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Abstract. In the seventies, Balas introduced intersection cuts for a Mixed Integer Linear Program (MILP),
and showed that these cuts can be obtained by a closed form formula from a basis of the standard linear
programming relaxation. In the early nineties, Cook, Kannan and Schrijver introduced the split closure of a
MILP, and showed that the split closure is a polyhedron. In this paper, we show that the split closure can
be obtained using only intersection cuts. We give two different proofs of this result, one geometric and one
algebraic. The result is then used to provide a new proof of the fact that the split closure of a MILP is a
polyhedron. Finally, we extend the result to more general disjunctions.

1. Introduction

In the seventies, Balas [2] showed that cuts for a Mixed Integer Linear Program (MILP)
can be derived from disjunctions applied to the bases of its linear programming relaxa-
tion. In that paper, the basis was an optimal basis to the linear programming relaxation.
The cut was obtained by a closed form formula and was called the intersection cut.

Later in the seventies, Balas [3] generalized his results to polyhedra. He proved that,
given a polyhedron P and a disjunction, a cut for a point x̄ ∈ P that violates the dis-
junction can be obtained by solving a linear program. The idea was further expanded in
the early nineties when Cook, Kannan and Schrijver [6] studied split cuts obtained from
disjunctions with two terms called split disjunctions. The intersection of all split cuts
is called the split closure of a MILP. Cook, Kannan and Schrijver proved that the split
closure of a MILP is a polyhedron. Split cuts are equivalent to Gomory mixed integer
cuts [9] and to mixed integer rounding cuts generated from linear combinations of con-
straints [10, 8]. Relations between these cuts and other families of cuts are surveyed in
[7].

Intersection cuts are a special type of split cuts. The main contribution of this paper is
to show that, conversely, the split closure of a MILP can be obtained using only intersec-
tion cuts, provided infeasible and non-optimal bases are considered. This result was first
shown by Balas and Perregaard [4] for mixed 0–1 linear programs. For such programs,
it suffices to consider 0–1 disjunctions of the form xj ≤ 0 or xj ≥ 1. We generalize their
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result from 0–1 disjunctions to more general two-term disjunctions. We also consider
the more general setting of MILPs. Two different proofs are provided, one geometric
and one algebraic. A consequence is a new proof of the fact that the split closure of a
MILP is a polyhedron.

Our main result shows that the only interesting split cuts are intersection cuts. This
result has algorithmic implications since intersection cuts can be obtained by a closed
form formula and many of the cutting planes used in practice are split cuts. In particu-
lar, Gomory mixed integer cuts generated from an optimal basis are currently the most
effective in commercial codes [5]. In [1], we exploit the main result of this paper by
fixing the optimal basis and modifying the split disjunctions that generate the Gomory
mixed integer cuts. On several test problems, these cuts drastically reduce the number
of nodes in a branch-and-cut framework.

1.1. Notation

We consider the Mixed Integer Linear Program

(MILP) min{cT x : Ax ≤ b, xj integer, j ∈ NI },

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and NI ⊆ N := {1, 2, . . . , n}. Let LP be the Linear

Programming problem obtained from MILP by dropping the integrality conditions on xj

for j ∈ NI . PI and P denote the sets of feasible solutions to MILP and LP respectively.
The set M := {1, 2, . . . , m} is used to index the rows of A. Given i ∈ M , the ith row of
A is denoted ai.. We assume ai. �= 0n for all i ∈ M . A basis of A is an n-subset B of M ,
such that the vectors {ai.}i∈B are linearly independent. Observe that, if the rank of A is
less than n, A does not have bases.

The relaxations of P obtained by dropping constraints of P play a major role in this
paper. Given S ⊆ M , define

P(S) := {x ∈ R
n : aT

i. x ≤ bi, ∀i ∈ S}

to be the relaxation of P obtained by keeping the constraints in S only. The rank of the
sub-matrix of A induced by the rows in S is denoted r(S). The rank of A is denoted
simply by r := r(M).

The case where the vectors {ai.}i∈S are linearly independent is especially important.
Given a positive integer k, let

B∗
k := {S ⊆ M : |S| = k and r(S) = k}

denote the set of k-subsets S of M , such that the vectors {ai.}i∈S are linearly independent
(B∗

n denotes the set of bases of A). Note that B∗
k is empty if k > r . Given B ∈ B∗

k where
k ≤ r , the set P(B) is a translate of a polyhedral cone. Specifically, P(B) can be written
as P(B) = C + x̄(B), where x̄(B) solves the system aT

i. x = bi, ∀i ∈ B, and C is the
polyhedral cone C := {x ∈ R

n : aT
i. x ≤ 0, ∀i ∈ B}. Translates of polyhedral cones

have many properties in common with polyhedral cones. We call them conic polyhedra
in the remainder of this paper.
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The most general two-term disjunction considered in this paper is an expression D

of the form D1x ≤ d1∨ D2x ≤ d2, where D1 ∈ R
m1×n, D2 ∈ R

m2×n, d1 ∈ R
m1

and d2 ∈ R
m2 . The set of points in R

n satisfying the disjunction D is denoted by FD .
The convex hull of P ∩ FD , denoted by Conv (P ∩ FD), is called the disjunctive hull
defined by P and D in the remainder of this paper. In addition, given a subset S of the
constraints, the set Conv (P (S) ∩ FD) is called the disjunctive hull defined by S and D.
In particular, given a set B ∈ B∗

r , the set Conv (P (B)∩FD) is called a basic disjunctive
hull. An important two-term disjunction is the split disjunction D(π, π0) of the form
πT x ≤ π0 ∨ πT x ≥ π0 + 1, where (π, π0) ∈ Z

n+1 and πj = 0 for all j /∈ NI .
Let �n(NI ) := {(π, π0) ∈ Z

n+1 : πj = 0, j /∈ NI }. The split closure of a MILP,
denoted by SC, is defined to be the intersection of the disjunctive hulls defined by P and
D(π, π0) over all the disjunctions (π, π0) in �n(NI ), i.e.,

SC := ∩(π,π0)∈�n(NI )Conv (P ∩ FD(π,π0)).

Similarly, given S ⊆ M , SC(S) is defined to be the intersection of the disjunctive hulls
defined by P(S) and D(π, π0) over all disjunctions (π, π0) in �n(NI ). A split cut is a
valid inequality for SC.

Several results presented in this paper about split disjunctions generalize to disjunc-
tions D(π, π1

0 , π2
0 ) of the form πT x ≤ π1

0 ∨ πT x ≥ π2
0 , where π ∈ R

n and π1
0 < π2

0 .
These disjunctions are called general split disjunctions in the remainder of the paper.
Given π1

0 and π2
0 satisfying π1

0 < π2
0 , not all general split disjunctions are valid for

MILP, i.e., MILP may have feasible solutions that violate a disjunction D(π, π1
0 , π2

0 )

for some π ∈ R
n. However, for the sake of generality, we state and prove some results

in terms of general split disjunctions. The results obtained for general split disjunctions
imply the corresponding results for split disjunctions.

1.2. Main Contributions

The first contribution of this paper is a result (Corollary 1) stating that the split clo-
sure of MILP can be written as the intersection of the split closures of the sets P(B)

over all sets B ∈ B∗
r , i.e., SC = ∩B∈B∗

r
SC(B). We prove this result by proving that

the disjunctive hull defined by P and a general split disjunction D(π, π1
0 , π2

0 ) can be
written as the intersection of the basic disjunctive hulls, i.e., Conv (P ∩ FD(π,π1

0 ,π2
0 )) =

∩B∈B∗
r
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )). We provide both a geometric and an algebraic proof

of this result. The result implies that the disjunctive hull defined by P and a split dis-
junction D(π, π0) can be obtained using only intersection cuts (A precise definition of
intersection cut is given in Sect. 2.1). In turn, this implies that the split closure of a MILP
can be obtained using only intersection cuts. Furthermore, the result leads to a new proof
of the fact that the split closure is a polyhedron (Theorem 2).

The second contribution of this paper is Theorem 3 that describes the disjunctive
hull defined by P and a general two-term disjunction D.

The rest of this paper is organized as follows. In Sect. 2, we give an outline of the
main results in the paper. We also give examples showing that some, seemingly natural,
extensions of these results are incorrect. In Sect. 3, we consider conic polyhedra. In
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P

(a) A polytope

πTx=π0

π x=π0 1+TP2 (π )
0

π,

P1(π )0π,

(b) A polytope and a split dis-
junction

0π,π(2P
vC no

)
U

πTx=π0

π x=π0 1+T

)
( )0π,π(1P

(c) The disjunctive hull

Fig. 1. Effect of applying a split disjunction to a polytope

particular, given B ∈ B∗
r , we show that the split closure of the conic polyhedron P(B)

is a polyhedron. In Sect. 4, a characterization of the split closure in terms of intersection
cuts is presented, and a geometric argument for the validity of the result is presented. In
Sect. 5, we generalize the results of Sect. 4 to more general two-term disjunctions. The
arguments used in Sect. 5 are mostly algebraic. In fact, Sect. 4 and Sect. 5 can be read
independently.

2. Outline

We start by giving an outline and by presenting examples of the results derived in the
paper. Furthermore, we give counterexamples of some seemingly natural extensions of
these results.

Figure 1(a) gives an example of a polyhedron P (in this case a polytope). In Figure
1(b), a split disjunction D(π, π0) is given with P . As can be seen from Figure 1(b),
P ∩ D(π, π0) contains two disjoint parts P1(π, π0) and P2(π, π0) (either might be
empty). The main reason that split disjunctions are interesting is that the valid inequal-
ities for P1(π, π0) ∪ P2(π, π0) are valid inequalities for MILP. Since an inequality is
valid for P1(π, π0)∪P2(π, π0) if and only if it is valid for Conv (P1(π, π0)∪P2(π, π0)),
this leads naturally to a study of the facial structure of the polyhedron Conv (P1(π, π0)∪
P2(π, π0)). The shaded area in Figure 1(c) describes Conv (P1(π, π0) ∪ P2(π, π0)).

2.1. Split disjunctions, conic polyhedra and intersection cuts

It seems natural to start with the simplest polyhedra. Consider a conic polyhedron P(B)

for B ∈ B∗
r . Due to the linear independence of the vectors {ai.}i∈B , this polyhedron is

sufficiently simple. Observe that, in the case where r = n, B defines a basis of A. Figure
2(a) shows a polyhedron in the two-dimensional plane and gives an example of such a
set B. As illustrated in Figure 2(b), P(B) is the set obtained from P by ignoring the
constraints in M \ B.
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π π +0
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P2 (π )
0
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P1(π )0π,

1=

x(B)

(a) A basic solution

P (1 B, π, π0 )

P (2 B, π, π0 )

r2(B)

r1(B)

π x=π0 1+T

πTx=π0

x(B)

(b) The conic polyhedron

x(B)

r1(B)

r2(B)

π x=π0 1+T

πTx=π0

Intersection Cut

(c) Intersection cut

Fig. 2. Deriving a conic polyhedron and an intersection cut

In Sect. 1, we gave an inequality description of the polyhedron P(B). However,
P(B) can also be described in terms of its extreme points and extreme rays as follows.
Let x̄(B) satisfy aT

i. x̄(B) = bi for all i ∈ B. Furthermore, let L(B) := {x ∈ R
n :

aT
i. x = 0, ∀i ∈ B}. L(B) is the null space of the matrix [ai.]i∈B , and x̄(B)+L(B) is the

intersection of the hyperplanes aT
i. x = bi for i ∈ B. In the example of Figure 2, there are

two linearly independent vectors in two dimensions, so L(B) reduces to {0n} and x̄(B)

is uniquely defined. If r < n, this is not the case. The extreme rays ri(B) of P(B) can
be obtained as follows. Since the vectors {ai.}i∈B are linearly independent, there exists
a solution ri(B) to the system aT

k.r
i(B) = 0, ∀k ∈ B \ {i}, and aT

i. r
i(B) = −1. Now

P(B) can be written as

P(B) = x̄(B) + L(B) + Cone ({ri(B)}i∈B), (1)

where Cone ({ri(B)}i∈B) := {x ∈ R
n : x = ∑

i∈B λir
i(B), λi ≥ 0, i ∈ B} denotes the

polyhedral cone generated by the vectors {ri(B)}i∈B . Observe that the vectors {ri(B)}i∈B

are linearly independent.
We are now in position to derive the intersection cut. Let D(π, π1

0 , π2
0 ) be a gen-

eral split disjunction. Assume all points y in x̄(B) + L(B) violate the disjunction
D(π, π1

0 , π2
0 ) (Lemma 1 below shows this is the only interesting case). This implies that

the linear function πT x is constant on x̄(B)+L(B). Otherwise, the function value can be
made as positive (or negative) as we want by choosing particular points in x̄(B)+L(B),
which is a contradiction to the assumption that all points in x̄(B) + L(B) violate the
disjunction D(π, π1

0 , π2
0 ). Define ε1(π, π1

0 , B) := πT x̄(B) − π1
0 and ε2(π, π2

0 , B) :=
π2

0 −πT x̄(B) to be the amount by which the points in x̄(B)+L(B) violate the first and
second terms in the disjunction respectively. Also, for i ∈ B, define

αi(π, π1
0 , π2

0 , B) :=





−ε1(π, π1
0 , B)/(πT ri(B)) if πT ri(B) < 0,

ε2(π, π2
0 , B)/(πT ri(B)) if πT ri(B) > 0,

+∞ otherwise.
(2)

The interpretation of the numbers αi(π, π1
0 , π2

0 , B), for i ∈ B, is the following. For
α ∈ R+, let xi(α, B) := x̄(B) + αri(B) denote the half-line starting at x̄(B) in the
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direction ri(B). The value αi(π, π1
0 , π2

0 , B) is the smallest value of α ∈ R+, if any,
such that xi(α, B) satisfies the disjunction D(π, π1

0 , π2
0 ) (see Figure 2(c) for an exam-

ple). If the direction ri(B) is parallel to the hyperplanes πT x = π1
0 and πT x = π2

0 ,
αi(π, π1

0 , π2
0 , B) is defined to be +∞. Given the numbers αi(π, π1

0 , π2
0 , B) for i ∈ B,

the intersection cut associated with B and D(π, π1
0 , π2

0 ) is given by
∑

i∈B
(bi − aT

i. x)/αi(π, π1
0 , π2

0 , B) ≥ 1. (3)

The validity of this inequality for Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )) was proven by Balas
[2]. In fact, the intersection cut gives a complete description of the basic disjunctive hull
associated with B and D(π, π1

0 , π2
0 ).

Lemma 1. Let B ∈ B∗
r and D(π, π1

0 , π2
0 ) be a general split disjunction.

(i) If πT x /∈]π1
0 , π2

0 [ for some x ∈ x̄(B) + L(B), then Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )) =
P(B).

(ii) If πT x ∈]π1
0 , π2

0 [ for all x ∈ x̄(B) + L(B), then Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )) =
{x ∈ P(B) : (3)}.

The proof of Lemma 1 will be given in Sect. 3.

2.2. Split disjunctions and polyhedra

Having completely described the basic disjunctive hulls for general split disjunctions,
a natural question is whether considering the intersection of all these sets is enough
to describe the disjunctive hull associated with the polyhedron. The main result in this
paper gives a positive answer to this question as follows.

Theorem 1. For every (π, π1
0 , π2

0 ) satisfying π1
0 < π2

0 ,

Conv (P ∩ FD(π,π1
0 ,π2

0 )) =
⋂

B∈B∗
r

Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )). (4)

From a convex analysis perspective, this is an unusual result since it is typically
not allowed to interchange the intersection operator with the convex hull operator. Note
that P = ∩B∈B∗

r
P (B). Theorem 1 states that Conv (∩B∈B∗

r
P (B) ∩ FD(π,π1

0 ,π2
0 )) =

∩B∈B∗
r
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )).

An immediate consequence of Theorem 1 is the following characterization of the
split closure of a MILP, which implies that the split closure is completely described by
intersection cuts.

Corollary 1.

SC =
⋂

B∈B∗
r

SC(B). (5)

Another consequence is a new proof of the following fact.

Theorem 2. The split closure of MILP is a polyhedron.
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P

(a) A polytope

Cut2

Cut1

B
1

B
2

(b) Using only feasible bases

π x=π0 1+T

πTx=π0

Cut(B’)

B’

(c) Using an infeasible basis

Fig. 3. Infeasible bases are needed in Theorem 1

This was first proved by Cook, Kannan and Schrijver [6]. Our proof is based on
showing that SC(B) is a polyhedron. Theorem 2 then follows from Corollary 1.

When r = n, B∗
r is the set of bases of A. Every basis B ∈ B∗

n corresponds to a unique
basic solution x̄(B), which may or may not be a feasible solution to LP. If x̄(B) is a
feasible solution to LP, the basis B is called a feasible basis, otherwise, it is called an
infeasible basis. A natural question is whether infeasible bases are needed for Theorem
1 to be true. The example in Figure 3 demonstrates that infeasible bases are necessary.
In Figure 3, the two intersection cuts derived from the two feasible bases B1 and B2 are
both dominated by the cut derived from the infeasible basis B ′. In fact, the cut obtained
from B ′ is the only necessary cut to describe Conv (P ∩ FD(π,π0)).

2.3. More general disjunctions

Theorem 1 is proven for split disjunctions but the question of knowing if it generalizes
to other disjunctions is still open. The example in Figure 4 demonstrates that Theorem
1 does not generalize from general split disjunctions to other types of disjunctions with
two terms. In this example, P has 3 constraints aT

i. x ≤ bi , i = 1, 2, 3, and two bases
B1 and B2. D is a two-term disjunction involving the two hyperplanes (π1)T x = π1

0
and (π2)T x = π2

0 . In Figure 4(b), the shaded area circumscribed by the cut and the two
parallel lines form the constraints of Conv (P ∩ FD). In Figure 4(c), the shaded area is
Conv (P (B1)∩FD)∩Conv (P (B2)∩FD) = ∩B∈B∗

r
Conv (P (B)∩FD). In this example,

Conv (P ∩ FD) �= ∩B∈B∗
r
Conv (P (B) ∩ FD).

Observe, however, that Conv (P ∩FD) can be generated by considering r-subsets of
the constraints (r = 2). In fact, in the example, only one 2-subset needs to be considered
(the set containing the parallel constraints of P ). This does, in fact, hold for general
two-term disjunctions D of the form D1x ≤ d1∨ D2x ≤ d2, where D1 ∈ R

m1×n,
D2 ∈ R

m2×n, d1 ∈ R
m1 and d2 ∈ R

m2 .

Theorem 3. Let D be a general two-term disjunction, and suppose A is not of full
row-rank, i.e., |M| = m ≥ r + 1. Define

(i) C∗
1 := {S ⊆ M : |S| = r + 1 and r(S) = r}.

(ii) C∗
2 := {S ⊆ M : |S| = n and (r(S) = n or r(S) = n − 1)}.
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P

B1 B2

( π Τx=)1 1
0π ( π2)Τx=π2

0

(a) A polyhedron and a dis-
junction

Cut

( π Τx=)1 1
0π ( π2)Τx=π2

0

(b) The disjunctive hull

B1 B2

Cut 1 Cut 2

( π Τx=)1 1
0π ( π2)Τx=π2

0

(c) Set obtained from bases

Fig. 4. Example of a general two-term disjunction

We have

Conv (P ∩ FD) =
⋂

T ∈C∗
1

Conv (P (T ) ∩ FD). (6)

Furthermore, if r = n,

Conv (P ∩ FD) =
⋂

T ∈C∗
2

Conv (P (T ) ∩ FD). (7)

A different counterexample for the generalization of Theorem 1 is given next. The-
orem 1 demonstrates that the split closure of P can be decomposed into split closures
of the sets P(B) for B ∈ B∗

r . Is a similar decomposition result valid for the integer hull
of P ? In other words, do we have

Conv (P I ) =
⋂

B∈B∗
r

Conv (P I (B)),

where P I (B) := {x ∈ P(B) : xj integer, j ∈ NI }? The following example shows that
this is not true in 3 dimensions. Consider the polyhedron P defined as the set of x ∈ R

3

satisfying the following inequalities.

2x1 − 2x2 + 2x3 ≤ 3, (8)

−2x1 + 2x2 + 2x3 ≤ 3, (9)

2x1 + 2x2 + 2x3 ≤ 5, (10)

−2x1 − 2x2 + 2x3 ≤ 1. (11)

It can be verified that (x1, x2, x3) = ( 1
2 , 1

2 , 3
2 ) is the only point that satisfies all inequal-

ities (8) − (11) with equality. It can also be seen that (x1, x2, x3) = ( 1
2 , 1

2 , 1
2 ) ∈

Conv (P I (B)) for all four bases B ∈ B∗
3 . However, the inequality x3 ≤ 0 is valid

for Conv (P I ). To see this, observe that the constraints (10) and (11), together with the
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integrality of x3, imply x3 ≤ 1. If x3 = 1, by the integrality of x1 and x2, the constraints
(8) and (9) imply x1 − x2 = 0, while the constraints (10) and (11) imply x1 + x2 = 1.
Since no integral values of x1 and x2 satisfy x1 − x2 = 0 and x1 + x2 = 1, P does not
have an integral point with x3 = 1.

3. Conic polyhedra, cutting planes and split disjunctions

In this section we focus on conic polyhedra. In Sect. 3.1 we consider conic polyhedra
of the form

C̄ := {x ∈ R
n : x = x̄ +

∑

j∈J
r̄jµj and µj ≥ 0 for j ∈ J }, (12)

where J is an index set, x̄ ∈ R
n, r̄ j ∈ R

n for j ∈ J and the vectors {r̄ j }j∈J are linearly
independent. Conic polyhedra of the form C̄ above are called simple conic polyhedra. We
may have |J | < n. The focus in Sect. 3.1 is on inequalities that cut off x̄, i.e., inequalities
δT x ≥ δ0 satisfying δT x̄ < δ0. Inequalities that cut off x̄ are called apex-cuts for C̄.

In Sect. 3.2 we consider simple conic polyhedra and general split disjunctions
(π, π1

0 , π2
0 ). For split disjunctions that are violated by x̄, we derive an intersection cut.

Also, the intersection cut is used to describe the set Conv (C̄ ∩ FD(π,π1
0 ,π2

0 )).
In Sect. 3.3 we prove that, given any subset � ⊆ �n(NI ) of split disjunctions, the

set SC(C̄, �) := ∩(π,π0)∈�Conv (C̄ ∩FD(π,π0)) is a polyhedron. In words, SC(C̄, �) is
defined to be the intersection of the disjunctive hulls defined by C̄ and D(π, π0) over all
the disjunctions (π, π0) in �. Since the cardinality of � can be infinite, it is not trivial
to see that SC(C̄, �) is a polyhedron. In particular, when � = �n(NI ), we know that
the split closure of C̄ is a polyhedron, as proved in [6].

In Sect. 3.4 we generalize the results of Sect. 3.3 on simple conic polyhedra C̄ to
conic polyhedra P(B) defined in Sect. 1 and Sect. 2.1, where B ∈ B∗

r . Given a general
split disjunction (π, π1

0 , π2
0 ) that is violated by x̄(B), we characterize the disjunctive

set obtained from P(B) and (π, π1
0 , π2

0 ) as the set of points in P(B) that satisfy the
intersection cut. Furthermore, we show that the split closure of P(B) is a polyhedron
for all B ∈ B∗

r .

3.1. Simple conic polyhedra and apex-cuts

We start by considering C̄, the simple conic polyhedron defined in (12). The hyperplane
associated with an intersection cut has intersection points with the extreme rays of C̄.
In fact, any apex-cut δT x ≥ δ0 for C̄ has this characterization. For j ∈ J , define

α′
j (δ, δ0) :=

{
(δ0 − δT x̄)/(δT r̄j ) if δT r̄j �= 0,

+∞ otherwise.
(13)

Since δT x ≥ δ0 is an apex-cut for C̄, δ0 > δT x̄. As with the intersection cut, α′
j (δ, δ0)

denotes the value of α for which the point x̄ +αr̄j is on the hyperplane δT x = δ0. When
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there is no such point, α′
j (δ, δ0) = +∞. In contrast to the intersection cut, however, we

might have α′
j (δ, δ0) < 0 for some j ∈ J . Let

C̄L := {(x, µ) ∈ R
n × R

|J | : x = x̄ +
∑

j∈J
r̄jµj and µ ≥ 0|J |}

be the set obtained from C̄ by including the multipliers on the extreme rays of C̄ in the
description. The “L” in C̄L is for “Lifted” since C̄L is an image of C̄ in a higher dimen-
sional space (see Balas [3]). We have the following relationship between δT x ≥ δ0 and
the scalars α′

j (δ, δ0) for j ∈ J .

Lemma 2. Let δT x ≥ δ0 be an arbitrary apex-cut for C̄.

{x ∈ C̄ : δT x ≥ δ0}
= {x ∈ C̄ : ∃µ ∈ R

|J | s.t. (x, µ) ∈ C̄L and
∑

j∈J
µj/α

′
j (δ, δ0) ≥ 1}.

Proof. We have x ∈ C̄ and δT x ≥ δ0 ⇐⇒ x = x̄ + ∑
j∈J µj r̄

j , where µ ≥ 0|J |,
and δT x ≥ δ0 ⇐⇒ x = x̄ + ∑

j∈J µj r̄
j , where µ ≥ 0|J |, and

∑
j∈J µj (δ

T r̄j ) ≥
(δ0 − δT x̄) ⇐⇒ (x, µ) ∈ C̄L and

∑
j∈J µj/α

′
j (δ, δ0) ≥ 1. ��

Lemma 2 leads to the following notion of dominance between pairs of apex-cuts
for C̄. Given two apex-cuts (δ1)T x ≥ δ1

0 and (δ2)T x ≥ δ2
0 for C̄, we say (δ1)T x ≥ δ1

0
dominates (δ2)T x ≥ δ2

0 on C̄ if 1/α′
j (δ

1, δ1
0) ≤ 1/α′

j (δ
2, δ2

0) for all j ∈ J . Furthermore,

if (δ1)T x ≥ δ1
0 dominates (δ2)T x ≥ δ2

0 on C̄ and (δ2)T x ≥ δ2
0 dominates (δ1)T x ≥ δ1

0
on C̄, we say (δ1)T x ≥ δ1

0 and (δ2)T x ≥ δ2
0 are equivalent on C̄. Two apex-cuts

(δ1)T x ≥ δ1
0 and (δ2)T x ≥ δ2

0 are equivalent on C̄ if and only if they intersect every ray
at the same point, but the hyperplanes (δ1)T x = δ1

0 and (δ2)T x = δ2
0 are not necessarily

identical as can be illustrated with a cone C̄ with two rays in R
3.

Observe that, if (δ1)T x ≥ δ1
0 dominates (δ2)T x ≥ δ2

0 on C̄, then Lemma 2 implies
{x ∈ C̄ : (δ1)T x ≥ δ1

0} ⊆ {x ∈ C̄ : (δ2)T x ≥ δ2
0}. Furthermore, if (δ1)T x ≥ δ1

0 is
equivalent to (δ2)T x ≥ δ2

0 on C̄, then {x ∈ C̄ : (δ1)T x ≥ δ1
0} = {x ∈ C̄ : (δ2)T x ≥ δ2

0}.
We call an apex-cut δT x ≥ δ0 positive, if α′

j (δ, δ0) > 0 for all j ∈ J . In other words,

δT x ≥ δ0 is positive if, for every j ∈ J such that the hyperplane δT x = δ0 intersects
the line {x̄ + αr̄j : α ∈ R}, the intersection point x̄ + α′

j (δ, δ0)r̄
j is on the half-line

contained in C̄.
Now consider a polyhedron P̄ obtained from C̄ by adding the positive apex-cuts

(δ1)T x ≥ δ1
0, (δ2)T x ≥ δ2

0, . . . , (δp)T x ≥ δ
p
0 , i.e.,

P̄ := {x ∈ C̄ : (δk)T x ≥ δk
0 for k = 1, 2, . . . , p}.

Observe that P̄ �= ∅ if and only if, for every k ∈ {1, 2, . . . , p}, there exists j ∈ J

such that α′
j (δ

k, δk
0) < +∞ . This is due to Lemma 2, i.e., by viewing the inequality

(δk)T x ≥ δk
0 in the space of (x, µ) variables. By making the µ variables very large, a

point in C̄ can be constructed that satisfy the inequality (δk)T x ≥ δk
0.

Lemma 3. Assume P̄ �= ∅. Let δT x ≥ δ0 be a positive apex-cut that is valid for P̄ . Then
there exists an inequality (δ′)T x ≥ δ′

0, which can be obtained as a convex combination
of the apex-cuts (δk)T x ≥ δk

0 , k = 1, 2, . . . , p, that dominates δT x ≥ δ0 on C̄.
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Proof. Consider the LP min{δT x : x ∈ P̄ }. Since P̄ �= ∅ and δT x ≥ δ0 is a valid
inequality for P̄ , the LP is feasible and bounded. The dual of the LP gives vectors
ū ∈ R

n and v̄ ∈ R
p such that

(a) ūT x̄ + ∑p
k=1 δk

0 v̄k ≥ δ0,
(b) ū + ∑p

k=1 v̄kδ
k = δ,

(c) ūT r̄j ≥ 0 for all j ∈ J and
(d) v̄ ≥ 0q .

Define δ̄ := ∑p
k=1 v̄kδ

k and δ̄0 := ∑p
k=1 δk

0 v̄k . The inequality δ̄T x ≥ δ̄0 is a non-
negative combination of the inequalities (δ1)T x ≥ δ1

0, (δ2)T x ≥ δ2
0, . . . , (δp)T x ≥ δ

p
0 ,

and is therefore valid for P̄ . We claim δ̄T x ≥ δ̄0 dominates δT x ≥ δ0 on C̄.
Let j ∈ J be arbitrary. Observe that (a) and (b) give ūT x̄ + δ̄0 ≥ δ0 and ū + δ̄ = δ.

This implies ūT r̄j + δ̄T r̄j = δT r̄j . Since from (c) we have ūT r̄j ≥ 0, we also have
δ̄T r̄j ≤ δT r̄j . Furthermore, we have ūT x̄ + δ̄T x̄ = δT x̄ from multiplying ū + δ̄ = δ by
x̄. Substituting the expression ūT x̄ = δT x̄ − δ̄T x̄ into the inequality ūT x̄ + δ̄0 ≥ δ0, we
get 0 < δ0 − δT x̄ ≤ δ̄0 − δ̄T x̄.

Observe that the assumption α′
j (δ, δ0) ≥ 0 implies δT r̄j ≥ 0. Now we have

0 ≤ (δ̄T r̄j )/(δ̄0 − δ̄T x̄) ≤ (δT r̄j )/(δ̄0 − δ̄T x̄) ≤ (δT r̄j )/(δ0 − δT x̄). It follows that
1/α′

j (δ̄, δ̄0) ≤ 1/α′
j (δ, δ0), so that δ̄T x ≥ δ̄0 dominates δT x ≥ δ0 on C̄.

Finally, the inequality δ̄T x ≥ δ̄0 might not be a convex combination of the
inequalities (δ1)T x ≥ δ1

0, (δ2)T x ≥ δ2
0, . . . , (δp)T x ≥ δ

p
0 , i.e., we might have v̄S :=∑p

k=1 v̄k �= 1. First we argue that v̄ �= 0p. If v̄ = 0p, then (a) and (b) imply δT x̄ ≥ δ0.
Since δT x ≥ δ0 is an apex-cut for C̄, this cannot be the case, so v̄ �= 0p. Now define
δ′ := δ̄/v̄S and δ′

0 := δ̄0/v̄
S . The inequality (δ′)T x ≥ δ′

0 is a convex combination
of (δ1)T x ≥ δ1

0, (δ2)T x ≥ δ2
0, . . . , (δp)T x ≥ δ

p
0 , and (δ′)T x ≥ δ′

0 is equivalent to
δ̄T x ≥ δ̄0 on C̄, and therefore also dominates δT x ≥ δ0 on C̄. ��

3.2. Simple conic polyhedra and split disjunctions

The intersection cut (3) given in Sect. 2 was derived using a description of a conic poly-
hedron as intersection of half-spaces aT

i. x ≤ bi . Since we do not have a description of C̄

with half-spaces, we now give an alternative derivation using x̄ and the extreme rays r̄ j .
Recall that the intersection cut goes through the intersection points of the disjunction
with the extreme rays of the cone.

Let (π, π1
0 , π2

0 ) ∈ R
n+2 satisfy π1

0 < π2
0 , and suppose πT x̄ ∈]π1

0 , π2
0 [. Given j ∈ J ,

define

ᾱj (π, π1
0 , π2

0 ) :=





−ε1(π, π1
0 )/(πT r̄j ) if πT r̄j < 0,

ε2(π, π2
0 )/(πT r̄j ) if πT r̄j > 0,

+∞ otherwise,
(14)

where ε1(π, π1
0 ) := πT x̄ −π1

0 and ε2(π, π2
0 ) := π2

0 −πT x̄. As mentioned in Sect. 2.1,
ᾱj (π, π1

0 , π2
0 ), for j ∈ J , denotes the smallest value of α ≥ 0 such that x̄ +αr̄j satisfies

the disjunction D(π, π1
0 , π2

0 ) (or ᾱj (π, π1
0 , π2

0 ) = +∞ if this does not happen). The
intersection cut associated with C̄ and D(π, π1

0 , π2
0 ) is given by

(δ(π, π1
0 , π2

0 ))T x ≥ δ0(π, π1
0 , π2

0 ), (15)
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where the vector δ(π, π1
0 , π2

0 ) is one of possibly many solutions to the system

δT r̄j = 1/ᾱj (π, π1
0 , π2

0 ), ∀j ∈ J (16)

and δ0(π, π1
0 , π2

0 ) is defined by δ0(π, π1
0 , π2

0 ) := (δ(π, π1
0 , π2

0 ))T x̄+1. Note that, since
r̄ j , j ∈ J , are linearly independent and the disjunction D(π, π1

0 , π2
0 ) gives an intersec-

tion cut, the equations (16) have a non-zero solution. The inequality (δ(π, π1
0 , π2

0 ))T x ≥
δ0(π, π1

0 , π2
0 ) has the property that, for all j ∈ J satisfying πT r̄j �= 0, the point

x̄ + ᾱj (π, π1
0 , π2

0 )r̄j is on the hyperplane (δ(π, π1
0 , π2

0 ))T x = δ0(π, π1
0 , π2

0 ), i.e., the
hyperplane of the intersection cut goes through all the intersection points of the disjunc-
tion and the cone. Furthermore, we have (δ(π, π1

0 , π2
0 ))T x̄ < δ0(π, π1

0 , π2
0 ), i.e., the

hyperplane cuts off x̄. Also observe that, for a general split disjunction (π, π1
0 , π2

0 ) and
an extreme ray j ∈ J , we have the identity

ᾱj (π, π1
0 , π2

0 ) = α′
j (δ(π, π1

0 , π2
0 ), δ0(π, π1

0 , π2
0 )), (17)

where the scalars α′
j (δ(π, π1

0 , π2
0 ), δ0(π, π1

0 , π2
0 )) are as defined in Sect. 3.1. Given C̄

and D(π, π1
0 , π2

0 ), when |J | < n, the intersection cut is not unique, i.e., the equations
(16) have more than just one solution. There can be many intersection cuts that intersect
the half-lines of the cone at the same points.

The intersection cut is an apex-cut for C̄. Because of Lemma 2, we have

{x ∈ C̄ : (15)} = {x ∈ C̄ : ∃µ ∈ R
|J | s.t. (x, µ) ∈ C̄L,

∑

j∈J
µj/ᾱj (π, π1

0 , π2
0 ) ≥ 1},

where C̄L was defined in Sect. 3.1. The next lemma characterizes Conv (C̄∩FD(π,π1
0 ,π2

0 ))

for general split disjunctions D(π, π1
0 , π2

0 ).

Lemma 4. Let (π, π1
0 , π2

0 ) ∈ R
n+2 be an arbitrary general split disjunction, where

π1
0 < π2

0 .

(i) If πT x̄ /∈]π1
0 , π2

0 [, then Conv (C̄ ∩ FD(π,π1
0 ,π2

0 )) = C̄,

(ii) If πT x̄ ∈]π1
0 , π2

0 [, then Conv (C̄ ∩ FD(π,π1
0 ,π2

0 )) = {x ∈ C̄ : (15)}.

Proof. (i) Assume x̄ ∈ FD(π,π1
0 ,π2

0 ). Wlog suppose πT x̄ ≤ π1
0 . Clearly Conv (C̄ ∩

FD(π,π1
0 ,π2

0 )) ⊆ C̄ since C̄ is convex, so we only need to show the other direction. Let

y ∈ C̄ be arbitrary. We may write y = x̄ + ∑
j∈J sj r̄

j , where sj ≥ 0 for j ∈ J . If

y ∈ FD(π,π1
0 ,π2

0 ), then y ∈ C̄ ∩ FD(π,π1
0 ,π2

0 ) and we are done. If not πT y ∈]π1
0 , π2

0 [.

Define J+ := {j ∈ J : πT r̄j > 0 and sj > 0}. Since πT y ∈]π1
0 , π2

0 [ and πT x̄ ≤ π1
0 ,

we must have J+ �= ∅. Let z+ := ∑
j∈J+sj r̄

j �= 0n, and let z− := ∑
j∈J\J+sj r̄

j . So

πT z+ = ∑
j∈J+sj (π

T r̄j ) > 0. Choose λ ∈]0, 1] to satisfy πT (x̄ + z− + 1
λ
z+) ≥ π2

0 .

Define y1 := x̄+z− + 1
λ
z+ ∈ C̄ and y2 := x̄+z− ∈ C̄. Then y = x̄+z− +z+ = λy1 +

(1 − λ)y2. By the choice of λ, y1 satisfies the disjunction D(π, π1
0 , π2

0 ). Furthermore,
since πT (x̄ + z−) ≤ π1

0 , y2 satisfies the disjunction D(π, π1
0 , π2

0 ). Therefore we have
y1 ∈ C̄ ∩ FD(π,π1

0 ,π2
0 )) and y2 ∈ C̄ ∩ FD(π,π1

0 ,π2
0 )), so that y ∈ Conv (C̄ ∩ FD(π,π1

0 ,π2
0 )).
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(ii) The validity of the intersection cut was proved by Balas [2]. We therefore know
that (15) is valid for Conv (C̄ ∩ FD(π,π1

0 ,π2
0 )). Since C̄ is convex, we have the inclu-

sion Conv (C̄ ∩ FD(π,π1
0 ,π2

0 )) ⊆ {x ∈ C̄ : (15)}. Let y ∈ {x ∈ C̄ : (15)} be arbi-

trary. If y ∈ FD(π,π1
0 ,π2

0 ), we are done, so suppose πT y ∈]π1
0 , π2

0 [. We may write

y = x̄ + ∑
j∈J sj r̄

j , where sj ≥ 0 for j ∈ J . Observe that Lemma 2 applied on the

intersection cut (15) implies that
∑

j∈J sj /ᾱj (π, π1
0 , π2

0 ) ≥ 1.

First assume
∑

j∈J sj /ᾱj (π, π1
0 , π2

0 ) = 1. Define the set J �=0 := {j ∈ J : πT r̄j �=
0} and define the non-negative scalars λj := sj /ᾱj (π, π1

0 , π2
0 ) for j ∈ J �=0. Clearly∑

j∈J �=0λj = 1. Also, let z̄ := ∑
j∈J\J �=0 sj r̄

j . We have y = x̄ + ∑
j∈J sj r̄

j =
x̄+z̄+∑

j∈J �=0 sj r̄
j . This can be re-written as y = ∑

j∈J �=0 λj (x̄+z̄+ᾱj (π, π1
0 , π2

0 )r̄j ).

Now y = ∑
j∈J �=0 λj x̄

j (π, π1
0 , π2

0 ) is a convex combination of the vectors

{x̄j (π, π1
0 , π2

0 )}j∈J , which are defined as x̄j (π, π1
0 , π2

0 ) := x̄+ z̄+ ᾱj (π, π1
0 , π2

0 )r̄j for
j ∈ J . Since all the vectors {x̄j (π, π1

0 , π2
0 )}j∈J satisfy the disjunction D(π, π1

0 , π2
0 ),

this shows y ∈ Conv (C̄ ∩ FD(π,π1
0 ,π2

0 )).

Now suppose
∑

j∈J sj /αj (π, π1
0 , π2

0 ) > 1. Let z be the point on the line between
y and x̄ that satisfies (15) with equality. We have y = x̄ + µ(z − x̄) for some µ > 1.
Also, we know z can be expressed as z = λ1z1 + λ2z2, where z1, z2 ∈ C̄ ∩ FD(π,π1

0 ,π2
0 ),

λ1, λ2 ≥ 0 and λ1 + λ2 = 1. Then y = λ1(x̄ + µ(z1 − x̄)) + λ2(x̄ + µ(z2 − x̄)) ∈
Conv (C̄ ∩ FD(π,π1

0 ,π2
0 )) since x̄ + µ(zi − x̄) ∈ C̄ ∩ FD(π,π1

0 ,π2
0 ) for i = 1, 2. ��

3.3. Polyhedrality of the split closure of a simple conic polyhedron

We now prove that the split closure of a simple conic polyhedron is a polyhedron.
Given a set � ⊆ �n(NI ) of split disjunctions, define SC(C̄, �) := ∩(π,π0)∈�Conv (C̄ ∩
FD(π,π0)). We will prove that SC(C̄, �) is a polyhedron. Wlog assume � satisfies πT x̄ ∈
]π1

0 , π2
0 [ for all (π, π0) ∈ � (Lemma 4).

Observe that every intersection cut is characterized by its intersection points with
the extreme rays of C̄. Furthermore, any two intersection cuts that intersect every ray
at the same point are equivalent. Therefore, we only need to show that the number of
possible intersection points with each extreme ray is finite.

Throughout this section we assume x̄ ∈ Q
n and r̄ j ∈ Z

n for all j ∈ J . This is
equivalent to assuming that the simple conic polyhedron C̄ is rational. Let (π, π0) ∈ �

be an arbitrary split disjunction. For simplicity, let δ(π, π0) and δ0(π, π0) describe
the intersection cut (δ(π, π0))

T x ≥ δ0(π, π0) associated with C̄ and D(π, π0), and
let ᾱj (π, π0), j ∈ J , be the coefficients (14) in the intersection cut. Furthermore, let
ε1(π, π0) and ε2(π, π0) denote the amounts by which x̄ violates the first and second
terms of the disjunction D(π, π0), respectively.

The following is a key lemma, which gives an expression for ᾱj (π, π0) for a dis-
junction D(π, π0) and an extreme ray j ∈ J .

Lemma 5. Let (π, π0) ∈ � and j ∈ J satisfy ᾱj (π, π0) < +∞. Then there exist
integers pj (π, π0), wj(π, π0) and g such that
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(i) ᾱj (π, π0) < 1.

(ii) ᾱj (π, π0) = pj (π,π0)

gwj (π,π0)
, where 0 < pj (π, π0) < g and wj(π, π0) > 0.

Proof. (i) Since r̄ j and π are integers and πT r̄j �= 0, we must have |πT r̄j | ≥ 1. Because
every split disjunction is such that π2

0 − π1
0 = 1, we have ε1(π, π0), ε

2(π, π0) ∈]0, 1[.
Therefore, (14) implies ᾱj (π, π0) < 1.

(ii) Since x̄ is rational, we may write x̄ = (
p1
q1

,
p2
q2

, . . . ,
pn

qn
), where pi ∈ Z and

qi ∈ N for i = 1, 2, . . . , n. Define dk := �n
i=1,i �=kqi for k = 1, 2, . . . , n, and let

g := �n
i=1qi > 0. If πT r̄j < 0, let pj (π, π0) := ∑n

k=1 dkpkπk−gπ0 and wj(π, π0) :=
−πT r̄j > 0. Finally, if πT r̄j > 0, let pj (π, π0) := g + gπ0 − ∑n

k=1 dkpkπk and

wj(π, π0) := πT r̄j > 0. With these choices, (14) implies ᾱj (π, π0) = pj (π,π0)

gwj (π,π0)
. We

also have 0 < pj (π, π0) < g because ε1(π, π0), ε
2(π, π0) ∈]0, 1[. ��

In Lemma 5, we observe that the integer g is independent of the disjunction D(π, π0)

and the extreme ray j ∈ J . The following lemma, which will be used to prove that
SC(C̄, �) is a polyhedron, bounds the number of intersection points the split disjunc-
tions in � can have with half-lines of the form {x̄ + αrj : α ≥ α∗}, where j ∈ J and
α∗ > 0 is arbitrary.

Lemma 6. For any j ∈ J and α∗ > 0, the split disjunctions (π, π0) ∈ � only have a
finite number of intersection points x̄+ᾱj (π, π0)r

j with the half-line {x̄+αrj : α ≥ α∗}.
Proof. We only have to prove that the number of possible values for ᾱj (π, π0) satisfying
ᾱj (π, π0) ≥ α∗ is finite. Therefore let j ∈ J and (π, π0) ∈ � be arbitrary. Wlog assume

ᾱj (π, π0) < ∞, and that α∗ = p∗
gw∗ , where p∗, w∗ ∈ Z, 0 < p∗ < g and w∗ > 0.

From Lemma 5 we have that 0 < α∗ ≤ ᾱj (π, π0) = pj (π,π0)

gwj (π,π0)
< 1. Now, there is

only a finite number of possible values for pj (π, π0), namely the values 1, 2, . . . , (g−1).
Also, for every p ∈ {1, 2, . . . , (g−1)}, a corresponding value w must satisfy 1 >

p
gw

≥
p∗

gw∗ , which means p
g

< w ≤ pw∗
p∗ . ��

We now prove that SC(C̄, �) is a polyhedron. The proof is by induction on |J |. First
consider the case of |J | = 1 (basic step).

Lemma 7. Suppose |J | = 1. Then there exists (π∗, π∗
0 ) ∈ � such that SC(C̄, �) =

{x ∈ C̄ : (δ(π∗, π∗
0 ))T x ≥ δ0(π

∗, π∗
0 )}.

Proof. We may assume that J = {1}. We have C̄ = {x ∈ R
n : x = x̄ + αr̄1, α ≥ 0}.

First suppose there exists (π∗, π∗
0 ) ∈ � such that (π∗)T r̄1 = 0. This implies that the

intersection cut associated with (π∗, π∗
0 ) cuts off the entire ray C̄.

Now supposeπT r̄1 �= 0 for all (π, π0) ∈ �. Defineα∗
1 := sup{ᾱ1(π, π0) : (π, π0) ∈

�}. Then we have SC(C̄, �) = {x ∈ R
n : x = x̄ + αr̄1, α ≥ α∗

1}. Hence the only ques-
tion is whether the supremum is achieved by some (π, π0) ∈ �.

Let (π ′, π ′
0) ∈ � be arbitrary, and let p′ := p(π ′, π ′

0) and w′ = w(π ′, π ′
0) be as in

Lemma 5. For every integer p satisfying 0 < p < g there are only a finite number of
integers w > 0 for which p

wg
>

p′
w′g , namely integers w > 0 satisfying w <

pw′
p′ . Since
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there are also only a finite number of integers p satisfying 0 < p < g, there are only a
finite number of possible integers p and w such that 0 < p < g and w > 0 for which
p
wg

>
p′

w′g . Hence the supremum is achieved. ��
We now discuss the induction hypothesis. Given j ∈ J , let

C̄j := x̄ + Cone ({r̄k}k∈J\{j}),

and let SC(C̄j , �) := ∩(π,π0)∈�Conv (C̄j ∩ FD(π,π0)). The induction hypothesis is that
there exists a finite set �j ⊆ � of split disjunctions such that

SC(C̄j , �) = {x ∈ C̄j : (δ(π, π0))
T x ≥ δ0(π, π0) for all (π, π0) ∈ �j },

i.e., SC(C̄j , �) is the set of points in C̄j satisfying the intersection cuts associated with
C̄j and split disjunctions (π, π0) in �j . Furthermore, for (π, π0) ∈ �j , δ(π, π0) is a
solution to the system

δT r̄k = 1/ᾱk(π, π0), ∀k ∈ J \ {j}, (18)

and δ0(π, π0) := (δ(π, π0))
T x̄ + 1. Let (π, π0) ∈ �j be arbitrary. Since the equations

in (18) are a subset of those in (16), we can choose δ(π, π0) to be a solution to (16)
such that it automatically satisfies (18). In other words, we can choose an intersection
cut associated with C̄j and (π, π0) which is also an intersection cut associated with C̄

and (π, π0). We now prove that SC(C̄, �) is a polyhedron.

Lemma 8. SC(C̄, �) is a polyhedron.

Proof. For each j ∈ J , define α∗
j := min{ᾱj (π, π0) : (π, π0) ∈ �j } > 0. The scalar

α∗
j is such that x̄ + α∗

j r̄j is the intersection point on the half-line x̄ + αr̄j , α ≥ 0, which

is closest to x̄ over all disjunctions (π, π0) in �j .
Let �̄ := ∪j∈J �j , and let SC(C̄, �̄) := ∩(π,π0)∈�̄ Conv (C̄ ∩ FD(π,π0)) denote the

approximation to SC(C̄, �) obtained by considering the finite set of split disjunctions
in �̄.

Consider a split disjunction (π ′, π ′
0) ∈ � \ �̄. We will show that, if ᾱj (π

′, π ′
0) <

α∗
j for some j ∈ J , then the intersection cut (δ(π ′, π ′

0))
T x ≥ δ0(π

′, π ′
0) is valid for

SC(C̄, �̄). This will mean that it is only necessary to consider split disjunctions in �\�̄

satisfying ᾱj (π, π0) ≥ α∗
j for all j ∈ J . Since, for every extreme ray j ∈ J and split dis-

junction (π, π0) ∈ � \ �̄, there is only a finite number of possible values for ᾱj (π, π0)

satisfying ᾱj (π, π0) ≥ α∗
j (Lemma 6), and since intersection cuts that intersect every

extreme ray of C̄ at the same points are equivalent, this shows that it is sufficient to
consider a finite number of disjunctions in � \ �̄ to get SC(C̄, �) from SC(C̄, �̄). It
then follows that SC(C̄, �) is a polyhedron.

Therefore assume (π ′, π ′
0) ∈ � \ �̄ and j ∈ J satisfies ᾱj (π

′, π ′
0) < α∗

j . Because

(δ(π ′, π ′
0))

T x ≥ δ0(π
′, π ′

0) is an intersection cut associated with C̄ and (π ′, π ′
0), it is

a positive apex-cut for C̄ and C̄j . Since C̄j ⊆ C̄, we have SC(C̄j , �) ⊆ SC(C̄, �),
which implies (δ(π ′, π ′

0))
T x ≥ δ0(π

′, π ′
0) is valid for SC(C̄j , �). By Lemma 3 there

exists an inequality (δ′)T x ≥ δ′
0 that dominates (δ(π ′, π ′

0))
T x ≥ δ0(π

′, π ′
0) on C̄j and
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can be expressed as a convex combination of the inequalities (δ(π, π0))
T x ≥ δ0(π, π0)

for (π, π0) ∈ �j . Assume δ′ = ∑
(π,π0)∈�j δ(π, π0)λ(π,π0) and δ′

0 = ∑
(π,π0)∈�j

δ0(π, π0)λ(π,π0), where
∑

(π,π0)∈�j λ(π,π0) = 1 and λ(π,π0) ≥ 0 for all (π, π0) ∈ �j .
To finish the proof, it suffices to show that (δ′)T x ≥δ′

0 also dominates (δ(π ′, π ′
0))

T x ≥
δ0(π

′, π ′
0) on C̄. Because (δ′)T x ≥ δ′

0 dominates (δ(π ′, π ′
0))

T x ≥ δ0(π
′, π ′

0) on C̄j ,
by the notation introduced in (13) we know 1/α′

i (δ
′, δ′

0) ≤ 1/α′
i (δ(π

′, π ′
0), δ0(π

′, π ′
0))

for i ∈ J \ {j}. We only need to verify 1/α′
j (δ

′, δ′
0) ≤ 1/α′

j (δ(π
′, π ′

0), δ0(π
′, π ′

0)).

By definition of δ0(π, π0), δ0(π, π0) − (δ(π, π0))
T x̄ = 1 for all (π, π0) ∈ �j .

By (16) and the choice of α∗
j , we have δ0(π, π0) − (δ(π, π0))

T x̄ ≥ α∗
j (δ(π, π0))

T r̄j .

This implies
∑

(π,π0)∈�j λ(π,π0)(δ0(π, π0) − (δ(π, π0))
T x̄) ≥ α∗

j

∑
(π,π0)∈�j λ(π,π0)

(δ(π, π0))
T r̄j . Furthermore, we have the identities

(a) δ′
0 − (δ′)T x̄ = ∑

(π,π0)∈�j λ(π,π0) (δ0(π, π0) − (δ(π, π0))
T x̄) and

(b) (δ′)T r̄j = ∑
(π,π0)∈�j λ(π,π0) (δ(π, π0))

T r̄j .

From (a), (b) and (13) it follows that α∗
j ≤ α′

j (δ
′, δ′

0). The choice of α∗
j and (17)

imply α′
j (δ(π

′, π ′
0), δ0(π

′, π ′
0)) < α∗

j , so that α′
j (δ(π

′, π ′
0), δ0(π

′, π ′
0)) < α′

j (δ
′, δ′

0).

Hence 1/α′
j (δ

′, δ′
0) < 1/α′

j (δ(π
′, π ′

0), δ0(π
′, π ′

0)), which shows (δ′)T x ≥ δ′
0 dominates

(δ(π ′, π ′
0))

T x ≥ δ0(π
′, π ′

0) on C̄. ��

3.4. Conic polyhedra and split disjunctions

In this section we generalize the results of Sect. 3.2 and Sect. 3.3 to conic polyhedra
of the form P(B) of Sect. 2.1, where B ∈ B∗

r . Throughout this section B denotes an
element of B∗

r . We mention in Sect. 2.1 that P(B) can be written as P(B) = x̄(B) +
L(B) + Cone ({ri(B)}i∈B). Observe that the set P ′(B) := x̄(B) + Cone ({ri(B)}i∈B)

is a simple conic polyhedron.
We start by providing a link between the sets Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )) and

Conv (P ′(B) ∩ FD(π,π1
0 ,π2

0 )) for a general split disjunction D(π, π1
0 , π2

0 ):

Lemma 9. Let (π, π1
0 , π2

0 ) be a general split disjunction, where π1
0 < π2

0 .

(i) If the linear function πT x is not constant on the affine space x̄(B) + L(B), then
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )) = P(B).

(ii) If the linear function πT x is constant on the affine space x̄(B) + L(B), then
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )) = L(B) + Conv (P ′(B) ∩ FD(π,π1

0 ,π2
0 )).

Proof. (i) Let x1, x2 ∈ x̄(B)+L(B) satisfy πT x1 �= πT x2, and let l := x1−x2 ∈ L(B).
We have πT l �= 0. Let x′ be a point in P(B) satisfying πT x′ ∈]π1

0 , π2
0 [. The line x′+αl,

α ∈ R, is contained in P(B). Since πT l �= 0, the point x′ can be expressed as a convex
combination of two points on this line that satisfy the disjunction D(π, π1

0 , π2
0 ).

(ii) Now suppose πT x is constant on x̄(B) + L(B). This implies πT l = 0 for all
l ∈ L(B). Given a positive integer k, define �k := {λ ∈ R

k : λ ≥ 0k,
∑k

j=1 λj = 1}.
We have
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y ∈ L(B) + Conv (P ′(B) ∩ FD(π,π1
0 ,π2

0 ))

�
∃x′ ∈ Conv (P ′(B) ∩ FD(π,π1

0 ,π2
0 )), l ∈ L(B) : y = x′ + l

�
∃k ≥ 1, λ ∈ �k, {xj }kj=1 ⊆ P ′(B) ∩ FD(π,π1

0 ,π2
0 ), l ∈ L(B) : y =

∑k

j=1
(xj + l)λj

�
∃k ≥ 1, λ ∈ �k, {yj }kj=1 ⊆ P(B) ∩ FD(π,π1

0 ,π2
0 ) : y =

∑k

j=1
yjλj

�
y ∈ Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )). ��

Combining Lemma 9 with Lemma 4 in Sect. 3.2 gives Lemma 1 in Sect. 2.1.

Corollary 2. Lemma 1 holds.

Proof. (i) If πT x is not constant on x̄(B) + L(B), we are done (Lemma 9(i)). So
we assume πT x is constant on x̄(B) + L(B). Let x′ ∈ x̄(B) + L(B) satisfy x′ ∈
FD(π,π1

0 ,π2
0 ). Since x′ ∈ FD(π,π1

0 ,π2
0 ), we know x̄(B) + L(B) ⊆ FD(π,π1

0 ,π2
0 ). In partic-

ular x̄(B) ∈ FD(π,π1
0 ,π2

0 ). Now, since P ′(B) is a simple conic polyhedron, Lemma 4(i)

gives Conv (P ′(B)∩FD(π,π1
0 ,π2

0 )) = P ′(B). Combining this fact with Lemma 9(ii) gives
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )) = P(B).

(ii) Suppose πT x ∈]π1
0 , π2

0 [ for every x ∈ x̄(B) + L(B). Then πT x is constant on
x̄(B) + L(B), and πT l = 0 holds for all l ∈ L(B). In fact, if L(B) = {0}, the result
is obvious; otherwise, L(B) is a linear space, and we must have πT l = 0 to avoid that
x + αl satisfies the disjunction for some α ∈ R.

Now suppose (δ(π, π0))
T l �= 0 for some l ∈ L(B). Let x′ ∈ P(B) ∩ FD(π,π1

0 ,π2
0 )

be arbitrary, and let l′ ∈ L(B) satisfy (δ(π, π0))
T l′ < 0. The point x′ + αl′ is in

P(B) ∩ FD(π,π1
0 ,π2

0 ) and violates the inequality (δ(π, π0))
T x ≥ δ0(π, π0) for α > 0

sufficiently large. Hence (δ(π, π0))
T l = 0 for all l ∈ L(B).

Since P ′(B) is a simple conic polyhedron, Lemma 4(ii) gives Conv (P ′(B) ∩
FD(π,π1

0 ,π2
0 )) = {x ∈ P ′(B) : (15)}. Combining this with Lemma 9(ii) gives the identity

Conv (P (B)∩FD(π,π1
0 ,π2

0 )) = L(B)+{x ∈ P ′(B) : (15)}. Finally, since (δ(π, π0))
T l =

0 for all l ∈ L(B), we get {x ∈ P ′(B) : (15)} + L(B) = {x ∈ P ′(B) + L(B) : (15)} =
{x ∈ P(B) : (15)}. ��

By combining Lemma 8 and Lemma 9 we can prove

Corollary 3. SC(B) is a polyhedron.

Proof. Let �n
V (NI ) := {(π, π0) ∈ �n(NI ) : πT x ∈]π0, π0 + 1[, ∀x ∈ x̄(B) + L(B)}

denote the set of violated split disjunctions for P(B). The split closure of P(B) is given
by SC(B) = ∩(π,π0)∈�n

V (NI )Conv (P (B) ∩ FD(π,π0)). Using Lemma 9 gives SC(B) =
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L(B) + ∩(π,π0)∈�n
V (NI ) Conv (P ′(B) ∩ FD(π,π0)). Since P ′(B) is a simple conic poly-

hedron, Lemma 8 implies that ∩(π,π0)∈�n
V (NI )Conv (P ′(B) ∩ FD(π,π0)) is a polyhedron.

��

Given B ′ ∈ B∗
k , where 0 < k < r , and a general split disjunction D(π, π1

0 , π2
0 )

satisfying πT y ∈]π1
0 , π2

0 [, ∀y ∈ x̄(B ′) + L(B ′), an intersection cut can be derived
from B ′ and D(π, π1

0 , π2
0 ). A question is how the intersection cut derived from B ′ and

D(π, π1
0 , π2

0 ) relates to intersection cuts derived from D(π, π1
0 , π2

0 ) and sets B ∈ B∗
r .

The next lemma shows that the intersection cut derived from B ′ and D(π, π1
0 , π2

0 ) is
equivalent to any intersection cut derived from D(π, π1

0 , π2
0 ) and any B ∈ B∗

r satisfying
B ′ ⊂ B, i.e., the size of B ′ is not important.

Lemma 10. Let B ′ ∈ B∗
k , where 0 < k < r , satisfy πT y ∈]π1

0 , π2
0 [ for all y ∈

x̄(B ′) + L(B ′) and Conv (P (B ′) ∩ FD(π,π1
0 ,π2

0 )) = {x ∈ P(B ′) : δT x ≥ δ0}. Then

Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )) = {x ∈ P(B) : δT x ≥ δ0} for any B ∈ B∗
r satisfying

B ⊃ B ′.

Proof. Let B ′ and B be as stated. Wlog we assume that B and B ′ only differ in one
element, i.e., B = B ′ ∪ {q}, where q ∈ M \ B ′. Using the notation in Sect. 2.1, we can
choose rj (B) = rj (B ′) for j ∈ B ′ and x̄(B) = x̄(B ′). This implies αj (π, π1

0 , π2
0 , B) =

αj (π, π1
0 , π2

0 , B ′) for j ∈ B ′, i.e., the intersection cut associated with B only differs
from the intersection cut associated with B ′ in the coefficient corresponding to q. For
simplicity, let αj := αj (π, π1

0 , π2
0 , B) for j ∈ B and α′

j := αj (π, π1
0 , π2

0 , B ′) for
j ∈ B ′.

By assumption {x ∈ P(B ′) : δT x ≥ δ0} = Conv (P (B ′) ∩ FD(π,π1
0 ,π2

0 )). Now

P(B) ⊆ P(B ′), so Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )) ⊆ Conv (P (B ′) ∩ FD(π,π1
0 ,π2

0 )). This

implies that the inequality δT x ≥ δ0 is valid for Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )). Therefore,

Conv (P (B) ∩ FD(π,π1
0 ,π2

0 )) ⊆ {x ∈ P(B) : δT x ≥ δ0}.
For the other direction suppose y ∈ {x ∈ P(B) : δT x ≥ δ0}. Since P(B) ⊆ P(B ′)

and y ∈ P(B), we have y ∈ P(B ′). Also, since δT y ≥ δ0 and y ∈ P(B ′), we have y ∈
Conv (P (B ′) ∩ FD(π,π1

0 ,π2
0 )). This implies that y satisfies the intersection cut associated

with B ′ and D(π, π1
0 , π2

0 ), i.e., the inequality
∑

i∈B ′(bi − aT
i. y)/α′

i ≥ 1 holds. Finally,
using the facts aT

q.y ≤ bq , αj = α′
j for j ∈ B ′ and αq ≥ 0 gives

∑
i∈B(bi−aT

i. y)/αi ≥ 1,

i.e., y satisfies the intersection cut associated with B and D(π, π1
0 , π2

0 ). From Lemma
1 it follows that y ∈ Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )). ��

4. Split closure characterization

In this section we give a geometric argument for the validity of Theorem 1.As mentioned
in Sect. 2 this leads to a characterization of the split closure in terms of intersection cuts
(Corollary 1).

Throughout this section D(π, π1
0 , π2

0 ) denotes a general split disjunction, where
π ∈ R

n and π1
0 < π2

0 . The following notation will be convenient. Define P1 :=
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P ∩ {x ∈ R
n : πT x ≤ π1

0 } and P2 := P ∩ {x ∈ R
n : πT x ≥ π2

0 } to be the two sub-
sets of P that satisfy the disjunction D(π, π1

0 , π2
0 ). Furthermore, given B ∈ B∗

r , define
P1(B) := P(B) ∩ {x ∈ R

n : πT x ≤ π1
0 } and P2(B) := P(B) ∩ {x ∈ R

n : πT x ≥ π2
0 }.

The following inclusion is easy to prove.

Lemma 11.

Conv (P1 ∪ P2) ⊆
⋂

B∈B∗
r

Conv (P1(B) ∪ P2(B)). (19)

Proof. Let B ∈ B∗
r . Clearly P1 ∪ P2 ⊆ P1(B) ∪ P2(B). Convexifying both sides gives

Conv (P1 ∪ P2) ⊆ Conv (P1(B) ∪ P2(B)). Since this holds for all B ∈ B∗
r , the result

follows. ��
The remainder of this section is divided into two parts. The focus is on proving the

other inclusion Conv (P1 ∪ P2) ⊇ ⋂
B∈B∗

r
Conv (P1(B) ∪ P2(B)). In Sect. 4.1 we con-

sider the main case that P , P1 and P2 are all full-dimensional. In Sect. 4.2 all remaining
cases are considered.

4.1. Main case: P1, P2 and P full-dimensional

In this section we assume that the sets P , P1 and P2 are full-dimensional. We will show
that every facet defining inequality for Conv (P1 ∪P2) is valid for ∩B∈B∗

r
Conv (P1(B)∪

P2(B)). This will show the direction Conv (P1 ∪ P2) ⊇ ∩B∈B∗
r
Conv (P1(B) ∪ P2(B)).

Let δT x ≤ δ0 be an arbitrary facet defining inequality for Conv (P1 ∪ P2). Because
∩B∈B∗

r
Conv (P1(B) ∪ P2(B)) ⊆ P , we can assume that δT x ≤ δ0 is not valid for P .

To show δT x ≤ δ0 is valid for ∩B∈B∗
r
Conv (P1(B)∪P2(B)), it suffices to prove that

there exists B̄ ∈ B∗
r such that δT x ≤ δ0 is valid for Conv (P1(B̄)∪P2(B̄)). In particular,

we prove the stronger fact that there exists B̄ ∈ B∗
r such that Conv (P1(B̄) ∪ P2(B̄)) =

{x ∈ P(B̄) : δT x ≤ δ0}, i.e., δT x ≤ δ0 can be obtained as an intersection cut. Lemma
10 implies that it suffices to find B̄ in B∗

k , where 0 < k < r , such that Conv (P1(B̄) ∪
P2(B̄)) = {x ∈ P(B̄) : δT x ≤ δ0}.

Let F := {x ∈ Conv (P1 ∪ P2) : δT x = δ0} be the facet of Conv (P1 ∪ P2) defined
by δT x ≤ δ0. Furthermore, let F1 := F ∩ P1 and F2 := F ∩ P2. The assumptions that
P1 and P2 are non-empty and δT x ≤ δ0 is not valid for P imply F1 �= ∅ and F2 �= ∅.
We now give some basic properties of the sets F , F1 and F2 that we derived from the
general split disjunction D(π, π1

0 , π2
0 ).

Lemma 12. (i) F = Conv (F1 ∪ F2).
(ii) For k ∈ {1, 2} we have Fk ⊆ {x ∈ R

n : πT x = πk
0 }, i.e., Fk is contained in the

hyperplane πT x = πk
0 .

Proof. (i) is trivial, so we only prove (ii). Wlog let k = 1. Assume there exists x1 ∈ F1
satisfying πT x1 < π1

0 . Note that δT x1 = δ0. Since δT x ≤ δ0 is not valid for P , there
exists x2 ∈ P \ (P1 ∪ P2) such that δT x2 > δ0. Let z(λ) := x1λ + (1 − λ)x2, where
λ ∈ [0, 1]. Observe that δT z(λ) > δ0 and z(λ) ∈ P for all λ ∈]0, 1]. By choosing
λ sufficiently close to zero, we have πT z(λ) < π1

0 and δT z(λ) > δ0. For such a λ,
z(λ) ∈ P1 and δT z(λ) > δ0. This contradicts the validity of δT x ≤ δ0 for P1. ��
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Let k ∈ {1, 2} be arbitrary. Observe that, since δT x ≤ δ0 is valid for Pk and Fk =
{x ∈ Pk : δT x = δ0}, Fk is a face of Pk . Let dk be the dimension of the face Fk of
Pk . We have Fk = Pk ∩ Aff (Fk), where Aff (Fk) denotes the affine hull of Fk . The set
B̄ satisfying Conv (P1(B̄) ∪ P2(B̄)) = {x ∈ P(B̄) : δT x ≤ δ0} that we are about to
construct is obtained from constraints of P that can be used to describe Aff (F1) and
Aff (F2). The following crucial lemma provides the constraints for the set B̄.

Lemma 13. For k ∈ {1, 2}, there exists Bk ∈ B∗
n−dk−1 such that

(i) Aff (Fk) = {x ∈ R
n : aT

i. x = bi, ∀i ∈ Bk, πT x = πk
0 }, i.e., Aff (Fk) is the

intersection of the hyperplanes πT x = πk
0 and aT

i. x = bi for i ∈ Bk .
(ii) There exist ū0 > 0 and ūi ≥ 0 for i ∈ B1 such that δ = ū0π + ∑

i∈B1
ūiai. and

δ0 = ū0π
1
0 + ∑

i∈B1
ūibi .

(iii) There exist v̄0 > 0 and v̄i ≥ 0 for i ∈ B2 such that δ = ∑
i∈B2

v̄iai. − v̄0π and

δ0 = ∑
i∈B2

v̄ibi − v̄0π
2
0 .

Proof. Wlog let k = 1. Consider the linear program (PLP)

max δT x

s.t. aT
i. x ≤ bi, ∀i ∈ M, (ui) (20)

πT x ≤ π1
0 , (u0) (21)

the problem of maximizing δT x over P1. Since δT x ≤ δ0 is valid for P1, and F1 is the
set of points in P1 satisfying δT x = δ0, F1 is the set of optimal solutions to (PLP ). The
dual of (PLP ) is the problem (DLP) given by

min uT b + π1
0 u0

s.t.
∑

i∈M

ai.ui + πu0 = δ, (x) (22)

u ≥ 0m, (23)

u0 ≥ 0. (24)

Let x̄ be an optimal basic feasible solution to (PLP ), and let (ū, ū0) be a corre-
sponding optimal basic feasible solution to (DLP). Since the optimal objective value
to (DLP) is δ0, we have δ0 = bT ū + π1

0 ū0.
If ū0 = 0, then

∑
i∈M ai.ūi = δ and

∑
i∈M biūi = δ0, which implies that δT x ≤ δ0

is valid for P since ū ≥ 0m which contradicts our assumption. Hence we must have
ū0 > 0, which means that u0 is basic.

Let B̃1 := {i ∈ M : ui basic}. Since the variables {ui}i∈B̃1
∪ {u0} are all basic, the

vectors {ai.}i∈B̃1
∪ {π} are linearly independent.

Let M=
1 := {i ∈ M : aT

i. x = bi, ∀x ∈ F1} denote the constraints of P satisfied
at equality by all points in F1. We will prove by contradiction that if i ∈ M \ M=

1
then ūi = 0. Suppose there exists k ∈ M \ M=

1 satisfying ūk > 0. Consider an inner
point xI of F1, i.e., xI satisfies πT xI = π1

0 , aT
i. x

I = bi for i ∈ M=
1 and aT

i. x
I < bi for

i ∈ M\M=
1 . Since δ = ∑

i∈M ai.ūi+πū0, we have δT xI = ∑
i∈M aT

i. x
I ūi+πT xI ū0 <
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∑
i∈M biūi +π1

0 ū0 = δ0, which contradicts δT x = δ0 for all x ∈ F1. Therefore we have
ūi = 0 for all i ∈ M \ M=

1 .
By choosing a maximal subset B1 of M=

1 such that B1 ⊇ B̃1 ∩ M=
1 and the vectors

{π} ∪ {ai.}i∈B1
are linearly independent, (i) and (ii) are satisfied. This proves (ii). The

proof of (iii) is similar to the proof of (ii). ��
Let B1 and B2 be as in Lemma 13, and define B̄ := B1 ∪ B2. We will show that

the vectors {ai.}i∈B̄ are linearly independent (Lemma 16) and Conv (P1(B̄)∪P2(B̄)) =
{x ∈ P(B̄) : δT x ≤ δ0} (Lemma 19). This will finish the proof of Theorem 1 for the
main case. For k = 1, 2, define Ak := {x ∈ R

n : aT
i. x = bi, ∀i ∈ Bk} to be the affine

space defined by Bk . First, we prove the following lemma that describes how points
in A1 and A2 are positioned relative to the hyperplanes πT x = π1

0 , πT x = π2
0 and

δT x = δ0.

Lemma 14. For x1 ∈ A1 and x2 ∈ A2,

(i) πT x1 < π1
0 ⇐⇒ δT x1 < δ0,

πT x1 = π1
0 ⇐⇒ δT x1 = δ0 and

πT x1 > π1
0 ⇐⇒ δT x1 > δ0.

(ii) πT x2 > π2
0 ⇐⇒ δT x2 < δ0,

πT x2 = π2
0 ⇐⇒ δT x2 = δ0 and

πT x2 < π2
0 ⇐⇒ δT x2 > δ0.

Proof. By symmetry we only need to prove (i). Let x1 ∈ A1, and let {ūi}i∈B1
and ū0 > 0

be as in Lemma 13. Since aT
i. x = bi for all x ∈ A1,

∑
i∈B1

ūia
T
i. x is a constant on A1

that is equal to c := ∑
i∈B1

ūibi . We conclude from Lemma 13 that δ0 = c + ū0π
1
0 and

δT x = c + ū0π
T x for all x ∈ A1.

Now we have δT x1 < δ0 ⇐⇒ ū0π
T x1 + c < δ0 ⇐⇒ πT x1 < π1

0 . Also, we
have δT x1 = δ0 ⇐⇒ ū0π

T x1 + c = δ0 ⇐⇒ πT x1 = π1
0 . ��

Now, we show that, if B1 and B2 are as in Lemma 13, then the vectors {ai.}i∈B1∪B2

are linearly independent. We will show r(B1 ∪ B2) = |B1| + |B2|. Observe that this is
equivalent to showing that the set L(B1)∩L(B2) is of dimension n−|B1|− |B2|, where
L(Bk) := {x ∈ R

n : aT
i. x = 0, ∀i ∈ Bk} for k = 1, 2 are as defined in Sect. 2.1.

Lemma 15. The setL(B1)∩L(B2)∩{x ∈ R
n : πT x = 0} is of dimensionn−|B1|−|B2|.

Proof. Let Aff (F1) = L1 + y1 and Aff (F2) = L2 + y2, where y1 ∈ Aff (F1), y2 ∈
Aff (F2), and L1 and L2 are the linear spaces parallel to Aff (F1) and Aff (F2) respec-
tively. Observe that L(B1) ∩ L(B2) ∩ {x ∈ R

n : πT x = 0} = L1 ∩ L2. Hence we need
to show dim(L1 ∩ L2) = n − |B1| − |B2|.

Let {xj }nj=1 ⊆ F1 ∪ F2 be affinely independent and chosen such that the first d1 + 1

points are in F1, i.e., Aff ({xj }d1+1
j=1 ) = Aff (F1). Necessarily, the remaining (n − d1 − 1)

points are in F2, i.e., {xj }nj=d1+2 ⊆ F2. Define S1 := Aff ({xj }nj=d1+2) − y2. We have
dim(S1) = n− d1 − 2. Furthermore, since S1 ⊆ L2 and dim(S1) = n− d1 − 2, we have
d2 ≥ n − d1 − 2. Observe that n − |B1| − |B2| = d2 − (n − d1 − 2) ≥ 0.
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First suppose d2 − (n−d1 −2) = 0. Then L2 = S1. Since Aff ({xj }d1+1
j=1 )−y1 = L1,

the vectors in L1 are linearly independent from those in L2 = S1, so that L1∩L2 = {0n}.
Therefore, dim(L1 ∩ L2) = 0 = d2 − (n − d1 − 2) = n − |B1| − |B2|.

Now suppose d2 − (n − d1 − 2) > 0. Let dr
2 := d2 − (n − d1 − 2). Choose

dr
2 vectors {zj }d

r
2

j=1 from L2 \ S1 such that they, together with S1, span L2. Define

S2 := Span({zj }d
r
2

j=1). By construction, we have L2 = S1 + S2 and S1 ∩ S2 = {0n}.
Furthermore we have S1 ∩ L1 = {0n}. From this it follows that L1 ∩ L2 = S2, so that
dim(L1 ∩ L2) = dr

2 = n − |B1| − |B2|. ��
By combining Lemma 14 and Lemma 15 we get

Lemma 16. Let B1 and B2 be as in Lemma 13. Then

(i) B1 ∩ B2 = ∅,
(ii) The vectors {ai.}i∈B1∪B2

are linearly independent.

Proof. Lemma 14(i) implies that every solution to the system aT
i. x = 0, i ∈ B1 satisfy-

ing πT x̄ �= 0 is either in the set {x ∈ R
n : πT x < 0, δT x < 0} or in the set {x ∈ R

n :
πT x > 0, δT x > 0}. Furthermore, Lemma 14(ii) implies every solution to the system
aT
i. x = 0, i ∈ B2 satisfying πT x̄ �= 0 is either in the set {x ∈ R

n : πT x > 0, δT x < 0}
or in the set {x ∈ R

n : πT x < 0, δT x > 0}.
From this we see that every solution to the system aT

i. x = 0, i ∈ B1 ∪B2 must satisfy
πT x = 0. This implies L(B1) ∩ L(B2) = L(B1) ∩ L(B2) ∩ {x ∈ R

n : πT x = 0}. By
applying Lemma 15 we get that L(B1) ∩ L(B2) is of dimension n − |B1| − |B2|. Since
the description of L(B1) ∩ L(B2) involves |B1| + |B2| constraints, this implies both (i)
and (ii). ��

In the remainder of this section we show Conv (P1(B̄) ∪ P2(B̄)) = {x ∈ P(B̄) :
δT x ≤ δ0}, where B̄ := B1 ∪ B2. The following lemma shows the first inclusion.

Lemma 17. Let B1 and B2 be as in Lemma 13, and let B̄ := B1 ∪ B2. Then δT x ≤ δ0
is valid for Conv (P1(B̄) ∪ P2(B̄)).

Proof. We will show that δT x ≤ δ0 is valid for both P1(B1) and P2(B2). Since P1(B̄) ⊆
P1(B1) and P2(B̄) ⊆ P2(B2), this implies that δT x ≤ δ0 is valid for Conv (P1(B̄) ∪
P2(B̄)). Wlog we only show that δT x ≤ δ0 is valid for P1(B1).

Recall that P1(B1) = {x ∈ R
n : aT

i. x ≤ bi, i ∈ B1, π
T x ≤ π1

0 }. We now derive a
representation of P1(B1) in terms of extreme points and extreme rays. Let x̄ be a solution
to the systemπT x = π1

0 andaT
i. x = bi for all i ∈ B1.Also, for j ∈ B1, let r̄ j be a solution

to the system aT
i. x = 0, ∀i ∈ B1 \{j}, aT

j.x = −1 and πT x = 0. Finally, let r̄π be a solu-

tion to the system aT
i. x = 0, ∀i ∈ B1, and πT x = −1. We have P1(B1) = x̄ +Lπ(B1)+

Cone ({r̄ j }j∈B1
∪ {r̄π }), where Lπ(B1) := {x ∈ R

n : aT
i. x = 0, ∀i ∈ B1, πT x = 0}.

Observe that x̄ + Lπ(B1) ⊆ A1 (where A1 := {x ∈ R
n : aT

i. x = bi, ∀i ∈ B1} as
defined earlier). Furthermore πT x = π1

0 for every x ∈ x̄ + Lπ(B1), which implies that
δT x = δ0 for all x ∈ x̄ + Lπ(B1) (Lemma 14(i)). By using the scalars from Lemma
13(ii), we get δT r̄j = −ūj ≤ 0 for all j ∈ B1 and δT r̄π = −ū0 < 0. Since all the
extreme rays r̄ j of P1(B1) are such that δT r̄j ≤ 0 and δT x̄ = δ0, we have that δT x ≤ δ0
is valid for P1(B1). ��
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Lemma 17 proves Conv (P1(B̄) ∪ P2(B̄)) ⊆ {x ∈ P(B̄) : δT x ≤ δ0}, where
B̄ = B1 ∪ B2, i.e., that δT x ≤ δ0 is valid for Conv (P1(B̄) ∪ P2(B̄)). Combining this
result with Lemma 10 and Lemma 11 finishes the proof of Theorem 1 for the main
case. The remainder of this section is devoted to proving Conv (P1(B̄) ∪ P2(B̄)) ⊇
{x ∈ P(B̄) : δT x ≤ δ0}. To simplify notation, let x̄ := x̄(B̄) and r̄ j := rj (B̄) for j ∈ B̄

(see Sect. 2.1). First we prove some basic properties of P(B̄).

Lemma 18. Let B̄ = B1 ∪ B2, where B1 and B2 are as in Lemma 13.

(i) πT x ∈]π1
0 , π2

0 [ for all x ∈ A1 ∩ A2 = x̄ + L(B̄).
(ii) πT r̄j ≥ 0 for all j ∈ B1.

(iii) πT r̄j ≤ 0 for all j ∈ B2.

Proof. (i) The proof is by contradiction. Let y ∈ x̄ +L(B̄) and wlog assume πT y ≤ π1
0 .

Since y ∈ A1, Lemma 14(i), implies δT y ≤ δ0. However, since y ∈ A2 and πT y ≤
π1

0 < π2
0 , Lemma 14(ii) implies δT y > δ0, which is a contradiction.

(ii)–(iii) We only prove (ii). We know P(B1) = A1 + Cone ({r̄ j }j∈B1
). Let j ∈ B1,

and assume πT r̄j < 0 for a contradiction. We have x̄ + αr̄j ∈ A2 and x̄ + αr̄j ∈
P(B̄) ⊆ P(B1) for every α ≥ 0. Let ᾱ > 0 satisfy πT (x̄ + ᾱr̄j ) = π1

0 . Lemma 14(ii)
gives δT (x̄ + ᾱr̄j ) > δ0. This contradicts the validity of δT x ≤ δ0 for P1(B1). ��

Lemma 18(i) states that an intersection cut can be derived from D(π, π1
0 , π2

0 ) and
B̄ (Lemma 1). Lemma 18(ii) states that rays associated with elements of B1 point in
the direction of satisfaction of the term πT x ≥ π2

0 of the disjunction D(π, π1
0 , π2

0 ),
and Lemma 18(iii) states that rays associated with elements of B2 point in the opposite
direction.

To simplify notation, let ᾱj := αj (π, π1
0 , π2

0 , B̄) denote the coefficient in the inter-
section cut associated with B̄ and D(π, π1

0 , π2
0 ) for j ∈ B̄. We are now able to prove

Conv (P1(B̄) ∪ P2(B̄)) = {x ∈ P(B̄) : δT x ≤ δ0}.
Lemma 19. Let B̄ = B1 ∪ B2, where B1 and B2 are as in Lemma 13. Then

(i) ᾱj = (δ0 − δT x̄)/δT r̄j for j ∈ B̄ satisfying δT r̄j �= 0.
(ii) Conv (P1(B̄) ∪ P2(B̄)) = {x ∈ P(B̄) : δT x ≤ δ0}.

Proof. (i) Let j ∈ B̄ satisfy πT r̄j �= 0. Wlog assume πT r̄j > 0, so j ∈ B1 (Lemma
18(ii)). Choose ᾱj such that πT (x̄ + ᾱj r̄

j ) = π2
0 . Since x̄ + ᾱj r̄

j ∈ A2, we have
δT (x̄+ ᾱj r̄

j ) = δ0 (Lemma 14(ii)). Solving for ᾱj gives (i). Notice that, since δT x̄ > δ0
(Lemma 18(i) and Lemma 14), we have δT r̄j < 0.

(ii) We already proved Conv (P1(B̄) ∪ P2(B̄)) ⊆ {x ∈ P(B̄) : δT x ≤ δ0} (Lemma
17). Now suppose that y ∈ P(B̄) satisfies δT y ≤ δ0. Since y ∈ P(B̄), we may write
y = x′ + ∑

j∈B̄ r̄j s
y
j , where s

y
j ≥ 0 for j ∈ B̄ denotes the slack in the j th con-

straint, i.e., s
y
j = bj − aT

j.y, and x′ ∈ x̄ + L(B̄). Multiplying with δ on both sides and

deducting δ0 gives δT y − δ0 = ∑
j∈B̄ δT r̄j s

y
j + δT x′ − δ0. Since δT y ≤ δ0, we have

0 ≥ ∑
j∈B̄ δT r̄j s

y
j + δT x′ − δ0. Dividing with δT x′ − δ0 > 0 on both sides gives

∑
j∈B̄

s
y
j (δT r̄j )/(δ0 − δT x′) ≥ 1.

Observe that Lemma 18(i) and the fact that x̄ + L(B̄) = A1 ∩ A2 is affine implies
the linear function πT x is constant on x̄ + L(B̄). Now, using Lemma 14, this implies
the linear function δT x is constant on x̄ + L(B̄). Therefore δT x′ = δT x̄.
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Now using (i) we get
∑

j∈B̄ s
y
j /ᾱj ≥ 1. Hence y satisfies the intersection cut associ-

ated with B̄ and the disjunction D(π, π1
0 , π2

0 ), which implies y ∈ Conv (P1(B̄)∪P2(B̄)).
��

4.2. Reduction to the main case

In this section, we consider the remaining cases, i.e., when P or P1 or P2 is not full-
dimensional. We distinguish between three cases, namely 1) One of the sets is empty 2)
P is full-dimensional and 3) P is not full-dimensional. First we prove Theorem 1 when
P is empty.

Lemma 20. Theorem 1 holds when P is empty.

Proof. If P is empty, Conv (P ∩ FD(π,π1
0 ,π2

0 )) = ∅. We know ∩B∈B∗
r
P (B) = P . Since

P(B) is convex, ∩B∈B∗
r
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )) ⊆ ∩B∈B∗

r
P (B) = ∅. ��

From now on we consider the cases in which P is not empty. Next we consider the
case where one of the sets P1 and P2 is empty. Wlog assume P2 is empty.

Lemma 21. Theorem 1 holds when P2 is empty.

Proof. Since P2 = ∅, Conv (P1 ∪ P2) = P1 = P ∩ {x : πT x ≤ π1
0 }. Hence πT x ≤ π1

0
is valid for Conv (P1 ∪ P2). Furthermore, it is the only inequality needed to describe
Conv (P1 ∪P2) besides the constraints of P . We just need to show that it can be obtained
from a set B ∈ B∗

r . Consider the linear program z := max{πT x : x ∈ P }. We have
z < π2

0 . By the linear programming duality theorem, there exists B ∈ B∗
r that satis-

fies π = ∑
i∈B yiai., z = ∑

i∈B yibi. and yi ≥ 0 for i ∈ B. Any x ∈ P(B) satisfies
πT x = ∑

i∈B yia
T
i. x ≤ ∑

i∈B yibi. = z. Therefore, P(B) ∩ {x : πT x ≥ π2
0 } = ∅ and

Conv (P1(B) ∪ P2(B)) = P1(B) for this particular B. ��

Next we consider the case where P is full-dimensional.

Lemma 22. Theorem 1 holds when P is full-dimensional.

Proof. Because of Lemma 21, we can assume P1 and P2 are not empty. Choose ε > 0
such that π1

0 + ε < π2
0 − ε. Let P ε

1 := P ∩ {x ∈ R
n : πT x ≤ π1

0 + ε} and P ε
2 :=

P ∩{x ∈ R
n : πT x ≥ π2

0 −ε}. Similarly, given a set B ∈ B∗
r , let P ε

1 (B) := P(B)∩{x ∈
R

n : πT x ≤ π1
0 + ε} and P ε

2 (B) := P(B) ∩ {x ∈ R
n : πT x ≥ π2

0 − ε}.
Now we prove P ε

1 and P ε
2 are full-dimensional by showing that P ε

1 and P ε
2 have

interior points. Let y1 ∈ P1 �= ∅, let y2 be an interior point of P and let y(λ) :=
λy1 + (1 − λ)y2, where λ ∈ [0, 1]. Because y2 is an interior point of P , y(λ) is in
the interior of P for all λ ∈ [0, 1[. Choose λ̄ ∈]0, 1[ sufficiently close to one such
that πT y(λ̄) < π1

0 + ε. We have y(λ̄) is an interior point of P ε
1 . This shows P ε

1 is a
full-dimensional polyhedron. A similar proof applies to P ε

2 .



Split closure and intersection cuts 481

Since P ε
1 and P ε

2 are full-dimensional closed sets in R
n, we have.

⋂

B∈B∗
r

Conv (P1(B) ∪ P2(B))

=
⋂

B∈B∗
r

limε→0+Conv (P ε
1 (B) ∪ P ε

2 (B))

= limε→0+
⋂

B∈B∗
r

Conv (P ε
1 (B) ∪ P ε

2 (B))

= limε→0+Conv (P ε
1 ∪ P ε

2 )

= Conv (P1 ∪ P2). ��

In the remainder of this section assume P �= ∅ and P is not full-dimensional. Let
dP := dim(Aff (P )) < n denote the dimension of P and let M= := {i ∈ M : aT

i. x =
bi, ∀x ∈ P } denote the constraints of P satisfied with equality by all points in P . Since
dim(P ) = dP , there exists B= ∈ B∗

n−dP
such that Aff (P ) = {x ∈ R

n : aT
i. x = bi, i ∈

B=}. Let L denote the linear space parallel to Aff (P ), i.e., L := Aff (P ) − xP , where
xP ∈ P .

The idea of the proof is to add a linear space L̄ to P in such a way that P ′ := P + L̄

is full-dimensional. The space L̄ is described in the following lemma.

Lemma 23. Let Lπ := {x ∈ R
n : πT x = 0}. We may write

Lπ = (Lπ ∩ L) + L̄,

where dim(Lπ ∩ L) = dP − 1, dim(L̄) = n − dP , L ∩ L̄ = {0n} and L + L̄ = R
n.

Proof. Clearly dim(Lπ ∩ L) = dP − 1 or dim(Lπ ∩ L) = dP . If dim(Lπ ∩ L) = dP

we have π ∈ Span({ai.}i∈B=). This implies the function πT x is constant on P , which
means that one (or both) of the sets P1 and P2 is empty. Since we have assumed this not
to be the case, we have dim(Lπ ∩ L) = dP − 1.

Let {bi}n−1
i=1 be a basis for Lπ chosen such that {bi}dP −1

i=1 ⊆ Lπ ∩ L. Define L̄ :=
Span({bi}n−1

i=dP
). By constructionLπ = (Lπ∩L)+L̄, dim(L̄) = n−dP andL∩L̄ = {0n}.

To prove L + L̄ = R
n, observe that Lπ = (Lπ ∩ L) + L̄ ⊆ L + L̄. We cannot have

x ∈ Lπ for all x ∈ L, since that would imply that πT x is constant on P . ��

Observe that the fact L+ L̄ = R
n implies that P ′ := P + L̄ is full-dimensional (we

have Aff (P ′) = Aff (P )+ L̄ = xP +L+ L̄ = R
n). Also observe that the set L̄ has been

constructed as a subspace of Lπ and therefore that πT l̄ = 0 for all l̄ ∈ L̄. We now relate
the sets P and P ′ and the sets Conv (P ∩ F(π,π1

0 ,π2
0 )) and Conv (P ′ ∩ F(π,π1

0 ,π2
0 )).

Lemma 24. (i) P ′ ∩ Aff (P ) = P .
(ii) Conv (P ′ ∩ F(π,π1

0 ,π2
0 )) = Conv (P ∩ F(π,π1

0 ,π2
0 )) + L̄.

Proof. (ii) follows easily from the facts that P ′ = P + L̄ and πT l̄ = 0 for all l̄ ∈ L̄,
so we only prove (i). Since P ⊆ P ′ and P ⊆ Aff (P ), we have P ⊆ P ′ ∩ Aff (P ). Let
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ȳ ∈ P ′ ∩ Aff (P ). Since ȳ ∈ P ′, we have ȳ = z + l̄, where z ∈ P and l̄ ∈ L̄. Also, since
ȳ ∈ Aff (P ) we have ȳ = xP + l, where l ∈ L. This implies (ȳ − xP ) = (z − xP ) + l̄.
Since (ȳ − xP ), (z − xP ) ∈ L, we have (ȳ − xP ) − (z − xP ) ∈ L ∩ L̄. Hence
(ȳ − xP ) − (z − xP ) = 0n, or, ȳ = z ∈ P , which proves that P ′ ∩ Aff (P ) ⊆ P . ��

We now give a description of P ′ with constraints. The description is based on the
constraints of P , and an affine mapping Ãf : R

n �→ R
n with the following properties.

Lemma 25. There exist D̃ ∈ R
n×n and d̃ ∈ R

n such that the affine mapping Ãf (x) :=
D̃x + d̃ and the corresponding linear mapping L̃f (x) := D̃x satisfy

(i) Ãf (x) = 0n for all x ∈ Aff (P ), i.e., Ãf maps Aff (P ) to the set {0n}.
(ii) L̃f (x) = 0n for all x ∈ L, i.e., L̃f maps L to the set {0n}.

(iii) For x, l̄ ∈ R
n, l̄ = Ãf (x) ⇐⇒ l̄ ∈ L̄ and (x − l̄) ∈ Aff (P ).

(iv) For x, l̄ ∈ R
n, l̄ = L̃f (x) ⇐⇒ l̄ ∈ L̄ and (x − l̄) ∈ L.

Proof. Since L̄ is a vector space, there exist linearly independent vectors {b̄k}k∈I , where
I := {1, 2, . . . , dP }, such that L̄ = {l̄ ∈ R

n : (b̄k)T l̄ = 0, ∀k ∈ I }. Notice that the
vectors {b̄k}k∈I define a basis for L̄⊥, and that the vectors {ai.}i∈B= define a basis for
L⊥. Since L + L̄ = R

n and L ∩ L̄ = {0n}, it follows that L⊥ + L̄⊥ = R
n, so that the

vectors {b̄k}k∈I ∪ {ai.}i∈B= are linearly independent. Now we have:

l̄ ∈ L̄ and (x − l̄) ∈ Aff (P ) ⇐⇒ (25)

l̄ ∈ L̄ and aT
i. (x − l̄) = bi, ∀i ∈ B= ⇐⇒ (26)

aT
i. (x − l̄) = bi, ∀i ∈ B= and (b̄k)T l̄ = 0, ∀k ∈ I ⇐⇒ (27)

l̄ = D̃x + d̃, (28)

where D̃ is the inverse matrix of [ai.|b̄k]T . Observe that (28) expresses l̄ as a linear
function of x. Next it is an easy exercise to verify the correctness of (i)-(iv). ��

We now have the following description of P ′ with constraints

Lemma 26. Let Ãf be as in Lemma 25. Then

P ′ = {x ∈ R
n : aT

i. x ≤ bi + aT
i. Ãf (x), ∀i ∈ M \ M=}.

Proof. We have x ∈ P ′ ⇐⇒ ∃l̄ ∈ L̄ such that aT
i. (x − l̄) ≤ bi, ∀i ∈ M \ M=, and

aT
i. (x − l̄) = bi, ∀i ∈ B= ⇐⇒ (by Lemma 25(iii)) ∃l̄ ∈ L̄ such that aT

i. (x − l̄) ≤
bi, ∀i ∈ M \ M=, and l̄ = Ãf (x) ⇐⇒ aT

i. x ≤ bi + aT
i. Ãf (x), ∀i ∈ M \ M=. ��

Lemma 26 shows that P ′ has one constraint for each element of M \ M=. Let r ′
denote the rank of the corresponding coefficient matrix, i.e., r ′ is the size of a maximal
subset B ′ of M \ M= such that the vectors {aT

i. (In − D̃)}i∈B ′ are linearly independent
(In denotes the n-by-n identity matrix). Furthermore let B′∗

r ′ denote the set of all such
subsets.

It is easy to see that, if the vectors {aT
i. (In −D̃)}i∈B ′ are linearly independent, then so

are the vectors {ai.}i∈B ′ . Specifically, if the vectors {ai.}i∈B ′ are linearly dependent, then
one of them can be expressed as a linear combination of the rest. However, that would
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mean that the corresponding vector in {aT
i. (In − D̃)}i∈B ′ is a linear combination of the

remaining vectors in {aT
i. (In − D̃)}i∈B ′ , which contradicts their linear independence.

We know that P is not full-dimensional, but that P ′ is full-dimensional, where
P ′ := P +L̄ and L̄ is the linear space described by Lemma 23. Similarly, P(B ′) ∩ Aff (P )

is not full-dimensional for any B ′ ∈ B′∗
r ′ , but we can also add L̄ to it to get a full-dimen-

sional conic polyhedron. Given a set B ′ ∈ B′∗
r ′ , define P ′(B ′) := {x ∈ R

n : aT
i. x ≤

bi + aT
i. Ãf (x), ∀i ∈ B ′}. P ′(B ′) denotes the conic polyhedron for P ′ associated with

B ′. We now relate the set P ′(B ′) to P(B ′) for B ′ ∈ B′∗
r ′ .

Lemma 27. Let B ′ ∈ B′∗
r ′ . Then

P ′(B ′) = P(B ′) ∩ Aff (P ) + L̄

Proof. Using Lemma 25(iii) we get x ∈ P ′(B ′) ⇐⇒ aT
i. (x − l̄) ≤ bi , ∀i ∈ B ′,

aT
i. (x − l̄) = bi , ∀i ∈ B=, l̄ ∈ L̄ and l̄ = Ãf (x) ⇐⇒ x = y + l̄, where y ∈

P(B ′) ∩ Aff (P ), l̄ ∈ L̄ and l̄ = Ãf (x) ⇐⇒ x ∈ P(B ′) ∩ Aff (P ) + L̄. ��
Next we show that it is possible to find a representation of the conic polyhedron

P ′(B ′) such that the extreme point x̄ is in Aff (P ), and the extreme rays {rk}k∈B ′ are all
in L.

Lemma 28. Let B ′ ∈ B′∗
r ′ . There exist vectors x̄ ∈ Aff (P ) and {rk}k∈B ′ ⊆ L such that

P ′(B ′) = x̄ + L′(B ′) + Cone ({rk}k∈B ′),

where L′(B ′) := {x ∈ R
n : aT

i. x = aT
i. L̃f (x), ∀i ∈ B ′}, i.e., L′(B ′) := {x ∈ R

n :
aT
i. (x − D̃x) = 0, ∀i ∈ B ′}. The vector x̄ satisfies aT

i. x̄ = bi for all i ∈ B ′ ∪ B=.
Furthermore given k ∈ B ′, the vector rk satisfies

(i) aT
i. r

k = 0, ∀i ∈ (B ′ ∪ B=) \ {k} and
(ii) aT

k.r
k = −1.

Proof. Since P ′(B ′) is a conic polyhedron we may write (see Sect. 2.1)

P ′(B ′) = ȳ + L′(B ′) + Cone ({sk}k∈B ′)

where the vectors ȳ and {sk}k∈B ′ are as follows. The vector ȳ satisfies aT
i. ȳ = bi +

aT
i. Ãf (ȳ) for all i ∈ B ′. Given k ∈ B ′, the vector sk satisfies aT

i. s
k = aT

i. L̃f (sk), ∀i ∈
B ′ \ {k} and aT

k.s
k = aT

k.L̃f (sk) − 1.
Define l̄ := Ãf (ȳ), and define the vector x̄ := ȳ − l̄. From Lemma 25(iii) we have

x̄ ∈ Aff (P ) and l̄ ∈ L̄. Since x̄ ∈ Aff (P ) Lemma 25(i) implies Ãf (x̄) = 0n. Further-
more, for i ∈ B ′, we have aT

i. x̄ = aT
i. ȳ − aT

i. l̄ = bi + aT
i. Ãf (ȳ) − aT

i. l̄ = bi . Also, since
x̄ ∈ Aff (P ), we have aT

i. x̄ = bi for all i ∈ B=. Finally, since Ãf (x̄) = 0n, we have
aT
i. x̄ = bi + aT

i. Ãf (x̄), ∀i ∈ B ′. Hence we can use x̄ as an extreme point for P ′(B ′),
x̄ ∈ Aff (P ) and aT

i. x̄ = bi for all i ∈ B ′ ∪ B=.
We now define the vectors rk for k ∈ B ′. Let k ∈ B ′ be arbitrary, and consider the

vector sk defined above. Let l̄ := L̃f (sk) and define rk as rk := sk − l̄. From Lemma
25(iv) we have rk ∈ L. Moreover, since rk ∈ L, Lemma 25(ii) implies L̃f (rk) = 0n.
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Also, for i ∈ B ′ \ {k}, we have aT
i. r

k = aT
i. s

k −aT
i. l̄ = aT

i. (L̃f (sk)− l̄) = 0, and aT
k.r

k =
aT
k.s

k − aT
k.l̄ = aT

k.(L̃f (sk) − l̄) − 1 = −1. Since rk ∈ L we have aT
i. r

k = 0, ∀i ∈ B=.
Finally, since L̃f (rk) = 0n, aT

i. r
k = L̃f (rk), ∀i ∈ B ′ \ {k} and aT

k.r
k = aT

k.L̃f (rk) − 1.
Hence we can use rk as an extreme ray for P ′(B ′), rk ∈ L and rk satisfies (i) and (ii). ��

The choice of extreme point and extreme rays in Lemma 28 implies the following
facts about the set P(B ′ ∪ B) and the conic polyhedron P(B ′).

Lemma 29. Let B ′ ∈ B′∗
r ′ and let the vectors x̄ ∈ Aff (P ) and {rk}k∈B ′ ⊆ L be as in

Lemma 28.

(i) The vectors {ai.}i∈B ′∪B= are linearly independent, i.e., P(B ′ ∪ B) is a conic poly-
hedron.

(ii) P(B ′) = x̄ + L(B ′) + Cone ({rk}k∈B ′), where L(B ′) is given by L(B ′) = {x ∈
R

n : aT
i. x = 0, ∀i ∈ B ′}.

(iii) P(B ′) ∩ Aff (P ) = x̄ + L(B ′ ∪ B=) + Cone ({rk}k∈B ′), where L(B ′ ∪ B=) =
L ∩ L(B ′).

Proof. (ii) and (iii) follow from the properties of the vectors x̄ and {rk}k∈B ′ , so we only
prove (i). Let k ∈ B ′ ∪ B=, and assume ak. = ∑

i∈(B ′∪B=)\{k} µiai., where µi ∈ R for

i ∈ (B ′ ∪B=)\{k}. From multiplying this equality by x̄ and using the fact that aT
i. x̄ = bi

for all i ∈ B ′ ∪ B=, we have bk = ∑
i∈(B ′∪B=)\{k} µibi . For any ī ∈ B ′ \ {k} we have

0 = aT
k.r

ī = ∑
i∈(B ′∪B=)\{k} µia

T
i. r

ī = −µī . Hence µi = 0 for all i ∈ B ′ \ {k}. Assume
by contradiction that k ∈ B ′. Then ak. = ∑

i∈B= µiai. and bk = ∑
i∈B= µibi . This

implies k ∈ M=, which contradicts B ′ ⊆ M \ M=. Therefore we can assume k ∈ B=.
The equality ak. = ∑

i∈B=\{k} µiai. contradicts the fact that B= ∈ B∗
n−dP

(B= is defined
before Lemma 23). ��

Lemma 29(ii)-(iii) gives that both sets P(B ′) and P(B ′) ∩ Aff (P ) can be gener-
ated from the vectors x̄ and {rk}k∈B ′ of Lemma 28. The following lemma describes the
disjunctive hull associated with a set B ′ ∈ B′∗

r ′ and D(π, π1
0 , π2

0 ).

Lemma 30. Let B ′ ∈ B′∗
r ′ .

(i) πT x ∈]π1
0 , π2

0 [, ∀x ∈ x̄ + L′(B ′) ⇐⇒ πT x ∈]π1
0 , π2

0 [, ∀x ∈ x̄ + L(B ′ ∪ B=),
i.e., an intersection cut can be derived from P(B ′∪B=) if and only if an intersection
cut can be derived from P ′(B ′).

(ii) Conv (P ′(B ′) ∩ FD(π,π1
0 ,π2

0 )) = Conv (P (B ′ ∪ B=) ∩ FD(π,π1
0 ,π2

0 )) ∩ Aff (P ) + L̄.

Proof. (i) We first prove that x̄ + L(B ′ ∪ B=) ⊆ x̄ + L′(B ′)

y ∈ x̄ + L(B ′ ∪ B=) ⇒ (Lemma 28)

aT
i. y = bi, ∀i ∈ B= ∪ B ′ ⇒

y ∈ Aff (P ) and aT
i. y = bi, ∀i ∈ B ′ ⇒ (Lemma 25(i))

Ãf (y) = 0n and aT
i. y = bi + aT

i. Ãf (y), ∀i ∈ B ′ ⇒
y ∈ x̄ + L′(B ′)

This shows πT x ∈]π1
0 , π2

0 [, ∀x ∈ x̄+L′(B ′) ⇒ πT x ∈]π1
0 , π2

0 [, ∀x ∈ x̄+L(B ′ ∪B=).
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For the other direction, suppose y ∈ x̄ + L′(B ′) and πT y /∈]π1
0 , π2

0 [. We will show
that this implies there exists z ∈ x̄ + L(B ′ ∪ B=) satisfying πT z /∈]π1

0 , π2
0 [. Define

l̄ := Ãf (y). From Lemma 25(iii), we have l̄ ∈ L̄ and z := y − l̄ ∈ Aff (P ). This implies
aT
i. z = bi, ∀i ∈ B= ∪ B ′, i.e., z ∈ x̄ + L(B ′ ∪ B=). Since πT l̄ = 0 (Lemma 23), we

have πT z = πT (y − l̄) = πT y /∈]π1
0 , π2

0 [. This finishes the proof of (i).
(ii) We may assume πT y ∈]π1

0 , π2
0 [ for all y ∈ x̄+L′(B ′), since otherwise statement

(ii) reduces to P ′(B ′) = P(B ′) ∩ Aff (P ) + L̄ (Lemma 27).
From Lemma 28 and 29 it follows that the intersection cut associated withP(B ′∪B=)

and D(π, π1
0 , π2

0 ) is given by

∑

k∈B ′
(bk − aT

k.x)/αk ≥ 1 (29)

for points x ∈ Aff (P ), where

αk :=





−ε1/(πT rk) if πT rk < 0,

ε2/(πT rk) if πT rk > 0,

+∞ otherwise,
(30)

for k ∈ B ′, ε1 := πT x̄ − π1
0 and ε2 := π2

0 − πT x̄ (see the definition in (2)). Similarly
the intersection cut associated with P ′(B ′) and D(π, π1

0 , π2
0 ) is given by

∑

k∈B ′
(bk + aT

k.Ãf (x) − aT
k.x)/αk ≥ 1. (31)

Now suppose x ∈ Conv (P ′(B ′) ∩ FD(π,π1
0 ,π2

0 )). Since x ∈ P ′(B ′), Lemma 27

shows that we may write x = y + l̄, where y ∈ P(B ′) ∩ Aff (P ), l̄ := Ãf (x) and l̄ ∈ L̄.
From the fact that x satisfies the intersection cut (31) associated with P ′(B ′), we have∑

k∈B ′(bk + aT
k.Ãf (x) − aT

k.x)/αk ≥ 1. Because l̄ = Ãf (x), x satisfies
∑

k∈B ′(bk +
aT
k.l̄ − aT

k.x)/αk ≥ 1, it follows that
∑

k∈B ′(bk − aT
k.y)/αk ≥ 1, i.e., y satisfies the

intersection cut (29) associated with P(B ′ ∩ B=).
Finally suppose x ∈ Conv (P (B ′ ∪ B=) ∩ FD(π,π1

0 ,π2
0 )) ∩ Aff (P ) + L̄. Write

x = y + l̄, where y ∈ Conv (P (B ′ ∪ B=) ∩ FD(π,π1
0 ,π2

0 )) ∩ Aff (P ) and l̄ ∈ L̄. Since

y = x − l̄ ∈ Conv (P (B ′ ∪B=)∩FD(π,π1
0 ,π2

0 ))∩Aff (P ) and l̄ ∈ L̄, we have l̄ = Ãf (x).

From the fact that y satisfies the intersection cut (29) associated with P(B ′ ∪ B=) and
D(π, π1

0 , π2
0 ) it follows that x satisfies the intersection cut (31) associated with P ′(B ′)

and D(π, π1
0 , π2

0 ). ��

We are now able to finish the proof of Theorem 1.

Lemma 31. Theorem 1 holds when P , P1 and P2 are non-empty and not full-dimen-
sional.

Proof. Let B ′ ∈ B′∗
r ′ be arbitrary. We first prove that Conv (P (B̄) ∩ FD(π,π1

0 ,π2
0 )) ⊆

Conv (P (B ′ ∪ B=) ∩ FD(π,π1
0 ,π2

0 )). We distinguish two cases:
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(a) If πT y ∈]π1
0 , π2

0 [ for all y ∈ x̄ + L(B ′ ∪ B=):
An intersection cut δ̄T x ≥ δ̄0 can be derived from B ′ ∪ B= and D(π, π1

0 , π2
0 ). The

inequality δ̄T x ≥ δ̄0 is also an intersection cut for B̄ and D(π, π1
0 , π2

0 ) for any
B̄ ∈ B∗

r satisfying B̄ ⊇ B ′ ∪ B= (Lemma 10). Furthermore we have Conv (P (B̄) ∩
FD(π,π1

0 ,π2
0 )) ⊆ Conv (P (B ′ ∪ B=) ∩ FD(π,π1

0 ,π2
0 )).

(b) If πT y ∈]π1
0 , π2

0 [ for some y ∈ x̄ + L(B ′ ∪ B=):
Conv (P (B ′ ∪ B=) ∩ FD(π,π1

0 ,π2
0 )) = P(B ′ ∪ B=). Also P(B ′ ∪ B=) ⊇ P(B̄) ⊇

Conv (P (B̄) ∩ FD(π,π1
0 ,π2

0 )) for all B̄ ∈ B∗
r satisfying B̄ ⊇ B ′ ∪ B=.

Therefore for any B ′ ∈ B′∗
r ′ there exists B̄ ∈ B∗

r s.t. Conv (P (B̄) ∩ FD(π,π1
0 ,π2

0 )) ⊆
Conv (P (B ′ ∪ B=) ∩ FD(π,π1

0 ,π2
0 )). Hence we can choose B̄∗

r ⊆ B∗
r such that

∩B ′∈B′∗
r′

Conv (P (B ′ ∪ B=) ∩FD(π,π1
0 ,π2

0 )) ⊇ ∩B̄∈B̄∗
r
Conv (P (B̄) ∩ FD(π,π1

0 ,π2
0 )).

Since B̄∗
r is a subset of B∗

r , we have the inclusion

∩B ′∈B′∗
r′

Conv (P (B ′ ∪ B=) ∩ FD(π,π1
0 ,π2

0 )) ⊇ ∩B∈B∗
r
Conv (P (B) ∩ FD(π,π1

0 ,π2
0 )).

Using the fact that P ′ is full-dimensional, Lemma 22 gives the identity
Conv (P ′ ∩ FD(π,π1

0 ,π2
0 )) = ∩B ′∈B′∗

r′
Conv (P ′(B ′) ∩FD(π,π1

0 ,π2
0 )). Also Lemma 24(ii)

states Conv (P ′∩FD(π,π1
0 ,π2

0 )) = Conv (P ∩FD(π,π1
0 ,π2

0 ))+L̄. This implies that Conv (P ∩
FD(π,π1

0 ,π2
0 )) + L̄ = ∩B ′∈B′∗

r′
Conv (P ′(B ′) ∩FD(π,π1

0 ,π2
0 )). Using Lemma 30(ii) gives

that L̄ + Aff (P ) ∩ (∩B ′∈B′∗
r′

Conv (P (B ′ ∪ B=) ∩FD(π,π1
0 ,π2

0 ))) = L̄ + Conv (P ∩
FD(π,π1

0 ,π2
0 )). Since ∩B ′∈B′∗

r′
Conv (P (B ′ ∪ B=) ∩FD(π,π1

0 ,π2
0 )) ⊇ ∩B∈B∗

r
Conv (P (B)

∩FD(π,π1
0 ,π2

0 )) and ∩B∈B∗
r
Conv (P (B) ∩FD(π,π1

0 ,π2
0 )) ⊆ P ⊆ Aff (P ) we have L̄ +

Conv (P∩FD(π,π1
0 ,π2

0 )) ⊇ L̄+∩B∈B∗
r
Conv (P (B)∩FD(π,π1

0 ,π2
0 )). This implies Conv (P∩

FD(π,π1
0 ,π2

0 )) ⊇ ∩B∈B∗
r
Conv (P (B) ∩FD(π,π1

0 ,π2
0 )) (by intersecting with Aff (P ) on both

sides). Lemma 11 shows the other direction. ��

5. Disjunctive hulls derived from polyhedra and two-term disjunctions

We now consider two-term disjunctions D of the form D1x ≤ d1∨ D2x ≤ d2, where
D1 ∈ R

m1×n, D2 ∈ R
m2×n, d1 ∈ R

m1 and d2 ∈ R
m2 . The set of points x ∈ R

n that
satisfy D is denoted FD . In this section, we will prove a decomposition result for the
set Conv (P ∩ FD) (Theorem 3). The result states that Conv (P ∩ FD) can be written
as the intersection of sets Conv (P (T ) ∩ FD) over sets T ∈ C∗

1 , where C∗
1 is a family

of (r + 1)-subsets of the constraints and r is the rank of the constraint matrix A. Fur-
thermore, when r = n, we show that it suffices to consider r-subsets of the constraints.
Finally, we demonstrate how this result can be strengthened to obtain Theorem 1 for the
split disjunctions D(π, π1

0 , π2
0 ).

We start by proving the following decomposition result on two-term disjunctions.

Theorem 4. Let S ⊆ M . If S satisfies |S| ≥ r(S) + 2, then

Conv (P (S) ∩ FD) = ∩i∈S Conv (P (S \ {i}) ∩ FD). (32)

Furthermore, (32) remains true if r(S) = n and |S| = n + 1. ��
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The following inclusion is obvious since Conv (P (S)∩FD) ⊆Conv (P (S \ {i}) ∩ FD).

Lemma 32. Let S ⊆ M be non-empty.

Conv (P (S) ∩ FD) ⊆ ∩i∈S Conv (P (S \ {i}) ∩ FD). (33)

��
However, the proof of the other inclusion involves the idea introduced by Balas [3] of lift-
ing the set Conv (P (S)∩FD) into a higher dimensional space. Specifically, Conv (P (S)∩
FD) can be described as the projection of the set, described by the constraints (34)−(40),
onto the space of x-variables (see [3]).

x = x1 + x2, (34)

aT
i. x

1 ≤ biλ
1, ∀i ∈ S, (35)

aT
i. x

2 ≤ biλ
2, ∀i ∈ S, (36)

λ1 + λ2 = 1, (37)

D1x1 ≤ d1λ1, (38)

D2x2 ≤ d2λ2, (39)

λ1, λ2 ≥ 0. (40)

The description (34)–(40) can be projected into (x, x1, λ1)-space by using constraints
(34) and (37). By doing this, we obtain the following characterization of Conv (P (S) ∩
FD).

−λ1bi + aT
i. x

1 ≤ 0, ∀i ∈ S,

λ1bi − aT
i. x

1 ≤ bi − aT
i. x, ∀i ∈ S,

λ1 ≤ 1,

−λ1d1 + D1x1 ≤ 0m1 ,

λ1d2 − D2x1 ≤ d2 − D2x,

−λ1 ≤ 0.

The problem of deciding whether a given vectorx ∈ R
n belongs to the set Conv (P (S)

∩FD) can be decided by solving the following Phase I linear program called PLP (x, S),
where the variables are x1, λ1 and s.

max −s

−λ1bi + aT
i. x

1 ≤ 0, ∀i ∈ S, (ui) (41)

λ1bi − aT
i. x

1 ≤ bi − aT
i. x, ∀i ∈ S, (vi) (42)

λ1 ≤ 1, (w0) (43)

−λ1d1 + D1x1 − s1m1 ≤ 0m1 , (u0) (44)

λ1d2 − D2x1 − s1m2 ≤ d2 − D2x, (v0) (45)

−λ1 ≤ 0. (t0) (46)

−s ≤ 0. (t1) (47)
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Observe that PLP (x, S) is feasible if and only if x ∈ P(S). Furthermore PLP (x, S)

is always bounded above by zero. Finally note that x ∈ Conv (P (S) ∩ FD) if and only
if PLP (x, S) is feasible and bounded, and there exists an optimal solution in which the
variable s has the value zero.

Note that, in the remainder of this section, we will make extensive use of the dual
DLP (x, S) of PLP (x, S). The name of the dual variable associated with each constraint
in PLP (x, S) is given next to the constraints in (41)− (47). To prove the other direction
of (32), we use the problem PLP (x, S) and its dual DLP (x, S). Specifically we use
these problems on sets S ⊆ M satisfying |S| ≥ 2 and points x ∈ P(S). Observe that the
condition x ∈ ∩i∈SConv (P (S \ {i}) ∩ FD), where |S| ≥ 2, implies x ∈ P(S).

Throughout this section x̄ denotes some element of P(S). Let (x̄1, λ̄1, s̄) denote an
optimal basic feasible solution to PLP (x̄, S), and let (ū, v̄, ū0, v̄0, w̄0, t̄0, t̄1) denote a
corresponding optimal basic feasible solution to DLP (x̄, S). Observe that the solutions
to PLP (x̄, S) and DLP (x̄, S) depend on the values of x̄ and S, i.e., when we write ūi ,
say, we mean ūi (x̄, S), where the values of x̄ and S should be clear from the context.

We now formulate the dual DLP (x̄, S) of PLP (x̄, S). The formulation uses the fol-
lowing quantities. Given u0 ≥ 0m1 and scalars ui ≥ 0 for i ∈ S, define α1(S, u, u0) :=∑

i∈Suiai.+ (D1)T u0 and β1(S, u, u0) := ∑
i∈Suibi + (d1)T u0. Observe that the

inequality (α1(S, u, u0))T x ≤ β1(S, u, u0) is valid for the set {x ∈ P(S) : D1x ≤ d1}.
Similarly, given v0 ≥ 0m2 and scalars vi ≥ 0 for i ∈ S, defining the quantities
α2(S, v, v0) := ∑

i∈Sviai. + (D2)T v0 and β2(S, v, v0) := ∑
i∈Svibi + (d2)T v0, gives

the inequality (α2(S, v, v0))T x ≤ β2(S, v, v0), which is valid for {x ∈ P(S) : D2x ≤
d2}. With these quantities the dual DLP (x̄, S) of PLP (x̄, S) can be formulated as follows.

min β2(S, v, v0) − (α2(S, v, v0))T x̄ + w0

s.t. α1(S, u, u0) − α2(S, v, v0) = 0, (x1) (48)

β2(S, v, v0) − β1(S, u, u0) + w0 − t0 = 0, (λ1) (49)

1T
m1

u0 + 1T
m2

v0 + t1 = 1, (s) (50)

u0 ≥ 0m1 , (51)

v0 ≥ 0m2 , (52)

w0, t0, t1 ≥ 0, (53)

ui, vi ≥ 0, ∀i ∈ S. (54)

By our previous observation, PLP (x, S) is feasible if and only if x ∈ P(S). We now
characterize the optimal solution (ū, v̄, ū0, v̄0, w̄0, t̄0, t̄1) to DLP (x̄, S) for sets S ⊆ M

and points x̄ ∈ P(S). First we consider the variables u0 and v0.

Lemma 33. Let S ⊆ M be non-empty. Suppose x̄ ∈ P(S) \ Conv (P (S) ∩ FD). Then
ū0 �= 0m1 and v̄0 �= 0m2 .

Proof. Let S and x̄ be as stated, and suppose firstly that v̄0 = 0m2 . By the definition
of α2(S, v, v0) and β2(S, v, v0), the inequality (α2(S, v̄, 0m2))

T x ≤ β2(S, v̄, 0m2) is
valid for P(S). However the optimal objective value to DLP (x̄, S) is negative (since x̄ /∈
Conv (P (S)∩FD)), and w̄0 ≥ 0, so we must have β2(S, v̄, 0m2)− (α2(S, v̄, 0m2))

T x̄ <

0, a contradiction.
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Now suppose ū0 = 0m1 . The inequality (α1(S, ū, 0m1))
T x ≤ β1(S, ū, 0m1) is

valid for P(S), but β1(S, ū, 0m1) − (α1(S, ū, 0m1))
T x̄ ≤ β2(S, v̄, v̄0) + w0 −

(α2(S, v̄, v̄0))T x̄ < 0, (from (48) and (49) above). This contradicts x̄ ∈ P(S). ��
Observe that Lemma 33 implies that at least two of the variables in (u0, v0) are basic

when x̄ ∈ P(S) \ Conv (P (S) ∩ FD).
Define Bu := {i ∈ S : ui basic} and Bv := {i ∈ S : vi basic} to be the set of basic

u’s and v’s respectively. The next lemma describes properties of the variables ui and vi

for i ∈ S when x̄ belongs to ∩i∈T Conv (P (S \ {i})∩FD), but not to Conv (P (S)∩FD),
where T is some subset of S of size at least two.

Lemma 34. Suppose x̄ ∈ ∩i∈T Conv (P (S \ {i}) ∩ FD) and x̄ /∈ Conv (P (S) ∩ FD),
where T ⊆ S ⊆ M and |T | ≥ 2. Let Bu(T ) := Bu ∩ T and Bv(T ) := Bv ∩ T , i.e.,
Bu(T ) and Bv(T ) denote the basic u’s and v’s in the set T respectively. Then

(i) For each i ∈ T , either ui or vi has a positive value, i.e., ūi > 0 or v̄i > 0 for all
i ∈ T .

(ii) Bu(T ) ∩ Bv(T ) = ∅ and Bu(T ) ∪ Bv(T ) = T , i.e., exactly one of the variables ui

and vi is basic for all i ∈ T .
(iii) The vectors {[aT

i. , −bi]}i∈T are linearly independent.
(iv) |Bu(T ) ∪ Bv(T )| = |T | ≤ r(T ) + 1, i.e., the size of T is bounded by r(T ) + 1.

Proof. Let S, T and x̄ be as stated. We will prove (i) first. Suppose by contradiction
ūi′ = 0 and v̄i′ = 0 for some i′ ∈ T . Since x̄ /∈ Conv (P (S) ∩ FD), the linear program
PLP (x̄, S) is infeasible, and hence its dual DLP (x̄, S) is unbounded. Because ūi′ = 0
and v̄i′ = 0, the linear program D′

LP (x̄, S \ {i′}), obtained from DLP (x̄, S) by eliminat-
ing ui′ , vi′ and the normalization constraint (50), is also unbounded. Consequently, the
dual of D′

LP (x̄, S \{i′}), the problem P ′
LP (x̄, S \{i′}), is infeasible. But P ′

LP (x̄, S \{i′})
can be obtained from PLP (x̄, S) by eliminating the variable s and the constraints corre-
sponding to i′ in (41) and (42), and we see that P ′

LP (x̄, S \ {i′}) is feasible if and only if
x̄ is in Conv (P (S \ {i′}) ∩ FD). The fact that x̄ ∈ Conv (P (S \ {i′}) ∩ FD) implies the
feasibility of P ′

LP (x̄, S \ {i′}), which is a contradiction. Hence ūi > 0 or v̄i > 0 for all
i ∈ T , which gives Bu(T ) ∪ Bv(T ) = T . This proves (i). To prove (ii), we show that at
most one of ui and vi can be basic.

The feasible set for DLP (x̄, S) can be written in the form {y ∈ R
n′

: Zy = z0, y ≥
0n′ }, where Z and z0 are of suitable dimensions. Let i ∈ T be arbitrary. The column of Z

corresponding to ui is given by [aT
i. , −bi, 0]T . Similarly the column of Z corresponding

to vi is given by [−aT
i. , bi, 0]T . Hence the columns of Z corresponding to ui and vi

are linearly dependent. Since the columns of Z corresponding to basic variables must
be linearly independent, it follows that at most one of ui and vi can be basic. This also
shows that the vectors {[aT

i. , −bi]}i∈T are linearly independent. This completes the proof
of (i), (ii) and (iii).

Finally, since the vectors {[−aT
i. , bi]}i∈T are linearly independent, there must exist a

set T ′ ⊆ T of cardinality either |T | or |T | − 1 such that the vectors {ai.}i∈T ′ are linearly
independent. It follows that |Bu(T ) ∪ Bv(T )| = |T | ≤ r(T ) + 1. Therefore (iv) is also
proved. ��

With the above lemmas we can prove the missing direction in Theorem 4.
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Lemma 35. Let S ⊆ M , and suppose that either |S| ≥ r(S) + 2 or r(S) = n and
|S| = n + 1. Then

Conv (P (S) ∩ FD) ⊇ ∩i∈S Conv (P (S \ {i}) ∩ FD). (55)

Proof. Let x̄ ∈ ∩i∈SConv (P (S \ {i}) ∩ FD) and suppose by contradiction
x̄ /∈ Conv (P (S) ∩ FD). If |S| ≥ r(S) + 2, Lemma 34(iv) with T = S implies that
S ≤ r(S) + 1, a contradiction. If |S| = n + 1, since the number of basic variables
is bounded by the number of equality constraints in DLP (x̄, S), the number of basic
variables in the solution (ū, v̄, ū0, v̄0, w̄0, t̄0, t̄1) is at most n + 2. The number of basic
variables among the variables ui and vi for i ∈ S is |S| = n + 1 (Lemma 34 with
T := S). However, according to Lemma 33, at least two of the variables in (ū0, v̄0) are
basic, which gives a total of n + 3 basic variables, a contradiction. ��

We now strengthen Theorem 4 for the case where |S| ≥ r(S) + 2. Let Ī (S) be
the set of constraints i ∈ S whose removal from S leaves the rank unchanged, i.e.,
Ī (S) := {i ∈ S : r(S) = r(S \ {i})}. We have

Theorem 5. Let S ⊆ M satisfy |S| ≥ r(S) + 2. Then

Conv (P (S) ∩ FD) = ∩i∈Ī (S) Conv (P (S \ {i}) ∩ FD). (56)

Like in Theorem 4, and with the a similar proof, the inclusion “⊆" of Theorem
5 is easy to prove. To prove the remaining inclusion, we observe that the condition
|S| ≥ r(S) + 1 and the assumption ai. �= 0n, ∀i ∈ M , imply |Ī (S)| ≥ 2. Therefore,
∩i∈Ī (S)Conv (P (S \ {i}) ∩ FD) ⊆ P(S), so that the problem PLP (x̄, S) is feasible and
bounded for a point x̄ ∈ ∩i∈Ī (S)Conv (P (S \ {i}) ∩ FD). The following lemma gives a
formal statement and proof of the remaining inclusion.

Lemma 36. Let S ⊆ M satisfy |S| ≥ r(S) + 2. Then

Conv (P (S) ∩ FD) ⊇ ∩i∈Ī (S) Conv (P (S \ {i}) ∩ FD). (57)

Proof. Let x̄ ∈ ∩i∈Ī (S)Conv (P (S \ {i}) ∩ FD) and assume by contradiction x̄ /∈
Conv (P (S) ∩ FD). Observe that it suffices to prove that the vectors {[aT

i. , −bi]}i∈S

are linearly independent, since that contradicts |S| ≥ r(S) + 2. Assume for a contra-
diction that the vectors {[aT

i. , −bi]}i∈S are linearly dependent, and let k ∈ S satisfy
[aT

k., −bk] = ∑
i∈S\{k} µi[aT

i. , −bi], where {µi}i∈S\{k} are not all zero. This means

ak. ∈ Span({ai.}i∈S\{k}), which implies r(S) = r(S \ {k}), i.e., k ∈ Ī (S).
We have shown that, if [aT

k., −bk] = ∑
i∈S\{k} µi[aT

i. , −bi], where k ∈ S and

{µi}i∈S\{k} are not all zero, then k ∈ Ī (S). Note that this implies µi = 0 for all i ∈
S \ Ī (S). To see this, assume for a contradiction that µl �= 0 for some l ∈ S \ Ī (S).
Then we may write [aT

l. , −bl] = ∑
i∈S\{l} µ′

i[a
T
i. , −bi], where µ′

i = µi

µl
for i ∈ S \ {k, l}

and µ′
k = 1

µl
. As observed above, this implies l ∈ Ī (S), a contradiction. It follows that

µi = 0 for all i ∈ S \ Ī (S).
We therefore have [aT

k., −bk] = ∑
i∈Ī (S)\{k} µi[aT

i. , −bi] and k ∈ Ī (S). However,

according to Lemma 34(iii) with T := Ī (S), the vectors {[aT
i. , −bi]}i∈Ī (S) are linearly

independent, a contradiction. ��
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If we apply Theorem 5 iteratively to sets S satisfying |S| ≥ r(S)+2, and Theorem 4
for sets S satisfying |S| = n+1, we obtain Theorem 3 in Sect. 2. The example in Figure
4 in Sect. 2 demonstrates that the assumption |S| ≥ r(S) + 2 is necessary for (57) to be
true.

In the following we prove that (57) remains valid for |S| = r(S) + 1 for the spe-
cial case of a general split disjunction D(π, π1

0 , π2
0 ), where π1

0 < π2
0 . The problem

PLP (x̄, S) for the disjunction D(π, π1
0 , π2

0 ), which will be called P S
LP (x̄, S) in the fol-

lowing, is obtained from the problem PLP (x̄, S) by replacing (44) and (45) with

−λ1π1
0 + πT x1 − s ≤ 0, (u0) (58)

−λ1π2
0 + πT x1 − s ≤ −π2

0 + πT x̄. (v0) (59)

The dual of P S
LP (x̄, S) is the problem DS

LP (x̄, S) as follows.

min
∑

i∈S
vi(bi − aT

i. x̄) + w0 + v0(πT x̄ − π2
0 )

s.t.
∑

i∈S
ai.(ui − vi) + π(u0 + v0) = 0n, (x1) (60)

∑

i∈S
bi(vi − ui) − π1

0 u0 − π2
0 v0 + w0 − t0 = 0, (λ1) (61)

u0 + v0 + t1 = 1, (s) (62)

u0, v0, w0, t0, t1 ≥ 0, (63)

ui, vi ≥ 0, ∀i ∈ S. (64)

The optimal solution (ū, v̄, ū0, v̄0, w̄0, t̄0, t̄1) to DS
LP (x̄, S), for the case where |S| =

r(S) + 1, is characterized in the following lemma (also see Lemma 2 in [4]). The state-
ments of this lemma are very similar to the statements made in Lemma 34. However,
the assumptions are different than in Lemma 34. Also, we now prove that the vectors
{ai.}i∈Bu∪Bv

are linearly independent, and this does not follow from the statement of
Lemma 34 that the vectors {[ai., −bi]}i∈Bu∪Bv

are linearly independent.

Lemma 37. Suppose that x̄ ∈ ∩i∈Ī (S)Conv (P (S \ {i}) ∩ FD(π,π1
0 ,π2

0 )) and
x̄ /∈ Conv (P (S) ∩ FD(π,π1

0 ,π2
0 )). Then Bu ∩ Bv = ∅, r(S) = n, |Bu ∪ Bv| = n,

and the vectors {ai.}i∈Bu∪Bv
are linearly independent.

Proof. The feasible set for DS
LP (x̄, S) can be written in the form {y ∈ R

n′
: Zy =

z0, y ≥ 0n′ }, where Z and z0 are of suitable dimensions. We first argue that the variables
w0, t0 and t1 take the value 0. Since x̄ /∈ Conv (P (S)∩FD(π,π1

0 ,π2
0 )), the optimal objective

value of P S
LP (x̄, S) and DS

LP (x̄, S) is −s̄ < 0, i.e., s is basic. By complementarity slack-
ness, we deduce that t1 = 0. From Lemma 33 it follows that both u0 and v0 are basic.
The column in Z corresponding to u0 is [πT , −π1

0 , 1]T and the column corresponding
to v0 is [πT , −π2

0 , 1]T . Subtracting the column corresponding to v0 from the column
corresponding to u0 gives a constant times en+1, i.e., a constant times the (n + 1)th unit
vector in R

n+2. Since the column corresponding to both w0 and −t0 is en+1, and since
basic columns are linearly independent, w0 and t0 must be non-basic. Therefore, both
w0 and t0 take the value 0.
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For all i ∈ S, not both vi and ui can be in the basis, since their corresponding
columns in Z are multiples of each other. Hence Bu ∩ Bv = ∅. Furthermore, since
(ū, v̄, ū0, v̄0, w̄0, t̄0, t̄1) is a basic solution to DS

LP (x̄, S), the following system has a
unique solution.

∑

i∈Bu

ai.ui −
∑

i∈Bv

ai.vi + π(u0 + v0) = 0n (65)

∑

i∈Bv

bivi −
∑

i∈Bu

biui − π1
0 u0 − v0π2

0 = 0 (66)

u0 + v0 = 1 (67)

The system (65)–(67) is of the form ZBy = zB
0 . The number of rows of ZB (and zB

0 )
is n + 2 and the number of columns is |Bu ∪ Bv| + 2. All columns of ZB are linearly
independent. Therefore we must have |Bu ∪Bv| = n, since otherwise multiple solutions
would exist.

Now we show that the vectors {ai.}i∈Bu∪Bv
are linearly independent. Then r(S) =

n is also proved. Assume by contradiction that the vectors {ai.}i∈Bu∪Bv
are linearly

dependent. Then there exists a non-zero solution (u∗, v∗) to the system
∑

i∈Bu
ai.u

∗
i −∑

i∈Bv
ai.v

∗
i = 0n. Define scalars ui(δ) := ūi + δu∗

i for i ∈ Bu and vi(δ) := v̄i +
δv∗

i for i ∈ Bv , where δ ∈ R. By solving (65)–(67) for the two remaining variables,
we get that (u(δ), v(δ), u0(δ), v0(δ)) satisfies (65)–(67) if and only if u0(δ) = 1 −
v0(δ) and v0(δ) = (π1

0 ū0 + π2
0 v̄0 − π1

0 + δ(
∑

i∈Bv
biv

∗
i − ∑

i∈Bu
biu

∗
i ))/(π

2
0 − π1

0 ).
Since the numbers {u∗

i }i∈Bu
∪ {v∗

i }i∈Bv
are not all zero there must exist δ∗ ∈ R such

that (u(δ∗), v(δ∗), u0(δ∗), v0(δ∗)) is a different solution to (65)-(67) than (ū, v̄, ū0, v̄0),
which is a contradiction. ��

From the above lemma we have the desired extension of Theorem 4 for split dis-
junctions.

Lemma 38. Suppose S ⊆ M satisfies |S| = r(S) + 1. Then

Conv (P (S) ∩ FD(π,π1
0 ,π2

0 )) =∩i∈Ī (S)Conv (P (S \ {i}) ∩ FD(π,π1
0 ,π2

0 )). (68)

Proof. By a similar argument to the proof of Lemma 11, it is easy to show the inclu-
sion Conv (P (S) ∩ FD(π,π1

0 ,π2
0 )) ⊆ ∩i∈Ī (S)Conv (P (S \ {i}) ∩ FD(π,π1

0 ,π2
0 )). We prove

the remaining inclusion by contradiction. Suppose we have x̄ ∈ ∩i∈Ī (S)Conv (P (S \
{i}) ∩ FD(π,π1

0 ,π2
0 )) and x̄ /∈ Conv (P (S) ∩ FD(π,π1

0 ,π2
0 )). By Lemma 37, Bu ∩ Bv = ∅,

r(S) = n, |Bu ∪ Bv| = n, and the vectors {ai.}i∈Bu∪Bv
are linearly independent. Let

{ī} = S\(Bu∪Bv). We have that ī �∈ Ī (S), since otherwise Lemma 34(i) with T := Ī (S)

would imply ūī > 0 or v̄ī > 0, which contradicts ī /∈ Bu ∪ Bv . But ī ∈ S \ Ī (S) implies
that ī is in every basis of S, which contradicts ī /∈ Bu ∪ Bv . ��

From Theorem 5 and Lemma 38, we get Theorem 1 of Sect. 2.
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