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Abstract—We consider a streaming communication system any limitations due to the unavailability of new packetsisTh
where the source packets must be played back sequentially atinduces a positive drift on the buffer size, and the expected
the destination and study the associated average playbaclethy. time to get back to the empty buffer state tends to infinity.

We assume that all the source packets are available before ¢h S .

start of transmission at the transmitter and consider the cae Qur formal angly3|s is based on t_he martlnggle theory gnd
of an ii.d. erasure channel with perfect feedback. We first involves analysis of the expected time spent in the transien
consider the case when the receiver buffer can be arbitrani state of a one dimensional random walk with drift. We also

large, and show that the average playback delay remains bowted  consider the case when the buffer at the receiver is finite,
in the length of the stream provided that the channel bandwidh and show via simulations that the achievable delay appesach

is greater than a critical threshold. Our analysis involvesthe the infinite buff f deratelv | buff |
application of martingale theory to study the transient behaviour € infinite ‘buiier case for moderately large bufier values.

of a one dimensional random walk with drift. Conversely when In contrast the analysis technique in [1] is very different.
the channel bandwidth is smaller than the above threshold, In the real-time setup the receiver experiences a sequédnce o
the average playback delay increases linearly with the stem renewal processes. Using the Generalized Ballot theoré¢m [3
length. We also consider the finite buffer case and analyse & ha propability distribution of the length of renewal preses

playback delay of a greedy dynamic bandwidth scheme. We . . o . .
further show through simulations that the achievable delaywith is derived and it is shown that the introduced delay metric

a finite receiver buffer is close to the infinite buffer case fo always grows logarithmically with the length of the stredm.
moderately large buffer values. related works, broadcast extensions have been studied,in [4

[5], while streaming of causal sources in bursty adverkaria
channels and without feedback has been studied in [6].

In streaming communication, a sequence of source packets
must be delivered to the destination in-order and undettstri . .
delay constraints. Unlike classical block transmissidme t 1he source consists of a stream/oinformation packets,
study of fundamental limits of streaming communication et * Sk, {0 be transmitted to the destination. Each source
mains a fertile area of research. In this paper we are inetesPacket is of unit size. Throughout this work we will inter-
in a point-to-point streaming setup when the entire Streamghangeably refer to the ord_er of the pack.ets with their age, a
available at the source at the start of the communicatioe. THthey have been created with that order, i.e. the packetill
source packets are labelled sequentially and must be plaj§s@id to be older than the packet;, @ > 0. The transmitter
in the same order. In each time step, only one packet can ['SMits encoded packets at time stepi > 1, based on
played, and the receiver is subject to a playback interoapti® transmlssm_n scheme knoyvn by the receiver. Each e_ncoded
until the current packet becomes available. We consider BCket is of sizeB for some integér B > 0 and packet; is
i.i.d. packet erasure channel with ideal feedback and stely transmitted at time stepover the channel. The link between
achievable delay. the source and the receiver is assumed to be an i.i.d. packet

In [1] a similar setup is considered for real-time sourcegasure channel. We will denote the probability of erasore i
where source packets are revealed to the transmitter insacal’® channel by. Hence, the receiver will receivg in time
fashion. A delay metric called thetal playback delays intro- ~ StéPi which is equal tar; with probabilityl —¢ or is an erasure
duced (see also [2]) and shown to increase logarithmicatly windicator with probabilitye independently for ali > 1. We
the length of the stream, with or without feedback, when tHf$SUme that the transmitter will receive an |n§tantanends a
channel bandwidth is larger than a certain critical thrésHa ~ ©'Tor-free feedback message about the transmitted paéiets
contrast in the present paper we show that in the same seffeSult, the transmitter produces packgtising an encoder

the expected playback delay remains bounded when all fH#@ction fi aszi = fi(s1,- -+, sk, 41, 4i-1), @ > 0.
source packets are available non-causally at the trasmitt | "€ receiver-end application plays the decoded packets

Intuitively this gain arises from the fact that in the norusal Strictly in-order, at the rate of one packet per time step. We
setting, the receiver can fill ItS. buffer with as many packms 1Although we consider the integer case for simplicity in thisrk the
the channel allows the transmitter to send successfultipout results are extendible to the case of non-inteBeas well.

|I. INTRODUCTION

Il. PROBLEM SETUP



assume that all packets decoded until time stape available
for playback in the same time step. At the receiver side,
correctly received packets will be collected and the remeiv .
uses recovery functions;; = g;(y1,- - ,y;) to recover the
information packets; at time step:, which has not been
recovered before that time step. We assuineis either equal

to s; or is equal to a failure symbol.

Since the playback is strictly in-order, any out-of-ordegig 1. The one dimensional random walk defined on the setaéss
decoded packets are added to a playback buffer. Let therbufféh infinite buffer size, fixed bandwidth usage, and memoryless transition
size bem. If the number of packets that are decoded but nBfobabilities as depicted in the figure.
played exceeds:, the extra packets are dropped and markddemma 1. Consider a discrete time, one dimensional random
erased in the feedback sent to the source. We will denote thelk defined on the set of stat&s = {D,0,1,2,---} as
first time step a specific source packetis correctly decoded depicted in Fig. 1 for a fixed positive integBrand0 < ¢ < 1.
at the receiver and used or saved in the bufferthyWe State D transitions to itself with probabilitye and to state
denote the time step at which a source packeis used at B — 1 otherwise. Also for any other staiec {0, 1,---}, the
the receiver byl;. Therefore, for the first source packgtwe state will change ta — 1 with probabilitye and to; + B — 1
haved, = t;, while for any other source packet, j > 1 we otherwise.
haved; = max{d;_ +1,t;}. In Section Il we first consider Let the number transitions from state to state D, be
infinite buffer sizem, and study the general case of finitelenoted byNp. Then starting from state, if B(1 —¢) > 1

buffer in Section V. then the expected time spent at statavill be upper bounded
Definition 1 (Total Playback Delay) Assuming that the re- by

. _ : _ _ E[Np] eB
ceiver uses the last information packet at time stepve will 1 < 1 1 51 (1)
refer to the quantityD,, = dj, — k, as the total playback delay —e " (1-9(1-¢B8-1)
for the stream. The proof of this Lemma is provided in the Appendix. In

) what follows the proof of Theorem 1 is provided.

Remark 1. Note that for the ideal channel case, cleady = Proof of Theorem 1: The first part of Theorem 1 is a
j forj € {1,---,k}, and therefore we must have thét > girect consequence of Lemma 1. Let us model the receiver

j in general. The difference; — j represents the delay atpffer with a one dimensional random walk with statgs-

the receiver for using source packet compared to the id_eal {D,0,1,2,---}, where stateD is the buffer starvation state
playback. Moreover, sincé; = max{d;_ +1,4;}, thend; i where the receiver experiences an interruption in the @ielyb
indeed a non-decreasing function of the source packet ind@Jence the playback delay which is the number of interrugtion
Dy, then is referring to the maximum of the individual packg}, ihe playback is equal to the number of visits to st&te
delays in the stream consisting kfpackets. Every other state refers to the case that the receiver hgscla
Remark 2. Having instantaneous and error-free feedbacRack the required packet and the number of remaining packets
available at the transmitter and only one receiver, it is yeadn the buffer is denoted by the state name. Hence the random
to see that the simple ARQ scheme which transmits the old&8tk describing the buffer state of the receiver is isomaph

B packets at every time step is the optimal strategy in terrifs the random walk introduced in the description in Lemma
of reducing the total playback dela®;. Hence, throughout 1, and we can directly apply Eq. (1) to first part of this proof:

this work we limit our discussion to this transmission stopt E[Dy] < E[Doo] = E[ND .
and its dynamic bandwidth usage variations. . . . . —€ L
Since spending a time step in stdberepresents experiencing
I1l. BANDWIDTH-DELAY TRADE-OFF WITH INFINITE a delay in the playback wheB(1 —¢) > 1, the expected total
BUFFER playback delay is upper bounded by (1).

In this section we assume that the receiver buffer is infinite FO the second part of the proof, B(1 —¢) < 1, lets

while the finite buffer case will be studied in section Iv. Oufonsider the same one dimensional random walk as used
main result is summarized below. above, but this time assign the numerical valué to the

state D. We will upper bound the expected time between
Theorem 1. If B(1—¢) > 1, then the expected total playbackwo entrances to stat®, as a renewal. Then showing this
delay, E[Dy] for a stream of lengtlk, is upper bounded by a renewal process has a finite renewal duration, using the faw o
constant independent &f Moreover, ifB(1—¢) < 1, then the |arge numbers for the renewals [3] we conclude the number of
expected total playback deldy[Dy| for a stream of lengtik, entrances to stat® and hence the total playback delay grows
grows linearly withk. linearly with the stream length. Let X; denotes the change
ip the number of packets stored in the receiver buffer at time

is an analytical upper bound on the number of visits at §ePJ- We defineS, = B — 1 since whenever the receiver

transient state in a general one dimensional random walk, RUffer gets out of the statb it restart at statds — 1. Also let
S; =S80+ ;-1 X;1>1,and alsa¥; = S;+i(1—B(1—¢))

The key tool used in establishing the first half of Theoem



10 ; [ E—— IV. FINITE RECEIVER BUFFER
—8—k=10°
D In this section we will consider the case that the receiver
buffer is limited. As a result at some time steps, depending o
the available free space in the receiver’s buffer, the tratter
might not be able to transmiB packets. Therefore the
transmission scheme would be different in the sense that the
1 bandwidth usage at any given time steyould be adaptively
chosen based on the state of the receiver and the transmitter
would then transmitB; packets. However, as will be shown
in this section, the average bandwidth usage in this case
will always be smaller than the minimum required average
bandwidth usage for having constant expected total pldybac
delay. In other words, it would not be possible to achieve
=9 E[B;] > (1 —¢)~!, whenE[B;] denotes the expected value
e e B mdwidth Usage B = > of B, over the duration of transmission. As a result, the
expected total playback delay in this case will always be a
Fig. 2. The bandwidth-delay trade-off for different valusisstream length |inegr function of the the stream lengthHowever simulations
k, ande = 0.5. This figure shows the transition in the behaviour of playjbac . . .
delay atB = ;15 = 2. show that in practice for a fixed length of the stream and for
moderately large receiver buffers, we can achieve a playbac
for i > 0. Hence,S; is not a martingale since it has a negativéelay very close to the infinite buffer case.
drift, but ¥; for ¢ € {1,---} is a martingale with respect to First we propose a dynamic bandwidth scheme where the
Fi=o0(Xy,---,X;) forie{1,---}, andFy = 0 as the drift source transmits just enough packets to refill the playback
in the mean value of; is removed inY;. Now starting in buffer after each slot. This transmission scheme hencewaesi
stateB — 1, we have the best possible expected total playback delay as it magsni
Yo=B-1 (2) the packet transmission at any time step, according to the
We defineT = inf{t > 0 st. S, = —1}. ThenT is a Iimitr?\tion of the regeiver’s buffer. Herg we assume t_hat the
stopping time and &’ we have receiver buffer has just enough capacity to keep maximum of

Yy = Sr +E[T)(1 — B(1 —¢)) = =1+ E[T](1 — B(1 —¢)). " SOUCE packets.

. . o () Definition 2 (Buffer Refill Scheme) The source transmits just
Now using the optional stopping time theorem [7] from (2¢nough packets to refill the playback buffer. Thus the number
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and (3) we have of packets transmitted in slatis given by
E[Yr|Fo] = E[Y0] Bi=m—N,_; +1
=—1+E[T|1-B(l—¢)=B-1 whereN;_; is the number of packets in the receiver buffer at
BIT B 4 the end of slot — 1.
B = = @

: o .. Thus starting at time zero, the scheme transmitst 1
Note that the expected time before the first interruption g, xets in each slot. The first successful slot will result in

upper bounded by this value since at the beginning we startjn | playhack buffer. Since one packet is played in each slo
state0 rather than staté — 1. This means that the expecteqne source has to transmit at ledsto replenish the buffer.

time between two consecutive interruptions in the playketck |, he following we provide the expected bandwidth usage

the receiver side would be upper bounded by (4). Since (4)J8q the expected total playback delay for this scheme. Note
a constant, then the number of interruptions befofackets ¢ the expected total playback delay for this scheme is the
are recovered at the receiver would grow linearly withand \ver hound for the expected total playback delay for any
we will have k(1 — B(1—¢)) transmission scheme with finite receiver buffer.

k(1 — B(1—¢))
ElNp] 2 =——F—— B(1—¢)

E[Dy] >
= B = E[Dg] >

(5.) A. Bandwidth Usage

Figure 2 shows the transition in the behaviour of the averageThe bandwidth usage in slétcan be expressed as
total playback delay as a function of the bandwidth usBge B; =1+ min(m, E;_1)
for different values of the stream lengfh from & = 103 whereFE;_; is the length of the continuous burst of erasures
packets tok = 10° packets. Here¢ = 0.5, and as depicted ending in slott — 1. It represents the amount of empty space
in the figure, whenB < % the average playback delayin the receiver buffer and follows the geometric distribati
increases linearly with the size of the stream, unlike the-  with parametee.

o Where it converges to a constant/agrows. The expected bandwidth usa@#B,] for ¢ > m is given




Fig. 3. The one dimensional random walk defined for the BuRefill
scheme with finite buffer size and memoryless transitionbabdities as
depicted in the figure.
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In the analysis of the fixed bandwidth scheme, we saw thdg. 4. Effect of buffer sizem, on bandwidth-delay trade-off for Buffer
. s . Refill scheme with maximum transmission packet siek = 10%, € = 0.5.
when the buffer sizen is infinity, we requireB > 1/(1 — ¢).
In (6) we observe that as. — oo, the bandwidth usage goes V. CONCLUSION

to the same limitl /(1 —¢). This implies that the the expected e studied the achievable playback delay for perfect feed-
bandwidth usage of any scheme with finite receiver buffgiack over an i.i.d. erasure channel. Assuming all the packet
will always be below the required bandwidth for the finitgyre initially available at the transmitter, we formulatdub t
expected total playback delay. In the following the eXIO‘*CtiJroblem based on a random walk describing the state of
total playback delay of the Buffer Refill scheme is providedkeceiver buffer. Our analysis is based on introducing a new
theorem to describe the transient behaviour of such a random
B. Playback Delay walk with drift. We showed that when the bandwidth usage

The expected playback delay is equal to the expected tdgy@bove the inverse of the channel capacity, the expected

playback timeE[T},], times the steady state probability, of playback delay remains constant while otherwise it grows
being in stateD (the buffer starvation state). linearly with the stream length. Both the result and the ysial

The Markov chain for the buffer statd; is as illustrated technique are different from the case when the source packet

in Fig. 3. We can evaluate the steady-state probabilities generated in real-ime at the encoder. We also studied
solving the following state transition equations. the finite buffer limitation and dynamic bandwidth schemes

(1—)mp = er both analytically and using simulations. Study of delayed
b =70, feedback, without feedback, and broadcast cases remain as

T = emip for 0 <i<m —1, some interesting follow-ups.

1—¢€
Tom = (mp + 7o+ -+ Tm-1),, APPENDIX A
m PROOF OFLEMMA 1
IL=mp+ Z i Proof: Starting from state zero, lets denote the probability
Solving, we get =0 that the random walk would eventually enter the sfatsome
’ e et ) time in the future by B. Similarly, starting from statés — 1,
mo v b " lets denote the probability of entering stddesometime in the
Moreover, the expected total playback time could be CaICHIture by P;_1. Then denoting the expected number of times,
lated as e random walk enters the staf®, starting from state zero by
E[Ti] 2 § = E[Dk] 2 ——- E[Np], we have
— 1D - 00
ThereforeE[Dg] grows linearly withk. However, as de- gy, — P (1—P p G- ___ P
[Np] = jPo(1 = Pp_1)(Pz-1) [

picted in the figure 4, using a more practical transmission e

scheme, the delay-bandwidth trade-off having a practicalin order to find an upper bound for this quantity, we will
buffer size will be very similar to the case of infinite renow derive an upper bound fory PAlso, since according to
ceiver buffer. In these simulations the transmitter 8fs= the definition of the random walk, 2.1 < Py, then

min{m — N;_; + 1, B} for some fixedB. Hence the size EINA] < P; 8

of the transmission packet is clamped to the available buffe [Np] < 1-Py ®)
space whenever necessary and remains constant otherwise T derive B, we first derive the bound for the first time
address the practical limits on the transmission packet siz steps, and then we let to tend to infinity.




Let X; for ¢ € {1,2,---,n} be a random variable which Therefore, sincel < 1+ 1/(j(B — 1)) for any j €
takes value) with probability e and valueB with probability {1,---,n}, then from (11) and (12) we have

1—e. The random variablé(; corresponds to the jump at time PIES|M,] < E[Z_7|F_n].
stepi in the random walk, such thaX; is equal to the size  However, using the optional stopping time theorem [7], we
of the jump plus one. Also led; = %23:1 X;. can also see that
Note that according to the definitions, whenewds < 1, E[Z_p|F-n] = E[Z_n|Fp] = Z—p = b - Mn7
foranyj € {1,---,n}, the sum of all the jumps towards right B-1
in the random walk up to time stepis less than the sum of and as a result we have B- M,
the jumps towards left, and hence the stateof the random PIES|M,] < B
walk should have been visited. Now note that the probability of visiting stat®, starting
Now we also define from state zero, is equal to[P¢], and also note that this is
Z == Mi_ an upper bound on the probability of visiting stdfestarting
B -1 from any stateé > 0, due to the definition of the random walk.

Then Z_; is a reverse martingale with respect to thg|

. ) ence, whem goes to infinity, the probability of entering state
filtration 7_; = o(M;, M;41,- - , M,,). g y P y 9

D starting from any state is upper bounded by

Note that to emphasise the reverse order considered for the B— M,
martingale Z_; and its corresponding information filtration Po = HILH;O Ep, {ﬁ}
F_; we are using negative indexes for them. We skip the proof B — Ea, [M,]
that Z_; is a martingale with respect to the above information = lim — Mn ]
filtration in the interest of space in this paper, but one doul nee B-1
find similar proofs in [7] (e.g. example 5.6.1). = lim B-(1-¢B

We now define a stopping timg in the reverse time order ’HE’ B—1
from n to 1 as follows. LetT = max{j < n s.t. M; < 1}, = BE T

and setl" = 1 if the set is empty. We will refer to this event
that the set{j > —n s.t. M_; < 1} = 0 as the eventt. ¢
Note that in order forl" to be a stopping time on the event E[Np] < OP* = 1-B -1

Now substituting B in (8) we have

! =1-p
E, T could not take any value larger tharsince we need t0 | order to complete the proof, please note that according to
wait until the end of the reverse order of time fronto 1 t0 e definition of the random walk. once we enter the sfage

realize such event has happened. In #fehowever, starting the random variable indicating the waiting time for exitthgt
from time n. coming backwards ta, 7' refers to the first time gtate is a Geometric random variable with méan- ¢)(—1

that the empirical mean/r drops below one. As a result, the expected total time residing in sftés given
Also note that the evert is the event that the random walkpy,

never hits stateD as in £ the empirical mean/; is always E[Np] eB

above one. Then clearly,P= P[E¢]. Now we claim that on 1—¢ I-o(1-eB-1)

E, since we havel' = 1 by the definition, thenM = B. [ ]

To show this, note that o/, the random walk never goes to
state D, then at the first time step = 1, the random walk

should have jumped t@® — 1, and hence we hav&; = B. [1] G. Joshi, Y. Kochman, and G. Wornell, “On playback delaystreaming
Then M» — M. — X+ — B. This in t . I communication,” inProc. Information Theory, (ISIT '12). IEEE Interna-
enMr = My = A1 = 6. This In wrn implies, tional Symposium grCambridge, USA, July. 2012, pp. 2856-2860.
Z_7=0 on E. (9) [2] H.Yao, Y. Kochman, and G. Wornell, “A multi-burst trangsion strategy
. c P for streaming over blockage channels with long feedbackydelEEE
CLetS now pgrtltlon j[he event® into the dI.Sj.OIHt events Journal on Selected Areas in Communicationsl. 29, no. 10, pp. 2033—
ES = {T = j} for j € {1,---,n}. Sincej is the last 2043, Dec. 2011.

time M; < 1 on EJC-, then we can conclude that QEJC_, [3] R. G. Gallager,Discrete Stochastic Processegd. Kluwer Academic

. Publishers, 1995.
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