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Abstract—We analyze the download time of a large file, divided
into chunks called generations, and transmitted over an erasure
channel without feedback. We compare the round-robin and
random scheduling policies of coding over generations, and
show that round-robin scheduling gives significantly faster file
download. We then analyze coding with overlapping generations
and show that the optimal overlap size is small compared to
the number of generations, which implies that the download
time can be reduced with only a small increase in computational
complexity. Further, for a given overlap size, we propose overlap
structures lower complexity and easy to implement, but still give
file download as fast as the best previously proposed structures.

I. INTRODUCTION
A. Motivation

Recently, there has been a rapid increase in audio/video traf-
fic on the Internet. A survey of Internet traffic composition [1]
shows that real-time entertainment including Netflix, YouTube,
and BitTorrent contributes to a staggering 58% of the fixed
access traffic in North America. The reason for this dominance
is that these applications require the transfer of inherently large
files. In addition, they demand fast content delivery to the
user. Thus, there is a need to design transmission schemes that
guarantee fast download with limited available bandwidth.

B. System Model

We consider point-to-point transmission of a large file of M
packets. In each time slot, the source transmits a coded packet
which is a linear combination of some subset of the M packets
in the file. Assume that the coefficients are chosen from a field
of large enough alphabet size such that all combinations are
linearly independent. Each transmitted packet is received in
error, or erased with probability ϵ, and received successfully
otherwise. This model is suitable for the Internet since it
uses checksum tests to detect errors with high probability. We
assume that the source receives an instantaneous and error-free
acknowledgment on the successful decoding of all M packets;
there is no intermediate feedback. Our objective is to minimize
the download time – the time from start of transmission until
the receipt of the acknowledgment.

C. Previous Work

The best throughput-delay trade-off is achieved when each
coded packet is an independent linear combination of all
M packets, such that the file can be decoded from any M
unerased combinations. However, this is impractical for large

M since decoding involves the computationally expensive
inversion of a size M matrix. Sparse codes proposed in [2], [3]
can be used to reduce complexity, but they lose their sparsity
properties over a general network. Batched sparse codes [4]
preserve the sparsity properties by performing network coding
at intermediate nodes in the network.

Another way to reduce the computational complexity pro-
posed in [5], [6] is to divide the file into disjoint sets of packets
called generations (or chunks), and form each coded packet
by a linear combination of packets in one of the generations.
This idea is particularly useful in a peer-to-peer network where
the generations can be stored and downloaded from different
nodes in the network.

During the file transmission, the user may receive more
coded packets for some generations than others. This asym-
metry arises for two reasons – 1) the scheduling policy at
the source may favor some generations while transmitting
coded packets, and 2) the coded packets of some generations
may experience more erasures. This motivates the idea of
overlapping generations, which has received a lot of attention
in recent work, see e.g. [7]–[9] and references therein. In
[7], the authors propose a random annex code, where the
overlap packets are randomly chosen across the file. A better
overlap structure based on expander graphs is presented in
[8]. Both these papers have considered random scheduling
over generations, and for a lossless channel. Round-robin
scheduling is considered only in [9], which analyzes the
complexity of coding over disjoint generations, and shows that
small generation sizes are best for practical implementation.

D. Our Contributions

We present a novel theoretical analysis round-robin schedul-
ing, comparing it with the random scheduling policy consid-
ered in most previous work [6]–[8]. We show that the expected
download time is proportional to n log n for both policies,
but round-robin scheduling gives a smaller proportionality
constant for all values of erasure probability ϵ.

For coding with overlapping generations, we derive an upper
bound on the optimal size of overlap, and show that it scales
O(log n) with the number of generations n. We also propose
deterministic structures of overlap that are low-complexity, and
easier to implement than random overlap structures presented
in previous work [7], [8].



II. SCHEDULING OVER DISJOINT GENERATIONS

A. Dividing the File into Generations

As shown in previous work, the computational complexity
of coding can be reduced by dividing the file into disjoint sets
of packets called generations, defined as follows.

Definition 1 (Disjoint Generations). A file with M packets is
divided into n disjoint sets Bi, 1 ≤ i ≤ n called generations,
consisting of h = M/n packets each. Each coded packet is a
linear combination of the packets in generation Bi for some
1 ≤ i ≤ n.

A generation is said to be decoded when h unerased coded
packets are received by the user. Since we are interested in
the transmission of files of large size, assume that the number
of generations n ≫ h, the size of each generation.

In every slot the source selects a generation Bi, and trans-
mits a linear combination of the h packets in it. Since there is
no intermediate feedback, the scheduling policy that dictates
the choice of a generation Bi in every slot must be blind to
the status of decoding at the user. We consider such a class of
policies called symmetric scheduling policies formally defined
as follows.

Definition 2 (Symmetric Scheduling Policy). A scheduling
policy is symmetric over the n generations if the number of
time slots Ti, from an interval of T slots, in which it transmits
a coded packet from generation Bi satisfies

lim
T→∞

Ti

T
=

1

n

We analyze the expected download time of the file with
two such symmetric scheduling policies that operate with-
out intermediate feedback - namely random and round-robin
scheduling. Random scheduling is asymptotically symmetric
as T → ∞, whereas round-robin scheduling is symmetric for
any interval of T = n slots.

B. Random Scheduling

In the random scheduling policy, the source randomly picks
one of the n generations in every slot and transmits a coded
packet from that generation. Random scheduling is useful
in a peer-to-peer network because it does not require any
coordination between the nodes.

Theorem 1 (Expected Download Time with Random Schedul-
ing). The expected download time of a file divided into n
generations of h packets each for large n is

E[T (ra)
n,h ] =

n

1− ϵ
(log n+ (h− 1) log log n+ o(log log n)) ,

(1)

where log is with respect to the natural base.

Proof: The download time T
(ra)
n,h of the file is the maxi-

mum of the decoding times of its n generations. Its expected
value E[T (ra)

n,h ] for the lossless channel with ϵ = 0 is derived

in [7]. Since each transmission is statistically identical, inde-
pendent channel erasures with probability ϵ simply increase
the expected download time by the factor 1/(1−ϵ).

We observe that in (1), every extra packet added to each
generation, that is an increase in h contributes to an additional
n

1−ϵ log log n term to the growth of E[T (ra)
n,h ].

C. Round-Robin Scheduling

In this scheduling policy, the source transmits combinations
from each of the n generations in a round-robin fashion.
Unlike random scheduling, this policy if applied to a peer-
to-peer network, requires a mechanism to poll the nodes in a
round-robin fashion.

Theorem 2 (Expected Download Time with Round-Robin
Scheduling). The expected download time of a file divided
into n generations of h packets each for large n is

E[T (rr)
n,h ] = n(log 1

ϵ
n+ (h− 1) log 1

ϵ
log 1

ϵ
n+ o(log 1

ϵ
log 1

ϵ
n))
(2)

where ϵ is the erasure probability of the channel.

Proof: In the round-robin scheduling policy, each round
consists of n slots where in the kth slot, the source transmits
a combination of packets in the kth generation. Define Xk as
the number of rounds required to decode the kth generation.
The random variables Xk, 1 ≤ k ≤ n are i.i.d. according to
the negative binomial PMF given by

Pr(X = m) =

(
m− 1

h− 1

)
ϵm−h(1− ϵ)h. (3)

When h = 1, that is each generation consists of a single
packet, the negative binomial PMF in (3) reduces to a ge-
ometric distribution.

The download time T
(rr)
n,h of the file is equal to n times the

number of rounds required to decode all generations, and its
expected value is given by

E[T (rr)
n,h ] = n · E[max(X1, X2, ..Xn)]. (4)

We obtain (2) by substituting the expression for the asymptotic
scaling of E[max(X1, X2, ..Xn)] derived in [10].

D. Comparative Analysis

The dominant terms in the expected download times of the
two policies derived in (1) and (2), are n log 1

ϵ
n and n

1−ϵ logn
respectively. Although both are proportional to n log n, the
proportionality constant 1/ log 1/ϵ with round-robin scheduling
is lower than 1/(1− ϵ) with random scheduling for all values
of erasure probability ϵ.

Even for ϵ = 0, the expected download time for random
scheduling is O(n logn), similar to the coupon-collector’s
problem. Round-robin scheduling eliminates the log n growth
term and gives a download time of M = nh slots.

When h = M , we do not divide the file into generations and
hence E[T (rr)

n,h ] and E[T (ra)
n,h ] are equal to M/(1− ϵ), which is

the lowest achievable expected download time. Thus, we use
M/(1− ϵ) as the normalization constant when comparing the
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ε = 0.2, Random Scheduling
ε = 0.2, Round−robin Scheduling
ε = 0.5, Random Scheduling
ε = 0.5, Round−robin Scheduling

Fig. 1. Simulation plots of the expected download times E[T (ra)
n,h ] and

E[T (rr)
n,h ] with the random and round-robin scheduling normalized by their

lower bound M/1−ϵ, plotted against the generation size h. For small gener-
ation sizes, the round-robin policy gives significantly faster download.

download time for the two policies in Fig. 1. It is a simulation
plot of E[T (rr)

n,h ] and E[T (ra)
n,h ] normalized by M/(1− ϵ) for

file size M = 1024 packets, erasure probability ϵ = 0.2, and
ϵ = 0.5. We observe that the download time with round-robin
scheduling outperforms random scheduling for small h, and
as h increases to M , both converge to M/(1− ϵ).

Fig. 1 shows that the normalized expected download time
for round-robin scheduling increases with ϵ, but it remains the
same for random scheduling because of the 1/1−ϵ scaling factor
in (1). This shows that the inefficiency of random scheduling
is not because of channel erasures, but is in the policy itself.

III. CODING WITH OVERLAPPING GENERATIONS

In this section we discuss the motivation behind coding with
overlapping generations and analyze how the size and structure
of overlap between generations affects the download time.

A. Motivation behind Overlap

The download time of the file with n disjoint generations is
the maximum of the time taken by each generation to collect
h combinations and decode, and it is O(n log n) as derived
in Section II. For both random and round-robin scheduling, it
can be shown [11] that the expected minimum of the decoding
times of the n generations is O(hn), which is significantly
smaller than O(n log n), for h and n in our range of interest.
Since there is no intermediate feedback, the source continues
to transmit coded packets from all generations, irrespective
of their decoding. Hence, by the time the last generation(s)
collect h combinations, the earlier decoded generations may
collect extra combinations.

In Fig. ?? we plot a histogram of the number of com-
binations collected by each generation till the download is
complete, that is when all generations decode. The round-robin
scheduling policy is used to pick a generation in every slot.
The simulation parameters are M = 512, n = 32, h = 16 and
ϵ = 0.2. We observe that by the time the last generation(s)

crosses the threshold of h = 16 combinations and decodes,
some generations have collected as many as 23 combinations.
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Fig. 2. Histogram of the number of combinations received by each
generation, at the download completion time, when all generations cross the
threshold of h = 16 denoted by the horizontal black line.

This motivates introduction of overlap between generations.
If a generation has l packets overlapping with other gen-
erations, it needs h + l combinations for decoding, but the
l overlap packets can be back-substituted to help in faster
decoding of other generations. Thus, we are increasing the
time to decode the first generation, in order to decrease the
total download time. Theoretical analysis of this decoding
process will be presented in [11].

Definition 3 (Overlapping Generations). A file consisting of
M packets is divided into n disjoint sets Bi, 1 ≤ i ≤ n called
base generations, with h = M/n packets each. Define sets
Ri of l overlap packets each such that Bi ∩ Ri = ∅ for all
1 ≤ i ≤ n. Each coded packet is a linear combination of the
g = h + l packets in the extended generation Gi = Bi ∪ Ri,
for 1 ≤ i ≤ n.

We now analyze the two key parameters that goven the
download time of the file – the overlap size l, and the choice
of overlap sets Ri for 1 ≤ i ≤ n for a given l, or the structure
of overlap.

B. Size of Overlap

There is a trade-off in the choice of the optimal size
of overlap l that minimizes the expected download time.
Increasing l results in an increase in the initial time taken for
a generation to collect g = h + l combinations decode. But
with a larger overlap size l, a decoded generation can help the
other generations to decode faster. Theorem 3 gives an upper
bound on l.

Theorem 3 (Upper Bound on Overlap Size). For a file divided
into n disjoint generations of h packets each, the introduction
of l overlap packets to each generation reduces the expected
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Fig. 3. Upper Bound on the optimal overlap size l, with round-robin
scheduling plotted against the number of generations n. It increases with
erasure probability ϵ and grows linearly with logn.

download time if,

l ≤ max

(
(1− ϵ)E[Tn,h]

n
− h, 0

)
, (5)

where E[Tn,h] is the expected download time with disjoint
generations and a symmetric scheduling policy.

Proof: Let Tn,h,l be the download time of a file with n
generations where each generation has h base packets and
l overlap packets. Introducing overlap between generations
reduces the expected download time of the file if

E[Tn,h] ≥ E[Tn,h,l] ≥
n

1− ϵ
(l + h), (6)

where we lower bound E[Tn,h,l] by the expected time for one
generation to collect g = l + h packets. For a symmetric
scheduling policy, a coded packet is transmitted from a given
generation 1/n fraction of times, and the probability it being
received successfully is (1 − ϵ). Hence, expected time for
a generation to collect g = l + h packets is n

1−ϵ (l + h).
Rearranging the terms in (6) gives the result (5).

In Section II we showed that the expected download time
E[Tn,h] scales O(n log n) with the number of generations n for
both random and round-robin scheduling policies. Thus, using
Theorem 3 we can infer that for these policies the best size
of overlap is O(log n), which implies that the computational
complexity is small even for large n.

Fig. 2 shows the upper bound on the size of overlap with
the round-robin scheduling policy and generation size h = 12
and illustrates its linear increase with log n. The overlap size
also increases with erasure probability ϵ, because there is more
asymmetry in the packets collected by generations of the file.
For the parameters used in Fig. 5, we can evaluate the upper
bound as l ≤ 5. The plot of expected download time in Fig. 5
suggests that the optimal size of overlap is l = 4 or l = 5,
showing that the bound is fairly tight.

Fig. 4. Overlap graph for the circular structure for n = 9 generations and
overlap size l = 3. Nodes and incoming edges represent generations and
overlap packets respectively.

Fig. 5. Overlap graph for the distributed structure for n = 9 generations
and overlap size l = 3. Nodes and incoming edges represent generations and
overlap packets respectively.

C. Structure of Overlap

For a given overlap size l, we now analyze how the structure
of overlap, that is the choice of overlap sets Ri for each base
generation Bi, affects the expected download time of the file.

In the random annex code proposed in [7], the l packets
in overlap set Rj of generation Gj are picked uniformly at
random from the (n−1)h packets in Bi for all i ̸= j. However,
if more than one overlap packets are chosen from the same
Bi, generation Gj loses diversity of the help it receives.

The expander graph based structure proposed in [8] elim-
inates this loss of diversity. It chooses the l overlap packets
in Rj one each from l uniformly chosen base generations Bi,
i ̸= j. This structure gives lower expected download time than
the random annex code in [7].

With a random overlap structure, the source has to generate
an index of the addresses of overlap packets for each file
it transmits, and communicate it to the receiver. We now
propose two deterministic structures of overlap which reduce
the indexing complexity.

1) Circular overlap: For each generation Gi, the l overlap
packets in Ri are chosen one each from the l base generations
Bi+k for all 1 ≤ k ≤ l, where we assume a circular arrange-
ment of the generations such that the index for i + k > n



corresponds to generation B(i+k) mod n. Further, the overlap
packets are chosen such that Ri are disjoint for all 1 ≤ i ≤ n.

We define a graphical structure called the overlap graph, as
shown in Fig. 3 to represent the structure of overlap.

Definition 4 (Overlap graph). The overlap graph
Ovn(x1, x2, · · ·xl) is a graph with n nodes, with an
edge from node j and node (j + xk) for all 1 ≤ j ≤ n
and 1 ≤ k ≤ l. An incoming edge from node j to node i
represents a unique packet in Bj which is included in the
overlap set Ri.

The overlap graph is a directed version of a class of graphs
called circulant graphs extensively used in graph theory [12].
The circular overlap structure corresponds to the overlap graph
Ovn(1, 2, · · · l) as shown in Fig 3 for a file with n = 9
generations and overlap size l = 3 packets.

2) Distributed Overlap: For the circular overlap structure
in Fig. 3, a decoded generation Gi helps Gi+1, Gi+2 and
Gi+3. One or more of these generations is most likely to
decode next. If Gi+1 decodes, its help to Gi+2 and Gi+3

could be superfluous since they were already helped by Gi.
Instead, Gi+1’s overlap packets should be chosen from other
generations that are not helped by Gi. This motivates the
distributed overlap structure in which a decoded generation,
helps the generation with least probability of being decoded.

We first define a notion of distance in the overlap graph and
use it to construct the distributed overlap structure.

Definition 5 (Distance in Overlap Graph). Assuming every
edge to be of unit length, the distance between nodes i and
j is the length of the shortest undirected path between them,
and is infinity if no such path exists.

Using the notion of distance in Definition 5, we build
the distributed overlap graph Ovn(x

(d)
1 , x

(d)
2 , · · ·x(d)

l ) in a
recursive manner. Starting with an empty graph of n nodes,
for every l ≥ 1, we choose the smallest index x

(d)
l ≥ 1 that

maximizes the distance between nodes j and j + x
(d)
l in the

overlap graph Ovn(x
(d)
1 , x

(d)
2 , · · ·x(d)

l−1) for any j.
For example if n = 9 and l = 3 we get the distributed

overlap graph Ov9(1, 4, 2) as shown in Fig. 4. Note that the
above recursive procedure gives a good distributed overlap
graph only for odd number of generations n. If n is even,
we get a cycle between nodes 1 and n/2. However, we can
easily avoid n even by simply adding overlap packets only
n− 1 generations and coding the nth generation only over its
h base packets.

3) Comparative Results: We now compare the proposed
overlap structures, with the random annex [7] and expander
overlap structures [8]. Fig. 5 is a simulation plot of the
normalized expected download time versus the overlap size
l, for round-robin scheduling of a file with M = 1500 packets
divided into n = 125 generations of h = 12 packets each. The
erasure probability ϵ = 0.2, and the download time is averaged
over 500 iterations. We observe that the circular and distributed
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Fig. 6. Expected download time normalized by M/(1−ϵ) versus the overlap
size l with M = 1500, n = 125, h = 12, g = h+ l and ϵ = 0.2.

overlap structures give progressively lower expected download
times than random overlap.

To simulate the expander overlap structure, we generate
an n-node degree-2l random regular graph at every iteration.
In a peer-to-peer network, where the generations are stored
at different nodes, changing the overlap graph involves the
exchanging of packets between the nodes. Also, the source
has to send a look-up table of the indices of the overlap
packets to the receiver. Fig. 5 shows that the distributed
overlap structure gives almost the same expected download
time as expander overlaps. But being a deterministic structure,
it avoids the network overhead and indexing complexity of
randomly generated structures.

IV. CONCLUDING REMARKS

In this paper, we develop codes to minimize the download
time of a large file, divided into n equal-size chunks called
generations, and transmitted over a packet erasure channel
without feedback. We compare round-robin scheduling over
the n generations with random scheduling used in most
previous work. We show that the expected download time
is proportional to n log n with both policies, but round-robin
scheduling has a smaller proportionality constant. In partic-
ular, for small generation sizes used in practice, round-robin
scheduling gives significantly faster file download.

We also present a novel analysis of the size and structure
of overlap between generations. We determine a fundamental
upper bound on the required overlap size in terms of n and the
erasure probability ϵ. We show that it scales O(log n), which
implies that download time can be reduced with only a small
increase in computational complexity. We also propose deter-
ministic overlap structures which reduce the download time,
but with lower network overhead and indexing complexity than
randomly generated structures proposed in previous work.

Future work includes considering intermediate feedback
to the source in the design of overlap. Another interesting
research direction is to use the idea of generations to reduce



the complexity of streaming codes [13] that are designed to
achieve fast sequential decoding and playback of packets.
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