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Abstract—We address the problem of slowdown caused by
straggling nodes in distributed non-linear computations. Many
common non-linear computations can be written as a sum of
inexpensive non-linear functions (for e.g. Taylor series). Based
on this observation, we propose a new class of rateless codes
called rateless sum-recovery codes whose aim is to recover the
sum of source symbols, without necessarily recovering individual
symbols. Source symbols correspond to individual inexpensive
functions and each encoded symbol is the sum of a subset of
source symbols. Encoded symbols are computed in a distributed
fashion and for a computation that can be written as a sum
of m inexpensive functions, successful sum-recovery is possible
with high probability as long as slightly more than m encoded
symbols are received. Our code is rateless, systematic and has
sparse parities. Moreover, encoded symbols are constructed by
sampling without replacement at individual nodes, thereby making
decoding superfluous if the encoded symbols from any node cover
all source symbols. We validate our claims through a range of
simulations and also discuss open questions for future works.

A full version of this paper is accessible at [1].

I. INTRODUCTION

Large-scale distributed computations are susceptible to
delays caused by unreliable or slow computing nodes called
stragglers [2]. In the past, adding redundancy via task repli-
cation was the prevalent approach for straggler mitigation [3],
[4]. A recent line of work [5]–[11] (not an exhaustive list) has
shown that adding redundancy to linear computations using
erasure codes can provide superior straggler resilience. The
canonical example of this is matrix-vector multiplication of
the form b = Ax, A = [AT

1 AT
2 ]

T . If computed across
three worker nodes this can be split into sub-computations
A1x and A2x, and a coded computation (A1+A2)x. Results
from any two workers suffice to recover Ax, and thus the
system can tolerate one straggler. However, such linear coding
schemes cannot be directly applied to the large class of non-
linear computations in machine-learning [12] and scientific
computing [13]. These computations often need to be performed
in a distributed manner to obtain speedup, but they cannot be
expressed as matrix-vector or matrix-matrix products.

In this work, we consider distributed computation of expen-
sive non-linear functions that can be decomposed into a sum
of inexpensive non-linear functions, i.e., computations of the
form F (x) =

∑m
i=1 fi(x) where f1, f2, . . . , fm are non-linear

functions. Any differentiable non-linear function F (x) can be
approximated in this form with fi’s corresponding to the first m

Taylor Series terms. Moreover, many popular machine learning
computations like batch gradient descent [12], where the batch
gradient is the sum of stochastic gradients, and kernel methods
[14] where the kernel at a test point is the sum of kernels with
respect to each training point, can also be written in this form.
For large m, it may be desirable to compute the sum in a
distributed fashion due to latency/memory constraints, thereby
leading to the aforementioned problem of straggling.

Among the few works that have looked at non-linear coded
computations, [15] only considers polynomial functions while
[16] only approximately recovers the original computation and
does not give any error bounds. The closest in spirit to our work
is the line of work on gradient coding [17]–[21] which seek
to recover the batch gradient from a set of coded stochastic
gradients. However, they either need knowledge of the worst
case number of stragglers for exact recovery which is often
unavailable in practice, or provide approximate recovery where
the error increases with magnitude of F which is undesirable
for large magnitude F . Alternately, [22] performs sum-recovery
by randomly sampling and computing disjoint partial sums of
fi’s at workers with the master waiting for at least one copy of
each partial sum. This can still be bottlenecked by straggling
since workers only perform a single computation and thus
the computation of F can be delayed if one or more fi’s are
only sampled by slow nodes. In general, if the computations
performed at individual workers do not suffice to recover the
sum then straggling can be a bottleneck since fast workers may
be idle while the master waits for the slow workers to complete
their tasks. On the other hand, in [23] we mitigate straggling by
using rateless codes to generate a (potentially infinite) stream of
partial sums at workers such that any m+ o(m) computations
from across all workers suffices to recover F . This balances the
load by allowing fast workers to perform more work. However,
directly applying existing rateless codes like LT codes [24]
requires decoding each fi before computing

∑m
i=1 fi(x) which

may be superfluous if the goal is sum-recovery.
Our Solution. In this work, we introduce a new class

of rateless codes called Rateless Sum-Recovery (SR) codes
designed for distributed computing of the sum of non-linear
functions under straggling (see Fig. 1). Being rateless, SR
codes preserve the load balancing property of LT codes i.e.
worker computations are proportional to their speeds and the
sum can be exactly recovered with high probability from any
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Figure 1: An illustration of SR-coded computing for a system of 4 workers tasked with computing F (x) =
∑4

i−1 fi(x). Encoded symbols
are sampled without replacement at each worker. Tick marks indicate completed tasks which suffice to recover F (x). Observe that Worker 2
and 4 (stragglers) do not complete any tasks but the sum can be recovered.

m+ o(m) encoded symbols without prior knowledge of the
number of stragglers. Additionally, unlike LT codes, in SR
codes the encoded symbols at the same worker are constructed
by sampling source symbols without replacement (sampling
across workers is independent). Thus if the encoded symbols
received from a worker cover all source symbols then the sum
can be computed directly by just adding these encoded symbols.
Lastly SR codes are systematic and the first encoded symbol at
each worker corresponds to a single distinct fi. Thus if the first
computation of each worker is available then the sum can again
be directly computed by addition. Thus, while decoding cost is
unavoidable if using LT codes, there are several scenarios with
SR codes where sum recovery is possible without decoding.

II. PRELIMINARIES

A. Problem Setup

We consider computations of the form

F (x) =

m∑
i=1

fi(x), (1)

where if fi’s are non-linear then F (x) is also non-linear.
Such computations arise in machine learning during inference
in ensemble models like Random Forests [25] and Deep
Ensembles [26] where fi is the ith decision tree or neural
network in the ensemble. Such computations can also be found
in statistics [27] and physics [13] where fi is the ith term in the
Taylor series approximation of a non-linear function. For this
work, we consider that the individual fi’s are inexpensive to
compute but the number of functions m is large, due to which
computing (1) at a single node is expensive which motivates
the need for distributed computation. While we assume that
the computation of (1) is distributed over m worker nodes,
this can be easily generalized to p < m worker nodes by
considering each group of m/p terms in (1) to be a single
function. Assuming m workers gives cleaner analytical results
and also matches emerging distributed computing frameworks
like AWS Lambda [28], [29] where each worker typically
computes a single function.

B. Baselines

Our proposed rateless coded scheme for distributed compu-
tation of (1) will be compared against the following baselines:

1) All-at-One (One). The entire computation is performed
at a single node. The node receives x as input, computes
fi(x), i = 1, . . . ,m and then computes the sum F (x).

2) Uncoded (Unc). The computation is distributed across
m worker nodes (worker i computes fi(x)). A central
node (master) communicates x to workers, collects results
of worker computations, and computes (1). The master
needs to wait for all workers to complete their tasks.

3) Fractional Repetition Codes (Rep) [17]. The computa-
tion is distributed across m workers but this time tasks
are replicated. The group of workers d(j− 1)+ 1, . . . , dj
each compute the partial sum

∑dj
i=d(j−1)+1 fi(x) for

j = 1, . . . ,m/d. For eg. if d = 2, workers 1 and
2 compute f1(x) + f2(x), workers 3 and 4 compute
f3(x)+f4(x) etc. F (x) can be computed once the master
has collected all distinct partial sums. Thus the master
only needs to wait for the fastest worker from each group.

4) Batch Coupon Collector (BCC) [22]. The sum in (1)
is again split into m/d disjoint partial sums as above
(each partial sum consists of d distinct fi’s) but now each
worker randomly samples and computes a single partial
sum independent of the others (analogous to the coupon
collector problem). The master needs to wait until it has
received at least one copy of each partial sum.

5) LT Coding (LT) [23]. LT codes [24] are applied to
generate encoded symbols as sums of random subsets of
source symbols (individual fi’s). A total of me(me > m)
encoded symbols are assigned to m workers such that each
worker is assigned me/m symbols. The master sends x to
the workers which computes encoded symbols. Decoding
is possible once the master receives m+ o(m) encoded
symbols from across all workers. Decoding involves
applying the iterative peeling decoder [24] to the received
encoded symbols to recover each fi(x), i = 1, . . . ,m
and then computing their sum to obtain F (x).



C. Evaluation Criterion

We will use latency (defined below) as a metric to compare
the aforementioned baselines and our approach.

Definition 1 (Latency (T )). Latency T of a computing scheme
is the time taken to collect a set of partial sums of the functions
fi(x) from which the sum in (1) can be exactly recovered.

III. SUM-RECOVERY CODES

We will now describe the encoding and decoding steps for
our Rateless Sum-Recovery (SR) codes designed for distributed
computing of (1). We will then highlight the advantages of our
scheme over baselines. Individual fi(x)’s are source symbols
while encoded symbols are linear combinations of fi(x)’s.

A. Encoding

We assume that information required to compute all fi’s
(parameters, coefficients, etc.) can be accessed by each worker,
even though each worker does not need to compute every fi.
Computation begins when a new input x is received for which
F (x) is required. Input x is communicated to all workers
and each worker node computes encoded symbols sequentially
(Fig. 1a) and transmits them to the central node (master).

The first encoded symbol computed at worker i is the
systematic symbol fi(x). This ensures that each worker
computes a distinct systematic symbol so that if there is little
or no straggling and all the m systematic symbols are received
at the master, then the sum in (1) can be directly computed.

Following their systematic symbol, workers start computing
non-systematic encoded symbols, independent of the other
workers. Each encoded symbol is communicated to the master
before the worker computes the next encoded symbol. The jth

non-systematic symbol computed by worker i is given by

f
(e)
ij (x) =

∑
l∈Sij

fl(x) (2)

where each Sij is a set of d source symbols (excluding
the systematic symbol) chosen uniformly at random without
replacement i.e. Sij ∩Sij′ = ϕ, ∀ j, j′, where ϕ is the null set.
However, as workers choose their symbols independently there
may be overlap between symbols chosen by different workers.

The degree d, that is, the number of source symbols in
each encoded symbol, is a hyperparameter. Large d increases
computation load at workers but a small d may increase the
number of encoded symbols needed by the master to cover all
source symbols (all source symbols need to be covered for (1)
to be recoverable). Theorem 2 below shows that d = Ω(logm)
symbols are necessary to cover all source symbols while our
simulations show that d = O(logm) symbols are sufficient to
recover (1) thus ensuring low encoding cost for our scheme.

In matrix form, the me encoded symbols can be represented
by the me ×m generator matrix Ge = [P⊤

1 , . . . ,P
⊤
m]⊤ where

Pi is the generator matrix at worker i. Thus the first row
of each Pi (corresponding to systematic symbols) has 1 in
position i and 0 at all other positions while row j (j > 1) of
each Pi (corresponding to parity symbols) has 1 at indices

given by Sij . The vector of encoded symbols is given by
fe = Gef where f = [f1(x) . . . fm(x)]T .

B. Decoding

The master collects the encoded symbols until it has enough
to be able to recover F (x) (Fig. 1b). If all m systematic
symbols are received or if all 1+ (m− 1)/d encoded symbols
(1 systematic symbol and (m − 1)/d parity symbols) from
a particular worker are received then they can directly be
added to compute F (x). Otherwise, let G denote the M ′ ×m
consisting of the M ′ rows of the encoding matrix Ge that
correspond to the encoded symbols received from across all
workers, including systematic and parity symbols, and let 1 be
the m−dimensional vector of all 1’s. Decoding is possible if

G⊤v = 1 (3)

has a unique solution v∗. If f ′ is the vector of received
(encoded) symbols, then v⊤

∗ f
′ = v⊤

∗ Gf = 1⊤f = F (x),
A unique solution to (3) exists if rank(G⊤) = rank([G⊤|1])

[30], since this ensures that 1 lies in the column-span of
G⊤ ([G⊤|1] is obtained by appending 1 to G⊤ along its
columns). In our analysis and simulations (see Section IV),
we find that if d, the number of source symbols in each
encoded symbol, satisfies d = O(logm) and M ′, the number
of received encoded symbols, satisfies M ′ = m+ o(m) then a
unique solution of (3) exists with high probability. Thus, worker
nodes compute encoded symbols in proportion to their speed
(fast workers compute more symbols), and as along as we
receive m+o(m) encoded symbols across all workers, we can
recover the sum with high probability. This rateless behavior
differentiates our code from gradient codes where G is designed
for a pre-determined number of straggling workers and specific
requirements are imposed on the amount of computations
required from different workers for sum recovery to be possible
due to which the performance of the code is adversely affected
if the actual straggling deviates from its expected behavior.

C. Advantages

The main aim of distributing an expensive computation like
(1) is to reduce computation load at individual nodes, and
obtain speedup due to parallelism while mitigating the effect
of straggling nodes. In this regard our SR codes offer the
following key benefits:

1) Ratelessness: With SR codes, recovering the sum in (1)
is possible when either a) all 1 + (m − 1)/d encoded
symbols (1 systematic symbol and (m − 1)/d parity
symbols) from a worker are received or b) m + o(m)
encoded symbols from across all workers are received.
This balances the load across workers (fast workers
perform more computations) leading to better straggler
mitigation than fixed rate gradient coding approaches [17]–
[22]. Moreover in case (a) when all encoded symbols from
a worker are received, (1) can be directly recovered (by
adding the symbols) without any decoding cost. On the
other hand, with LT Codes [23], the decoding cost is
always at least O(m logm).



2) Systematic Construction: Each worker first computes
and sends a distinct fi(x) before computing any linear
combinations of fi’s. This makes the code systematic
and ensures that there is little or no additional encod-
ing/decoding cost if all fi’s are received directly as in
cases where there is little straggling.

3) Low Encoding Cost: Each encoded symbol is a sparse
linear combination of source symbols (we show in
Section IV that d ∼ O(logm) is sufficient for sum-
recovery). The sparse parity of the encoded symbols
ensures low computation load at worker nodes since each
encoded symbol is the sum of only a small number of
source symbols. On the other hand, using a dense code like
a maximum distance separable (MDS) code [5] would lead
to a much higher computation load since each encoded
symbol is a linear combination of all source symbols.

To the best of our knowledge, SR codes are the first class
of codes which provide these advantages. Other variants of
rateless codes can provide some but not all of the advantages.
For e.g. Systematic LT Codes [31] have dense parities which
leads to a high encoding cost, while Repairable Fountain Codes
[32] sample encoded symbols with replacement due to which
the decoding cost is unavoidable even if m+ o(m) encoded
symbols are received from the same worker.

IV. THEORETICAL ANALYSIS

In this section we derive an upper bound on the expected
value of TSR, the latency of the SR-Coded computing scheme.
TSR is the time required for the sum (1) to be recoverable from
the received encoded symbols i.e. the time required to collect
enough encoded symbols at the master such that (3) has a
unique solution. Theorem 1 gives an upper bound on E[TSR]
when the expected number of encoded symbols collected at
the master is E[M ′] = m+ o(m) symbols. Theorem 2 shows
that d = Ω(logm) are needed for m+ o(m) encoded symbols
to cover all m source symbols with high probability. Finally,
we show through simulations, if d = O(logm) and m+ o(m)
encoded symbols are collected, then a unique solution of (3)
exists with high probability. The proof of all theoretical results
and additional simulations are included in the Appendix of [1].

Delay Model. Our analysis of the latency of SR codes is
based on the delay model of [23] wherein Worker i performs
Bj computations in time Yj where

Yj = Xj + τBj , for all j = 1, . . . ,m (4)

Xj is a random variable that includes initial random delays
due to network latency setup time etc., while τ is a constant
which represents the time taken by any worker to perform a
single computation of the form fi(x). Observe that in SR-coded
computing each parity symbol consists of d such computations.
The model of an initial random delay followed by constant
computation times is consistent with real-world observations [2].
When Xj ∼ exp(µ), the time taken by worker j to compute nj

encoded symbols of degree d is distributed as Pr(Yj ≤ t) =
1− exp(−µ(t− τdnj)) illustrating that after the initial delay,
worker latency is proportional to the number of computations.

Theorem 1 (Latency of SR Codes). For m → ∞, and
assuming that E[M ′] = m + o(m) is the expected number
of symbols needed for successful decoding, the expected
latency for SR-coded computing of (1) with m workers and
Xi ∼ exp(µ) for all workers i = 1, . . . ,m, is bounded as.

E[TSR] ≤ (2 + o(1))τd+
1

µ
(5)

where d is the degree of the SR code, or the number of source
symbols added to obtain each encoded symbol.

Remark 1. This matches the upper bound for the latency of
the LT-coded scheme in [23] if d is Ω(log(m)) i.e. of the same
order as the degree of LT codes. The need for sparse encoded
symbols (low encoding cost) can be clearly seen from the fact
that the right-hand side of (5) is proportional to d. Thus, the
expected latency can be significantly higher for dense codes.

Remark 2. In practice E[M ′], the expected number of symbols
required for sum-recovery is much smaller than the expected
number of symbols required for LT decoding [24] because the
number of encoded symbols required for a solution of (3) to
exist, is typically smaller than the number of encoded symbols
required for the iterative peeling decoder of [24] to work.
This is illustrated by our simulations below where SR codes
outperform LT codes in a range of settings. Also, SR codes do
not require decoding i.e. have zero decoding cost/delay if all
systematic symbols are received, or if the entire set of encoded
symbols from a worker node is received.

Theorem 2. If each parity symbol is generated as described
with d nonzero entries, then d = Ω(logm) is needed for any set
of m+ o(m) covers all source symbols with high probability.

This is analogous to the Coupon-Collector (CC) problem and
gives a necessary condition on the degree d, for sum-recovery
with m+ o(m) SR-coded symbols. Simulations below show
that m+ o(m) encoded symbols, with degree d = O(logm),
are also sufficient for sum-recovery with high probability.

Simulations. We simulate baselines and SR-coded schemes
under our delay model (4) with m = 1000, τ = 0.005, Xi ∼
exp(0.2), and d = 10 ∼ O(logm) (same average degree as
LT codes). Simulations with Pareto Xi’s in the Appendix of
[1] show that SR codes are not limited to exponential Xi’s.

Results in Fig. 2a clearly illustrate the superiority of SR
Codes (lighter tail latency) over all baselines including prior
works [17], [22], [23]. In rare cases the collected encoded
symbols with LT Codes [23] might have a low average degree
which gives a small probability of lower latency with LT coding
(low degree encoded symbols are computed faster by workers).
But this is clearly a very low probability event.

In Fig. 2a we use SR-1000 to denote that each worker has
access to all source symbols (fi’s) when generating encoded
symbols. Since this may be infeasible due to cost/privacy
constraints, we also restrict worker access to limited source
symbols (SR-k corresponds to each worker having access to
k ≤ m random fi’s), and in Fig. 2b we see that even with
k = 100, SR codes significantly outperform LT codes.
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Figure 2: (a) SR Codes have significantly lighter tail probability of latency than all baselines (Xi ∼ exp(0.2)). (b) Despite limiting the
number of source symbols that each worker has access to (SR-k corresponds to each worker having access to k ≤ m source symbols), SR
Codes continue to outperform LT Codes. (c) SR codes typically require fewer encoded symbols for sum-recovery than LT codes require for
decoding. However, the number of encoded symbols required for sum-recovery is higher than the number of encoded symbols required to
cover all source symbols akin to the Coupon-Collector (CC) problem. All tail probabilities are calculated using 100 Monte-Carlo simulations.

Finally we observe in Fig. 2c that the tail of M ′, the
number of symbols required for sum-recovery in SR codes is
significantly lighter than that for successful decoding in LT
Codes. This is the primary reason for lower latency with SR
codes that directly target sum-recovery as opposed to LT codes
that seek to recover each source symbol.

V. DISCUSSION

The analysis and simulations in the previous sections provide
encouraging initial results for the proposed rateless Sum-
Recovery (SR) codes. The proposed codes address the relatively
unexplored problem of computing a non-linear function in a
distributed, straggler-resilient fashion. Framing the problem
as one of sum-recovery allows us to cover a large class of
non-linear computations (Taylor Series, Random Forests, batch
gradients, etc.) while structuring the problem in a manner that
is amenable to coded computing. While gradient codes [17]–
[22] also perform sum recovery, they were designed for the
specific application of gradient descent. Therefore, in addition
to the advantages outlined in Section III-C of the proposed
SR codes over gradient codes, our work also opens up a new
set of applications for gradient codes to distributed non-linear
computations. We will now discuss three open questions that
we believe can guide future work in this space and may also
be of general interest to coding theory researchers.

The first open question is providing a sufficient condition on
the number of encoded symbols, M ′, needed for sum-recovery.
Currently, Theorem 2 provides a necessary condition on the
degree d such that M ′ = m + o(m) encoded symbols can
cover all source symbols. However this does not, in theory,
suffice to guarantee that (3) has a solution which is needed
for guaranteeing sum-recovery. For e.g. if m = 2 and the rows
of G are [1 0]T and [1 1]T , all source symbols are covered
but (3) does not have a solution. Our simulations show that
M ′ = m+o(m) rows span 1 with high probability, but proving
this theoretically remains an open challenge.

The second question, related to the first question, concerns
deriving a condition on the rows of matrices like G such that
they span 1. This may be of general mathematical interest.
While prior works [7], [32] derive such results when the matrix
rows are obtained by sampling with replacement, in our case,
the problem is challenging because rows coming from the same
worker, are sampled without replacement.

The final question, which may be the most important
for practical deployments, concerns the decoding process.
Observe that currently the decoding process requires us to
solve the m−dimensional system of equations (3). Since G
is sparse this can be solved, in the best case, with complexity
O(m2 polylogm) which is still significantly higher than the
O(m logm) decoding complexity of LT Codes [24]. In this
work, we see that our codes have lower computation latency (as
per Definition 1) than LT codes in simulations as fewer encoded
symbols are needed to solve (3) than to recover each source
symbol using the iterative peeling decoder used in LT codes
[24]. However modifying SR codes so that the cost of solving
(3) matches the decoding cost of LT codes is, we believe, a
key pre-requisite for large-scale practical deployment.

VI. CONCLUSION

We introduce a new class of codes called Rateless Sum-
Recovery (SR) codes to address the problem of distributed
computation of a sum of non-linear functions under straggling.
The codes are tailored to the problem setting and provide the
advantages of ratelessness, systematic construction, and low
encoding cost which enables our scheme to provide superior
stragggler mitigation as compared to a range of baselines across
several scenarios. We believe the proposed coding scheme will
provide a framework for coded computing schemes for sum-
recovery in settings like serverless computing [28]. Therefore
we also include a discussion on open questions and future
directions which can significantly expand the scope of coded
computing to real world non-linear distributed computing tasks
like distributed machine learning training and inference.
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APPENDIX

A. Proof of Theorem 1

As per our model, the time taken by worker i to perform Bi computations is given by

Yj = Xj + τBj , for j = 1, . . . ,m. (6)

where Bj is the total number of computations of the form fi(x), i = 1, . . . ,m performed by worker j.
If M ′ encoded symbols are required for successful decoding of F (x), the latency TSR is the earliest time when M ′ symbols

are completed across the m workers.
Each worker initially computes a systematic encoded symbol, which is a single computation of the form fi(x), and hence

takes time τ . Subsequent encoded symbols are sums of d randomly chosen source symbols and hence each such symbol takes
time dτ to compute.

Let Nj be the number of encoded (systematic and non-systematic) symbols computed by worker j (we assume that m → ∞
i.e. workers don’t run out of encoded symbols). Then

TSR ≤ Xj + τ(Nj + 1)d, for all j = 1, . . . ,m (7)

This is because at time TSR while each of the workers 1, . . . ,m, have completed N1, . . . , Nm computations, the may have also
partially completed the next (encoded) computation and hence Bj ≤ (Nj + 1)d. The 1 added to the upper limit of the sum
accounts for the edge effect. Summing over all j on both sides, we get

m∑
j=1

TSR ≤
m∑
j=1

Xj + τd

m∑
j=1

(Nj + 1) (8)

which implies

TSR ≤ 1

m

m∑
j=1

Xj +
τd

m

m∑
j=1

(Nj + 1) (9)

Since at time TSR,
∑m

j=1 Nj = M ′ i.e. the total number of encoded symbols required for successful decoding, and Xj’s are
i.i.d, taking expectation on both sides gives

E[TSR] ≤ E[X1] + τd+
τd

m
E[M ′] (10)

If E[M ′] = m+ o(m) (as validated by our simulations in Figures 2 and 3),

E[TSR] ≤ E[X1] + τd+ τd(1 + o(1)) =
1

µ
+ (2 + o(1))τd (11)

Note that the above result holds for non-exponential initial delays as well with the corresponding E[X1] which is why we
observe similar improvements over the baselines with Pareto Xi’s in Fig. 3.

B. Proof of Theorem 2

For a source symbol to be covered by M ′ encoded symbols, it must be selected for the linear combination corresponding
to at least 1 encoded symbol. Assuming node j sends Nj encoded symbols it covers at most dNj source symbols, since the
degree of each non-systematic encoded symbol is d (the node actually covers less than dNj source symbol since it sends one
systematic symbol which has degree 1).

Thus, the process equivalent to collecting M ′d ≥ d
∑m

j=1 Nj Coupons when there are M ′ distinct kinds of Coupons (source
symbols). It is well known that in this case at least Ω(m logm) coupons need to be collected for each coupon to be collected at
least once with high probability. Thus for a set of M ′ = m+ o(m) encoded to cover all source symbols with high probability
require d = Ω(logm).

C. Additional Simulations

We simulate baselines and SR-coded schemes under our delay model (4) with m = 1000, τ = 0.005, Xi ∼ Pareto(1, 1),
and d = O(logm) (same average degree as LT codes). These simulations show that SR codes are not limited to exponential
Xi’s. The trends, summarised in the caption, are similar to those reported in the main paper for Xi ∼ exp(0.2).
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Figure 3: (a) SR Codes have significantly lighter tail probability of latency than all baselines (Xi ∼ Pareto(1, 1)). (b) Despite limiting the
number of source symbols that each worker has access to (SR-k corresponds to each worker having access to k ≤ m source symbols), SR
Codes continue to outperform LT Codes. (c) SR codes typically require fewer encoded symbols for sum-recovery than LT codes require for
decoding. However, the number of encoded symbols required for sum-recovery is higher than the number of encoded symbols required to
cover all source symbols akin to the Coupon-Collector(CC) problem. All tail probabilities are calculated using 100 Monte-Carlo simulations.


