
Efficient Task Replication for Fast Response Times

in Parallel Computation

Da Wang, Gauri Joshi, Gregory Wornell

Signals, Information and Algorithms Laboratory

Research Laboratory of Electronics

Massachusetts Institute of Technology

Abstract

One typical use case of large-scale distributed computing in data centers is to decompose a
computation job into many independent tasks and run them in parallel on different machines,
sometimes known as “embarrassingly parallel” computation. For this type of computation, one
challenge is that the time to execute a task for each machine is inherently variable, and the overall
response time is constrained by the execution time of the slowest machine. To address this issue,
system designers introduce task replication, which sends the same task to multiple machines, and
obtains result from the machine that finishes first. While task replication reduces response time,
it usually increases resource usage. In this work, we propose a theoretical framework to analyze
the trade-off between response time and resource usage. We show that, while in general, there is a
tension between response time and resource usage, there exist scenarios where replicating tasks
judiciously reduces completion time and resource usage simultaneously. Given the execution
time distribution for machines, we investigate the conditions for a scheduling policy to achieve
optimal performance trade-off, and propose efficient algorithms to search for optimal or near-
optimal scheduling policies. Our analysis gives insights on when and why replication helps,
which can be used to guide scheduler design in large-scale distributed computing systems.

1 Introduction

One of the typical scenarios in cloud computing is large scale computation in a data centers with
a large number of computers, which is pioneered by companies like Google with the support from
distributed computing frameworks such as MapReduce [9] and Percolator [15] , and distributed
storage system such as Google File System [11] and BigTable [4]. Another canonical example is
the Amazon Web Service, where computing nodes can be obtained in a pay-as-you-go fashion to
accomplish computation at a wide range of scales.

An important category of large scale computation in data center is called “embarrassingly par-
allel” computation [19], where the computation can be easily separated into a number of parallel
tasks, often due to no dependency (or communication) between these parallel tasks. For an em-
barrassingly parallel job, we send each of its task to a separate machine, let each machine execute
the task, and collect the results from each machine. While appears to be simplistic, embarrassingly
parallel computation happens (either in part or in whole) in many non-trivial applications, such
as the “Map” stage of MapReduce, genetic algorithms, the tree growth step of random forest, and
so on. In addition, embarrassingly parallel computation is a feature that algorithm designers seek
due to its ease of implementation, in optimization [3] and MCMC simulation [14].

1

ar
X

iv
:1

40
4.

13
28

v1
 [

cs
.D

C
]

 4
 A

pr
 2

01
4

For an embarrassingly parallel job, the completion time is determined by the slowest computing
node, as one needs to wait for all parallel tasks to finish. However, machine response time in data
centers are inherently variable due to factors such as co-hosting, virtualization, network congestion,
misconfiguration, etc.. Then as the computing scale increases, it is increasingly likely that the slow-
est machine is going to drag down the job completion time significantly. For example, [8, Table 1]
shows that while the 99%-percentile finishing time for each task is 10ms, the 99%-percentile finish-
ing time for the slowest task in a large computation job could take up to 140ms. Indeed, as pointed
out by practitioners [7, 8], curbing latency variability is key to building responsive applications at
Google.

System designers have come up with a variety of techniques to curbing latency variability [8],
one of them being task replication, i.e., sending the same task to more the one machines and take
the result of whichever finishes first. While this approach of replicating tasks is known to be effective
in reducing task completion time, it incurs additional resource usage as more machine running time
is needed. On one extreme, replicating the same task many times reduces the completion time
variation significantly, but results in high resource usage. On the other extreme, no replication is
incurs no additional resource usage, but often leads to long task completion time. In this paper,
we aim to understand this trade-off between completion time and resource usage, and based on
our analysis, propose scheduling algorithms that are efficient in terms of both completion time and
resource usage.

In particular, we introduce a class of stylized yet realistic system models that enable us to ana-
lyze this trade-off analytically or numerically. Our analysis reveals when and why task replication
works, and provides intuition for scheduling algorithm designs in practical distributed computing
systems.

1.1 Related prior work

The idea of replicating tasks is recognized by system designers for parallel commutating [6,10], and
is first adopted in cloud computing via the “backup tasks” in MapReduce [9]. A line of system
work [1, 2, 7, 20] further develop this idea to handle various performance variability issues in data
centers.

While task replication has been adopted in practice, to the best of our knowledge, it has not
been mathematically analyzed. By contrast, for scheduling without task replication, there exists
a considerable amount of work on stochastic scheduling, i.e., scheduling problems with stochastic
processing time (cf. [16] and references therein).

Finally, some other work also investigate using replication or redundancy to reduce latency in
other contexts such as data transfer [12,13,17,18].

1.2 Our contribution

To the best of our knowledge, we establish the first theoretical analysis of efficient task replication,
by proposing the system model and relevant performance measures. Our findings show that:

1. While in general there is a trade-off between completion time and resource usage, there exists
scenarios where replicating tasks helps reduce both completion time and resource usage.

2. Given the machine execution time distribution, and the number of available machines, we
show that the search space for the optimal scheduling policy lies can be reduced to a discrete
and finite set of policies.

2

3. When the machine execution time follows a bimodal distribution, we find the optimal single-
task scheduling policy for two special cases—the two machine case, and the single fork case.

4. We propose heuristic algorithms to choose the scheduling policy for both single-task and multi-
task cases. These algorithms can achieve close to optimal performance with low computational
cost.

5. We show that when scheduling multiple tasks, it is useful to take the interaction of completion
times among different tasks into account, i.e., scheduling each task independently can be
strictly suboptimal.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we define the notation and describe the
scheduling system model. Then we provide a motivating example in Section 3. In Section 4 and
Section 5 we provide a summary of our results on single-task and multi-task scheduling respectively.
The detailed analysis for both single-task and multi-task scheduling are provided in Sections 6 and 7.
We conclude the paper with brief discussion in Section 8.

2 Model and notation

2.1 Notation

We introduce here the notation that will be employed throughout the paper. We use R+ to denote
all the non-negative real numbers, and Z+ all positive integers. We use [n] to denote all positive
integers no larger than n, i.e., the set {1, 2, . . . , n}.

We use bold font to represent a vector, such as t = [t1, . . . , tm]. We use [a, t] and [t, a] to denote
the vector resulting from appending an element a to the head and tail respectively of the vector t.
For any number x, we denote

|x|+ = max {0, x} .

We use lower case letters (e.g. x) to denote a particular value of the corresponding random
variable denoted in capital letters (e.g. X). We use “w.p.” as a shorthand for “with probability”.

2.2 System model

We consider the problem of executing a collection of n embarrassingly parallel tasks in a data
center. We assume the execution time of each task on a machine in the data center is i.i.d. with
distribution FX .

A scheduling policy requests machines, and assigns tasks to different machines, possibly at
different time instants. More specifically, a scheduling policy π is specified by a list of tuples

π ,
[
(a, ti,j), a ∈ A, i ∈ [n], ti,j ∈ R+, j ∈ Z+

]
,

where A is the set of scheduling actions, i is the task of interest, and ti,j is the start time for the
j-th copy of task i.

We assume set of scheduling actions A contains the following two actions:

1. AddTaskToMachine: the scheduler requests a machine to use from the pool of available ma-
chines and sends a task to run on the machine.

3

2. TerminateTask: the scheduler shuts down all machines that are running a task.

We assume instantaneous machine completion feedback is available from each machine notifying
the scheduler when it finishes executing the assigned task. This is a reasonable approximation as
in general the task execution time is much longer than the network transmission delay in a data
center.

With machine completion feedback information, assuming we always terminate all copies of task
i when the earliest copy of task i finishes, the performance of a scheduling policy is determined by
the times for action AddTaskToMachine only. Therefore, we simplify and say a scheduling policy is
specified by the time that it launches machines, i.e.,

π =
[
ti,j , i ∈ [n], ti,j ∈ R+, j ∈ Z+

]
.

Let Xi,j be the running time of the j-th copy of task i if it is not terminated, then Xi,j
i.i.d.∼ FX ,

and the completion time T (π, i) for task i satisfies

Ti , Ti(π) , min
j

(ti,j +Xi,j).

Execution time distribution
While in practice a task can finish at any time and hence the execution time random variable should
be continuous valued, throughout the paper we model the execution time X as a discrete random
variable, which corresponds to a probability mass function PX , i.e.,

X = αi w.p. pi, 1 ≤ i ≤ l, (1)

or, PX(αi) = pi. (2)

where pi ∈ [0, 1] and
∑l

i=1 pi = 1. We make this modeling choice for the following reasons:

1. In practice we need to estimate the execution time distribution based on log files or traces,
and any estimation is more conveniently conducted assuming a discrete distribution. For
example, a simple estimation could be a histogram of the past execution time spans with
certain bin size (e.g., 10 seconds).

2. We can use PMF to derive the upper bound of the performance by constructing the PMF in
the following way: we set PX(αi) = pi if pi-fraction of the execution time of a single task is
within αi.

3. Depending on the state i of a machine, its completion time could fall into a range around αi,
where state i has probability pi.

In particular, we often assumes PX is a bimodal distribution, which corresponds to non-zero prob-
ability at two time spans, i.e.,

X =

{
α1 w.p. p1

α2 w.p. p2 = 1− p1
. (3)

This modeling choice is motivated by the phenomenon of “stragglers” [9], which indicates the
majority of machines in the data centers finish execution in the normal time span, while a small
fraction of the machines takes exceedingly long to complete execution due to malfunctioning of one

4

or multiple part of the data center, such as network congestion, software bugs, bad disk, etc.. In
the bimodal distribution (3), α1 can be viewed as the time span that a normal machine takes to
execute a task, and α2 the time span that a straggler takes. Indeed, this is observed from real
system data, as pointed out by [5, Observation 3], which states task durations are bimodal, with
different task types having different task duration distributions.

Static and dynamic launching
A scheduling policy corresponds to a choice of the vector of starting times [ti,j , i ∈ [n], j ∈ Z+],
and depends on when the starting times are chosen, we categorize a policy into static launching or
dynamic launching.

A static launching policy chooses the starting time vector[
ti,j , i ∈ [n], ti,j ∈ R+, j ∈ Z+

]
at time 0 and does not change it afterwards. A dynamic launching policy would change the starting
time vector during the execution process by taking into the machine completion status into account.
While the static launching policy takes less information into account and hence could be potentially
less efficient, it allows more time for resource provisioning as we know the entire starting vector at
t = 0, hence may be of interest in certain applications or data centers.

2.3 Performance metrics

We evaluate the performance of a scheduling policy π by the following two performance metrics:

• completion time T (π): the time that at least one copy of every task finishes running;

• machine time C(π): sum of the amount of running time for all machines.

In addition to being a measure of resource usage, the machine time C(π) can be viewed as a proxy
for cost of using a public cloud, such as Amazon Web Service (AWS), which charges user per hour
of machines used.

For the j-th machine that runs task i, if the machine starting time ti,j ≤ Ti, then it is run
for Ti − ti,j seconds, otherwise it is not used at all. Hence, the running time for this machine is
|Ti − ti,j |+. Therefore,

T (π) , max
i
Ti(π) (4)

C(π) ,
1

n

n∑
i=1

∑
j

|Ti(π)− ti,j |+ . (5)

Fig. 1 contains an example that illustrates a scheduling policy and its corresponding completion
time and node time. Given two tasks, we launch task 1 at node 1 and 2 at t1,1 = 0 and t1,2 = 2
respectively, and task 2 at node 1 and 2 at t2,1 = 0 and t2,2 = 5 respectively. The running time
X1,1 = 8 and X1,2 = 7, and since node 1 finishes the task first at time t = 8, T1 = 8 and node 2
is terminated before it finishes executing. Similarly, node 3 is terminated as node 4 finishes task 2
first at time T2 = 10. The machine time for each machine is their actual running time, which are
8, 6, 10 and 5 respectively, and hence the total machine time is the sum 29, while completion time
is T = max {T1, T2} = 10.

5

N1

N2

N3

N4

X1,1

X1,2

X2,1

X2,2

T1 = 8 T2 = 100 t1,2 = 2 t2,2 = 5

t

Figure 1: Example illustrating a scheduling policy and its performance, where {ti,j} are the starting
times for tasks, and {Xi,j} are the running time for tasks. The machine time is C = 29 and the
completion time is T = 10.

Cost function
Intuitively, while introducing task replication reduces T , it may incur additional resource usage and
hence increase C. In this work we investigate trade-off between these two quantities. In particular,
we define the following cost function:

Jλ(π) = λE [T (π)] + (1− λ)E [C(π)] , (6)

where 0 ≤ λ ≤ 1 reflects the relative importance of completion time.

Remark 1. λ can be used to take cost of completion time and cost of computing resource into
account. λ = 1 and λ = 0 correspond to the case of caring about completion time only and machine
time only, respectively.

2.4 Optimal and suboptimal policies

The introduction of cost function Jλ(·) allows us to compare policies directly, and we define optimal
and suboptimal policies.

Definition 1 (Optimal and suboptimal policies). Given λ, then the corresponding optimal
scheduling policy π∗ is

π∗ = arg min
π

Jλ(π).

Remark 2. Note that there may exist policies that are neither optimal nor suboptimal.

However, the search space for optimal policy is non-trivial, as the cost function is not non-
convex, and the search space is large, because we can launch any number of machines at any time
before αl.

For the rest of the paper, we tackle the optimization problem by narrowing down the search
space, solving for special yet important cases, and proposing heuristic algorithms.

3 Motivating example

In this section we consider the following example, which shows in certain scenarios, task replication
reduces both E [T] and E [C], even for a single task!

6

Let the execution time X satisfies

X =

{
2 w.p. 0.9

7 w.p. 0.1
.

2

0.9

7

0.1

0
t

(a) PT without replication

2

0.9

4

0.1× 0.9

7

0.1× 0.1

0
t

(b) PT with replication at t = 2

Figure 2: Execution time distribution

If we launch one task and wait for its completion, then the completion time distribution is
illustrated in Fig. 2a, and

T = 2× 0.9 + 7× 0.1 = 2.5 (7)

Cloud = T = 2.5. (8)

If we launch a task at time t1 = 0 and then launch a replicated task at time t2 = 2 if the first one
has not finished running by then, we have the completion time distribution in Fig. 2b, and in this
case,

T = 2× 0.9 + 4× 0.09 + 7× 0.01 = 2.23

Cloud = 2× 0.9 + (4 + 2)× 0.09 + (7 + 5)× 0.01 = 2.46.

As we see here, introducing replication actually reduces both expected cost and expected execution
time!

4 Single-task scheduling

In this section we present our results regarding the optimal scheduling for a single task. While this
seems simplistic, it is practically useful if we cannot divide a job into multiple parallel tasks. In
addition, it is impossible to scheduling multiple tasks optimally if we do not even understand how
to schedule a single task optimally.

We postpone all proofs to Section 6.
We first note that in a single-task scheduling scenario, we can represent a scheduling policy by

its starting time vectors, i.e.,
π = t = [t1, t2, . . . , tm],

where tj is the time that the task starts on machine j.

Remark 3. Note that the starting time vector [t1, . . . , tm] is equivalent to [t1, t2, . . . , tm, αl, . . . , αl]
as tasks scheduled to start at αl will never be launched. We use the two representations interchange-
ably in this paper.

7

The performance metrics, completion time T and cost Cloud, can now be expressed as

T = min
1≤j≤m

tj +Xj , (9)

Cloud =

m∑
j=1

|T − tj |+ , (10)

where Xj
i.i.d.∼ PX .

We then show in Theorem 1 that in single-task scheduling, dynamic launching and static launch-
ing policies are equivalent in the sense that they achieve the same E [C]-E [T] tradeoff.

Theorem 1. For single task scheduling, the static launching policy achieves the same E [C]-E [T]
tradeoff region as the dynamic launching policy.

Remark 4. The above result does not hold for scheduling multiple tasks in general, as the dynamic
launching policy can take different actions depending on if any other tasks are finished.

Therefore, for the single-task scenario, we can focus on the static launching policy without any
loss of generality.

4.1 General execution time distribution

Given the machine execution time distribution PX and a starting time vector t = [t1, . . . , tm], we
first show an important property of E [T (t)] and E [C(t)] in Theorem 2.

Theorem 2. E [T (t)] and E [C(t)] are piecewise linear functions of t.

A further refinement of Theorem 2 results Theorem 3, which indicates the optimal starting time
vector t ∈ [0, αl]

m is located in a finite set, which is composed by a constrained integer combination
of the support of PX .

Theorem 3. The starting time vector t = [t1, . . . , tm] that minimizes Jλ satisfies that

t∗j ∈ Vm, (11)

where Vm is a finite set such that

Vm ,

v : v =
l∑

j=1

αjwj , 0 ≤ v ≤ αl,
l∑

j=1

|wj | ≤ m,wj ∈ Z

 . (12)

Theorem 3 directly leads to Corollary 4.

Corollary 4. If PMF PX satisfies that αj = kjα, 1 ≤ j ≤ l, kj ∈ Z+, then the optimal starting
time vector t∗ satisfies

tj ∈ Vm ⊂ {0, α, 2α, . . . , αl = kmα} ,

where |Vm| ≤ km + 1.

8

Given Theorem 3, we can calculate the E [T] and E [C] for all starting time vectors that satisfy
(11), then discard suboptimal ones, leading to the E [C]-E [T] tradeoff as shown in Fig. 3, which
are plotted for the following two execution times:

X =


4 w.p. 0.6

8 w.p. 0.3

20 w.p. 0.1

, (13)

X ′ =

{
6 w.p. 0.8

20 w.p. 0.2
. (14)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
E[T]

6

7

8

9

10

11

12

13

14

E
[C

]

[0, 0, 0]

[0, 0, 4]
[0, 0, 8]

[0, 4, 8]

[0, 8, 8]
[0, 8, 12]

[0, 4]

[0, 8]

[0, 12]
[0, 16]

[0]

(a) Execution time X in (13)

6 7 8 9
E[T]

8

10

12

14

16

18

20

22

E
[C

]

[0, 0, 0]

[0, 0, 6]

[0, 6, 12]

[0, 8, 12]

[0, 0]

[0, 6]
[0, 14]

[0]

(b) Execution time X ′ in (14)

Figure 3: Examples of the E [C]-E [T] tradeoff with m = 3 machines. The labels for each point is
the corresponding starting time vector, and the region is defined by two piecewise linear segments,
which are colored blue and black respectively.

Furthermore, we show that the optimal choice of the (i + 1)-th element of the starting time
vector is dependent on the starting times before it, i.e., t1, t2, . . . , ti, via Theorem 5. In particular,
the optimal value belongs to a set U that we called corner points and define in Definition 2.

Definition 2 (Corner points). Given t = [t1, t2, . . . , ti], let

U1 , {0, α1, . . . , αl} ,

Ui+1(t1, . . . , ti) ,
⋃

u∈Ui(t1,...,ti−1)

{
u+ ti − bαj :

0 ≤ u+ ti − bαj ≤ αl,

1 ≤ j ≤ l, b ∈ {0, 1}
}
, i ≥ 1,

and we called Ui+1 the corner points given t.

Theorem 5. Given t = [t1, t2, . . . , ti] and the corner points Ui+1(t), then the optimal scheduling
policy with i+ 1 machines

t′ = [t1, t2, . . . , ti, ti+1]

9

satisfies
ti+1 ∈ Ui+1.

Finally, we have the following simple observation that, again, help to reduce the search space
of scheduling policy.

Lemma 6. Starting a machine at any time αl − α1 ≤ t ≤ αl is suboptimal.

4.1.1 Heuristic policy search algorithm

While Theorem 3 reduces the search space of the optimal scheduling policy, there could still be ex-
ponentially many policies to evaluate. In this section we introduce a heuristic single-task scheduling
algorithm in Algorithm 1 that has much lower complexity.

As shown in Algorithm 1, this heuristic algorithm builds the starting time vector [t1, t2, · · · tm]
iteratively, with the constraint that ti’s are in non-decreasing order. Given a starting time vector
[t1, · · · ti], this algorithm compares the policies [t1, · · · ti, ti+1] where ti+1 can be one of first k corner
points in U(t1, . . . , ti), and choose the policy ti+1 that leads to the minimum cost. As we increase
k, the algorithm compares a larger space of policies and hence achieves a lower cost as illustrated
by the example in Fig. 4, for the execution time defined in (13). The example also demonstrates
that a small k may be sufficient to achieve near-optimal cost.

Algorithm 1 k-step heuristic algorithm for single-task scheduling

Initialize t1 = 0 and t = [t1]
for i = 2, . . .m do

U+(t)← sorted elements of U(t) which are ≥ ti−1
π0 ← [t, αl], policy that keeps the machine unused
for j = 1, . . . , k do

πj ← [t, U+(t)[j]]
end for
j∗ ← arg minj∈0,1,···k Jλ(πj)
ti ← U+(t)[j] and t← [t, ti]

end for

4.2 Bimodal execution time distribution

While results in Section 4.1 help characterize the E [C]-E [T] tradeoff and find good scheduling
policies, they provide little insight about when and why task replication helps. For this, we analyze
the special yet important case of bimodal execution time distribution (cf. (3)).

In this section we present results for scheduling one task with two machines, which is the simplest
non-trivial example. The scheduling policy can be represented as the vector t = [t1 = 0, t2], and
we provide a complete characterization of the E [C]-E [T] tradeoff in Fig. 5, leading to Theorem 7.

Theorem 7. Given PX is a bimodal distribution and we have at most two machines, the optimal
policy t = [t1 = 0, t2] satisfies t2 ∈ {0, α1, α2}.
In Theorem 8, we provide further insights by showing the suboptimality (cf. Definition 1) of certain
scheduling policies as the execution time distribution PX varies, which is characterized by the ratio
of its fast and slow response time, α1/α2, and the probability that it finishes at its fast response
time, p1.

10

0.0 0.2 0.4 0.6 0.8
λ

4.5

5.0

5.5

6.0

6.5

7.0

7.5

J

K=1

K=2

K=3

optimal

Figure 4: Comparison between the heuristic search and optimal scheduling policy for execution
time in (13).

t2 = 0

t2 = α1

t2 = α2 − α1

t2 = α2

E [C]

E [T]

Figure 5: The E [T]-E [C] tradeoff for bimodal execution with two machines, which corresponds to
starting time vector t = [t1 = 0, t2].

Theorem 8. Given the bimodal execution time and two machines,

(a) [0, α2 − α1] is always suboptimal;

(b) [0, α1] is suboptimal if α1
α2
> p1

1+p1
;

(c) [0, α2] is suboptimal if α1
α2
< 2p1−1

4p1−1 ;

Given λ, we can find the optimal policy by comparing the ratio 1−λ
λ to the thresholds,

τ1 =
α1p1(3− 2p1) + α2(1− p1)(1− 2p1)

(α2 − α1)(1− p1)p1
(15)

τ2 =
1 + 2p1(1− p1)
p1(1− p1)

(16)

τ3 =
α1(4p1 − 1) + α2(1− 2p1)

α2 − 2α1)p1
(17)

(d) If α1
α2
> p1

1+p1
, then policy [0, α2] is optimal if 1−λ

λ ≤ τ1, and [0, 0] is optimal otherwise.

11

R1

R2 R3 2p1 − 1

4p1 − 1

p1
1 + p1

α1

α2

p1

1/2 10

1/2

1/3

1

Figure 6: Bimodal two machine. R1 is the range of parameters that t = [0, α1] is strictly suboptimal,
R3 is the range t = [0, α2] is strictly suboptimal, which means no task replication is strictly
suboptimal.

(e) If 2p1−1
4p1−1 ≤

α1
α2
≤ p1

1+p1
, then policy [0, α1] is optimal if τ3 <

1−λ
λ ≤ τ2, policy [0, α2] is optimal if

1−λ
λ ≤ τ3, and [0, 0] is optimal otherwise.

(f) If α1
α2
< 2p1−1

4p1−1 , then policy [0, α1] is optimal if 1−λ
λ ≤ τ2, and [0, 0] is optimal otherwise.

Theorem 8 is summarized in Fig. 6.

5 Multi-task scheduling

In this section we investigate the scheduling of multiple tasks. We first show that it is crucial to
take the interaction of different tasks into account in Theorem 9, then extend our algorithm in
Algorithm 1 for multi-task scheduling. All proofs are postponed to Section 7.

Theorem 9 (Separation is suboptimal). Given m tasks, applying the optimal one-task schedul-
ing policy for each of them individually is suboptimal.

Given the complexity of searching for optimal scheduling policy in the single-task case, we
again aim to search for scheduling policy via a heuristic algorithm. In particular, we aim to find a
good static policy that takes the interaction among tasks into account. To achieve this, we apply
Algorithm 1, but using the cost function for the multi-task case, where T and C are defined in (4)
and (5) respectively. This search procedure produces a starting time vector t = [t1, t2, . . . , tm], and
at each time ti, we launch an additional copy for each of the unfinished task.

Fig. 7 shows an example for the execution time in (13). The scheduling policy with replication
reduces J , especially when λ is large. We also see that as the number of tasks n increases, the
cost J increases as the impact of the slowest task gets more severe. Again, introducing replication
mitigates this degradation.

Results in Fig. 7 indicate that when λ is not too big, it may be beneficial to introduce repli-
cation at multiple time instants, as in this case, we are more concerned with cost Cloud and hence
introducing replication gradually is preferred. By contrast, when λ is close to 1, a good scheduling
policy should introduce replication early to cut down completion time as early as possible.

Remark 5. Our proposed policy via searching algorithm is static in nature. One may extend it by
running the searching algorithm at each time instant. For example, at time t = 0 we obtain the

12

0.0 0.2 0.4 0.6 0.8
λ

6

8

10

12

14

16
J

t =[0]

t =[0,4,8]

t =[0,4,8,12]

t =[0,0,4,8,8]

t =[0,0,0,0]

no replication
K=2

optimal static

(a) N = 10 tasks

0.0 0.2 0.4 0.6 0.8
λ

6

8

10

12

14

16

18

20

22

J

t =[0]

t =[0]

t =[0,4,8,8,8]

t =[0,0,4,4,8]
t =[0,0,0,4,4]

no replication
K=2

optimal static

(b) N = 100 tasks

Figure 7: Performance of scheduling policy based on heuristic search for execution time in (13). k
is the parameter in Algorithm 1. The starting time vector for k = 2 and λ = 0, 0.2, 0.4, 0.6 and 0.8
are labeled in the plots.

starting time vector t(0). At time t = α1 we can re-run the search algorithm given the number of
unfinished tasks and obtain an updated starting time vector t(1), etc.. This policy is dynamic in
nature and is likely to achieve better performance than the static policy.

6 Proofs for single task scheduling

In this section we present the detailed analysis for the problem of optimal scheduling for a single
task.

6.1 Proofs for Theorem 1

Proof of Theorem 1. With node completion feedback, at any time t, a dynamic launching policy
can make launching decision based on whether any running node finishes execution by then, and
it is obvious that it should launch new copies only if no node has finished executing the task.

Given a dynamic launching policy πDL, we can construct a static policy πSL by letting its
starting time vector be the starting time emitted from the dynamic policy under the condition that
no machine finishes execution until αl. Now we claim πDL and πSL achieves the same E [T] and
E [C], because it is not difficult to see that for a given realization of machine execution time, both
policies will launch and terminate machines at the same time.

6.2 Proofs for Theorem 2 and Theorem 3

In this section we show that the E [C]-E [T] tradeoff curve is always piecewise linear, with the
vertices of the piecewise linear curve corresponding to starting time vector that satisfies certain
properties.

13

We first define the possible finishing time

wi,j , ti + αj , 1 ≤ i ≤ m, 1 ≤ j ≤ l

and the set of all possible finishing times

W , {wi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ l} .

Let k = |W|, we denote the sorted version of W as w = [wσt(1), wσt(2), . . . , wσt(k)] such that

wσt(1) ≤ wσt(2) ≤ . . . ≤ wσt(k),

where σt(k) maps the rank of the finishing time k to a tuple (ik, jk).
Note that

T = min
1≤i≤m

Xi + ti,

and T ∈ W, we define the event

Ak1,k2 ,

{
∗

min
1≤i≤m,1≤j≤l

{ti +Xj} = tk1 + αk2

}
,

where min∗ indicates we always choose the smallest (k1, k2) (by lexicographic order in k1 and k2)
so that all the events {Ak1,k2 , 1 ≤ k1 ≤ m, 1 ≤ k2 ≤ l} are disjoint.

Therefore,

E [T] =
∑
k1,k2

E [T | Ak1,k2]P [Ak1,k2]

=
∑
k1,k2

(tk1 + αk2)P [Ak1,k2] (18)

E [C] =

m∑
j=1

E [Cj]

=

m∑
j=1

∑
k1,k2

|tk1 + αk2 − tj |+ P [Ak1,k2] (19)

To analyze (18) and (19), we first show that the relative ordering of elements in W determines
P [Ak1,k2].

Lemma 10. P [Ak1,k2] is independent of {αj , 1 ≤ l ≤ l} given the relative ordering of elements in
W, i.e.,

P [Ak1,k2 |σt] = f(σt, k1, k2, p1, . . . , pl), (20)

where f is some function.

Proof. Ak1,k2 indicates machine k1 is the first machine that finishes execution, and it finishes
execution after running for αk2 . Define k , σ−1t (k1, k2), i.e.,

tk1 + αk2 = wσt(k),

14

then

P [Ak1,k2 |σt] = P

 ⋂
j 6=k1

{tj +Xj} > wk1,k2

∣∣∣∣∣∣σt


=
∏
j 6=k1

P [tj +Xj > wk1,k2 |σt] . (21)

Define
Pj , {p : σt(i) = (j, p), i > k} ,

which is uniquely determined by σt and k, then for any i 6= k1,

qj , P [tj +Xj > wk1,k2 |σt] =
∑
p∈Pj

p, (22)

which is a function of k, σt and p = [p1, p2, . . . , pm].
Combing (21) and (22), we have (20).

Proof of Theorem 2. We prove that there exists finitely many subspaces of [0, αl]
m such that in

each subspace, E [T] and E [C] is a linear function in t, and thus they are piecewise linear in t on
[0, αl]

m.
Define B1(σ) , {t : σt = σ}, and (k1, k2) = σ(k), then the set

B1(σ) = {t : t11 + α12 ≤ t22 + α22 ≤ . . . ≤ tk1 + αk2} (23)

is defined by k − 1 inequalities, and each of this inequality partition the space [0, αl]
n into two

subspaces. Therefore, B1(σ) is the intersection of k−1 connected subspaces, resulting itself being a
subspace of [0, αl]

m. And it is obvious that there are only finitely many such subspaces. Therefore,
by Lemma 10 and (18), in each subspace B1(σ), E [T] is a linear function in t.

Regarding E [C], we define

B2(b = [bi,j]1≤i≤m,1≤j≤k, σ) ⊂ B1(σ)

,
{
t : σt = σ, I {tk1 + αk2 − ti > 0} ∈ {0, 1} ,

(k1, k2) = σ−1(j), 1 ≤ j ≤ k
}
, (24)

where I {·} is the indicator function. Similar to the argument above, given σ and b, B2(b, σ)
corresponds to a subspace of [0, αl]

m and there are only finitely many such subspaces. By Lemma 10
and (19), in each subspace B2(b, σ), E [C] is a linear function in t.

Therefore, both E [T] and E [C] are piecewise linear functions of t in [0, αl]
m.

Proof of Theorem 3. By Theorem 2 and the fact that Jλ is a linear combination of E [T] and E [C],
the optimal t∗ that minimizes Jλ(t) is at the boundaries of two or more subspaces defined in (24).

Then by (23) and (24), it is not hard to see that for some j1, j2, j3, j4 and l1, l2, l3, we have

t∗j1 − t∗j2 = αl1 − αl2
t∗j3 − t∗j4 = αl3 .

Then it is not hard to see that given m, t = [t1, t2, . . . , tm], and without loss of generality, let t1 = 0,

t∗i ∈ Vm,

15

where Vm is defined in (12), i.e.,

Vm ,

v : v =
l∑

j=1

αjwj , 0 ≤ v ≤ αl,
l∑

j=1

|wj | ≤ m,wj ∈ Z

 .

Note that an element in Vm is uniquely determined by w = [w1, . . . , wl], and the number of possible
w is

2l
(
m+ l − 1

l − 1

)
.

Therefore,

|Vm| ≤ 2l
(
m+ l − 1

l − 1

)
≤ [2(m+ l − 1)]l,

which is finite given finite m and l.

6.3 Proofs related to corner points

Proof of Theorem 5. Let Ui+1 = [u1, u2, . . . , uki] be the sorted version of Ui+1, then E [T (t′)] and
E [C(t′)] are linear in ti+1 over the each interval [uj , uj+1], 1 ≤ j ≤ ki − 1. Therefore, the optimal
ti+1 ∈ Ui+1.

6.4 Proof of Lemma 6

Proof of Lemma 6. Consider a set of m machines on which we run the task according to the policy
π = [t1, t2, · · · , tm]. Without loss of generality, we assume t1 = 0. If the starting time of a machine
is αl > tj ≥ αl − α1, the earliest time it can finish execution of the task is t + α1. This time is
greater than αl, the latest time at which the first machine started at time t1 = 0 finishes the task.
Thus, starting the machine at time tj only adds to the cost E [C], without reducing the completion
time E [T]. Hence, any starting time tj ≥ αl − α1 should be replaced by αl, which corresponds to
not using that machine at all.

6.5 Proof of Theorem 7

Theorem 7 follows directly from the following lemma.

Lemma 11. Given PX is a bimodal distribution and we have at most two machines, the expected
completion time and total cost satisfies that if t2 + α1 < α2,

E [T] = α1(p2 − p1)p1 + α2p
2
2 + t2p1p2,

E [C] =

{
2E [T]− t2(p21 + p22) if t2 < α1

2E [T]− α1p1 − t2p2 if t2 ≥ α1

;

otherwise if t2 + α1 ≥ α2,

E [T] = α1p1 + α2p2

E [T] = 2E [T]− α1p1 − t2p2

Proof. By (9) and (10) and calculation.

16

6.6 Proof of Theorem 8

Proof of Theorem 8. (a) Follows from Lemma 6.

(b) If α1
α2

> 1
2 then by Lemma 6 we know that if [0, α1] is suboptimal. Now suppose α1

α2
> 1

2 .
We know that π1 = [0, 0] and π2 = [0, α2] are the two extreme ends of the (E [C] ,E [T])
trade-off. If the line joining points (E [C(π1)] ,E [T (π1)]) and (E [C(π2)] ,E [T (π2)]) lies below
(E [C(π)] ,E [T (π)]), then π = [0, α1] will be suboptimal. Comparing the slopes of the lines
gives the condition α1

α2
> p1

1+p1
.

(c) Policy π2 = [0, α2] is suboptimal if it is dominated by either π = [0, α1] or π1 = [0, 0]. Both π
and π1 give lower expected execution time E [T] than [0, α2]. So if one of them has expected
cost E [C] lower than [0, α2], then it follows that [0, α2] is dominated by that strategy. But
the E [C] with starting time vector [0, 0] is always greater than that of [0, α1]. Thus, checking
if the expected machine E [C] with [0, α1] is smaller than that for [0, α2], gives the condition
α1
α2
< 2p1−1

4p1−1 for suboptimality of [0, α2].

(d) , (e), (f) For cost function J = λE [T] + (1 − λ)E [C], the constant cost contour is a line with
slope −1−λ

λ . As we increase J , the contour line shifts upward until it hits the (E [C] ,E [T])
trade-off. The point where it meets the (E [C] ,E [T]) trade-off corresponds to the optimal
policy. In R1, policy π2 = [0, α2] is optimal if the slope of the line joining (E [C(π1)] ,E [T (π1)])
and (E [C(π2)] ,E [T (π2)]) is less than or equal to −1−λ

λ . We can simplify and show that the
slope of the line is −τ1. The result follows from this. Similarly, the slope of the line joining
[0, 0], [0, α1] is −τ2, and that of the line joining [0, α1 and [0, α2] is −τ3. Comparing the slope of
the contour, −1−λ

λ with these slopes gives the conditions of optimality for each of the policies.

7 Proofs for multi-task scheduling

7.1 Proof of Theorem 9

Proof. We prove the statement by showing an example that a scheduling policy that takes the
interaction of task latencies into account (joint policy) is better than a scheduling each task inde-
pendently (separate policy).

Suppose we have two tasks and 4 machines. The service time distribution of each machine
is bimodal, taking values α1 and α2 > α1 with probability p1 and 1 − p1 respectively. Assume
2α1 < α2.

Separate Policy
Consider a policy πs where we choose the optimal scheduling policy separately for each task. We
can follow the analysis of the bimodal 2-machine case in Section 6.6 as a guideline to choose the
optimal policy for each task.

Suppose the policy [0, α2] is optimal for a given cost function. For this to be true, the parameters
α1, α2 and p1 need to satisfy,

α1

α2
>

2p1 − 1

4p1 − 1
(25)

If we run each task on two machines using the policy [0, α2], the expected completion time and
cost are,

E [T (πs)] = p21α1 + (1− p21)α2,

E [Cloud (πs)] = 2p21α1 + 2p1(1− p1)(α1 + α2) + 2(1− p21)α2.

17

Joint Policy
Consider a joint policy πd where we start with each task according to policy [0, α2]. If task 1 (task
2) is served by its machine at time α1, we start the execution the task 2 (task 1) on an additional
machine at time α1.

Using this joint policy the performance metrics are given by

E [T (πd)] = p21α1 + 2p21(1− p1)(2α1) + (1− p1)2(2p1 + 1)α2,

E [C(πd)] = p21(2α1) + 2p21(1− p1)(3α1) + (1− p1)2(2p1 + 1)(2α2).

We can show that for 2α1 < α2, E [T (πd)] < E [T (πs)]. Now let us find the condition for
E [C(πd)] < E [C(πs)].

E [C(πd)] < E [C(πs)]

⇒ α1

α2
<

2p1 − 1

3p1 − 1
.

Thus, the joint policy gives strictly lower cost Jλ = λE [C] + (1− λ)E [T] than the separate policy
for any λ if

2p1 − 1

4p1 − 1
<
α1

α2
<

2p1 − 1

3p1 − 1
. (26)

8 Concluding Remarks

In this paper we present the first theoretical analysis of how to effective replicate tasks such that
we reduce completion time, with minimum use of extra computing resources.

We show that for certain scenarios, task replication may in fact simultaneously reduce both
execution time and resource usage, and in general, it leads to a better response time and computing
resource usage trade-off.

Given a discrete approximation to the service time distribution, we characterize the optimal
trade-off between execution time and resource usage for the case of scheduling a single task. We
show the optimal scheduling policy is in a set of finite size. We also present a low-complexity
heuristic algorithm to choose the scheduling policy that is close to optimal. Further, we give
insights into extending this analysis to the multi-task case.

Our work answers the questions on when and how task replication helps, and our results provide
guidance to scheduling design in data centers, such as the time to launch tasks and the number of
time we should replicate it.

This work can be extended in a few directions. First, one can search for better scheduling
policies, especially for the multi-task case. Second, in our work we assume the execution time
distribution is given or can be estimated, it may be of interest to develop an adaptive scheduling
policy that does not require such knowledge. Third, it will be useful to estimate the error due to
approximating a continuous execution time distribution by a discrete execution time distribution,
either numerically or via simulation. Finally, one can take the effect of queueing of requests at the
machines into account and see how that impacts the system performance.

Acknowledgement

We thank Devavrat Shah for helpful discussions.

18

References

[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective straggler mitigation:
Attack of the clones. NSDI’13, pages 185–198, Berkeley, CA, 2013. USENIX.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris.
Reining in the outliers in map-reduce clusters using mantri. OSDI’10, pages 1–16, Berkeley,
CA, 2010. USENIX.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Found. Trends Mach. Learn.,
3(1):1–122, 2011.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[5] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz. Analysis and lessons from a publicly
available google cluster trace. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2010-95, 2010.

[6] W. Cirne, F. Brasileiro, D. Paranhos, Lúıs Fabŕıcio W. Góes, and W. Voorsluys. On the
efficacy, efficiency and emergent behavior of task replication in large distributed systems.
Parallel Computing, 33(3):213–234, 2007.

[7] J. Dean. Achieving rapid response times in large online services. Online at
http://research.google.com/people/jeff/latency.html, 2012.

[8] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74–80, 2013.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[10] G. D. Ghare and S. T. Leutenegger. Improving speedup and response times by replicating
parallel programs on a SNOW. In Job Scheduling Strategies for Parallel Processing, pages
264–287. Springer Berlin Heidelberg, Jan. 2005.

[11] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In ACM SIGOPS Operating
Systems Review, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[12] G. Joshi, Y. Liu, and E. Soljanin. Coding for fast content download. In Proc. Annu. Allerton
Conf. on Commu. Control. & Comput., pages 326–333, Oct. 2012.

[13] G. Joshi, Y. Liu, and E. Soljanin. On the Delay-Storage trade-off in content download from
coded distributed storage systems. arXiv:1305.3945 [cs, math], May 2013.

[14] W. Neiswanger, C. Wang, and E. Xing. Asymptotically exact, embarrassingly parallel MCMC.
arXiv:1311.4780 [cs, stat], Nov. 2013.

[15] D. Peng and F. Dabek. Large-scale incremental processing using distributed transactions and
notifications. OSDI’10, pages 1–15, Berkeley, CA, 2010. USENIX.

[16] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, Jan. 2012.

19

[17] N. B. Shah, K. Lee, and K. Ramchandran. When do redundant requests reduce latency?
arXiv:1311.2851 [cs], Nov. 2013.

[18] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Low latency
via redundancy. arXiv:1306.3707 [cs], June 2013.

[19] Wikipedia. Embarrassingly parallel — Wikipedia, the free encyclopedia, Feb. 2013.

[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving MapReduce perfor-
mance in heterogeneous environments. OSDI’08, pages 29–42, Berkeley, CA, 2008. USENIX.

20

	1 Introduction
	1.1 Related prior work
	1.2 Our contribution
	1.3 Organization of the paper

	2 Model and notation
	2.1 Notation
	2.2 System model
	2.3 Performance metrics
	2.4 Optimal and suboptimal policies

	3 Motivating example
	4 Single-task scheduling
	4.1 General execution time distribution
	4.1.1 Heuristic policy search algorithm

	4.2 Bimodal execution time distribution

	5 Multi-task scheduling
	6 Proofs for single task scheduling
	6.1 Proofs for thm:staticoptimal
	6.2 Proofs for thm:linearity and thm:cornerpointsoptimal
	6.3 Proofs related to corner points
	6.4 Proof of lem:lastcornersuboptimal
	6.5 Proof of thm:bimodal2mtradeoff
	6.6 Proof of thm:bimodal2machoptpolicy

	7 Proofs for multi-task scheduling
	7.1 Proof of thm:separationsuboptimal

	8 Concluding Remarks

