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Abstract—We consider a streaming communication system
where the source packets must be played back sequentially at
the destination and study the associated average playback delay.
We assume that all the source packets are available before the
start of transmission at the transmitter and consider the case
of an i.i.d. erasure channel with perfect feedback. We first
consider the case when the receiver buffer can be arbitrarily
large, and show that the average playback delay remains bounded
in the length of the stream provided that the channel bandwidth
is greater than a critical threshold. Our analysis involves the
application of martingale theory to study the transient behaviour
of a one dimensional random walk with drift. Conversely when
the channel bandwidth is smaller than the above threshold,
the average playback delay increases linearly with the stream
length. We also consider the finite buffer case and analyse the
playback delay of a greedy dynamic bandwidth scheme. We
further show through simulations that the achievable delaywith
a finite receiver buffer is close to the infinite buffer case for
moderately large buffer values.

I. I NTRODUCTION

In streaming communication, a sequence of source packets
must be delivered to the destination in-order and under strict
delay constraints. Unlike classical block transmission, the
study of fundamental limits of streaming communication re-
mains a fertile area of research. In this paper we are interested
in a point-to-point streaming setup when the entire stream is
available at the source at the start of the communication. The
source packets are labelled sequentially and must be played
in the same order. In each time step, only one packet can be
played, and the receiver is subject to a playback interruption
until the current packet becomes available. We consider an
i.i.d. packet erasure channel with ideal feedback and studythe
achievable delay.

In [1] a similar setup is considered for real-time sources
where source packets are revealed to the transmitter in a causal
fashion. A delay metric called thetotal playback delayis intro-
duced (see also [2]) and shown to increase logarithmically with
the length of the stream, with or without feedback, when the
channel bandwidth is larger than a certain critical threshold. In
contrast in the present paper we show that in the same setup,
the expected playback delay remains bounded when all the
source packets are available non-causally at the transmitter.
Intuitively this gain arises from the fact that in the non-causal
setting, the receiver can fill its buffer with as many packetsas
the channel allows the transmitter to send successfully, without

any limitations due to the unavailability of new packets. This
induces a positive drift on the buffer size, and the expected
time to get back to the empty buffer state tends to infinity.
Our formal analysis is based on the martingale theory and
involves analysis of the expected time spent in the transient
state of a one dimensional random walk with drift. We also
consider the case when the buffer at the receiver is finite,
and show via simulations that the achievable delay approaches
the infinite buffer case for moderately large buffer values.
In contrast the analysis technique in [1] is very different.
In the real-time setup the receiver experiences a sequence of
renewal processes. Using the Generalized Ballot theorem [3]
the probability distribution of the length of renewal processes
is derived and it is shown that the introduced delay metric
always grows logarithmically with the length of the stream.In
related works, broadcast extensions have been studied in [4],
[5], while streaming of causal sources in bursty adversarial
channels and without feedback has been studied in [6].

II. PROBLEM SETUP

The source consists of a stream ofk information packets,
s1, · · · , sk, to be transmitted to the destination. Each source
packet is of unit size. Throughout this work we will inter-
changeably refer to the order of the packets with their age, as
if they have been created with that order, i.e. the packetsj will
be said to be older than the packetsi+j , i > 0. The transmitter
transmits encoded packetsxi at time stepi ≥ 1, based on
a transmission scheme known by the receiver. Each encoded
packet is of sizeB for some integer1 B > 0 and packetxi is
transmitted at time stepi over the channel. The link between
the source and the receiver is assumed to be an i.i.d. packet
erasure channel. We will denote the probability of erasure in
the channel byǫ. Hence, the receiver will receiveyi in time
stepi which is equal toxi with probability1−ǫ or is an erasure
indicator with probabilityǫ independently for alli ≥ 1. We
assume that the transmitter will receive an instantaneous and
error-free feedback message about the transmitted packets. As
a result, the transmitter produces packetxi using an encoder
function fi asxi = fi(s1, · · · , sk, y1, · · · , yi−1), i > 0.

The receiver-end application plays the decoded packets
strictly in-order, at the rate of one packet per time step. We

1Although we consider the integer case for simplicity in thiswork the
results are extendible to the case of non-integerB as well.



assume that all packets decoded until time stepi are available
for playback in the same time step. At the receiver side,
correctly received packets will be collected and the receiver
uses recovery functionŝsj,i = gj,i(y1, · · · , yi) to recover the
information packetsj at time stepi, which has not been
recovered before that time step. We assumeŝj,i is either equal
to sj or is equal to a failure symbol.

Since the playback is strictly in-order, any out-of-order
decoded packets are added to a playback buffer. Let the buffer
size bem. If the number of packets that are decoded but not
played exceedsm, the extra packets are dropped and marked
erased in the feedback sent to the source. We will denote the
first time step a specific source packetsj is correctly decoded
at the receiver and used or saved in the buffer bytj . We
denote the time step at which a source packetsj is used at
the receiver bydj . Therefore, for the first source packets1 we
haved1 = t1, while for any other source packetsj , j > 1 we
havedj = max{dj−1 +1, tj}. In Section III we first consider
infinite buffer sizem, and study the general case of finite
buffer in Section IV.

Definition 1 (Total Playback Delay). Assuming that the re-
ceiver uses the last information packet at time steptk we will
refer to the quantityDk = dk −k, as the total playback delay
for the stream.

Remark 1. Note that for the ideal channel case, clearlydj =
j for j ∈ {1, · · · , k}, and therefore we must have thatdj ≥
j in general. The differencedj − j represents the delay at
the receiver for using source packetsj compared to the ideal
playback. Moreover, sincedj = max{dj−1+1, tj}, thendj is
indeed a non-decreasing function of the source packet index.
Dk then is referring to the maximum of the individual packet
delays in the stream consisting ofk packets.

Remark 2. Having instantaneous and error-free feedback
available at the transmitter and only one receiver, it is easy
to see that the simple ARQ scheme which transmits the oldest
B packets at every time step is the optimal strategy in terms
of reducing the total playback delayDk. Hence, throughout
this work we limit our discussion to this transmission strategy
and its dynamic bandwidth usage variations.

III. B ANDWIDTH -DELAY TRADE-OFF WITH INFINITE

BUFFER

In this section we assume that the receiver buffer is infinite,
while the finite buffer case will be studied in section IV. Our
main result is summarized below.

Theorem 1. If B(1− ǫ) > 1, then the expected total playback
delay,E[Dk] for a stream of lengthk, is upper bounded by a
constant independent ofk. Moreover, ifB(1−ǫ) < 1, then the
expected total playback delay,E[Dk] for a stream of lengthk,
grows linearly withk.

The key tool used in establishing the first half of Theoem 1
is an analytical upper bound on the number of visits at a
transient state in a general one dimensional random walk.

D 0 1 B − 1 Bǫ

ǫ ǫ
ǫ

ǫ

1− ǫ1− ǫ

1− ǫ1− ǫ1− ǫ

Fig. 1. The one dimensional random walk defined on the set of statesS
with infinite buffer size, fixed bandwidth usageB, and memoryless transition
probabilities as depicted in the figure.

Lemma 1. Consider a discrete time, one dimensional random
walk defined on the set of statesS = {D, 0, 1, 2, · · · } as
depicted in Fig. 1 for a fixed positive integerB and0 < ǫ < 1.
StateD transitions to itself with probabilityǫ and to state
B − 1 otherwise. Also for any other statei ∈ {0, 1, · · · }, the
state will change toi− 1 with probability ǫ and to i+B − 1
otherwise.

Let the number transitions from state0 to state D, be
denoted byND. Then starting from state0, if B(1 − ǫ) > 1
then the expected time spent at stateD will be upper bounded
by

E[ND]

1− ǫ
≤

ǫB

(1− ǫ)((1− ǫ)B − 1)
. (1)

The proof of this Lemma is provided in the Appendix. In
what follows the proof of Theorem 1 is provided.

Proof of Theorem 1: The first part of Theorem 1 is a
direct consequence of Lemma 1. Let us model the receiver
buffer with a one dimensional random walk with statesS =
{D, 0, 1, 2, · · · }, where stateD is the buffer starvation state
where the receiver experiences an interruption in the playback.
Hence the playback delay which is the number of interruptions
in the playback is equal to the number of visits to stateD.
Every other state refers to the case that the receiver has played
back the required packet and the number of remaining packets
in the buffer is denoted by the state name. Hence the random
walk describing the buffer state of the receiver is isomorphic
to the random walk introduced in the description in Lemma
1, and we can directly apply Eq. (1) to first part of this proof:

E[Dk] ≤ E[D∞] =
E[ND]

1− ǫ
.

Since spending a time step in stateD represents experiencing
a delay in the playback whenB(1− ǫ) > 1, the expected total
playback delay is upper bounded by (1).

For the second part of the proof, ifB(1 − ǫ) < 1, lets
consider the same one dimensional random walk as used
above, but this time assign the numerical value−1 to the
state D. We will upper bound the expected time between
two entrances to stateD, as a renewal. Then showing this
renewal process has a finite renewal duration, using the law of
large numbers for the renewals [3] we conclude the number of
entrances to stateD and hence the total playback delay grows
linearly with the stream lengthk. Let Xj denotes the change
in the number of packets stored in the receiver buffer at time
step j. We defineS0 = B − 1 since whenever the receiver
buffer gets out of the stateD it restart at stateB− 1. Also let
Si = S0+

∑i
j=1 Xj i ≥ 1, and alsoYi = Si+ i(1−B(1−ǫ))
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Fig. 2. The bandwidth-delay trade-off for different valuesof stream length
k, andǫ = 0.5. This figure shows the transition in the behaviour of playback
delay atB =

1
(1−ǫ)

= 2.

for i ≥ 0. Hence,Si is not a martingale since it has a negative
drift, but Yi for i ∈ {1, · · · } is a martingale with respect to
Fi = σ(X1, · · · , Xi) for i ∈ {1, · · · }, andF0 = ∅ as the drift
in the mean value ofSi is removed inYi. Now starting in
stateB − 1, we have

Y0 = B − 1. (2)

We defineT = inf{t > 0 s.t. St = −1}. Then T is a
stopping time and atT we have
YT = ST + E[T ](1−B(1− ǫ)) = −1 + E[T ](1−B(1 − ǫ)).

(3)
Now using the optional stopping time theorem [7] from (2)

and (3) we have
E[YT |F0] = E[Y0]

⇒− 1 + E[T ](1−B(1 − ǫ)) = B − 1

⇒E[T ] =
B

1−B(1 − ǫ)
. (4)

Note that the expected time before the first interruption is
upper bounded by this value since at the beginning we start in
state0 rather than stateB − 1. This means that the expected
time between two consecutive interruptions in the playbackat
the receiver side would be upper bounded by (4). Since (4) is
a constant, then the number of interruptions beforek packets
are recovered at the receiver would grow linearly withk, and
we will have

E[ND] ≥
k(1−B(1− ǫ))

B
⇒ E[Dk] ≥

k(1 −B(1− ǫ))

B(1 − ǫ)
.

(5)

Figure 2 shows the transition in the behaviour of the average
total playback delay as a function of the bandwidth usageB,
for different values of the stream lengthk from k = 103

packets tok = 106 packets. Here,ǫ = 0.5, and as depicted
in the figure, whenB < 1

(1−ǫ) the average playback delay
increases linearly with the size of the stream, unlike theB >

1
(1−ǫ) where it converges to a constant ask grows.

IV. F INITE RECEIVER BUFFER

In this section we will consider the case that the receiver
buffer is limited. As a result at some time steps, depending on
the available free space in the receiver’s buffer, the transmitter
might not be able to transmitB packets. Therefore the
transmission scheme would be different in the sense that the
bandwidth usage at any given time stept would be adaptively
chosen based on the state of the receiver and the transmitter
would then transmitBt packets. However, as will be shown
in this section, the average bandwidth usage in this case
will always be smaller than the minimum required average
bandwidth usage for having constant expected total playback
delay. In other words, it would not be possible to achieve
E[Bt] > (1 − ǫ)−1, whenE[Bt] denotes the expected value
of Bt over the duration of transmission. As a result, the
expected total playback delay in this case will always be a
linear function of the the stream lengthk. However simulations
show that in practice for a fixed length of the stream and for
moderately large receiver buffers, we can achieve a playback
delay very close to the infinite buffer case.

First we propose a dynamic bandwidth scheme where the
source transmits just enough packets to refill the playback
buffer after each slot. This transmission scheme hence achieves
the best possible expected total playback delay as it maximizes
the packet transmission at any time step, according to the
limitation of the receiver’s buffer. Here we assume that the
receiver buffer has just enough capacity to keep maximum of
m source packets.

Definition 2 (Buffer Refill Scheme). The source transmits just
enough packets to refill the playback buffer. Thus the number
of packets transmitted in slott is given by

Bt = m−Nt−1 + 1

whereNt−1 is the number of packets in the receiver buffer at
the end of slott− 1.

Thus starting at time zero, the scheme transmitsm + 1
packets in each slot. The first successful slot will result in
a full playback buffer. Since one packet is played in each slot,
the source has to transmit at least1 to replenish the buffer.
In the following we provide the expected bandwidth usage
and the expected total playback delay for this scheme. Note
that the expected total playback delay for this scheme is the
lower bound for the expected total playback delay for any
transmission scheme with finite receiver buffer.

A. Bandwidth Usage

The bandwidth usage in slott can be expressed as
Bt = 1 +min(m,Et−1)

whereEt−1 is the length of the continuous burst of erasures
ending in slott− 1. It represents the amount of empty space
in the receiver buffer and follows the geometric distribution
with parameterǫ.

The expected bandwidth usageE[Bt] for t > m is given
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Fig. 3. The one dimensional random walk defined for the BufferRefill
scheme with finite buffer size and memoryless transition probabilities as
depicted in the figure.

by,

E[Bt] = 1 +

m−1
∑

i=1

iǫi(1 − ǫ) +mǫm

= 1 + ǫ+ ǫ2 + · · · ǫm

=
1− ǫm+1

1− ǫ
(6)

In the analysis of the fixed bandwidth scheme, we saw that
when the buffer sizem is infinity, we requireB > 1/(1− ǫ).
In (6) we observe that asm → ∞, the bandwidth usage goes
to the same limit1/(1− ǫ). This implies that the the expected
bandwidth usage of any scheme with finite receiver buffer
will always be below the required bandwidth for the finite
expected total playback delay. In the following the expected
total playback delay of the Buffer Refill scheme is provided.

B. Playback Delay

The expected playback delay is equal to the expected total
playback time,E[Tk], times the steady state probabilityπD of
being in stateD (the buffer starvation state).

The Markov chain for the buffer stateNt is as illustrated
in Fig. 3. We can evaluate the steady-state probabilities by
solving the following state transition equations.

(1− ǫ)πD = ǫπ0,

πi = ǫπi+1 for 0 ≤ i ≤ m− 1,

πm =
1− ǫ

ǫ
(πD + π0 + · · ·πm−1) ,

1 = πD +

m
∑

i=0

πi.

Solving, we get
πm = 1− ǫ, πD = ǫm+1. (7)

Moreover, the expected total playback time could be calcu-
lated as

E[Tk] ≥
k

1− πD
⇒ E[DK ] ≥

ǫm+1k

1− ǫm+1
.

ThereforeE[DK ] grows linearly withk. However, as de-
picted in the figure 4, using a more practical transmission
scheme, the delay-bandwidth trade-off having a practical
buffer size will be very similar to the case of infinite re-
ceiver buffer. In these simulations the transmitter setsBt =
min{m − Nt−1 + 1, B} for some fixedB. Hence the size
of the transmission packet is clamped to the available buffer
space whenever necessary and remains constant otherwise to
address the practical limits on the transmission packet size.
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Fig. 4. Effect of buffer sizem, on bandwidth-delay trade-off for Buffer
Refill scheme with maximum transmission packet sizeB, k = 10

6, ǫ = 0.5.

V. CONCLUSION

We studied the achievable playback delay for perfect feed-
back over an i.i.d. erasure channel. Assuming all the packets
are initially available at the transmitter, we formulated the
problem based on a random walk describing the state of
receiver buffer. Our analysis is based on introducing a new
theorem to describe the transient behaviour of such a random
walk with drift. We showed that when the bandwidth usage
is above the inverse of the channel capacity, the expected
playback delay remains constant while otherwise it grows
linearly with the stream length. Both the result and the analysis
technique are different from the case when the source packets
are generated in real-time at the encoder. We also studied
the finite buffer limitation and dynamic bandwidth schemes
both analytically and using simulations. Study of delayed
feedback, without feedback, and broadcast cases remain as
some interesting follow-ups.

APPENDIX A
PROOF OFLEMMA 1

Proof: Starting from state zero, lets denote the probability
that the random walk would eventually enter the stateD some
time in the future by P0. Similarly, starting from stateB − 1,
lets denote the probability of entering stateD sometime in the
future by PB−1. Then denoting the expected number of times,
random walk enters the stateD, starting from state zero by
E[ND], we have

E[ND] =

∞
∑

j=1

jP0(1− PB−1)(PB−1)
(j−1) =

P0

1− PB−1
.

In order to find an upper bound for this quantity, we will
now derive an upper bound for P0. Also, since according to
the definition of the random walk, PB−1 ≤ P0, then

E[ND] ≤
P∗
0

1− P∗
0

. (8)

To derive P∗0, we first derive the bound for the firstn time
steps, and then we letn to tend to infinity.



Let Xi for i ∈ {1, 2, · · · , n} be a random variable which
takes value0 with probability ǫ and valueB with probability
1−ǫ. The random variableXi corresponds to the jump at time
step i in the random walk, such thatXi is equal to the size
of the jump plus one. Also letMi =

1
i

∑i
j=1 Xj .

Note that according to the definitions, wheneverMj < 1,
for anyj ∈ {1, · · · , n}, the sum of all the jumps towards right
in the random walk up to time stepj is less than the sum of
the jumps towards left, and hence the stateD of the random
walk should have been visited.

Now we also define

Z−i =
B −Mi

B − 1
.

Then Z−i is a reverse martingale with respect to the
filtration F−i = σ(Mi,Mi+1, · · · ,Mn).

Note that to emphasise the reverse order considered for the
martingaleZ−i and its corresponding information filtration
F−i we are using negative indexes for them. We skip the proof
thatZ−i is a martingale with respect to the above information
filtration in the interest of space in this paper, but one could
find similar proofs in [7] (e.g. example 5.6.1).

We now define a stopping timeT in the reverse time order
from n to 1 as follows. LetT = max{j ≤ n s.t. Mj < 1},
and setT = 1 if the set is empty. We will refer to this event
that the set{j ≥ −n s.t. M−j < 1} = ∅ as the eventE.
Note that in order forT to be a stopping time on the event
E, T could not take any value larger than1 since we need to
wait until the end of the reverse order of time fromn to 1 to
realize such event has happened. In theEc however, starting
from timen coming backwards to1, T refers to the first time
that the empirical meanMT drops below one.

Also note that the eventE is the event that the random walk
never hits stateD as inE the empirical meanMi is always
above one. Then clearly P0 = P[Ec]. Now we claim that on
E, since we haveT = 1 by the definition, thenMT = B.
To show this, note that onE, the random walk never goes to
stateD, then at the first time stepi = 1, the random walk
should have jumped toB − 1, and hence we haveX1 = B.
ThenMT = M1 = X1 = B. This in turn implies,

Z−T = 0 on E. (9)
Lets now partition the eventEc into the disjoint events

Ec
j = {T = j} for j ∈ {1, · · · , n}. Since j is the last

time Mj < 1 on Ec
j , then we can conclude that onEc

j ,
Mj = MT≤(1−j)/j . As a result we have,

MT ≤
j − 1

j
⇒ Z−T ≥ 1 +

1

j(B − 1)
on Ec

j , (10)

Now note that, due to the definition of the partition onEc,
the eventsEc

i andEc
j are disjoint for anyi 6= j, and they are

also disjoint given the informationF−n = σ(Mn). Therefore
we have

P[Ec|Mn] =

n
∑

j=1

P[Ec
j |F−n]. (11)

Moreover, having (9), and (10), by definition we have

E[Z−T |F−n] =

n
∑

j=1

P[Ec
j |F−n]

(

1 +
1

j(B − 1)

)

. (12)

Therefore, since1 ≤ 1 + 1/(j(B − 1)) for any j ∈
{1, · · · , n}, then from (11) and (12) we have

P[Ec|Mn] ≤ E[Z−T |F−n].

However, using the optional stopping time theorem [7], we
can also see that

E[Z−T |F−n] = E[Z−n|F−n] = Z−n =
B −Mn

B − 1
,

and as a result we have

P[Ec|Mn] ≤
B −Mn

B − 1
.

Now note that the probability of visiting stateD, starting
from state zero, is equal to P[Ec], and also note that this is
an upper bound on the probability of visiting stateD starting
from any statei > 0, due to the definition of the random walk.
Hence, whenn goes to infinity, the probability of entering state
D starting from any state is upper bounded by

P∗
0 = lim

n→∞
EMn

[

B −Mn

B − 1

]

= lim
n→∞

B − EMn
[Mn]

B − 1

= lim
n→∞

B − (1− ǫ)B

B − 1

=
ǫB

B − 1
.

Now substituting P∗0 in (8) we have

E[ND] ≤
P∗
0

1− P∗
0

=
ǫB

(1− ǫ)B − 1
.

In order to complete the proof, please note that according to
the definition of the random walk, once we enter the stateD,
the random variable indicating the waiting time for exitingthat
state is a Geometric random variable with mean(1 − ǫ)(−1).
As a result, the expected total time residing in stateD is given
by

E[ND]

1− ǫ
=

ǫB

(1− ǫ) ((1− ǫ)B − 1))
.
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