S, then SUy; is co-connected. By the maximality
of S, (H,SUy;) is not a hub, hence uv is the only edge of H that sees S Uuy;.
Since uw is isolated, S does not contain any center of a twin wheel w.r.t. H,
hence, by Theorem 10, y; is adjacent only to v and v in H, a contradiction.

Claim 2: Let y; be a node with a neighbor in H distinct from v (resp.
u). Let s be the neighbor of y; closest to u (resp. v) in V(H) \ {v} (resp.
V(H) \ {u}) and assume that no node in @),,,, , has a neighbor closer to u

(resp. v) in V(H) \ {v} (resp. V(H) \ {u}) than s. Then s and u (resp. v)
have the same color.

Assume, w.l.o.g., that y; has a neighbor in H distinct from v. By contra-
diction, assume s and u have distinct colors, then s # u. Let w and w’ be the
endnodes of the sector Z of (H,S) containing s and assume w is closer to u
in V(H)\ {v} than w'. Since uv is isolated, then w is not adjacent to u. Let
F be the shortest path between w and u in V(Z)UV (Qy,y, ) UV (P)U{u} and
F’ be the path between u and w in V(H) \ {v}. Since H = (u, F',w, F, u)
is a hole, then F' and F’ have length of the same parity. Since w and u
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have distinct colors in the bicoloring of H induced by Eg(H), then F has
odd length, therefore F' is an odd chordless path. Since F’ is odd and wwv is
isolated, F” contains a node t, distinct from u and v, that is universal for S.
Lemma 5 applied to S, F' and ¢ implies that F' contain an odd number of
edges that see .S, a contradiction.

Let y; be the node of () of lowest index such that y; has a neighbor in H
distinet from u and v. Let s be the neighbor of y; closest to v in V/(H) \ {u}
and t be the neighbor of y; closest to u in V(H) \ {v}.

Claim 3: st is an edge of H that sees S and st # wv. Furthermore, P = z
and no node in ()y,,,_, has a neighbor in H.

By Claim 2 applied to y;, s has the same color of v and ¢ has the same
color of u in the bicoloring induced on H by Eg(H). By Claim 1, either s # v
or t # u. Assume, w.lo.g., that u # t. Assume s and t are nonadjacent.
Then s and ¢ are consecutive neighbors of y; with distinct colors in H that
are nonadjacent, therefore we can apply Theorem 14 to the path consisting
of y;. Since Eg(H) contains an isolated edge, then conclusion (a), (b) or (g)
of Theorem 14 holds.

Case 1: Case (a) or (b) of Theorem 14 holds.

Then Eg(H) consists of two nonadjacent edges uv and u'v" while (H,y;)
is a line wheel. Assume v and v’ have the same color. By symmetry, we may
assume that u # ¢ and v’ is not adjacent to y;. Let F' be the shortest path
between v and y; in V/(P)UV(Qy,y,) U{u} and let F’ be the path between u
and ¢ in V(H) \ {v}. Since v # t, H' = (u, ", t,y;, F,u) is a hole, hence F”
has distinct parity from F'. But then, since y; sees an odd number of edges in
the sector of (H,S) with endnodes u and ', the shortest path F” from u to
o in (V(H)UV(P)UV(F))\ {v,?',t} has odd length. By Lemma 5 applied
to S, F” and v, an odd number of edges of F" see S, a contradiction.

Case 2: Case (g) of Theorem 14 holds.

Then s = v, u and t are adjacent and H contains a path v,u,t,u', v’
where u'v" sees S and y; is adjacent to v,¢,v’ but not to u or v/. Let F
be the shortest path between u and y; in V(P) U V(Qy,,,) U {u}. Since
H' = (u,t,y;, F,u) is a hole, F' has even parity, but then u, F,y;,v" is an odd
chordless path and Lemma 5 applied to S, u, F, y;,v" and «/, implies that an
odd number of edges of F' see S, a contradiction.

Therefore s and ¢ must be adjacent and, since they have distinct colors, st
sees S. To conclude the proof of Claim 3, let F' = vy, ..., v, be a shortest path

28



in V(Qy,y,) UV(P) such that v, = y; and v; is adjacent to u or v . If vy is
not adjacent to both u and v, say vy is not adjacent to v, then V(H) UV (F)
induces a a 3PC/(sty;,u), a contradiction. Therefore P = x1, v; = x; and no
node in @y, , has a neighbor in H. This concludes the proof of Claim 3.

Let Hy; be the path in V(H) \ {v} between u and ¢ and H,s be the path
in V(H) \ {u} between v and s. Note that H,; and H,s have both even

length. Let y; be the node of lowest index in () such that £ > 5 and y; has
a neighbor in V(H) \ {s,t}.

Claim 4: y; has a neighbor both in V(H,) \ {t} and in V(H,s) \ {s}.

Assume, w.l.o.g, that y, has a neighbor in H,; distinct from ¢ and let p
be the neighbor of y, closest to u in Hy; (possibly u = p). By Claim 2, p and
u must have the same color. Let F' be the shortest path between p and s in
V(Qy,y.) U{p, s} and let F’ be the path between u and p in H,. If y has no
neighbors in V(Hys) \ {s}, then H = (u, F',p, F, s, Hys,v,u) is a hole, then
R =wu, F',p, F,s is an odd path so, by Lemma 5 applied to S, R and v, R
contains an odd number of edges that see S. Since u and p have the same
color, then S sees an even number of edges of F’, therefore S must see an
odd number of edges of F', a contradiction.

Let p be the neighbor of ¥, closest to u in H,; and let ¢ be the neighbor
of yi closest to v in H,,. By Claim 1 and Claim 4, p and ¢ are nonadjacent
and, by Claim 2, p has the same color of u and ¢ has the same color of v.
We can also assume, w.l.o.g., that u # p.

Then p and q are consecutive neighbors of y; with distinct colors in H that
are nonadjacent, therefore we can apply Theorem 14 to the path consisting
of y. Since Eg(H) contains an isolated edge, then conclusion (a), (b) or (g)
of Theorem 14 holds.

Case 1: Case (a) or (b) of Theorem 14 holds.

Then Es(H) consists only of uv and st. Note that st is an isolated edge
of Eg(H), P' = y; is an ear of st and S is maximal with this property.
Moreover Q' = Qy,, y, is a path in G\ (V(H)UV (P')US) such that y;;, has
a neighbor in P’ and y, has a neighbor in the interior of a sector of (H,.5).
But now P’ and @’ contradict Claim 3.

Case 2: Case (g) of Theorem 14 holds.

Then ¢ = v, u and p are adjacent and H contains a path v,u,p,u’, v’
where u'v sees S and y; is adjacent to v, p,v" but not to u or v’
We have two cases:
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Case 2.1: u'v' # st.

Then u/v’ is not adjacent to st, since v’ is in H,; and v’ and ¢ have distinct
colors. Let F' be the shortest path between u and yj in V(P)UV (Qy,y, ) I{u}.
Since H' = (u, p, yg, F,u) is a hole, then F' is even, but then u, F, yg, v’ is an
odd chordless path and Lemma 5 applied to S, u, F,y, v and «/, implies
that an odd number of edges of F' see S, a contradiction.

Case 2.2: u'v' = st.

Then v’ =t and v = s. Let F' be the shortest path between t and y; in
V(Qy,y.) U{t}. Since H' = (t,p,yx, F,t) is a hole, then I is even, but then
t, F, y,, v is an odd chordless path and Lemma 5 applied to S, t, F, y,, v and
u, implies that an odd number of edges of F' see S, a contradiction.

(Il

Theorem 18 Let (H,S) be a hub of a Berge graph. If G contains an ear P
on an isolated edge uv of Es(H), then G has a skew partition.

Proof: Let A be a maximal set containing S such that (H, A) is a hub and
uv sees A. Assume that u is colored red in the bicoloring of (H, A) induced
by E4(H). Let B be the set containing all the endnodes of the edges of
E4(H) and all the nodes in G \ (V(H) U A) that are universal for A. If
G\ (AU B) is not connected, then G contains a skew-partition. Assume that
G\ (AU B) is connected, then there exists a minimal path @ = 1, ..., ¥, in
G\ (V(H)UV(P)U AU B) such that y; has a neighbor in P and vy, has
a neighbor in the interior of some sector of (H, A), but such a path would
contradict Lemma 17. O

7 Hubs in graphs containing no “large” line
graphs

ASSUMPTION: Throughout this section, we will assume that G is a Berge
graph such that G and G contain no long 3PC(A, A) and no line graph of a
bipartite subdivision of Kj.

Lemma 19 Let (H,S) be a hub of a Berge graph G such that G and G
contain no long 3PC(A,A) and no line graph of a bipartite subdivision of
Ky. Let P = xy,...,x, be a minimal chordless path in G\ (V(H) U S)
containing no node that is universal for S, such that x1 has a blue neighbor
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in H and ,, has a red neighbor (n =1 is allowed). If there exist consecutive
attachments of P with distinct colors that are not adjacent, then one of the
following holds.

(a) |H| =6, n =1 and there exists y € S such that V(H)U{z1,y} induces
a double beetle.

(b) n =1 and there exists y € S nonadjacent to x1 such that (H,x,) and
(H,y) are twin wheels and exactly one edge of H sees both x1 and y.

(c) There exists y € S such that (H,y) is a twin wheel, no node of P is a
neighbor of y, x1 is adjacent to the twin of y in H and no other node
in H while x,, is not adjacent to both the other neighbors of y in H.

Proof: Assume not, then P is of one of the types (a)-(c) or (f)-(k) of Theo-
rem 14. If P is of type (c), then V(H)UV (P)U{y} contains a long 3PC(A, A)
unless n = 1 and |H| = 6, so case (a) of Lemma 19 holds. P cannot be of
type (a) by assumption. If P is of type (b), then n = 1, |H| = 6, (H,x,)
is a line wheel and S U x; contains an odd chordless anti-path @) of length
at least 3 between x; and a node y € S such that (H,y) is a line wheel, no
edge of H sees both x; and y and every intermediate node of () is adjacent
to every node in H. One can verify that G[V (H) U V(Q)] is the line graph
of a bipartite subdivision of K,. If P is of type (f), then n = 1, H contains
a subpath u, z,w, z/,u’ such that Eg(H) = {wz,wz'}, z; is adjacent to u,
w and v’ but not z and 2/, S U x; contains an odd chordless anti-path @) of
length at least 3 between z; and a node y € S such that y is nonadjacent
to u and ¢/ and every intermediate node of () is adjacent to both u and u’.
One can verify that G[V(Q) U {u, z, 2/, u'}] is a 3PC(uu'y, 2'2x1), and such
3PC(A,A) is long since @ has length at least 3. If P is of type (g), then
n = 1, H contains a subpath w, z,u, 2/, w’ such that wz and w'z’ are edges
of Eg(H), =y is adjacent to u, w and w’ but not z and 2’, S U x; contains
an even chordless anti-path ) between x; and a node y € S such that y is
nonadjacent to u and every intermediate node of () is adjacent to u. One
can verify that G[V(Q) U {w, z,u, 2 ,w'}] is a 3PC(ww'u, 2’ zz;), which is
long since ) has positive even length. If P is of type (h), then n > 1, H
contains a subpath w, z,u, 2/, w’ such that wz and w'z’ are edges of Es(H),
x1 is adjacent w and w’ but not u, z and z’, while x,, is adjacent to u but
not w, z, w' and z’. Furthermore S contains two nodes y and vy’ such that
the only neighbors of y in V(P)U{w, z,u, 2/, w'} are u, z, 2, w, w’ while the
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only neighbors of 3" in V(P) U {w, z,u, 2/, w'} are xy, z, 2/, w, w’. One can
verify that G[V(P) U {y,y',u, z,w'}] is a long 3PC(uyz, zyw'y’). If P is of
type (k), then H = (v,w, z,u, 2’,w',v), Es(H) = {wz,w'z'}, x; is adjacent
only to v in H and z, is adjacent only to u in H. Furthermore, S contains
two nonadjacent nodes y and ¢’ such that y and 3’ are adjacent to every node
in H except v and u, respectively, and no node in P is adjacent to y or v’.
One can verify that G[V(P) U {y,v',u,v, z,w'}] is a long 3PC(uyz, vw'y’).
O

Lemma 20 Let (H,S) be the hub of a Berge graph G such that G and G
contain no long 3PC(A,A) and no line graph of a bipartite subdivision of
K,. Assume that S is a mazimal set such that (H,S) is a hub with the further
property that S does not contain any center of a twin wheel w.r.t. H. Let
P =u,...,2, be a minimal chordless path in G\ (V(H)US) containing no
node universal for S such that x1 has a red neighbor, no other node of P has
a red neighbor and x,, has a blue neighbor whose neighbors in H are not red
neighbors of x1. Then one of the following holds:

(1) There exist two adjacent edges aby, aby of Es(H) such that a is the
only red neighbor of x1 in H and at least one node of P is adjacent to
both by and by. If Es(H) 2 {aby,abs} orif S contains a node s with no
neighbors in P, then the path () = a,x1,...,x, contains an odd number
of edges that see both by and b,.

(2) |H| =6, n=1 and there exists y € S such that V(H)U{z1,y} induces
a double beetle.

Proof: Obviously, one of the conclusions of Theorem 16 must occur. If
conclusion (a) of Theorem 16 holds, then by Lemma 19 conclusion (2) holds
(since S does not contain any center of a twin wheel) and we are done. If
conclusion (b) holds, then conclusion (1) holds and we are done.

So we may assume that conclusion (c¢) of Theorem 16 holds. Then n > 1,
Es(H) contains at least two nonadjacent edges, x; is adjacent to all the
red endnodes of the edges of H that see S and the node x; of lowest index
adjacent to some blue node is adjacent to all the blue endnodes of the edges
of H that see S. If j > 2, then S contains two nonadjacent nodes y and z
such that y is adjacent to z; and to no other node of P,,,,, and z is adjacent
to x; and to no other node of P,,,,. If j = 2, then S U {x;, 25} contains an
odd chordless anti-path between x; and .
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Let uv and w'v" be two nonadjacent edges of Es(H) and assume, w.l.o.g.,
that x; is adjacent to uw and v’ and z; is adjacent to v and v'. If j > 2
then G[V(Pre;) U {y, z,u,v'}] is a long 3PC(x1yu, v;0'z). If j = 2 then
GIV(Q) U{u,u',v,v'}] is a long 3PC(x10v, mou'u). O

7.1 Good hubs

We say that a hub (H,.S) is good if H has an inner blue node and an inner red
node w.r.t. the bicoloring induced on H by Es(H). Equivalently, given the
maximal paths P!, ..., P¥ induced by the endnodes of the edges of Eg(H),
(H,S) is a good hub if and only if there exists 7, 1 < ¢ < k, such that P? has
odd length.

Lemma 21 Let (H,S) be a good hub of a Berge graph G such that G and
G contain no long 3PC (A, A) and no line graph of a bipartite subdivision of
Ky. Lety € G\ (V(H)US) be a node such that (H,SUvy) is a hub. Then
either (H,S Uvy) is a good hub or V(H) Uy contains a hole H' such that
(H',S) is a good hub with Es(H") & Es(H).

Proof: Since (H,S) is a good hub, by Lemma 19 every pair of consecutive
neighbors of y in H with distinct colors are adjacent. Assume (H,S U y)
is not a good hub. Let P',...,P* be the maximal paths induced by the
endnodes of the edges of Eg(H) and assume, w.l.o.g, that P! = vy, ..., ym
has odd length. If ¥ has no neighbor in P!, then P! is contained in a sector
Q = s,...t of (H,y), therefore, given H' = (y,s,Q,t,y), (H',S) is a good
hub and Eg(H') & Eg(H). Therefore we may assume that y has a neighbor
in P!. Let r be the neighbor of ¥ closest to y; in P! and s be the neighbor
of y closest to y,, in P! (possibly r = s). Since (H,S Uy) is not a good
hub, then y sees an even number of edges of P!, therefore P, has even
length. Since P! has odd length, we can assume, w.l.o.g., that Pslym has
odd length. Let @ = s,...,t be the sector of (H,y) containing Pslym, then,
given ' = (y,s,Q,t,y), (H',S) is a good hub and Eg(H') & Es(H) (since
(H,SUy) is a hub). O

Theorem 22 Let G be a Berge graph such that G and G contain no long

3PC(A,A) and no line graph of a bipartite subdivision of Ky. If G contains
a good hub (H,S), then G has a good skew partition.
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Proof: Assume that, among all the good hubs contained in G, (H,S) is
chosen so that Eg(H) is minimal (i.e. there is no good hub (H’,S’) such
that Es/(H') G Es(H)). Let A be a maximal set containing S such that
(H,A) is a hub. Then, by Lemma 21 and by the minimality assumption
on Eg(H), (H,A) is a good hub and F4(H) = Es(H). Let B be the set
containing all the nodes that are universal for A in G\ (V(H) U A) and
all the blue endnodes of the edges in Es(H). If in G\ (A U B) the red
nodes of H are in distinct connected components than the blue nodes of
H, then G has a skew partition. Otherwise there exists a chordless path
P=ux, ., z,in G\ (V(H)UA) containing no node universal for S such
that x; is adjacent to a red node of H, no other node of P has a red node
of H and =z, is adjacent to an inner blue node of H. Let j be the node of
P with lowest index that is adjacent to a blue node b in H so that neither
of the neighbors of b in H is a red neighbor of x;. Then either conclusion
(1) or (2) of Lemma 20 holds for P, ;. Conclusion (2) cannot hold since
(H, A) is a good hub. Hence conclusion (1) holds, so there exist two adjacent
edges aby, aby of E4(H) such that a is the only red neighbor of z; in H and
at least one node of P, is adjacent to both b; and by. Since (H,A) is a
good hub, Eo(H) 2 {aby,aby} so by Lemma 20 the path Q = a,x1,...,;
contains an odd number of edges that see both b; and b,. If j = 1, then
(H, AUx;) is a hub, contradicting the maximality of A. Therefore j > 1 and
there exists a node x;, ¢ < j, adjacent to b; and by and to no other node in
V(H)\{a,by,by}. Thus (V(H)U{x;})\ {a} induces a hole H" and (H', A) is
a good hub with Eo(H') G Es(H), contradicting the minimality of Eg(H).

Hence G contains a skew partition (A, B,C, D) where C' contains all the
red nodes of H and D contains all the inner blue nodes of H (w.r.t. the
bicoloring induced on H by E4(H)). Let u be any red endpoint of some edge
in E4(H), then u € C' and w is universal for A, hence (A, B,C, D) is a good
skew partition. O

Recently, Chudnovsky, Robertson, Seymour and Thomas [3] showed that
a minimally imperfect graph cannot contain a long 3PC(A, A) or the line
graph of a bipartite subdivision of K. This result, together with Theorems 2
and 22, implies the following.

Theorem 23 No minimally imperfect graph contains a good hub.
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