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Amidst the rapid advancements in Large Language Models (LLMs), optimizing the latency performance of

online machine learning inference systems becomes paramount. Unlike standard queueing models that only

analyze latency, inference systems require accurate output to meet certain benchmarks. In this paper, we

consider such a queueing system with the goal of minimizing latency under the constraint that the average

output accuracy is greater than a benchmark value 𝑎∗, which has not been previously studied to the best

of our knowledge. We first identify a lower bound on the minimum achievable latency under any policy

that achieves the benchmark accuracy 𝑎∗ using a linear programming (LP) formulation. Building on the LP

solution, we introduce the R-JIQ policy, which consistently meets the accuracy benchmark and asymptotically

(as system size increases) achieves the optimal latency 𝑇LP-LB (𝜆). However, the R-JIQ policy relies on the

knowledge of the arrival rate 𝜆 to solve the LP. To address this limitation, we propose the Track the Accuracy

Difference (TAD) policy, which meets the accuracy constraint without relying on the arrival rate. While TAD

performs well empirically, it does not always achieve asymptotically optimal latency. As a refinement to TAD,

we present the TAD-OP policy that incorporates the concept of ordered pairs of servers into waterfilling to
iteratively solve the LP. Experiments suggest that TAD-OP performs robustly across different system sizes

and load scenarios, approaching near-optimal asymptotic performance.

1 INTRODUCTION
Machine learning (ML) has become ubiquitous in daily life over the last decade, whose growth is

particularly amplified with the advent of transformers [25] and the emergence of Large Language

Models (LLMs). Applications such as ChatGPT and Copilot have rapidly transformed into everyday

tools, aiding users in communication and coding tasks, respectively. However, the growth of ML

popularity is closely followed by a rapid increase in model sizes, resulting in increased inference

times. For perspective, AlexNet [12], an early ML model, contains 62.3 million parameters while

GPT-3 [3] boasts a staggering 175 billion parameters. This growing demand for ML applications,

coupled with the exponential growth in model sizes, underscores the urgent need for efficiently

designed computing systems to support them.

In this paper, we introduce a model for a computing system specifically tailored for serving ML

inference queries, which we refer to as an inference system. To capture the performance of such a

system, we focus on the fundamental tradeoff between accuracy and latency. Specifically, larger

ML models yield higher accuracy but incur greater latency, whereas smaller models offer reduced

latency at the expense of accuracy. In such a system, we aim to devise policies for assigning arriving

inference queries to servers, with the performance goal of minimizing latency while achieving a

desired level of accuracy.

Our approach complements the extensive efforts within the ML community to improve accuracy

along with increased efficiency. Notable techniques for this purpose include knowledge distillation

[8, 19], pruning [14], and early exits [2], just to name a few.
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There have also been a lot of efforts on system-level optimizations for improving the performance

of ML systems. For instance, JellyBean [30] optimizes ML inference workflows on heterogeneous

infrastructures but lacks latency guarantees. Clipper [4] improves throughput, latency, and accuracy

using caching, adaptive batching, and bandit-based model selection, but it does not fully capture

the latency–accuracy tradeoff. INFaaS [20] offers a model-less system for distributed inference with

user-defined performance metrics, distinct from our system-set criteria. Some other optimizations

are explored in [18, 21, 23, 31]. However, these methods lack a theoretical framework to understand

the fundamental latency–accuracy tradeoff.

In this paper, we approach the problem from a queueing system perspective. Traditional queueing

theory has been instrumental in analyzing system latency but often overlooks accuracy consid-

erations. For instance, classical policies such as Join-the-Shortest-Queue (JSQ) [6, 29], Join-the-

Idle-Queue (JIQ) [15, 16, 24], and their low-overhead alternatives, JSQ-𝑑 [17, 26] and JIQ-𝑑 [27], all

focus on minimizing latency in load-balancing systems with homogeneous servers. The Join-the-

Fastest-of-the-Shortest-Queue (JFSQ) policy [28] is shown to be asymptotically optimal in latency

with heterogeneous servers. A comprehensive survey is provided in [5].

There has also been a large body of work on maximizing network utility [9, 10, 13]. Although

we can potentially model accuracy as a utility, existing work is more concerned with throughput

maximization. Similarly, studies on scheduling under deadline constraints [11, 22] aim at minimizing

job expiration or maximizing revenue rather than balancing latency and accuracy.
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Fig. 1. Latency–accuracy tradeoff.

To demonstrate how accuracy considerations

affect the query assignment problem, let us

consider a load-balancing system where each

server is associated with both a service rate

and an accuracy level. When an ML query ar-

rives in the system, we assign the query to one

of the servers immediately. Since our goal is

to minimize latency while achieving a desired

level of accuracy, there are two intuitive job

assignment policies: JIQ that prioritizes faster

servers, and JIQ that prioritizes higher accuracy

servers. However, Figure 1 reveals that priori-

tizing faster servers does not achieve the desired level of accuracy (shown as the blue line), whereas

prioritizing higher accuracies results in large latency. In contrast, we plot the performance of one of

our proposed policies, which successfully strikes a balance, achieving the desired level of accuracy

while maintaining reasonable latency.

1.1 Main Contribution
Modeling. We represent the inference system using a queueing model that aims to minimize

latency while ensuring the system achieves an average benchmark accuracy output 𝑎∗. To the best

of our knowledge, this is the first work in modeling an inference system that captures the trade-off

between latency and accuracy.

Lower Bound and Baseline Approach. We present a lower bound on the minimum achievable

latency for any policy that satisfies the accuracy constraint using a linear program (LP). By merging

existing queueing policies that minimize waiting time with the LP solution, we introduce the R-JIQ

algorithm. This algorithm consistently meets the benchmark accuracy and demonstrates asymptotic

latency optimality as the system scales.
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Arrival-rate Oblivious Policies. While R-JIQ is asymptotically optimal, it relies on an accurate

knowledge of the arrival rate and is vulnerable to any discrepancies in this estimation. This led us

to develop the Track-the-Accuracy Difference (TAD) policy, a heuristic approach that satisfies the

accuracy constraint without using the knowledge of the arrival rate. However, it does not achieve

optimal latency. We then present the TAD-OP policy that emulates a waterfilling algorithm using

order pairs of server classes. Experimental results demonstrate a robust performance of this policy

across various system loads and sizes, achieving nearing optimal performance in large systems.

The Concept of Pairs. We introduce the idea of ordered pairs akin to priority classes in the

literature. The pairs can balance the trade-off between latency and accuracy, something simple

priority classes fail to achieve. While our motivation lies in modeling the inference system, the

pair concept has broader applicability to any system with linear constraints, e.g., inference systems

constrained by energy budgets. Further, for systems with more than one constraint, pairs motivate

the extension to triplets or even larger groupings.

1.2 Paper Outline
Wepresent the problem formulation and performancemetrics in Section 2. Following this, Section 3.1

presents a lower bound on the minimum achievable latency for any system that maintains the

benchmark accuracy using an LP defined in (3). The R-JIQ policy is introduced in Section 3.2, with

its asymptotic optimal guarantees highlighted in Lemma 2. The potential limitations of the R-JIQ

policy are discussed in Section 3.4. We introduce the TAD policy and the reason for its sub-optimal

performance in Section 4. We introduce the concept of pairs in Section 5.1, which subsequently

leads to the waterfilling algorithm, described in Section 5.3. Theorem 1 provides the convergence

guarantee of the waterfilling algorithm to the solution of the LP. We present our main proposed

TAD-OP policy in Section 5.4. We validate our policies with experimental results in Section 7 and

conclude in Section 8.

2 PROBLEM FORMULATION
2.1 System model; Arrival, Departure, and Accuracy
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Fig. 2. Batch Inference time for different ResNet
models accelerated using NVIDIA TitanX GPU

We consider an online ML inference system with

𝑛 servers, where each server stores one ML model.

The 𝑛 servers are divided into 𝐾 distinct classes cor-

responding to 𝐾 different ML models, with 𝛼𝑖 > 0

fraction of the total servers allocated to the 𝑖-th class

such that

∑𝐾
𝑖=1
𝛼𝑖 = 1. Inference queries arrive in the

system according to a Poisson process with the rate

Λ = 𝜆𝑛, where 𝜆 is the normalized arrival rate. An

inference query can be interpreted as a batch of in-

ference tasks that require execution on an ML model

stored within the system. Upon arrival, we route the

query to one of the servers according to a designated

policy. Queries wait in a queue at the server accord-

ing to a first-come-first-serve (FCFS) manner until

they are served. An inference query on a server of class 𝑘 requires an exponentially distributed

random time with a rate 𝜇𝑘 independent of everything else. Upon being served from a server

of class-𝑘 , the query receives an accuracy score of 𝑎𝑘 . We assume that the service rates and the

accuracies are ordered, i.e., 𝜇1 > 𝜇2 > · · · > 𝜇𝐾 and 𝑎1 < 𝑎2 < · · · < 𝑎𝐾 . The assumption aligns

with the properties of ML models; a larger ML model typically yields higher accuracy scores but
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Fig. 3. An illustration of the inference system with 𝑛 servers divided into 𝐾 distinct classes. Jobs arrive
according to a Poisson process with a rate Λ = 𝑛𝜆. Each server stores an ML model. Class-1 servers store
the smallest model, providing the least accuracy 𝑎1 and maximum speed 𝜇1, while class-𝐾 servers store the
largest ML model, providing maximum accuracy and minimum latency.

requires longer processing times due to increased computational requirements, see Fig. 2. Fig. 3

provides an illustration of the inference system.

2.2 Performance Metric
A way to measure the performance of an inference system is to understand the user delay and

the accuracy output. We measure the user delay using the expected response time of queries in the

system. The response time of a query is the total time that a query spends in the system, which is

the sum of the waiting time in the queue and the service time. Meanwhile, we measure the accuracy

output using the expected accuracy of queries served by the inference system. For any policy 𝜋 that

determines a way to assign queries to servers, E[𝑇𝜋 ] and E[𝑎𝜋 ] denote the expected response time

and expected accuracy of the system under the policy, respectively.

A conventional approach to designing policy 𝜋 for queueing systems aims to minimize E[𝑇𝜋 ].
However, within the context of an inference system, prioritizing low latency could inadvertently

lead to decreased E[𝑎𝜋 ] since latency-efficient policies often favor faster but less accurate servers.

Conversely, prioritizing servers with only high accuracy increases response times. We handle this

trade-off using a benchmark accuracy level, denoted by 𝑎∗, representing the minimum required

average accuracy of the system. A feasible policy, in this context, is defined as a policy 𝜋 where

E[𝑎𝜋 ] ≥ 𝑎∗. Based on these definitions, this paper aims to design a policy 𝜋∗ that is feasible and
minimizes the expected response time.

2.3 Service Capacity Region
In this section, we study the service capacity region of the inference system. We define the service
capacity region as the set of arrival rates such that for any 𝜆 in the interior of the set, there exists a

policy that achieves the accuracy criteria and stabilizes the queue lengths. Without the accuracy

constraint, the maximum traffic a queueing system can handle is restricted by the sum of service

rates of all servers. Specifically, the system can handle any normalized arrival rate 𝜆 <
∑𝐾
𝑖=1
𝛼𝑖𝜇𝑖 .

However, introducing the accuracy constraint changes the capacity region as most of the system’s

capacity comes from the faster servers, which, unfortunately, provides lower accuracy. We define

𝜆max
in Definition 1 to describe the capacity region of our inference system under the accuracy

constraint. The inference system can only be feasible if 𝜆 is less than 𝜆max
with a higher 𝜆 indicating

a greater difficulty in maintaining the benchmark accuracy 𝑎∗. For technical discussion, we use
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vector notation to keep it concise. Define the vectors

𝝁 = (𝜇1, . . . , 𝜇𝐾 ) , 𝝁−1 =

(
1

𝜇1

, . . . ,
1

𝜇𝐾

)
, 𝝁𝜶 = (𝛼1𝜇1, . . . , 𝛼𝐾 𝜇𝐾 ) , 𝒂 = (𝑎1, . . . , 𝑎𝐾 ) (1)

with 0, 1 representing vectors with all zeros and ones, respectively and 𝒆𝑖 representing vectors with
all zeros, except the 𝑖-th index which contains 1. We use “·” to represent the vector inner product.

Definition 1. The maximum normalized arrival rate that the inference system can serve while
achieving the benchmark accuracy 𝑎∗ is given by

𝜆max = sup

{
𝜆′ : ∃𝒑 ∈ R𝐾 s.t. 𝜆𝒑 ≤ 𝝁𝜶 ,𝒑 ≥ 0,𝒑 · 1 = 1,𝒑 · 𝒂 ≥ 𝑎∗

}
. (2)

The definition of 𝜆max
is simple. Any stable policy yields a probability vector 𝒑 = (𝑝1, . . . , 𝑝𝐾 ),

with 𝑝𝑖 denoting the steady-state fraction of queries served using a class-𝑖 server. Since 𝒑 is a

probability vector, the vector must be non-negative, and the sum of its elements should equal one;

hence, the constraints 𝒑 ≥ 0, and 𝒑 · 1 = 1. For any 𝑖 , the traffic served by class-𝑖 servers must

not exceed the net capacity of class 𝑖 servers, as indicated by 𝜆𝒑 ≤ 𝝁𝜶 . Lastly, the system must

maintain the average accuracy of 𝑎∗ given by 𝒑 · 𝒂 ≥ 𝑎∗.
Since 𝜆max

denotes the maximum feasible arrival rate, it is inherently bounded by the total system

capacity, i.e., 𝜆max ≤ ∑𝐾
𝑖=1
𝛼𝑖𝜇𝑖 . However, equality may not always hold. Consider an extreme case

where 𝑎∗ = 𝑎𝐾 . In this scenario, using server classes other than class 𝐾 would violate the accuracy

constraint. Consequently, 𝜆max = 𝛼𝐾 𝜇𝐾 <
∑𝐾
𝑖=1
𝛼𝑖𝜇𝑖 .

3 THE RANDOMIZED JOIN-THE-IDLE-QUEUE POLICY
In this section, we introduce our first algorithm, the Randomized Join-the-Idle-Queue (R-JIQ) policy,

which is inspired from a lower-bound detailed in Section 3.1, We present Lemma 2 to show that the

policy always achieves the benchmark accuracy 𝑎∗, and as 𝑛 increases, it achieves the minimum

expected response time. However, despite its asymptotic optimality, R-JIQ has its challenges. A

primary concern, discussed in Section 3.4, is the requirement of knowing the arrival rate, 𝜆.

3.1 A Lower Bound
This subsection presents Lemma 1, which establishes a lower bound on the expected response time

of queries in our inference system under any policy that achieves the average accuracy 𝑎∗.

Lemma 1 (Lower Bound on Expected Response Time). For the inference system defined in Section 2
and a normalized arrival rate 𝜆, a lower bound on the expected response time of the system under any
feasible policy 𝜋 is given by 𝑇LP-LB (𝜆), defined as

𝑇LP-LB (𝜆) = min

𝒑∈R𝐾
𝒑 · 𝝁−1

s.t. 𝜆𝒑 ≤ 𝝁𝜶 ,𝒑 ≥ 0,𝒑 · 1 = 1,𝒑 · 𝒂 ≥ 𝑎∗ .
(3)

where the acronym LP-LB stands for Linear Programming to estimate Lower Bound (LP-LB).

Proof of Lemma 1. Let 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) be a probability vector, where 𝑝𝑘 denotes the steady-

state fraction of queries served using servers of type 𝑘 . The constraints defined follow a similar

logic as expressed in the definition of 𝜆max
. The expression 𝒑 · 𝝁−1

represents the expected service

time of the queries, effectively the expected response time minus the expected wait time. Thus, the

optimal value 𝑇LP-LB (𝜆) to the Linear Program (LP) is a lower bound to the expected response time

under any policy that maintains the average accuracy of 𝑎∗ □

The definition of 𝜆max
ensures that the LP, defined in (3), is feasible for any 𝜆 ≤ 𝜆max

. When the

LP is feasible, we denote the optimal solution of the LP by 𝒑∗ (𝜆) = (𝑝∗
1
(𝜆), . . . , 𝑝∗

𝐾
(𝜆)).
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3.2 The R-JIQ Policy
The key recipe in designing a policy that ensures feasibility and minimization of expected response

time is rooted in the solution of a linear programming problem, defined in (3). The first intuition

provided by this LP is the appropriate allocation of incoming queries to different server classes, en-

suring that class-𝑖 servers serve 𝑝∗𝑖 (𝜆) fraction of the total queries. Achieving this is straightforward,

as we can probabilistically route 𝑝∗𝑖 (𝜆) fraction of incoming queries to class-𝑖 servers.

The second intuition provided by the LP is to minimize waiting time. In large queueing systems,

zero waiting time is a common phenomenon. A well-known policy that achieves zero waiting time

in a homogenous server system is the Join-the-Idle Queue (JIQ) policy [15, 16, 24], which routes

incoming queries to idle servers whenever possible.

Based on the observations above, one would like to use the probability vector 𝒑∗ (𝜆) to choose a

class-𝑖 and then join an idle server within the class-𝑖 servers. However, exactly using 𝒑∗ (𝜆) might

be problematic, as the solution of the LP allows 𝜆𝑝∗𝑖 (𝜆) = 𝛼𝑖𝜇𝑖 for some 𝑖 , which can make the

underlying Continuous-time Markov chain (CTMC) null recurrent. To handle the issue, we define

the R-JIQ policy as follows. For any normalized arrival rate 𝜆, we define the probability vector

𝒑∗
R-JIQ
(𝜆) = (𝑝∗

R-JIQ,1
(𝜆), . . . , 𝑝∗

R-JIQ,𝐾
(𝜆)), defined as

𝒑∗
R-JIQ
(𝜆) =

(
1 − 1

𝑛𝛾

)
𝒑∗ (𝜆) + 1

𝑛𝛾
𝒑∗ (𝜆max), (4)

where 𝛾 is a non-negative hyper-parameter. The roles of 𝛾 and 𝒑∗ (𝜆max) are to slightly adjust the

probability vector 𝒑∗ (𝜆) to guarantee zero waiting time, but without making significant enough

changes that take 𝒑∗
R-JIQ
(𝜆) far from 𝒑∗ (𝜆). Upon the arrival of a query, the policy chooses server

class-𝑖 with probability 𝑝∗
R-JIQ,𝑖

(𝜆) independently of other classes. Subsequently, the query is directed
to one of the idle class-𝑖 servers. If there are no idle servers within the class, one server within the

class is chosen uniformly at random. To determine idle servers within the system, a tokenization

method can be implemented, where a server, upon becoming idle, sends a token to the central

dispatcher, informing it about its availability.

Lemma 2 establishes the asymptotic (large enough 𝑛) optimality of the R-JIQ policy. It confirms

that for any 𝜆 < 𝜆max
, as long as the system operates within the sub-Halfin-Whitt regime, the

R-JIQ policy asymptotically achieves the minimal expected latency, 𝑇LP-LB (𝜆), while achieving the

benchmark accuracy 𝑎∗. The feasibility guarantee of the policy is independent of the value of 𝑛,

since 𝒑∗ (𝜆) · 𝒂 ≥ 𝑎∗ and 𝒑∗ (𝜆max) · 𝒂 ≥ 𝑎∗. While the algorithm is well defined for any value 𝑛, it

may not achieve the expected response time of 𝑇LP-LB (𝜆) for small 𝑛. This limitation stems from

the non-tight lower bound 𝑇LP-LB (𝜆); zero waiting time is difficult to achieve in smaller systems.

Lemma 2 (Asymptotic optimality of the R-JIQ algorithm). For the policy R-JIQ, and for any
𝜆

𝜆max
≤ 1 − 1

𝑛𝛽
, 0 < 𝛽 < 1

2
, 𝛾 = 1

2

(
1

2
− 𝛽

)
and queues with limited buffer 𝑏 = 𝑜 (

√
ln𝑛), the following

steady-state properties hold for large enough 𝑛.
(1) The expected response time:

E
[
𝑇R-JIQ

]
≤

(
1 − 1

𝑛𝛾

)
𝑇LP-LB (𝜆) +𝑂

(
min

{
1

𝑛𝛾
,

1

√
𝑛 ln𝑛

})
. (5)

(2) The expected achieved accuracy:

E[𝑎R-JIQ] ≥ 𝑎∗ . (6)

(3) The blocking probability:

E[𝑝𝐵R-JIQ] ≤ 𝑂
(

ln𝑛
√
𝑛

)
. (7)
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Proof sketch of Lemma 2. The proof of Lemma 2 relies primarily on the properties of the JIQ

policy, leveraging the results of [15]. The key idea involves dividing the system into 𝐾 queueing

subsystems, with subsystem-𝑖 housing all class-𝑖 servers. Notably, when 0 < 𝛽 < 1

2
, an appropriately

chosen 𝛾 ensures that each subsystem operates within the sub-Halfin-Witt regime.

It is crucial to choose the hyper-parameter carefully. Smaller values of 𝛾 may lead to individual

queueing systems experiencing loads beyond the sub-Halfin-Whitt regime, while larger values

might take 𝒑∗
R-JIQ
(𝜆) far from 𝒑∗ (𝜆). We show that 𝛾 = 0.5(0.5 − 𝛽) satisfies both criteria. This

implies that each subsystem is in the sub-Halfin-Whitt regime, resulting in zero queueing delays.

Furthermore, as the system size 𝑛 increases, the probability vector 𝒑∗
R-JIQ
(𝜆) converges to 𝒑∗ (𝜆)

implying that 𝑝∗𝑖 (𝜆) fraction of queries is asymptotically served using class-𝑖 servers. As a result, the

R-JIQ policy exhibits asymptotic stability and feasibility. A detailed proof is provided in Appendix A.

□

Variants of R-JIQ. The asymptotic success behind the R-JIQ policy is due to the optimal choice

of the traffic allocation represented by 𝒑∗
R-JIQ
(𝜆) and the minimization of the waiting time. Hence,

any policy that achieves zero wait time can be used for our purpose. Another decorated policy that

excels at minimizing wait time is the Join the Shortest Queue (JSQ), which chooses the shortest queue.
The JSQ-𝑑 policy modifies the JSQ policy by choosing 𝑑-servers uniformly at random and joining

the shortest queue among those servers. Using similar arguments, their randomized counterparts

given by R-JSQ and R-JSQ-𝑑 can also achieve asymptotic optimal latency and feasibility. However,

these methods come with their own challenges, particularly in implementation. The token-based

approach is unsuitable for queue-length-aware policies, posing difficulties in practical deployment.

3.3 Experiments: Asymptotic optimality of R-JIQ policy
In this subsection, we present experimental results to corroborate our result in Lemma 2.We consider

inference systems with the numbers of servers 𝑛, ranging from 2
4
to 2

12
. The load 𝜌 = 𝜆

𝜆max
is fixed

at 0.5. We consider four classes of servers with 𝝁 = (2, 1, 0.9, 0.1), 𝒂 = (70, 75, 80, 100) and 𝛼𝑖 = 0.25

for all 𝑖 . The benchmark accuracy 𝑎∗ is detailed in the respective simulation captions. For every

experiment, the queueing system starts with all empty queues and operates until 𝑛 × 10
5
queries

leave the system, with results averaged over 50 trials. Fig. 4 illustrates the asymptotic optimality of

the R-JIQ policy for different values of 𝑎∗. Besides the exponential service-time distribution, we also

consider deterministic service time in our experiments. This is to mimic the reliable performance

of GPUs as evidenced in Fig. 2 and the batching of inference tasks, which reduces variability across

batches. For moderate load and higher accuracy constraint 𝑎∗, the latency achieved converges to

𝑇LP-LB (𝜆) as quickly as 𝑛 = 64; however, the convergence is slower for lower values of 𝑎∗. Lower
𝑎∗ implies higher 𝜆max

, which increases 𝜆 even at the same load, explaining slower convergence.

We also observe that as the distribution changes from exponential to deterministic, convergence

occurs faster because of a lesser variability in the service times.

3.4 Drawbacks of the R-JIQ policy
Although the R-JIQ policy always achieves the benchmark accuracy and asymptotically achieves

the optimal response time, it has some drawbacks. The limitation of the R-JIQ policy arises primarily

from the fact that the policy assumes complete knowledge of the arrival rate to compute the vector

𝒑∗ (𝜆) and the hyper-parameter 𝛾 , which can be challenging to obtain in practice. One can also

argue that the policy must solve the LP, given in (3), to determine the optimal probability. This is

not a huge deal, as the time complexity to solve the LP is 𝑝𝑜𝑙𝑦 (𝐾) and is a one-time cost. Thus, the

question arises: Is there a way to mitigate the problem of the known arrival rate in the R-JIQ policy?
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Fig. 4. An illustration of the asymptotic optimality of the R-JIQ policy, the latency achieved by the R-JIQ
policy converges to the optimal latency 𝑇LP-LB (𝜆). The standard deviation for the plots is 𝑂 (1𝑒−3).
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Fig. 5. An illustration of the sensitivity of the R-JIQ policy to noisy estimates of the arrival rate 𝜆. The orange
line displays the maximum percentage error in arrival rate to ensure the zero wait time criteria, while the
blue line signifies the threshold to ensure system stability. The circle and square represent the load values,
where the error threshold for the sub-Halfin-Whitt and stability criteria is 5%.

Estimating the arrival rate addresses a way to mitigate the problem. One way to do this involves

tracking the total number of queries that enter the system. By counting arrivals over a time interval

[0, 𝜏] and dividing by 𝜏 , one can obtain an estimate (
ˆ𝜆𝑛) of the arrival rate, which in expectation is

𝜆𝑛. A small 𝜏 results in a noisy estimate, while a large 𝜏 gives a good estimate, each with its cons.

A noisy estimate (
ˆ𝜆) can lead to system instability. This stems from the fact the solution of

the LP enforces
ˆ𝜆𝒑∗ ( ˆ𝜆) ≤ 𝝁𝜶 and not 𝜆𝒑∗ ( ˆ𝜆) ≤ 𝝁𝜶 . The issue is further exacerbated, as the

hyperparameter 𝛾 also depends on the arrival rate 𝜆. Hence, any underestimation of 𝜆 can cause

𝜆𝒑∗ ( ˆ𝜆) ≰ 𝝁𝜶 which violates the capacity constraint making the system unstable, see Example 1.

Example 1. Consider a queueing system with three server classes with 𝝁 = (1, 0.5, 0.25), 𝒂 =

(40, 50, 100) and 𝛼𝑖 = 1/3 for all 𝑖 and 𝑎∗ = 52. Assume 𝜆 = 0.8𝜆max
, but the estimated arrival rate

ˆ𝜆 = 0.79𝜆max
, accounting for 1.25% estimation error. If one computes the optimal probability using

ˆ𝜆, it turns out that the class-3 serves become unstable as 𝜆𝑝∗
3
( ˆ𝜆) = 0.0843 > 0.0833 = 𝛼3𝜇3.

Even if stability is maintained, the load in individual subsystems can go beyond the sub-Halfin-

Whitt regime because of the incorrect estimate, which can increase the wait time. Fig. 5 illustrates

issues of R-JIQ policy under noisy estimates. The system parameters 𝝁,𝜶 , and 𝒂 remain unchanged

from the previous configurations in Section 3.3. The 𝑦-axis indicates the percentage error in arrival

rates, whereas the 𝑥-axis represents the actual load of the system. The brown line displays the

maximum percentage error in the estimate of the arrival rate 𝜆, which the system can tolerate

while ensuring each subsystem-𝑖 operates within the sub-Halfin-Whitt regime, signifying the zero

8
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wait time criteria. The blue line signifies the maximum error threshold to ensure system stability.

Naturally, as the load increases, the error tolerance of the estimate decreases since each subsystem

tends to operate in heavier traffic. The same logic applies when happens when the benchmark

accuracy 𝑎∗ increases. The 𝜌5

𝑤 , marked by a circle, represents the load where a 5% error pushes the

system outside the sub-Halfin regime, thus increasing the waiting time. Similarly, 𝜌5

st
signifies the

load where a 5% error can lead to system instability. For smaller values of 𝑛 and an error tolerance

of 5%, the system can operate beyond the sub-Halfin-Whitt regime even for a moderate load level,

approximately 0.55. As the system scales, the sensitivity increases; close to a load of 0.88, a 5% error

can destabilize the system. Thus, a small interval of 𝜏 can be detrimental to stability and latency.

The instability issue motivates one to use a large 𝜏 to obtain a more accurate estimate, but that

could render the system unresponsive to changes in arrival rates. Real-world scenarios often exhibit

varying traffic loads influenced by factors such as time of day and location. The instantaneous traffic

into the system can be significantly higher than the long-term average, which can cause instability

issues. Hence, selecting an appropriate time horizon to estimate arrival rates is challenging.

4 TRACK THE ACCURACY DIFFERENCE
In this section, we present our second proposed algorithm, the Track-the-Accuracy-Difference
(TAD) policy, an empirical approach to resolve the issue of known arrival rates. The algorithm is

very intuitive and consistently achieves the benchmark accuracy. However, the algorithm does

not achieve the optimal response under some circumstances, as evidenced in Example 2. The

counterexample given in Example 2 motivates us to study the LP in greater detail, paving the way

for our subsequent algorithm design.

The Track-the-Accuracy-Difference (TAD) achieves the benchmark accuracy using an online

method, removing dependency on the arrival rate. The dispatcher maintains a variableΔ𝑎∗ initialized
at zero to indicate the system’s deviation from the benchmark accuracy. Upon the arrival of a

query, the dispatcher defines a set I = {𝑖 : 𝑖 ∈ {1, . . . , 𝐾},Δ𝑎∗ + 𝑎𝑖 − 𝑎∗ ≥ 0}. Intuitively, the set I
represents the classes of servers that can maintain a positive Δ𝑎∗ . It then utilizes the Join-the-Idle-
Queue strategy from R-JIQ to minimize the waiting time. Similar to R-JIQ, when a server becomes

idle, it sends a token to the central dispatcher, informing the dispatcher of its availability. The

dispatcher then aims to send the query to an idle server of class-𝑖 for some 𝑖 ∈ I. If there are
multiple idle servers, preference is given to the faster server. If there are no idle class-𝑖 servers, for

any 𝑖 ∈ I, a class-𝑖 from the set I is randomly chosen, and one server within the class is chosen

uniformly at random. Upon routing a query to a class-𝑖 server, Δ𝑎∗ is updated to Δ𝑎∗ = Δ𝑎∗ + (𝑎𝑖−𝑎∗).
The TAD policy introduces the concept of Δ𝑎∗ . The policy’s strategy of maintaining a positive

Δ𝑎∗ guarantees the achievability of the benchmark accuracy. Because it prioritizes idle servers, one

would expect the policy to stabilize the queues, i.e., the underlying CTMC is positive recurrent.

Furthermore, since the policy prioritizes faster servers when Δ𝑎∗ is positive, one may expect the

policy to achieve the optimal response time 𝑇LP-LB (𝜆) asymptotically. Contrary to our expectations,

the TAD policy’s preference for faster servers can lead to sub-optimal performance, particularly in

low-load scenarios. Example 2 illustrates one case of sub-optimality.

Example 2. Consider a queueing system with three server classes with 𝝁 = (1, 0.5, 0.25), 𝒂 =

(40, 50, 100) and 𝛼𝑖 = 1/3 for all 𝑖 and 𝑎∗ = 45. Assume that the arrival rate 𝜆 is small; hence,

there is almost no queueing. Under these parameters, the TAD policy would route queries to the

servers in class-1 and 2 in a round-robin fashion. The expected response time of the system would

be E[𝑇TAD] = 0.5(1/1 + 1/0.5) = 1.5. However, an alternative policy, where one query is routed

to a class 3 server, and the next 11 queries are routed to a class 1 server, performs better. The
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accuracy achieved under this policy is (40 × 11 + 100)/12 = 45 and it achieves a response time of

( 11

12
× 1

1
+ 1

12
× 1

0.25
) = 15

12
= 1.25, performing 16.67% better than the TAD policy.

5 ORDERED PAIRS SOLVE THE LINEAR PROGRAM
In this section, we introduce ordered pairs and their application in our proposed TAD-OP policy.

Taking Example 2 as motivation, we analyze the LP in the low-load regime in Section 5.1. This

analysis highlights the significance of pairs of server classes. We generalize this concept into routing

tuples in Section 5.2. In Section 5.3, we present the Waterfilling algorithm that uses the routing

tuples iteratively to solve the LP. Theorem 1 provides the convergence guarantee of the waterfilling

algorithm to the LP solution. Finally, we present the Track-the-Accuracy-Difference under Ordered
pairs (TAD-OP) policy in Section 5.4 that mimics the waterfilling algorithm in a stochastic sense.

5.1 Low Load Analysis: Introducing the concept of Pairs
To understand why the TAD policy sometimes fails to achieve optimal latency 𝑇LP-LB (𝜆), we study
the LP, defined in (3), in the low-load regime. As 𝜆 → 0, the capacity constraint, given by 𝜆𝒑 ≤ 𝝁𝜶 ,

becomes redundant. Consequently, we introduce a relaxed version of the linear programming

problem, defined in (8), where we omit the capacity constraints. Lemma 3 then provides a closed-

form solution of the relaxed LP.

𝑇Relaxed-LP-LB (𝜆) = min

𝒑∈R𝐾
𝒑 · 𝝁−1

s.t. 𝒑 ≥ 0,𝒑 · 1 = 1,𝒑 · 𝒂 ≥ 𝑎∗ .
(8)

Lemma 3 (Optimality of two servers). For the relaxed linear program, defined in (8), we have the
following: for all 𝜆 > 0, the optimal solution �̄�∗ = (𝑝∗

1
, 𝑝∗

2
, . . . , 𝑝∗

𝐾
) is either 𝑝∗𝑖 = 1 with 𝑎𝑖 = 𝑎∗ or

�̄�∗ = 𝒒 (𝑖1, 𝑗1 ) with

𝑖1, 𝑗1 = arg min

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

(
1

𝜇𝑖

𝑎 𝑗 − 𝑎∗

𝑎 𝑗 − 𝑎𝑖
+ 1

𝜇 𝑗

𝑎∗ − 𝑎𝑖
𝑎 𝑗 − 𝑎𝑖

)
(9)

where 𝑞 (𝑖, 𝑗 )
𝑖

=
𝑎 𝑗−𝑎∗
𝑎 𝑗−𝑎𝑖 , 𝑞

(𝑖, 𝑗 )
𝑗

=
𝑎∗−𝑎𝑖
𝑎 𝑗−𝑎𝑖 and 𝑞

(𝑖, 𝑗 )
𝑘

= 0 for any 𝑘 ≠ 𝑖, 𝑗 .

The proof of Lemma 3 is given in Appendix B.1. The insight derived from Lemma 3 is instructive.

Specifically, if no server class precisely achieves accuracy 𝑎∗, using only two server classes is

optimal: the class 𝑖1 with an accuracy below 𝑎∗ and the class 𝑗1 with an accuracy exceeding 𝑎∗. One
can verify that {𝑖1, 𝑗1} in Example 2 is {1, 3} explaining why TAD is suboptimal. So what happens
as the load increases and the classes 𝑖1 and 𝑗1 are insufficient to handle the traffic? The natural choice
would be to choose the next most effective pair, represented by {𝑖2, 𝑗2}; however, we need to add a

few more pairs to make the idea work. We generalize this idea to tuples in the next subsection.

5.2 Routing Tuples
In this subsection, we define routing tuple using Definition 2. Intuitively, the routing tuples describe

a way to allocate the traffic 𝜆 into one or two server classes along with its cost addition to the LP.

Definition 2. A tuple (𝑆, 𝒒𝑆 , 𝑣𝑆 ) is defined as a routing tuple if it satisfies the following conditions
(1) Routing set: A set of server classes 𝑆 ⊆ {1, 2, . . . , 𝐾} with size |𝑆 | ≤ 2,
(2) Routing vector: A 𝐾-dimensional vector 𝒒𝑆 defined as

𝒒𝑆 = arg min

𝒒′∈R𝐾
{𝒒′ · 𝝁−1

: 𝒒′ = (𝑞′
1
, . . . , 𝑞′𝐾 ), 𝒒′ · 1 = 1, 𝒒′ · 𝒂 ≥ 𝑎∗, 𝑞′𝑗 = 0,∀𝑗 ∉ 𝑆}, (10)

(3) Cost: 𝑣𝑆 = 𝒒𝑆 · 𝝁−1

10
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One can notice similarities between the definition of routing vector and the LP, defined in (3).

The routing vector 𝒒𝑆 resembles the optimal routing probability 𝒑∗ (𝜆) but when restricted to only

using server classes in the set 𝑆 , while 𝑣𝑆 represents the cost. However, a key difference is that the

definition of the routing vector does not enforce the non-negativity of the vector. The reason is that

there might exist sets for which a non-negative routing vector is not possible. E.g., take 𝑆 = {1, 2}
with 𝒂 = (40, 50, 100) and 𝑎∗ = 60; a non-negative routing vector cannot satisfy 𝒒𝑆 · 𝒂 ≥ 𝑎∗. Next,
we concretely define all the routing tuples for our system.

We first define routing tuples with routing sets 𝑆 (𝑖, 𝑗 ) = {𝑖, 𝑗} for all 1 ≤ 𝑖 < 𝑗 ≤ 𝐾 . The

routing vector associated with 𝑆 (𝑖, 𝑗 ) is 𝒒 (𝑖, 𝑗 ) =

(
𝑞
(𝑖, 𝑗 )
1

, . . . , 𝑞
(𝑖, 𝑗 )
𝐾

)
. By solving the set of linear

equations 𝒒′ · 1 and 𝒒′ · 𝒂 = 𝑎∗ subject to the condition that 𝑞′
𝑘
= 0, 𝑘 ≠ 𝑖, 𝑗 , we can obtain that

𝑞
(𝑖, 𝑗 )
𝑖

=
𝑎 𝑗−𝑎∗
𝑎 𝑗−𝑎𝑖 , 𝑞

(𝑖, 𝑗 )
𝑗

=
𝑎∗−𝑎𝑖
𝑎 𝑗−𝑎𝑖 and 𝑞

(𝑖, 𝑗 )
𝑘

= 0 for 𝑘 ≠ 𝑖, 𝑗 . If one increases the weight of the 𝑖-th index,

then the accuracy constraint is not satisfied, while if one increases the weight of the 𝑗-th index, the

cost will increase since 𝜇 𝑗 > 𝜇𝑖 explaining why 𝒒 (𝑖, 𝑗 ) takes the above form. The associated cost is

then given by 𝑣 (𝑖, 𝑗 ) = 𝒒 (𝑖, 𝑗 ) · 𝝁−1
.

When the accuracies 𝑎𝑖 , 𝑎 𝑗 satisfy 𝑎𝑖 < 𝑎
∗ < 𝑎 𝑗 , then 𝒒 (𝑖, 𝑗 ) ≥ 0 and 𝒒 (𝑖, 𝑗 ) · 1 = 1. In this case, the

associated routing vector 𝒒 (𝑖, 𝑗 ) is a valid probability vector. The use of the routing vector 𝒒 (𝑖, 𝑗 ) to
minimize cost is intuitive, as seen in Lemma 3. However, when 𝑎𝑖 < 𝑎 𝑗 < 𝑎

∗
or 𝑎𝑖 > 𝑎 𝑗 > 𝑎

∗
, the

associated routing vector 𝒒 (𝑖, 𝑗 ) is non-positive. These routing vectors, though not non-negative,

play a critical role in the convergence of our algorithm.

We also introduce tuples with a singleton routing set 𝑆 (𝑖 ) = {𝑖}, for all 𝑖 such that 𝑎𝑖 ≥ 𝑎∗, along
with the associated routing vector 𝒒 (𝑖 ) = 𝒆𝑖 and the cost 𝑣 (𝑖 ) = 1/𝜇𝑖 . These routing tuples aim to

accommodate scenarios where the inference system can achieve an accuracy higher than 𝑎∗ but
not exactly 𝑎∗. For example, in an inference system with 𝒂 = (40, 50) and a benchmark accuracy

𝑎∗ = 30, it is impossible to achieve exactly the expected accuracy of 𝑎∗.
Using the above definition of routing tuples, we define the optimal set of routing tuples S∗

opt
as

S∗
opt

= {(𝑆 (𝑖, 𝑗 ) , 𝒒 (𝑖, 𝑗 ) , 𝑣 (𝑖, 𝑗 ) ) : 𝑖 < 𝑗, 𝑣 (𝑖, 𝑗 ) > 0} ∪ {(𝑆 (𝑖 ) , 𝒒 (𝑖 ) , 𝑣 (𝑖 ) ) : 𝑖 s.t. 𝑎𝑖 ≥ 𝑎∗}, (11)

For simplicity, along with notational abuse, we refer to the 𝑖-th element of S∗
opt

as (𝑆∗𝑖 , 𝒒∗𝑖 , 𝒗∗𝑖 ). The
optimality refers to the fact that, for any 𝜆 ≤ 𝜆max

, the subgradient of (𝜆𝑇LP-LB (𝜆)) equals 𝑣∗𝑖 for
some 𝑖 ≤ |S∗

opt
| (refer to Lemma 5). For the purpose of our algorithm, we also assume that the set

S∗
opt

is ordered w.r.t. its third index, i.e., for any 𝑖 < 𝑗 , 𝑣∗𝑖 ≤ 𝑣∗𝑗 . We also remove routing tuples with

negative cost, as our waterfilling algorithm provided in Section 5.3 never uses these routing tuples.

5.3 The Waterfilling algorithm
Our previous discussions highlight the importance of solving the LP to develop an effective queueing

algorithm. While the LP is deterministic, in contrast to the stochastic nature of the inference system,

the solution methodology can be crucial in guiding the algorithm design for the system. This

motivates us to design a deterministic solution of the LP that reduces the dependency on 𝜆.

We accomplish this objective using the Waterfilling algorithm that solves the LP, defined in

(3), using an iterative policy. The waterfilling algorithm uses the S∗
opt

defined in Section 5.2 and

mainly uses the arrival rate 𝜆 as a stopping criterion. A detailed description of this algorithm is

presented in Algorithm 1. The outcome of the waterfilling algorithm is represented by the vector

𝒑, accompanied by the cost function 𝑁WF (𝜆). For any given value of 𝜆, we say that 𝑁WF (𝜆) exists
if the waterfilling algorithm outputs a feasible solution.

Theorem 1 establishes that the solution from the waterfilling algorithm converges to the optimal

solution 𝒑∗ (𝜆). The cost of the waterfilling solution 𝑁WF (𝜆) converges to 𝑁LP-LB (𝜆). Using Little’s

11
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law, the term 𝑁LP-LB (𝜆) represents the minimum normalized steady-state number of queries in

an inference system under any policy that achieves the benchmark accuracy 𝑎∗, highlighting the

optimality of the water filling algorithm. However, Theorem 1 hinges on a uniqueness assumption

given in Assumption 1. The uniqueness criteria is a minor assumption as a slight perturbation in

system parameters achieves the criteria. The unique value of every 𝑣∗𝑖 is a sufficient condition that

ensures the uniqueness of the LP solution. We conjecture that if the LP has multiple optimums, the

waterfilling algorithm converges to one of the optimums.

Assumption 1. The linear program, defined in (3), has a unique solution, for any 𝜆 ∈ (0, 𝜆max].

Theorem 1 (Optimality of the Waterfilling algorithm). For all 𝜆 ∈ [0, 𝜆max], with Assumption 1
holding true, the linear program, defined in (3), and the waterfilling algorithm are feasible and

𝑁WF (𝜆) = 𝑁LP-LB (𝜆) ≜ 𝜆𝑇LP-LB (𝜆). (12)

The proof sketch of Theorem 1 is provided in Section 6. Intuitively, Algorithm 1 generalizes

Lemma 3, determining traffic allocation when the server classes 𝑖1 and 𝑗1 are insufficient to handle

traffic. The main tricky part is the inclusion of tuples with non-positive routing probability. We

discuss these pairs in more detail in Section 6.

5.4 Track the Accuracy Difference under Ordered Pairs
In this subsection, we introduce our main proposed algorithm, the Track-the-Accuracy-Difference
under Ordered Pairs (TAD-OP) policy. This policy is inspired by theWaterfilling algorithm presented

in Algorithm 1 and the TAD policy elaborated in Section 4. The primary goal of the algorithm is to

emulate the behavior of the Waterfilling algorithm without relying on the knowledge of the arrival

rate 𝜆. We leverage the following key principles to ensure this:

(1) Routing vector : We use Δ𝑎∗ introduced in the TAD policy, which balances the accuracy and

provides a heuristic way to apply the routing vector.

(2) Zero Waiting Time: The Join-the-Idle-Queue approach is utilized to achieve minimal wait

time. Unlike the TAD policy, we prioritize idle queues over positive Δ𝑎∗ . This comes from

empirical observation (see Section 7), where the TAD policy becomes unstable in order to

maintain a strictly positive Δ𝑎∗ . Although this strategy might temporarily push the value of

Δ𝑎∗ to be negative, we anticipate that, in a steady state, Δ𝑎∗ would oscillate around zero.

(3) Eliminating the dependency on the arrival rate 𝜆: Within the waterfilling algorithm, the arrival

rate serves as the stopping criterion; in our inference system, job departures serve a similar

purpose. When the system has a sufficient number of jobs, the departure rate equates to the

arrival rate, thereby serving as a self-regulating mechanism to prevent overfilling of servers.

The routing under tuples with non-positive routing probability remains tricky to handle. We

explain how TAD-OP handles those tuples after describing the policy. We first define routable
tuples based on the availability of idle servers in each class. A routing tuple (𝑆∗𝑖 , 𝒒∗𝑖 , 𝑣∗𝑖 ), where
𝒒∗𝑖 = (𝑞∗𝑖1, . . . , 𝑞∗𝑖𝐾 ), is routable if all server classes 𝑘 ∈ 𝑆∗𝑖 meet one of the following conditions:

(1) 𝑞∗
𝑖𝑘

> 0 and there is at least one idle server of class 𝑘 ,

(2) 𝑞∗
𝑖𝑘

< 0 and there is at least one busy server of class 𝑘 .

To determine whether a tuple (𝑆∗𝑖 , 𝒒∗𝑖 , 𝑣∗𝑖 ) with a non-negative routing vector is routable, the
dispatcher can check for a token from server classes in 𝑆∗𝑖 . For tuples (𝑆 (𝑖, 𝑗 ) , 𝒒 (𝑖, 𝑗 ) , 𝑣 (𝑖, 𝑗 ) ), with a

non-positive routing vector 𝒒 (𝑖, 𝑗 ) containing a positive element at 𝑖 and negative at 𝑗 , it is routable

if a token from a class-𝑖 server is available and there are not more than (𝛼 𝑗𝑛 − 1) tokens from
class- 𝑗 servers. A similar method can be used if the signs of the indices are reversed.

12
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A tuple with a non-positive routing vector must count the total number of tokens from each

class. A simple implementation method is to store 𝐾 variables at the dispatcher to track the number

of tokens available from each class. Using routable tuples, we describe the TAD-OP policy in

Algorithm 2. The dispatcher initializes the accuracy difference Δ𝑎∗ to zero. For every job arrival, the
dispatcher runs Algorithm 2, which outputs the queue index 𝑗 and the updated Δ𝑎∗ . The dispatcher
then updates Δ𝑎∗ and sends the query to the server, indexed as 𝑗 .

Algorithm 1 Waterfilling

Input:
S∗
opt
, 𝜆, 𝝁

Initialize:
Weights:

𝑤𝑖 ← 0, for all 𝑖 ∈ 1, . . . , |S∗
opt
|

Initial probability: 𝒑 ← 0
Initial cost: 𝑁WF ← 0

Transient arrival rate: 𝜆tr ← 𝜆
for 𝑘 ← 1 : |S∗

opt
| do

𝑤𝑘 ← max{𝑤 : 0 ≤ 𝜆𝒑 +𝑤𝒒∗
𝑘
≤ 𝝁𝜶 }

if 𝑤𝑘 ∉ [0, 𝜆tr] then
𝑤𝑘 ← max {0,min {𝑤𝑘 , 𝜆tr}}

end if

𝒑 ← 𝒑 +
𝑤𝑘𝒒

∗
𝑘

𝜆
𝑁WF ← 𝑁WF +𝑤𝑘𝑣∗𝑘
𝜆tr ← 𝜆tr −𝑤𝑘
if 𝜆tr = 0 then

Break

end if
end for
if 𝜆tr > 0 then

The problem is not feasible

else
Output:
Probability vector: 𝒑
Tuple weights:𝑤𝑖 ’s

Cost: 𝑁WF

end if

Algorithm 2 TAD-OP

Input:
S∗
opt
, 𝒂, 𝑎∗,Δ𝑎∗

for 𝑘 ← 1 : |S∗
opt
| do

if (𝑆∗
𝑘
, 𝒒∗
𝑘
, 𝑣∗
𝑘
) is routable then

if |𝑆∗
𝑘
| = 1 or 𝒒∗

𝑘
≱ 0 then

Choose 𝑖 ∈ 𝑆∗
𝑘
s.t. 𝒒∗

𝑘
(𝑖) > 0

else
if Δ𝑎∗ > 0 then

Choose 𝑖 ∈ 𝑆∗
𝑘
s.t. 𝑎𝑖 < 𝑎

∗

else
Choose 𝑖 ∈ 𝑆∗

𝑘
s.t. 𝑎𝑖 > 𝑎

∗

end if
end if
Break

end if
end for
if no routable tuple then

for 𝑘 ← 𝐾 : 1 do
if #idle class-𝑘 server> 0 then

𝑖 ← 𝑘

Break

end if
end for

end if
if no idle server then

𝑖 ← Pick randomly in {1, . . . , 𝐾}
end if
if idle class-𝑖 server exists then

𝑗 ← Any idle class-𝑖 server

else
𝑗 ←Any randomly chosen class-𝑖 server

end if
Δ𝑎∗ ← Δ𝑎∗ + 𝑎𝑖 − 𝑎∗
Output:

Server index: 𝑗

Updated accuracy difference : Δ𝑎∗

Intuition on the working of TAD-OP. For tuples with non-negative routing vector, the TAD-OP

policy utilizes the sign of Δ𝑎∗ to determine the server class, roughly ensuring that jobs are routed
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according to the routing vector. However, when dealing with tuples with non-positive routing

vectors, the TAD-OP policy operates with a slight delay. For any tuple, 𝑆− , with a non-positive

routing vector, there always exists a corresponding tuple, 𝑆+, with a non-negative routing vector

and a lower cost. The policy uses 𝑆− when 𝑆+ is not routable. However, using the tuple 𝑆− shifts
the Δ𝑎∗ away from zero. However, the tuple 𝑆+ eventually becomes routable as the system sees

departures from server classes in 𝑆+. By this time, the already drifted Δ𝑎∗ guides the policy to favor

one class over the other within 𝑆+. This, combined with the fact that the less favored server classes

in 𝑆+ have queries that are departing, emulates the negative probability.

5.5 Similarities with ExistingQueueing Algorithms
At first glance, our approach using pairs and Δ𝑎∗ might seem strange. However, its underlying logic

bears similarities with established queueing algorithms. Without the accuracy constraint, the Join

the Idle Queue (JIQ) policy [15] is near-optimal in the sub-Halfin-Whitt regime for homogeneous

servers. When considering heterogeneous servers, the Join the Fastest of the Idle Queue (JFIQ)

policy [28] is optimal. A common thread in these policies is prioritizing idle queues, followed by a

preference for faster servers, essentially generating a priority class. In the context of an inference

system that demands a balance between accuracy and latency, the use of ordered pairs recalls the

priority classes introduced by JFSQ. However, a pair must be considered since a single-server class

cannot balance the trade-off between minimizing latency and achieving accuracy.

6 THE PROOF SKETCH OF THEOREM 1
In this section, we present the proof sketch of Theorem 1. We start off by providing intuition behind

tuples with non-positive routing probability.

Proper-pair vs Shuffle-pair. When the accuracies 𝑎𝑖 , 𝑎 𝑗 satisfy 𝑎𝑖 < 𝑎
∗ < 𝑎 𝑗 , then 𝒒 (𝑖, 𝑗 ) ≥ 0 and

we call all such routing tuples as properly-paired routing tuples. On the other hand, if 𝑎𝑖 < 𝑎 𝑗 < 𝑎
∗

or 𝑎𝑖 > 𝑎 𝑗 > 𝑎
∗
, then 𝒒 (𝑖, 𝑗 ) ≱ 0. We call such routing tuples as shuffling-pair routing tuples. Using

such a tuple in the waterfilling algorithm indicates the movement of traffic from 𝑖 → 𝑗 or 𝑗 → 𝑖

depending on the value of 𝑎∗ and its purpose is to revert bad decisions as explained in Example 3.

Example 3. Consider an inference system with 𝝁 = (1, 0.5, 0.25), 𝒂 = (40, 50, 100), and 𝜶 =

(0.025, 0.95, 0.025). Given a benchmark accuracy of 𝑎∗ = 52, it can be verified that the optimal

pair is {1, 3} with the corresponding routing vector 𝒒 (1,3) = (0.8, 0, 0.2). Using the pair {1, 3}, the
maximum arrival rate 𝜆 that satisfies the capacity constraint is 0.0625. However, choosing the

proper-pair {2, 3} allows a larger 𝜆 = 0.25 due to the higher value of 𝛼2. If one uses the optimal pair

with its routing vector, then class-3 becomes fully occupied for any 𝜆 ≥ 0.0625 with no proper-pair

available after that. The shuffle pair {1, 2} creates a way to revert the decision by taking traffic out

of the class-1 servers and placing it in class-2. The redistribution increases the achieved accuracy as

queries are taken from a less accurate class to a more accurate one. This indirectly provides leeway

to accommodate more traffic in the class-1 servers without breaching the accuracy constraint. The

redistribution can continue until the class-2 servers are filled, or the class-1 servers are empty,

explaining the shuffle. In this example, it turns out that the class-1 server becomes empty; thus, the

final traffic allocation is as if class-1 was never used, and only pair {2, 3} is used.

With this intuition, we provide two key lemmas to characterize the LP. We first present Lemma 4

that establishes the convexity of 𝑁LP-LB (𝜆). We then state Lemma 5, which generalizes Lemma 3.

For simplicity, we present all the lemmas for the case where there is no server class with accuracy

exactly 𝑎∗; however, extending it should be trivial.
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Lemma 4 (Convexity of LP). For the LP, defined in (3), and maximum feasible arrival rate 𝜆max, it
holds that
(1) 𝜆max is well defined and satisfies 𝜆max ∈ (0,∑𝐾

𝑖=1
𝛼𝑖𝜇𝑖 ],

(2) the LP is feasible for all 𝜆 ∈ [0, 𝜆max],
(3) 𝑁LP-LB (𝜆) is a continuous convex function w.r.t 𝜆 for all 𝜆 ∈ [0, 𝜆max],
(4) For all 𝜆 ∈ [0, 𝜆max), the right derivative of the function 𝑁LP-LB (𝜆), given by 𝑁 ′LP-LB (𝜆+), exists

and satisfies 𝑁 ′LP-LB (𝜆+) ≥ 0.

The proof of Lemma 4 is given in Appendix B.2. Next, we define

𝐴LP-LB (𝜆) = 𝜆𝒑∗ (𝜆) =
(
𝜆𝑝∗

1
(𝜆), . . . , 𝜆𝑝∗𝐾 (𝜆)

)
, (13)

where 𝒑∗ (𝜆) =
(
𝑝∗

1
(𝜆), . . . , 𝑝∗

𝐾
(𝜆)

)
is the optimal solution of the LP, defined in (3).

Lemma 5 (Routing Tuples contain sub-gradients of 𝑁LP-LB (𝜆)). Under Assumption 1, it holds that
the right derivative of the function 𝐴LP-LB (𝜆), given by 𝐴′LP-LB (𝜆+), exists for all 𝜆 ∈ [0, 𝜆max) and
𝐴′LP-LB (𝜆+) = 𝒒∗

𝑖 (𝜆,𝒂,𝝁 ) for some index 𝑖 (𝜆, 𝒂, 𝝁) that depends only on the system parameters 𝜆, 𝒂, 𝝁.

This is the most critical lemma, and we provide a proof sketch of the lemma in Section 6.1.

Intuitively, the right derivative 𝐴′
LP-LB
(𝜆+) denotes the instantaneous optimal routing probability

when the system currently has the optimal steady-state allocation under arrival rate 𝜆. An immediate

consequence of Lemma 5 is that the right derivative

𝑁 ′
LP-LB
(𝜆+) = 𝐴′

LP-LB
(𝜆+) · 𝝁−1 = 𝒒∗

𝑖 (𝜆,𝒂,𝝁 ) · 𝝁
−1 = 𝑣∗

𝑖 (𝜆,𝒂,𝝁 ) (14)

which explains the phrase “routing tuples contain sub-gradients of 𝑁LP-LB (𝜆)”. Observe that

Lemma 3 is a special case of Lemma 5 since 𝐴′
LP-LB
(0+) = 𝒒 (𝑖1, 𝑗1 ) follows from the latter lemma.

Next, define the terms 𝜆max

WF-F
and 𝜆max

WF-O
to characterize important properties of 𝑁WF (𝜆), as

𝜆max

WF-F
= sup{𝜆′ : 𝜆′ ≥ 0, 𝑁WF (𝜆) is feasible for all 𝜆 ∈ [0, 𝜆′]}, (15)

and

𝜆max

WF-O
= sup{𝜆′ : 𝜆′ ≥ 0, 𝑁WF (𝜆), 𝑁LP-LB (𝜆) are feasible, 𝑁WF (𝜆) = 𝑁LP-LB (𝜆), for all 𝜆 ∈ [0, 𝜆′]},

(16)

respectively. Intuitively, 𝜆max

WF-O
denotes the maximum value of 𝜆 for which the waterfilling algorithm

provides an optimal solution to the LP, defined in (3). Similarly, 𝜆max

WF-F
denotes the maximum value

of 𝜆 for which the waterfilling algorithm provides a feasible solution.

The proof of Theorem 1 proceeds as follows. We first show in Lemma 6 that 𝜆max

WF-O
and 𝜆max

WF-F

are well defined, and 𝜆max

WF-O
≤ 𝜆max

WF-F
≤ 𝜆max

. We then show in Lemma 7 that 𝜆max

WF-O
= 𝜆max

WF-F
,

i.e., if the waterfilling algorithm outputs a feasible solution, it is also the optimal solution to the

original LP, defined in (3). Finally, we use Lemma 8 to show that 𝜆max

WF-F
= 𝜆max

, i.e., the waterfilling

algorithm 𝑁WF is feasible if and only if the LP, defined in (3), is feasible, thus completing the proof

of convergence. We provide the proofs of Lemma 6-8 in Appendix B.3-B.5, respectively.

Lemma 6 (Well Definedness). The parameters 𝜆max

WF-O and 𝜆max

WF-F are well defined and satisfy,

𝜆max

WF-O ≤ 𝜆
max

WF-F ≤ 𝜆
max . (17)

Lemma 7 (Feasibility equals Optimality). For all 𝜆 ∈ [0, 𝜆max

WF-F], the solution of the waterfilling
algorithm is an optimal solution to the LP defined in (3), i.e., 𝜆max

WF-O = 𝜆max

WF-F.

Lemma 8 (Waterfilling is Feasible). For all 𝜆 ∈ [0, 𝜆max], the waterfilling algorithm is feasible, i.e.,
𝜆max

WF-F = 𝜆
max.
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6.1 Proof Sketch of Lemma 5
Proof of Lemma 5. The existence of a directional derivative under sensitivity analysis has been

shown in [7]. Hence, 𝐴′
LP-LB
(𝜆+) exists for all 𝜆 ∈ [0, 𝜆max). Next, we state Lemma 9 and Lemma 10

which provide the key steps to prove Lemma 5.

Lemma 9. For all 𝜆 ∈ [0, 𝜆max), the right derivative 𝐴′LP-LB (𝜆+) satisfy
𝐴′LP-LB (𝜆+) · 1 = 1 (18)

𝐴′LP-LB (𝜆+) · 𝒂 ≥ 𝑎∗ (19)

Lemma 10 (Unique sub-gradient). For any 𝜆 ∈ [0, 𝜆max), if a vector 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) satisfy the
conditions
(1) 𝒑 · 1 = 1,
(2) 𝒑 · 𝒂 ≥ 𝑎∗,
(3) for all index 𝑖 ∈ {1, . . . , 𝐾}, if 𝐴′LP-LB (𝜆+) (𝑖) = 0, then 𝑝𝑖 = 0 and if 𝐴′LP-LB (𝜆+) (𝑖) ≠ 0, then

𝑝𝑖𝐴
′
LP-LB (𝜆+) (𝑖) ≥ 0,

(4) 𝒑 · 𝝁−1 ≤ 𝐴′LP-LB (𝜆+) · 𝝁−1,
then 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) = 𝐴′LP-LB (𝜆+)

The proof of Lemma 9 and Lemma 10 are given in Appendix B.6 and B.7, respectively. Intuitively,

Lemma 10 suggests that if the vector 𝒑 is not𝐴′
LP-LB
(𝜆+), then𝐴′

LP-LB
(𝜆+) is not the unique direction

of optimal ascent and the underlying LP has multiple optimums, contradicting Assumption 1.

Now, to prove Lemma 5, we first argue that for any 𝜆 ∈ [0, 𝜆max), 𝐴′
LP-LB
(𝜆+) cannot have more

than two non-zero elements. One can show that if 𝐴′
LP-LB
(𝜆+) has at most two non-zero entries,

then 𝐴′
LP-LB
(𝜆+) must be of the form 𝒒∗

𝑖 (𝜆,𝝁,𝒂) for some index 𝑖 (𝜆, 𝝁, 𝒂).
To prove this, consider the following possible cases.

(1) If 𝐴′
LP-LB
(𝜆+) contains a single non-zero element at index 𝑖 , Lemma 9 implies 𝐴′

LP-LB
(𝜆+) = 𝒆𝑖

to satisfy the first statement and 𝑎𝑖 ≥ 𝑎∗ to satisfy the second one. Hence, this corresponds

to using a singleton routing set 𝑆 (𝑖 ) .
(2) If 𝐴′

LP-LB
(𝜆+) contains two positive elements at index 𝑖, 𝑗 s.t. 𝑎𝑖 < 𝑎

∗ < 𝑎 𝑗 , the definition of

routing tuples and Lemma 10 implies that 𝐴′
LP-LB
(𝜆+) = 𝒒 (𝑖, 𝑗 ) .

(3) The above argument holds when 𝐴′
LP-LB
(𝜆+) (𝑖) > 0, 𝐴′

LP-LB
(𝜆+) ( 𝑗) < 0, 𝑎∗ < 𝑎𝑖 < 𝑎 𝑗 or

𝐴′
LP-LB
(𝜆+) (𝑖) < 0, 𝐴′

LP-LB
(𝜆+) ( 𝑗) > 0, 𝑎𝑖 < 𝑎 𝑗 < 𝑎

∗
.

For any other case, it can be shown that either the second statement of Lemma 9 is false, or there

exists a 𝒑 satisfying the conditions of Lemma 10 that achieves a lower cost. E.g., if 𝐴′
LP-LB
(𝜆+)

contains two positive elements at index 𝑖, 𝑗 s.t. 𝑎𝑖 < 𝑎 𝑗 < 𝑎∗, then 𝐴′
LP-LB
(𝜆+) · 𝒂 is a convex

combination of two elements, each of which is less than 𝑎∗ implying 𝐴′
LP-LB
(𝜆+) · 𝒂 < 𝑎∗. Similarly,

if 𝐴′
LP-LB
(𝜆+) contains two positive elements at index 𝑖, 𝑗 s.t. 𝑎∗ < 𝑎𝑖 < 𝑎 𝑗 , then 𝒑 = 𝒆𝑖 satisfies

Lemma 10 implying 𝐴′
LP-LB
(𝜆+) cannot have a positive element in the 𝑗-th index. Hence, 𝐴′

LP-LB
(𝜆+)

has at most two non-zero entries.

To conclude the proof, it suffices to show that 𝐴′
LP-LB
(𝜆+) does not contain more than two non-

negative elements. For the sake of contradiction, assume three non-zero elements exist at indices

𝑖, 𝑗, 𝑘 s.t. 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝐾 . Define the vector 𝒒 = (𝑞1, . . . , 𝑞𝐾 ) as
𝒒 = 𝒒 (𝑖, 𝑗 ) − 𝒒 (𝑖,𝑘 ) , (20)

where 𝒒 (𝑖, 𝑗 ) , 𝒒 (𝑖,𝑘 ) are defined Section 5.2. Clearly, 𝒒 ≠ 0 as 𝑞 𝑗 , 𝑞𝑘 ≠ 0. Also, 𝒒 satisfies 𝒒 · 1 = 0 and

𝒒 · 𝒂 = 0 based on how 𝒒 (𝑖, 𝑗 ) , 𝒒 (𝑖,𝑘 ) are defined. Then, consider the vector 𝒑 with step size𝑤max as

𝒑 = 𝐴′
LP-LB
(𝜆+) −𝑤max𝒒 sign

(
𝒒 · 𝝁−1

)
, (21)
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𝑤max =
min{|𝐴′

LP-LB
(𝜆+) (𝑖) |, |𝐴′

LP-LB
(𝜆+) ( 𝑗) |, |𝐴′

LP-LB
(𝜆+) (𝑘) |}

maxℓ :𝒒 (ℓ )≠0{|𝒒(ℓ) |}
> 0. (22)

Clearly, 𝒑 satisfies 𝒑 ≠ 𝐴′
LP-LB
(𝜆+),𝒑 · 1 = 𝐴′

LP-LB
(𝜆+) · 1 = 1 and 𝒑 · 𝒂 = 𝐴′

LP-LB
(𝜆+) · 𝒂 ≥ 𝑎∗. Further,

the definition of𝑤max implies that 𝒑 satisfies the third condition in Lemma 10. Finally,

𝒑 · 𝝁−1 = 𝐴′
LP-LB
(𝜆+) · 𝝁−1 −𝑤max𝒒 · 𝝁−1

sign

(
𝒒 · 𝝁−1

)
(23)

= 𝐴′
LP-LB
(𝜆+) · 𝝁−1 −𝑤max

��𝒒 · 𝝁−1

��
(24)

≤ 𝐴′
LP-LB
(𝜆+) · 𝝁−1, (25)

which violates Lemma 10, thus completing the proof. Note, the proof of the statement that𝐴′
LP-LB
(𝜆+)

does not contain more than two non-zero elements uses shuffle-pairs. The proof breaks at this

stage if shuffle-pairs are not considered. □

7 EXPERIMENTS
In this section, we experimentally demonstrate the performance of the R-JIQ, TAD, and TAD-

OP policy and compare it with the lower bound 𝑇LP-LB (𝜆). We provide experiments with fixed

arrival rates in Section 7.1. The main goal is to illustrate the performance of the different policies

under different load regimes. We provide experiments with variable arrival rates in Section 7.2.

Traffic variation is a common phenomenon observed in practical systems, and this section aims to

demonstrate the policy’s effectiveness in such scenarios.

The experiments presented in Section 7.1 and Section 7.2 share the same configuration as de-

scribed in Section 3.3. We consider four classes of servers with 𝝁 = (2, 1, 0.9, 0.1), 𝒂 = (70, 75, 80, 100)
and 𝛼𝑖 = 0.25 for all 𝑖 . For any plot, solid, dash-dot, and dashed lines represent theoretical bound,

arrival-rate aware, and arrival-rate oblivious policies.

7.1 Fixed Arrival Rate
We perform experiments for systems with different load values, system size, and service time

distribution. For exponential job size distribution, we considered two extreme system sizes: (𝑖) a
small system with 𝑛 = 64, demonstrated by Fig. 6, (𝑖𝑖) a large system with 𝑛 = 4096, demonstrated

by Fig. 7. We consider a mid-sized system with 𝑛 = 256 for deterministic service time distribution

as illustrated in Fig. 8. For each value of 𝑛, we consider load
𝜆

𝜆max
= 1 − 1

𝑛𝛽
, where we vary

𝛽 ∈ [0.01, 0.495]. The benchmark accuracy 𝑎∗ is set according to the caption of each simulation. In

each experiment, the queueing system starts with all empty queues and runs until 𝑛 × 10
5
queries

leave the system, with results averaged over 50 runs. In the accuracy-vs-load plots, the lower bound

denotes the expression (𝒑∗ (𝜆) · 𝒂).
For smaller systems, as shown in Fig. 6, all proposed policies consistently meet the benchmark

accuracy across various load levels. However, neither achieves the optimal latency 𝑇LP-LB (𝜆) as
the system size is not large enough to ensure negligible waiting times. Among the three policies,

the TAD-OP is the most latency-efficient for any benchmark accuracy. The TAD policy performs

decently under low load conditions or low benchmark accuracy. It outperforms R-JIQ, at least at

low load, when it does not choose a sub-optimal pair. However, ensuring a positive Δ𝑎∗ adversely
affects latency at heavy loads, sometimes leading to instability. The R-JIQ policy exhibits moderate

performance across all loads and benchmark accuracy 𝑎∗ and does not have instability issues,

as observed in the TAD policy. Fig. 8 illustrates similar performance for mid-sized systems with

deterministic service times.
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Fig. 6. The accuracy and latency plots as a function of load 𝜌 for different values of the benchmark accuracy
𝑎∗ for a small system with 𝑛 = 64. All policies achieve the benchmark accuracy for all load values; however,
the R-JIQ and TAD policies perform worse than the TAD-OP policy in terms of latency. The TAD policy can
sometimes become unstable in the high-load regime since it prioritizes accuracy over idle queues. The R-JIQ
policy performs decently in all load regimes and does not face the instability issue; however, it uses the
knowledge of 𝜆, unlike the other two policies. The standard deviation for any plotted point is 𝑂 (10

−5).

0.2 0.4 0.6 0.8 1.0

Load
0.600

0.675

0.750

0.825

0.900

0.975

1.050

La
te
nc

y

0.2 0.4 0.6 0.8 1.0

Load
0.84

0.90

0.96

1.02

1.08

1.14

1.20

La
te
nc

y

0.2 0.4 0.6 0.8 1.0

Load
0.96

1.04

1.12

1.20

1.28

1.36

1.44

La
te
nc

y

0.2 0.4 0.6 0.8 1.0

Load
3.8

4.2

4.6

5.0

5.4

5.8
La

te
nc

y

0.2 0.4 0.6 0.8 1.0

Load
71.50
71.75
72.00
72.25
72.50
72.75
73.00
73.25
73.50

Ac
cu

ra
cy

a 𝑎∗ = 72

0.2 0.4 0.6 0.8 1.0

Load
75.5

75.6

75.7

75.8

75.9

76.0

76.1

Ac
cu

ra
cy

b 𝑎∗ = 76

0.2 0.4 0.6 0.8 1.0

Load
77.5
77.6
77.7
77.8
77.9
78.0
78.1
78.2
78.3
78.4
78.5

Ac
cu

ra
cy

c 𝑎∗ = 78

0.2 0.4 0.6 0.8 1.0

Load
85.5
85.6
85.7
85.8
85.9
86.0
86.1
86.2
86.3
86.4
86.5

Ac
cu

ra
cy

d 𝑎∗ = 86

Fig. 7. The accuracy and latency plots as a function of load 𝜌 for different values of the benchmark accuracy
𝑎∗ for a large system with 𝑛 = 4096. The relative performance of different policies is similar to its performance
at small 𝑛 given in Fig. 6. However, there is a major difference in the performance of the TAD-OP policy,
which now achieves the latency lower bound 𝑇LP-LB (𝜆), highlighting the power of ordered pairs.

For large systems, as shown in Fig. 7, all the proposed policies again consistently meet the

benchmark accuracy across various load levels. However, the latency performance becomes in-

teresting. The latency of TAD-OP always matches the lower bound 𝑇LP-LB (𝜆) for any choice of

system parameters, highlighting the power of ordered pairs. The performance of the R-JIQ policy

becomes noticeably better compared to its performance in smaller systems, highlighting asymptotic

optimality. Although the performance of the TAD policy has improved in the larger system, it still

faces stability problems with extreme system settings.
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Fig. 8. The latency as a function of load 𝜌 for a mid-sized system (𝑛 = 256) with deterministic service times.
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Fig. 11. Comparison of our TAD and TAD-OP policy under time-varying load or accuracy constraints. The
system is characterized using four parameters 𝜌low, 𝜌high, 𝑎∗low, 𝑎

∗
high. The TAD-OP demonstrates excellent

performance even under time-varying load or accuracy criteria and achieves near-optimal performance. The
TAD policy achieves the benchmark accuracy but does not achieve the optimum number of queries.

7.2 Variable Arrival Rate
In real-world systems, traffic often sees periodic variations influenced by factors such as time of

day or year. For example, Netflix’s recommendation system might peak during the evening, while a

news recommendation system could experience high activity in the morning hours. We model this

variability within the system considering two phases: low and high. We define four parameters; the

load and accuracy during the low phase are represented by 𝜌low and 𝑎∗
low

, respectively, while 𝜌high
and 𝑎∗

high
represent the parameter in the high phase. Note that this variability allows us to change

the 𝑎∗ during different phases of the system; this models a situation where an inference system

increases its accuracy constraint during certain times of the day to improve user experience.

We perform experiments with 𝑛 = 2
12
servers, letting the system run until 3 × 10

5
units of time,

and taking samples at every 10
3
-th unit. The accuracy plot represents the running average accuracy

of the last 10
3
queries entering the system, and our results are averaged over 500 individual runs.

The response time is less intuitive under varying loads; hence, we plot the number of queries

within each system. We compare it with the lower bound given by 𝑛𝑁LP-LB (𝜆), where 𝑁LP-LB (𝜆)
represents the optimal normalized steady-state number of queries in the system. For varying arrival
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rates, the TAD and TAD-OP work as usual. However, when the accuracy constraint 𝑎∗ changes, the
calculation of the routing tuples changes. This requires the TAD-OP policy to use both S∗

opt-low
and

S∗
opt-high

, the different optimal sets for the different phases of the system. Similarly, both TAD and

TAD-OP modify their Δ𝑎∗ calculations based on the instantaneous phase of the system.

Fig. 9 and Fig. 10 illustrate the performance of the TAD and TAD-OP policy under varying system

parameters. The R-JIQ policy is not included in these experiments due to its dependence on 𝜆. One

thing to note in Fig. 10 is that although the load is fixed, the arrival rate changes; this is because

changing 𝑎∗ changes 𝜆max
and subsequently the arrival rate 𝜆. The results in both experiments

resemble those of the fixed arrival-rate experiments. Both policies are excellent at adapting to

variable system parameters. The TAD-OP policy exhibits excellent performance under varying

system load or accuracy requirements. The TAD policy achieves the benchmark accuracy 𝑎∗ but
fails to achieve optimality w.r.t. the number of queries in the system.

8 CONCLUSION
In this paper, we introduce the problem of minimizing latency in online inference systems under

accuracy constraints. We establish a lower bound,𝑇LP-LB (𝜆), on the minimum achievable latency for

any policy that ensures an expected accuracy of 𝑎∗ using a linear programming (LP) formulation.

Capitalizing on this lower bound, we introduce the R-JIQ policy, which always achieves the

benchmark accuracy 𝑎∗ and asymptotically achieves the optimal latency 𝑇LP-LB (𝜆). However, a
limitation of the R-JIQ policy is its dependence on knowing the arrival rate, 𝜆. Even a minor

mis-estimation of 𝜆 drastically impairs its performance and stability. To address this shortcoming,

we propose the TAD policy, an empirical approach to remove the dependency on 𝜆. While the

TAD policy always meets the benchmark accuracy and performs decently under moderate loads, it

sometimes fails to achieve optimal latency. Notably, under high loads, the TAD policy is vulnerable

to instability. We then introduce the concept of pairs and present the waterfilling algorithm, an

iterative method to solve the LP using pairs. Drawing inspiration from the waterfilling algorithm,

we formulate the TAD-OP policy, which modifies the TAD policy using ordered pairs. Empirical

evaluations reveal that the TAD-OP policy performs excellently, particularly in large systems,

achieving near-optimal performance. Finally, the policy’s ability to operate without knowledge of

the arrival rate and to decipher a solution to the LP without full parameter awareness positions it

as a highly suitable choice for real systems subjected to fluctuating loads.

8.1 Future Directions
There are several directions for future research. The primary task is to provide theoretical guarantees

for the TAD-OP policy. We provide theoretical intuition through the waterfilling algorithm and

empirical validations; however, there is a lack of theoretical understanding of the TAD-OP policy.

Characterizing its latency is challenging due to the complex dynamics of the Δ𝑎∗ variable. Another
promising avenue is the generalization of the pair concept. We introduced pairs to handle a single

linear constraint; as a generalization for systems with multiple constraints, pairs may be extended

to triplets, quadruples, or even larger groupings. For instance, an inference system might need to

maintain an accuracy constraint and an energy budget.

In addition, integrating pairs with the R-JIQ policy presents opportunities. Using the routing

vector directly to route queries is an avenue to explore, but handling the negative routing vector

remains challenging. Some preliminary experiments with query cancellation and rerouting have

shown potential, but the practical implementation of such a policy is messy. Finding other methods

to address the negative routing vector remains a direction for future research.
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A PROOF OF LEMMA 2
Recall Lemma 2

Lemma 2 (Asymptotic optimality of the R-JIQ algorithm). For the policy R-JIQ, and for any
𝜆

𝜆max
≤ 1 − 1

𝑛𝛽
, 0 < 𝛽 < 1

2
, 𝛾 = 1

2

(
1

2
− 𝛽

)
and queues with limited buffer 𝑏 = 𝑜 (

√
ln𝑛), the following

steady-state properties hold for large enough 𝑛.

(1) The expected response time:

E
[
𝑇R-JIQ

]
≤

(
1 − 1

𝑛𝛾

)
𝑇LP-LB (𝜆) +𝑂

(
min

{
1

𝑛𝛾
,

1

√
𝑛 ln𝑛

})
. (5)

(2) The expected achieved accuracy:

E[𝑎R-JIQ] ≥ 𝑎∗ . (6)

(3) The blocking probability:

E[𝑝𝐵R-JIQ] ≤ 𝑂
(

ln𝑛
√
𝑛

)
. (7)

Proof. The proof of Lemma 2 depends primarily on Lemma 11 taken from [15].

Lemma 11. For a queueing system with 𝑛 unit rate servers with queues at the servers having buffer
length 𝑏 = 𝑜 (

√
ln𝑛), arrival rate 𝜆𝑛 with 𝜆 = 1 − 1

𝑛𝛽
, 0 < 𝛽 < 0.5, 𝑟 = 1 − 1

2(𝑏−1) , we have 𝑀 , the
steady number of jobs in the system under the JIQ policy is bounded as follows.

E

[
max

{
𝑀

𝑛
− 𝜆 − 𝑟 ln𝑛

𝑛
, 0

}]
≤ 29𝑏
√
𝑛 ln𝑛

(26)

for 𝑛 sufficiently large. Further, the blocking probability is bounded as

E[𝑝𝐵] ≤ 𝑂
(

ln𝑛
√
𝑛

)
. (27)

Under the R-JIQ policy, consider 𝐾 subsystems with sub-system 𝑖 containing all class-𝑖 servers.

The subsystem 𝑖 sees arrival according to a Poisson process with rate Λ𝑝∗
R-JIQ,1

(𝜆). Clearly,

Λ𝑝∗
R-JIQ,𝑖

(𝜆)
𝛼𝑖𝜇𝑖𝑛

=
𝜆𝑝∗

R-JIQ,𝑖
(𝜆)

𝛼𝑖𝜇𝑖
(28)

=
𝜆

𝛼𝑖𝜇𝑖

((
1 − 1

𝑛𝛾

)
𝑝∗𝑖 (𝜆) +

1

𝑛𝛾
𝑝∗𝑖 (𝜆max)

)
(29)

=
𝜆𝑝∗𝑖 (𝜆)
𝛼𝑖𝜇𝑖

(
1 − 1

𝑛𝛾

)
+ 1

𝑛𝛾
𝜆

𝜆max

𝜆max𝑝∗𝑖 (𝜆max)
𝛼𝑖𝜇𝑖

(30)

≤ 1 − 1

𝑛𝛾
+ 1

𝑛𝛾

(
1 − 1

𝑛𝛽

)
(31)

= 1 − 1

𝑛𝛾+𝛽
(32)

= 1 − 1

𝑛𝛽
′ (33)

where 𝛽 ′ = 1

2
(0.5 + 𝛽) < 0.5. Further (31) follows from the fact that 𝜆𝑝∗𝑖 (𝜆) ≤ 𝛼𝑖𝜇𝑖 based on the

definition of LP and
𝜆

𝜆max
= 1 − 1

𝑛𝛽
. Hence, subsystem 𝑖 is in the sub-Halfin-Whitt regime. Using
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Lemma 11,𝑀𝑖 , the steady-state number of jobs in subsystem 𝑖 is bounded as

E[𝑀𝑖 ] ≤ 𝑛𝛼𝑖

(
𝜆𝑝∗

R-JIQ,𝑖
(𝜆)

𝛼𝑖𝜇𝑖
+ 𝑟 ln(𝛼𝑖𝑛)

𝛼𝑖𝑛
+ 29𝑏
√
𝛼𝑖𝑛 ln(𝛼𝑖𝑛)

)
(34)

= 𝑛𝜆
𝑝∗
R-JIQ,𝑖

(𝜆)
𝜇𝑖

+
(
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

)
(35)

= 𝑛𝜆
𝑝∗
R-JIQ,𝑖

(𝜆)
𝜇𝑖

+max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}
(36)

(37)

Taking a summation over all indices 𝑖 , we get

E
[
𝑀R-JIQ

]
=

𝐾∑︁
𝑖=1

E[𝑀𝑖 ] (38)

≤
𝐾∑︁
𝑖=1

[
𝑛𝜆
𝑝∗
R-JIQ,𝑖

(𝜆)
𝜇𝑖

+max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}]
(39)

= 𝑛𝜆𝒑∗
R-JIQ
(𝜆) · 𝝁−1 + 𝐾 max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}
(40)

= 𝑛𝜆

((
1 − 1

𝑛𝛾

)
𝒑∗ (𝜆) + 1

𝑛𝛾
𝒑∗ (𝜆max)

)
· 𝝁−1 + 𝐾 max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}
(41)

= 𝑛𝜆

(
1 − 1

𝑛𝛾

)
𝒑∗ (𝜆) · 𝝁−1 + 𝑛1−𝛾𝜆𝒑∗ (𝜆max) · 𝝁−1 + 𝐾 max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}
(42)

= 𝑛𝜆

(
1 − 1

𝑛𝛾

)
𝑇LP-LB (𝜆) + 𝑛1−𝛾𝜆𝒑∗ (𝜆max) · 𝝁−1 + 𝐾 max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}
. (43)

Using Little’s law, we have that 𝑇R-JIQ, the mean response time of the system is bounded as

E
[
𝑇R-JIQ

]
=
E

[
𝑀R-JIQ

]
𝜆𝑛

(44)

≤
(
1 − 1

𝑛𝛾

)
𝑇LP-LB (𝜆) + 𝑛−𝛾𝒑∗ (𝜆max) · 𝝁−1 + 𝐾

𝜆𝑛
max

𝑖

{
𝑟 ln(𝛼𝑖𝑛) +

29𝑏
√
𝛼𝑖𝑛

ln(𝛼𝑖𝑛)

}
(45)

=

(
1 − 1

𝑛𝛾

)
𝑇LP-LB (𝜆) +𝑂

(
min

{
𝑛−𝛾 ,

1

√
𝑛 ln𝑛

})
. (46)

The result on blocking probability follows directly from Lemma 11. Finally, the accuracy achieved

by the R-JIQ policy is bounded as

E[𝑎R-JIQ] = 𝒑∗
R-JIQ
(𝜆) · 𝒂 (47)

≥
(
1 − 1

𝑛𝛾

)
𝒑∗ (𝜆) · 𝒂 + 1

𝑛𝛾
𝒑∗ (𝜆max) · 𝒂 (48)

≥ 𝑎∗ (49)

as 𝒑∗ (𝜆) · 𝒂 ≥ 𝑎∗ for any 𝜆 ≤ 𝜆max
. □
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B PROOF OF LEMMAS USED IN THEOREM 1
B.1 Proof of Lemma 3

Proof. Recall Lemma 3.

Lemma 3 (Optimality of two servers). For the relaxed linear program, defined in (8), we have the
following: for all 𝜆 > 0, the optimal solution �̄�∗ = (𝑝∗

1
, 𝑝∗

2
, . . . , 𝑝∗

𝐾
) is either 𝑝∗𝑖 = 1 with 𝑎𝑖 = 𝑎∗ or

�̄�∗ = 𝒒 (𝑖1, 𝑗1 ) with

𝑖1, 𝑗1 = arg min

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

(
1

𝜇𝑖

𝑎 𝑗 − 𝑎∗

𝑎 𝑗 − 𝑎𝑖
+ 1

𝜇 𝑗

𝑎∗ − 𝑎𝑖
𝑎 𝑗 − 𝑎𝑖

)
(9)

where 𝑞 (𝑖, 𝑗 )
𝑖

=
𝑎 𝑗−𝑎∗
𝑎 𝑗−𝑎𝑖 , 𝑞

(𝑖, 𝑗 )
𝑗

=
𝑎∗−𝑎𝑖
𝑎 𝑗−𝑎𝑖 and 𝑞

(𝑖, 𝑗 )
𝑘

= 0 for any 𝑘 ≠ 𝑖, 𝑗 .

We define a probability vector to be feasible if it satisfies all the constraints of the relaxed LP,

defined in (8). The key idea is to decompose any feasible probability vector as a convex combination

of some predefined probabilities vectors, specifically 𝒒 (𝑖, 𝑗 ) for all 𝑖 < 𝑗 s.t. 𝑎𝑖 < 𝑎
∗ < 𝑎 𝑗 . Let 𝑃feasible

and 𝑃decomp denote the set of vectors of the form

𝑃feasible =
{
𝒑 : 𝒑 ∈ R𝐾 ,𝒑 ≥ 0,𝒑 · 1 = 1,𝒑 · 𝒂 ≥ 𝑎∗

}
, (50)

and

𝑃decomp =

{
𝒑 : 𝒑 ∈ R𝐾 ,𝒑 =

∑︁
𝑖, 𝑗 :𝑎𝑖<𝑎

∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) +

∑︁
𝑖:𝑎𝑖≥𝑎∗

𝑦 (𝑖 )𝒆𝑖 ,

𝑥 (𝑖, 𝑗 ) , 𝑦 (𝑖 ) ≥ 0,
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 ) +
∑︁

𝑖:𝑎𝑖≥𝑎∗
𝑦 (𝑖 ) = 1

}
, (51)

respectively. It happens that the two above-defined sets are exactly the same, i.e., 𝑃feasible = 𝑃decomp.

We prove this fact later in the section. Using the equality of 𝑃feasible and 𝑃decomp, we can rewrite the

relaxed linear programming problem 𝑇Relaxed-LP-LB (𝜆), defined in (8), as

𝑇Relaxed-LP-LB (𝜆) = min

𝑥 (𝑖,𝑗 ) ,𝑦 (𝑖 )

©«
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝑣
(𝑖, 𝑗 ) +

∑︁
𝑖:𝑎𝑖≥𝑎∗

𝑦 (𝑖 )
𝜇𝑖

ª®¬
s.t. 0 ≤ 𝑥 (𝑖, 𝑗 ) ≤ 1, for all 𝑖 < 𝑗, 𝑎𝑖 < 𝑎

∗ < 𝑎 𝑗

0 ≤ 𝑦 (𝑖 ) ≤ 1, for all 𝑖, 𝑎𝑖 ≥ 𝑎∗∑︁
𝑖, 𝑗 :𝑎𝑖<𝑎

∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 ) +
∑︁

𝑖:𝑎𝑖≥𝑎∗
𝑦 (𝑖 ) = 1.

(52)

where

𝑣 (𝑖, 𝑗 ) = 𝒒 (𝑖, 𝑗 ) · 𝝁−1 . (53)

Clearly, the cost of the linear program is

𝑇Relaxed-LP-LB (𝜆) = min

{
min

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗
{𝑣 (𝑖, 𝑗 ) }, min

𝑖:𝑎𝑖≥𝑎∗

{
1

𝜇𝑖

}}
= min

{
𝑣 (𝑖1, 𝑗1 ) , min

𝑖:𝑎𝑖≥𝑎∗

{
1

𝜇𝑖

}}
(54)

with the optimal solution corresponding to assigning the weight 𝑥 (𝑖, 𝑗 ) or 𝑦 (𝑖 ) , that attains the
minima, to one. Furthermore, an observation to note is that for any 𝑖 < 𝑗 s.t. 𝑎𝑖 < 𝑎∗ < 𝑎 𝑗 , 𝑣

(𝑖, 𝑗 )

is a convex combination of 1/𝜇𝑖 and 1𝜇 𝑗 and 𝜇𝑖 ≥ 𝜇 𝑗 that further implies 𝑣 (𝑖1, 𝑗1 ) ≤ 𝑣 (𝑖, 𝑗 ) ≤ 1/𝜇 𝑗 .
Hence, the optimal cost of the relaxed LP is either 𝑇Relaxed-LP-LB (𝜆) = 𝑣 (𝑖1, 𝑗1 ) with the solution being

�̄�∗ = 𝒒 (𝑖1, 𝑗1 ) or it is 𝑇Relaxed-LP-LB (𝜆) = 1/𝜇𝑖 , satisfying 𝑎𝑖 = 𝑎∗, with the solution being �̄�∗ = 𝒆𝑖 .
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To complete the proof, it remains to prove that 𝑃decomp = 𝑃feasible. We first show that 𝑃decomp ⊆
𝑃feasible. It is easy to verify that 𝒒 (𝑖, 𝑗 ) ≥ 0, 𝒒 (𝑖, 𝑗 ) · 1 = 1 and 𝒒 (𝑖, 𝑗 ) · 𝒂 = 𝑎∗ for any 𝑖 < 𝑗 and

𝑎𝑖 < 𝑎
∗ < 𝑎 𝑗 . Hence, for any 𝒑 ∈ 𝑃decomp, we have 𝒑 ≥ 0,

𝒑 · 1 =
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) · 1 +

∑︁
𝑖:𝑎𝑖≥𝑎∗

𝑦 (𝑖 )𝒆𝑖 · 1 (55)

=
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 ) +
∑︁

𝑖:𝑎𝑖≥𝑎∗
𝑦 (𝑖 ) (56)

= 1, (57)

and

𝒑 · 𝒂 =
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) · 𝒂 +

∑︁
𝑖:𝑎𝑖≥𝑎∗

𝑦 (𝑖 )𝒆𝑖 · 𝒂 (58)

=
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝑎
∗ +

∑︁
𝑖:𝑎𝑖≥𝑎∗

𝑦 (𝑖 )𝑎𝑖 (59)

≥ 𝑎∗ ©«
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 ) +
∑︁

𝑖:𝑎𝑖≥𝑎∗
𝑦 (𝑖 )

ª®¬ (60)

= 𝑎∗ . (61)

Hence, 𝑃decomp ⊆ 𝑃feasible.
Next, we prove that 𝑃feasible ⊆ 𝑃decomp. To prove this, consider any 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) ∈ 𝑃feasible.

Note that we can write 𝒑 as

𝒑 =
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) +

𝐾∑︁
𝑖=1

𝑦 (𝑖 )𝒆𝑖 (62)

where 𝑦 (𝑖 ) = 𝑝𝑖 for all 𝑖 = 1, . . . , 𝐾 and 𝑥 (𝑖, 𝑗 ) = 0 for 𝑖, 𝑗 s.t. 𝑎𝑖 < 𝑎
∗ < 𝑎 𝑗 . The initial decomposition

of 𝒑 in (62) is similar to the form of decomposition that exists for probability vectors in 𝑃decomp.

The only difference lies in the indices of the second summation term, i.e., the summation changed

from

∑
𝑖:𝑎𝑖≥𝑎∗ to

∑𝐾
𝑖=1

.

For the provided decomposition, we implement a recursive algorithm to transform 𝒑 into a form

that ensures it lies in 𝑃decomp. At every step, if there exists 𝑖, 𝑗 s.t. 𝑦 (𝑖 ) , 𝑦 ( 𝑗 ) > 0 and 𝑎𝑖 < 𝑎∗ < 𝑎 𝑗 ,

one can define 𝑥 ′(𝑖, 𝑗 ) = sup

{
𝑤 : 𝑤 > 0,𝑤𝑞

(𝑖, 𝑗 )
𝑖
≤ 𝑦 (𝑖 ) ,𝑤𝑞 (𝑖, 𝑗 )𝑗

≤ 𝑦 ( 𝑗 )
}
and update the decomposition

as 𝑥 (𝑖, 𝑗 ) = 𝑥 (𝑖, 𝑗 ) + 𝑥 ′(𝑖, 𝑗 ) , 𝑦 (𝑖 ) = 𝑦 (𝑖 ) − 𝑥 ′(𝑖, 𝑗 )𝑞
(𝑖, 𝑗 )
𝑖

and 𝑦 ( 𝑗 ) = 𝑦 ( 𝑗 ) − 𝑥 ′(𝑖, 𝑗 )𝑞
(𝑖, 𝑗 )
𝑗

. The update would

essentially change either 𝑦 (𝑖 ) or 𝑦 ( 𝑗 ) or both to zero while ensuring that the total sum of weights

always equals one, i.e.,

∑
𝑖, 𝑗 :𝑎𝑖<𝑎

∗<𝑎 𝑗 𝑥 (𝑖, 𝑗 ) +
∑𝐾
𝑖=1
𝑦 (𝑖 ) = 1.

This recursion would eventually stop when 𝑦 (𝑖 ) = 0 for all 𝑖 satisfying 𝑎𝑖 < 𝑎∗ or 𝑎𝑖 > 𝑎∗.
However, if the final transformation is of the form 𝒑 =

∑
𝑖, 𝑗 :𝑎𝑖<𝑎

∗<𝑎 𝑗 𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) + ∑

𝑖:𝑎𝑖<=𝑎
∗ 𝑦 (𝑖 )𝒆𝑖

with at least one index 𝑖 s.t. 𝑦𝑖 > 0 and 𝑎𝑖 < 𝑎
∗
, then

𝒑 · 𝒂 =
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) · 𝒂 +

∑︁
𝑖:𝑎𝑖<=𝑎

∗
𝑦 (𝑖 )𝒆𝑖 · 𝒂 (63)

=
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝑎
∗ +

∑︁
𝑖:𝑎𝑖<=𝑎

∗
𝑦 (𝑖 )𝑎𝑖 (64)

=
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝑎
∗ +

∑︁
𝑖:𝑎𝑖<=𝑎

∗,𝑖≠𝑖

𝑦 (𝑖 )𝑎𝑖 + 𝑦𝑖𝑎𝑖 (65)
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<
∑︁

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 )𝑎
∗ +

∑︁
𝑖:𝑎𝑖<=𝑎

∗,𝑖≠𝑖

𝑦 (𝑖 )𝑎
∗ + 𝑦𝑖𝑎∗ (66)

= 𝑎∗
©«

∑︁
𝑖, 𝑗 :𝑎𝑖<𝑎

∗<𝑎 𝑗

𝑥 (𝑖, 𝑗 ) +
∑︁

𝑖:𝑎𝑖<=𝑎
∗
𝑦 (𝑖 )

ª®¬ (67)

= 𝑎∗, (68)

which violates the condition 𝒑 · 𝒂 ≥ 𝑎∗. This proves that the final transformation has to be of the

form 𝒑 =
∑
𝑖, 𝑗 :𝑎𝑖<𝑎

∗<𝑎 𝑗 𝑥 (𝑖, 𝑗 )𝒒
(𝑖, 𝑗 ) +∑𝑖:𝑎𝑖≥𝑎∗ 𝑦 (𝑖 )𝒆𝑖 s.t. 𝑥 (𝑖, 𝑗 ) , 𝑦 (𝑖 ) ≥ 0. Hence, 𝑃feasible ⊆ 𝑃decomp which

implies 𝑃feasible = 𝑃decomp

□

B.2 Proof of Lemma 4
Proof. Recall Lemma 4.

Lemma 4 (Convexity of LP). For the LP, defined in (3), and maximum feasible arrival rate 𝜆max, it
holds that
(1) 𝜆max is well defined and satisfies 𝜆max ∈ (0,∑𝐾

𝑖=1
𝛼𝑖𝜇𝑖 ],

(2) the LP is feasible for all 𝜆 ∈ [0, 𝜆max],
(3) 𝑁LP-LB (𝜆) is a continuous convex function w.r.t 𝜆 for all 𝜆 ∈ [0, 𝜆max],
(4) For all 𝜆 ∈ [0, 𝜆max), the right derivative of the function 𝑁LP-LB (𝜆), given by 𝑁 ′LP-LB (𝜆+), exists

and satisfies 𝑁 ′LP-LB (𝜆+) ≥ 0.

(1) The supremum of a non-empty bounded set of real numbers always exists. Clearly, the

linear program, defined in (3), is feasible for 𝜆 =
∑
𝑖:𝑎𝑖≥𝑎∗ 𝛼𝑖𝜇𝑖 with a feasible solution being

𝒑 = (𝑝1, . . . , 𝑝𝐾 ) with 𝑝𝑖 = 𝛼𝑖𝜇𝑖/(
∑
𝑎𝑖≥𝑎∗ 𝛼𝑖𝜇𝑖 )1𝑎𝑖≥𝑎∗ .

Also, for any 𝜆 >
∑𝐾
𝑖=1
𝛼𝑖𝜇𝑖 , the LP , defined in(3), is infeasible as 𝜆𝒑 ≤ 𝝁𝜶 implies 𝜆 =

𝜆𝒑 · 1 ≤ 𝝁𝜶 · 1 =
∑𝐾
𝑖=1
𝛼𝑖𝜇𝑖 . Hence, 𝜆

max
is well defined and satisfies 0 <

∑
𝑖:𝑎𝑖≥𝑎∗ 𝛼𝑖𝜇𝑖 ≤

𝜆max ≤ ∑𝐾
𝑖=1
𝛼𝑖𝜇𝑖 .

(2) It is easy to verify that 𝒑∗ (𝜆max) is a feasible solution to the LP, defined in (3), for any

𝜆 ∈ [0, 𝜆max].
(3) Take any 0 ≤ 𝜆1 < 𝜆2 ≤ 𝜆max

and the corresponding optimal solution of the LP 𝒑∗ (𝜆1) and
𝒑∗ (𝜆2), respectively. For any 𝜆 of the form 𝜆 = 𝛼𝜆1 + (1 − 𝛼)𝜆2 for some constant 𝛼 ∈ [0, 1],
consider the solution 𝒑 =

𝛼𝜆1𝒑∗ (𝜆1 )+(1−𝛼 )𝜆2𝒑∗ (𝜆2 )
𝜆

. Clearly, 𝒑 ≥ 0,

𝒑 · 1 =
𝛼𝜆1𝒑∗ (𝜆1) · 1 + (1 − 𝛼)𝜆2𝒑∗ (𝜆2) · 1

𝜆
(69)

=
𝛼𝜆1 + (1 − 𝛼)𝜆2

𝜆
(70)

= 1, (71)

and

𝒑 · 𝒂 =
𝛼𝜆1𝒑∗ (𝜆1) · 𝒂 + (1 − 𝛼)𝜆2𝒑∗ (𝜆2) · 𝒂

𝜆
(72)

≥ 𝛼𝜆1𝑎
∗ + (1 − 𝛼)𝜆2𝑎

∗

𝜆
(73)

= 𝑎∗
𝛼𝜆1 + (1 − 𝛼)𝜆2

𝜆
(74)

= 𝑎∗ . (75)
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Also,

𝜆𝒑 = 𝛼𝜆1𝒑
∗ (𝜆1) + (1 − 𝛼)𝜆2𝒑

∗ (𝜆2) (76)

≤ 𝛼𝝁𝜶 + (1 − 𝛼)𝝁𝜶 (77)

= 𝝁𝜶 . (78)

Hence, 𝒑 is a feasible solution to the LP. Finally,

𝑁LP-LB (𝜆) ≤ 𝜆𝒑 · 𝝁−1
(79)

= (𝛼𝜆1𝒑
∗ (𝜆1) + (1 − 𝛼)𝜆2𝒑

∗ (𝜆2)) · 𝝁−1
(80)

= 𝛼𝑁LP-LB (𝜆1) + (1 − 𝛼)𝑁LP-LB (𝜆2), (81)

which proves convexity. The continuity follows directly from the convexity of the problem.

(4) A convex function on an open interval is semi-differentiable (see Thm 12.14 in [1]). The

convexity of 𝑁LP-LB (𝜆) along with the feasibility in the range [0, 𝜆max] implies that the right

derivative 𝑁 ′
LP-LB
(𝜆+) exists for all 𝜆 ∈ [0, 𝜆max). To prove that the right derivative is non-

negative, it suffices to show that the function 𝑁LP-LB (𝜆) attains local minima at 𝜆 = 0. Clearly,

𝑁LP-LB (0) = 0 and 𝑁LP-LB (𝜆) > 0 for any feasible 𝜆 > 0 by its definition, which completes the

proof.

□

B.3 Proof of Lemma 6
Proof.

Lemma 6 (Well Definedness). The parameters 𝜆max

WF-O and 𝜆max

WF-F are well defined and satisfy,

𝜆max

WF-O ≤ 𝜆
max

WF-F ≤ 𝜆
max . (17)

Recall, Lemma 6 The supremum of a nonempty bounded set of real numbers always exists.

Clearly, 𝜆max

WF-O
and 𝜆max

WF-F
are upper bounded by (𝝁𝜶 · 1) to ensure the feasibility of the algorithm.

Hence, to prove well definedness, it suffices to show that there exists at least one 𝜆1 such that for

all 𝜆 ∈ [0, 𝜆1], 𝑁LP-LB (𝜆) and 𝑁WF (𝜆) are feasible and 𝑁WF (𝜆) = 𝑁LP-LB (𝜆).
Recall, the definition of 𝑖1, 𝑗1 given in Lemma 3,

𝑖1, 𝑗1 = arg min

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑣 (𝑖, 𝑗 ) . (82)

and define

𝜆1 = sup{𝜆′ : 𝜆′ ≥ 0, 𝜆′𝒒 (𝑖1, 𝑗1 ) ≤ 𝝁𝜶 } (83)

Observe that the waterfilling algorithm will output 𝒑 = 𝒒 (𝑖1, 𝑗1 ) with a cost of

𝑁WF (𝜆) = 𝜆𝑣 (𝑖1, 𝑗1 ) , for all 𝜆 ∈ [0, 𝜆1] . (84)

This implies that 𝑁WF (𝜆) is feasible for all 𝜆 ∈ [0, 𝜆1] implying 𝜆max

WF-F
exists. It is also easy to verify

that 𝑁LP-LB (𝜆) is feasible for all 𝜆 ∈ [0, 𝜆1] with 𝒒 (𝑖1, 𝑗1 ) being a feasible solution implying

𝑁LP-LB (𝜆) ≤ 𝜆𝑣 (𝑖1, 𝑗1 ) , for all 𝜆 ∈ [0, 𝜆1] . (85)

Furthermore, Lemma 3 states that for the relaxed linear program 𝑁Relaxed-LP-LB (𝜆), it is optimal to

use the solution 𝒒 (𝑖1, 𝑗1 ) for all 𝜆 ≥ 0, i.e.,

𝑁Relaxed-LP-LB (𝜆) = 𝜆𝑣 (𝑖1, 𝑗1 ) for all 𝜆 > 0. (86)
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Also, for any 𝜆 ∈ [0, 𝜆1], the routing set of 𝑁LP-LB (𝜆) is a subset of the routing set of its relaxed

version 𝑁Relaxed-LP-LB (𝜆) and both linear programs are feasible implying

𝑁Relaxed-LP-LB (𝜆) ≤ 𝑁LP-LB (𝜆), for all 𝜆 ∈ [0, 𝜆1] . (87)

Using, (84), (85), (86) and (87), we have for all 𝜆 ∈ [0, 𝜆1]

𝑁WF (𝜆) = 𝑁LP-LB (𝜆) = 𝑁Relaxed-LP-LB (𝜆) = 𝜆𝑣 (𝑖1, 𝑗1 ) (88)

implying that 𝜆max

WF-O
is well defined.

Next, we show that 𝜆max

WF-O
≤ 𝜆max

WF-F
≤ 𝜆max

. Clearly, 𝜆max

WF-O
≤ 𝜆max

WF-F
as the set corresponding to

𝜆max

WF-O
is a subset of the one corresponding to 𝜆max

WF-F
. Hence, it suffices to show that 𝜆max

WF-F
≤ 𝜆max

.

This directly follows from the observations that the algorithm always maintains the capacity

constraints 0 ≤ 𝜆𝒑 ≤ 𝝁𝜶 and the routing tuples always maintain the benchmark accuracy 𝑎∗.
Hence, a feasible solution of the waterfilling algorithm 𝑁WF (𝜆) is always a feasible solution to the

original LP 𝑁LP-LB (𝜆). □

B.4 Proof of Lemma 7
Proof. Recall Lemma 7

Lemma 7 (Feasibility equals Optimality). For all 𝜆 ∈ [0, 𝜆max

WF-F], the solution of the waterfilling
algorithm is an optimal solution to the LP defined in (3), i.e., 𝜆max

WF-O = 𝜆max

WF-F.

We prove this by using a contradiction. We assume 𝜆max

WF-O
< 𝜆max

WF-F
and show that the waterfilling

algorithm 𝑁WF (𝜆) cannot be suboptimal for any 𝜆 ∈ (𝜆max

WF-O
, 𝜆max

WF-F
]. First consider the solution of

the waterfilling algorithm 𝑁WF (𝜆max

WF-F
). Let𝑤WF

𝑖 s, the weights of the routing vector 𝒒∗𝑖 of the sets
𝑆∗𝑖 , be the output of the waterfilling algorithm 𝑁WF (𝜆max

WF-F
).

We first show that there exists an index 𝑖∗ ∈ {1, . . . , |S∗
opt
| − 1} such that 𝜆max

WF-O
is of the form

𝜆max

WF-O
=

𝑖∗∑︁
𝑖=1

𝑤WF

𝑖 (89)

We prove this by contradiction. Assume 𝜆max

WF-O
∈ (∑𝑖∗

𝑖=1
𝑤WF

𝑖 ,
∑𝑖∗+1
𝑖=1

𝑤WF

𝑖 ) for some 𝑖∗ ∈ {1, . . . , |S∗
opt
|−

1}, i.e., there exists some 𝜆 ∈ (𝜆max

WF-O
,
∑𝑖∗+1
𝑖=1

𝑤WF

𝑖 ) where 𝑁WF (𝜆) > 𝑁LP-LB (𝜆). The assumption also

implies that

𝑁WF (𝜆) = 𝑁LP-LB (𝜆), for all 𝜆 ∈
[
𝑖∗∑︁
𝑖=1

𝑤WF

𝑖 , 𝜆max

WF-O

]
. (90)

It also implies that the right derivatives of the functions also match, i.e.,

𝑁 ′
LP-LB
(𝜆+) = 𝑁 ′

WF
(𝜆+), for all 𝜆 ∈

[
𝑖∗∑︁
𝑖=1

𝑤WF

𝑖 , 𝜆max

WF-O

)
(91)

Now, using convexity of𝑁LP-LB, as shown in Lemma 4, we have that for all 𝜆 ∈ [∑𝑖∗
𝑖=1
𝑤WF

𝑖 ,
∑𝑖∗+1
𝑖=1

𝑤WF

𝑖 ),

𝑁LP-LB (𝜆) ≥ 𝑁LP-LB

(
𝑖∗∑︁
𝑖=1

𝑤WF

𝑖

)
+

(
𝜆 −

𝑖∗∑︁
𝑖=1

𝑤WF

𝑖

)
𝑁 ′
LP-LB

((
𝑖∗∑︁
𝑖=1

𝑤WF

𝑖

)+)
(92)

= 𝑁WF

(
𝑖∗∑︁
𝑖=1

𝑤WF

𝑖

)
+

(
𝜆 −

𝑖∗∑︁
𝑖=1

𝑤WF

𝑖

)
𝑁 ′
WF

((
𝑖∗∑︁
𝑖=1

𝑤WF

𝑖

)+)
(93)

= 𝑁WF (𝜆), (94)
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where the last step follows from the fact that 𝑁WF (𝜆) is linear for any 𝜆 ∈ [
∑𝑖∗
𝑖=1
𝑤WF

𝑖 ,
∑𝑖∗+1
𝑖=1

𝑤WF

𝑖 ).
Due to the nature of our waterfilling algorithm, the slope of 𝑁WF (𝜆) in the interval is 𝑣∗

𝑖∗+1. This con-

tradicts the initial assumption. The fact that𝑁 ′
WF
(𝜆+) ≤ 𝑁 ′

LP-LB
(𝜆+) for all 𝜆 ∈ [∑𝑖∗

𝑖=1
𝑤WF

𝑖 ,
∑𝑖∗+1
𝑖=1

𝑤WF

𝑖 )
explains the phrase switching routing tuples does not help.
The final statement to argue is that 𝜆max

WF-O
cannot be of the form 𝜆max

WF-O
=

∑𝑖∗
𝑖=1
𝑤WF

𝑖 for any

constant 𝑖∗ ∈ {1, . . . , |S∗
opt
| − 1}. For the sake of contradiction, assume there exists an index 𝑖∗ ∈

{1, . . . , |S∗
opt
| − 1} s.t. 𝜆max

WF-O
=

∑𝑖∗
𝑖=1
𝑤WF

𝑖 . This implies there exists some 𝜆′ ∈ (𝜆max

WF-O
,
∑𝑖∗+1
𝑖=1

𝑤WF

𝑖 ) s.t.
𝑁WF (𝜆) > 𝑁LP-LB (𝜆) for all 𝜆 ∈ (𝜆max

WF-O
, 𝜆′). Lemma 5 states that the right derivative of the function

𝐴LP-LB (𝜆), given by 𝐴′
LP-LB
(𝜆+), is always of the form 𝒒∗𝑖 for some 𝑖 . Clearly, at 𝜆max

WF-O
=

∑𝑖∗
𝑖=1
𝑤WF

𝑖 ,

the only feasible choices are 𝒒∗𝑖 for all 𝑖 ≥ 𝑖∗ + 1. Hence, the optimal choice is to use routing set

𝑆∗
𝑖∗+1 with the routing vector 𝒒∗

𝑖∗+1 implying optimality of the waterfilling algorithm.

□

B.5 Proof of Lemma 8
Proof. Recall Lemma 8

Lemma 8 (Waterfilling is Feasible). For all 𝜆 ∈ [0, 𝜆max], the waterfilling algorithm is feasible, i.e.,
𝜆max

WF-F = 𝜆
max.

We prove this by showing that for any 𝜆 > 𝜆max

WF-F
, the linear program, defined in (3), is infeasible.

Observe the solution 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) provided by the waterfilling algorithm at 𝜆 = 𝜆max

WF-F
.

Clearly, the solution 𝒑 satisfies 𝜆max

WF-F
𝑝𝑖 = 𝛼𝑖𝜇𝑖 for all 𝑖 satisfying 𝑎𝑖 ≥ 𝑎∗. If not, the waterfilling

algorithm is feasible for a higher 𝜆 since it can push some traffic into the server class 𝑖 that satisfies

𝜆max

WF-F
𝑝𝑖 < 𝛼𝑖𝜇𝑖 and 𝑎𝑖 ≥ 𝑎∗, contradicting the definition of 𝜆max

WF-F
.

Next, we argue that one of the following conditions must be true, either of which implies

𝜆max

WF-F
= 𝜆max

(1) 𝜆max

WF-F
𝒑 = 𝝁𝜶 : Clearly, 𝜆

max

WF-F
= 𝜆max

WF-F
𝒑 ·1 = 𝝁𝜶 ·1. However, Lemma 4 states that 𝜆max ≤ 𝝁𝜶 ·1

and Lemma 6 states 𝜆max

WF-F
≤ 𝜆max

implying 𝜆max

WF-F
= 𝜆max = 𝝁𝜶 · 1.

(2) There exists an index 𝑖 ∈ {1, . . . , 𝐾} s.t. 𝑎𝑖 < 𝑎∗ and 𝜆max

WF-F
𝑝𝑖 = 0,∀𝑖 < 𝑖, 𝜆max

WF-F
𝑝𝑖 ∈

[0, 𝛼𝑖𝜇𝑖 ), 𝜆max

WF-F
𝑝𝑖 = 𝛼𝑖𝜇𝑖 ,∀𝑖 > 𝑖 and 𝒑 · 𝒂 = 𝑎∗: In the given scenario, there do not exist

any properly-paired or shuffling-pair routing tuples, where more traffic can be added. Fur-

thermore, because there exists at least one semi-filled server class 𝑖 with an accuracy less

than 𝑎∗, the waterfilling algorithm would have only used routing tuples that contain a pair of

server classes. Since all such tuples exactly maintain an accuracy of 𝑎∗, the system accuracy

𝒑 · 𝒂 must be equal to 𝑎∗. Therefore, increasing 𝜆 beyond 𝜆max

WF-F
can only decrease accuracy,

making the linear program, defined in (3), infeasible.

□

B.6 Proof of Lemma 9
Recall Lemma 9

Lemma 9. For all 𝜆 ∈ [0, 𝜆max), the right derivative 𝐴′LP-LB (𝜆+) satisfy

𝐴′LP-LB (𝜆+) · 1 = 1 (18)

𝐴′LP-LB (𝜆+) · 𝒂 ≥ 𝑎∗ (19)

Proof. Clearly, for any 𝜆 ∈ [0, 𝜆max]
𝐴LP-LB (𝜆) · 1 = 𝜆. (95)
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Hence, taking right derivative implies, for any 𝜆 ∈ [0, 𝜆max),
𝐴′
LP-LB
(𝜆+) · 1 = 1. (96)

Next, define

𝜆max

𝑎∗ = sup{𝜆′ : 𝜆′ ∈ [0, 𝜆max],𝒑∗ (𝜆′′) · 𝒂 = 𝑎∗, for all 𝜆′′ ∈ [0, 𝜆′]}. (97)

Recall, the definition of 𝑖1, 𝑗1 given in Lemma 3,

𝑖1, 𝑗1 = arg min

𝑖, 𝑗 :𝑎𝑖<𝑎
∗<𝑎 𝑗

𝑣 (𝑖, 𝑗 ) . (98)

and define

𝜆1 = sup{𝜆′ : 𝜆′ ≥ 0, 𝜆′𝒒 (𝑖1, 𝑗1 ) ≤ 𝝁𝜶 } (99)

Lemma 3 states that for all 𝜆 ∈ [0, 𝜆1], the optimal solution of the LP 𝑁LP-LB (𝜆) equals 𝒑∗ (𝜆) = 𝒒𝑖1 𝑗1

which satisfies 𝒑∗ (𝜆) · 𝒂 = 𝑎∗. Hence, 𝜆max

𝑎∗ is well defined. Hence, for any 𝜆 ∈ [0, 𝜆max

𝑎∗ ], we have
𝐴LP-LB (𝜆) · 𝒂 = 𝜆𝒑∗ (𝜆) · 𝒂 = 𝜆𝑎∗ . (100)

which implies for all 𝜆 ∈ [0, 𝜆max

𝑎∗ ), we have
𝐴′
LP-LB
(𝜆+) · 𝒂 = 𝑎∗ . (101)

Next, we show that for 𝜆 ∈ [𝜆max

𝑎∗ , 𝜆
max), the gradient function satisfies,

𝐴′
LP-LB
(𝜆+) · 𝒂 > 𝑎∗ . (102)

We first argue that for any 𝒑∗ (𝜆) · 𝒂 > 𝑎∗, there exists an index 𝑖 ∈ {1, . . . , 𝐾} s.t. 𝑎𝑖 > 𝑎∗,
𝜆𝑝∗𝑖 (𝜆) = 𝛼𝑖𝜇𝑖 for all 𝑖 < 𝑖 , 𝜆𝑝∗𝑖 (𝜆) = 0 for all 𝑖 > 𝑖 and 𝜆𝑝∗

𝑖
(𝜆) ∈ [0, 𝛼𝑖𝜇𝑖 ). We prove this by

contradiction. Assume there exist indices 𝑖 < 𝑗 st 𝑎𝑖 < 𝑎 𝑗 and 𝜆𝑝
∗
𝑖 (𝜆) < 𝛼𝑖𝜇𝑖 and 𝜆𝑝∗𝑗 (𝜆) > 0. If not,

then one can increase 𝑝𝑖 (𝜆) and decrease 𝑝 𝑗 (𝜆) to decrease the cost 𝜆𝒑(𝜆) · 𝝁−1
while maintaining

feasibility. Further, since 𝒑(𝜆) · 𝒂 > 𝑎∗ there exist at least one index 𝑖′ s.t. 𝑝 𝑗 (𝜆) > 0 which proves

the claim. This also implies that there does not exist any feasible solution 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) to the

LP 𝑁LP-LB (𝜆) that satisfies 𝒑 · 𝒂 = 𝑎∗. This holds as, for any 𝜆 ∈ (∑𝑖−1

𝑖=1
𝜇𝑖 ,

∑𝑖
𝑖=1

𝜇𝑖 ] and any valid

probability vector 𝒑 = (𝑝1, . . . , 𝑝𝐾 ), it holds that∑︁
𝑖

𝑝𝑖𝑎𝑖 ≥
𝑖−1∑︁
𝑖=1

𝛼𝑖𝜇𝑖

𝜆
𝑎𝑖 + (𝜆 −

𝑖−1∑︁
𝑖=1

𝛼𝑖𝜇𝑖 )𝑎𝑖 (103)

> 𝑎∗ . (104)

The first inequality follows from the fact that we are assigning maximum possible weights to

𝑎1, . . . , 𝑎𝑖 and 𝑎𝑖 are monotonically increasing, while the second inequality follows from the fact

that the assigned weight 𝑝𝑖 matches with the optimal probability vector 𝒑∗ (𝜆) which attains an

accuracy greater than 𝑎∗. Hence, for any 𝜆 s.t. 𝒑∗ (𝜆) · 𝒂 > 𝑎∗, there does not exists any feasible

solution 𝒑 that satisfies 𝒑 · 𝒂 = 𝑎∗.
This implies for any 𝜆 > 𝜆max

𝑎∗ , 𝒑∗ (𝜆) · 𝒂 > 𝜆𝑎∗. We can prove this using contradiction. Assume

there exists a 𝜆′ ∈ (𝜆max

𝑎∗ , 𝜆
max] s.t. 𝒑∗ (𝜆′) · 𝒂 = 𝑎∗. However, 𝒑∗ (𝜆′) is a feasible solution to the

LP 𝑁LP-LB (𝜆) for all 𝜆 ∈ [𝜆max

𝑎∗ , 𝜆
′). Using previous argument, this implies 𝒑∗ (𝜆) · 𝒂 = 𝑎∗ for all

𝜆 ∈ [𝜆max

𝑎∗ , 𝜆
′) which violates the definition of 𝜆max

𝑎∗ . Hence, for any 𝜆 > 𝜆max

𝑎∗ , 𝒑∗ (𝜆) · 𝒂 > 𝜆𝑎∗.
Hence, for any 𝜆 ∈ [𝜆max

𝑎∗ , 𝜆
max) there exists an index 𝑖 ∈ {1, . . . , 𝐾} s.t. 𝑎𝑖 > 𝑎∗, 𝜆𝑝∗𝑖 (𝜆) = 𝛼𝑖𝜇𝑖

for all 𝑖 < 𝑖 , 𝜆𝑝∗𝑖 (𝜆) = 0 for all 𝑖 > 𝑖 and 𝜆𝑝∗
𝑖
(𝜆) ∈ [0, 𝛼𝑖𝜇𝑖 ). Since 𝜆𝑝∗𝑖 (𝜆) = 𝜇𝑖 for all 𝑖 s.t. 𝑎𝑖 < 𝑎∗,

𝐴′
LP-LB
(𝜆+) (𝑖) ≤ 0 for all such 𝑖 . Combining this with 𝐴′

LP-LB
(𝜆+) · 1 = 1 implies

𝐴′
LP-LB
(𝜆+) · 𝒂 > 𝑎∗ . (105)

□
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B.7 Proof of Lemma 10
Proof. Recall Lemma 10

Lemma 10 (Unique sub-gradient). For any 𝜆 ∈ [0, 𝜆max), if a vector 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) satisfy the
conditions
(1) 𝒑 · 1 = 1,
(2) 𝒑 · 𝒂 ≥ 𝑎∗,
(3) for all index 𝑖 ∈ {1, . . . , 𝐾}, if 𝐴′LP-LB (𝜆+) (𝑖) = 0, then 𝑝𝑖 = 0 and if 𝐴′LP-LB (𝜆+) (𝑖) ≠ 0, then

𝑝𝑖𝐴
′
LP-LB (𝜆+) (𝑖) ≥ 0,

(4) 𝒑 · 𝝁−1 ≤ 𝐴′LP-LB (𝜆+) · 𝝁−1,
then 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) = 𝐴′LP-LB (𝜆+)

Assume that there exist a
¯𝜆 ∈ [0, 𝜆max) and a vector 𝒑 = (𝑝1, . . . , 𝑝𝐾 ) that satisfy the conditions

given in Lemma 10. The proof proceeds as follows. We observe the solution of the LP 𝑁LP-LB (𝜆) in
some right neighbourhood and prove that if 𝒑 ≠ 𝐴′

LP-LB
(𝜆+), then the LP has multiple optima.

Define,

𝜆next-barrier = sup

{
𝜆′ : 𝜆′ ≥ 0, 0 ≤ ¯𝜆𝒑∗ ( ¯𝜆) + 𝜆′′𝐴′

LP-LB
( ¯𝜆+) ≤ 𝝁𝜶 ,

0 ≤ ¯𝜆𝒑∗ ( ¯𝜆) + 𝜆′′𝒑 ≤ 𝝁𝜶 for all 𝜆′′ ∈ [0, 𝜆′]
}

(106)

We later show that 𝜆next-barrier is well-defined and strictly positive. Now, for any 𝜆 ∈ [ ¯𝜆, ¯𝜆 +
𝜆next-barrier), consider the routing probability 𝒑∗

1
= 1

𝜆

(
¯𝜆𝒑∗ ( ¯𝜆) + (𝜆 − ¯𝜆)𝒑

)
. First, we show that 𝒑∗

1
is

a feasible solution in the interval ( ¯𝜆, ¯𝜆 + 𝜆next-barrier). Clearly, 0 ≤ 𝜆𝒑∗1 = ¯𝜆𝒑∗ ( ¯𝜆) + (𝜆 − ¯𝜆)𝒑 ≤ 𝝁𝜶 ,

using the definition of 𝜆next-barrier. Furthermore,

𝒑∗
1
· 1 =

1

𝜆

(
¯𝜆𝒑∗ ( ¯𝜆) + (𝜆 − ¯𝜆)𝒑

)
· 1 (107)

=
1

𝜆

(
¯𝜆 + (𝜆 − ¯𝜆)

)
(108)

= 1, (109)

𝒑∗
1
· 𝒂 =

1

𝜆

(
¯𝜆𝒑∗ ( ¯𝜆) + (𝜆 − ¯𝜆)𝒑

)
· 𝒂 (110)

≥ 1

𝜆

(
¯𝜆𝑎∗ + (𝜆 − ¯𝜆)𝑎∗

)
(111)

= 𝑎∗, (112)

and

𝜆𝒑∗
1
· 𝝁−1 =

(
¯𝜆𝒑∗ ( ¯𝜆) + (𝜆 − ¯𝜆)𝒑

)
· 𝝁−1

(113)

= ¯𝜆𝒑∗ ( ¯𝜆) · 𝝁−1 + (𝜆 − ¯𝜆)𝒑 · 𝝁−1
(114)

= 𝑁LP-LB ( ¯𝜆) + (𝜆 − ¯𝜆)𝒑 · 𝝁−1
(115)

≤ 𝑁LP-LB ( ¯𝜆) + (𝜆 − ¯𝜆)𝐴′
LP-LB
( ¯𝜆+) · 𝝁−1

(116)

= 𝑁LP-LB ( ¯𝜆) + (𝜆 − ¯𝜆)𝑁 ′
LP-LB
( ¯𝜆+) (117)

≤ 𝑁LP-LB (𝜆), (118)
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where the last step uses convexity of LP proved in Lemma 4. Since, 𝑁LP-LB (𝜆) is the optimal solution,

the equality must hold, implying that 𝒑∗
1
is an optimal solution in the interval ( ¯𝜆, ¯𝜆 + 𝜆next-barrier).

Using similar arguments, one can show that 𝒑∗
2
= 1

𝜆

(
¯𝜆𝒑∗ ( ¯𝜆) + (𝜆 − ¯𝜆)𝐴′

LP-LB
( ¯𝜆+)

)
is also an optimal

solution in the interval ( ¯𝜆, ¯𝜆 + 𝜆next-barrier). Further, 𝒑 ≠ 𝐴′
LP-LB
( ¯𝜆+) implies 𝒑∗

1
≠ 𝒑∗

2
implying there

exist multiple optimal solutions, which contradicts Assumption 1, thus completing the proof.

Hence, the only remaining step is to show that 𝜆next-barrier is well-defined and strictly positive.

Observe that the condition
¯𝜆𝒑∗ ( ¯𝜆) + 𝜆′𝐴′

LP-LB
( ¯𝜆+) ≤ 𝝁𝜶 implies

¯𝜆𝒑∗ ( ¯𝜆) · 1 + 𝜆′𝐴′
LP-LB
( ¯𝜆+) · 1 =

¯𝜆 + 𝜆′ ≤ ∑𝐾
𝑖=1

𝜇𝑖 . Hence, the supremum is bounded and therefore well-defined.

Next, we show that 𝜆next-barrier is strictly positive. Define

𝜆min-next-barrier =
min𝑖:𝐴′

LP-LB
( ¯𝜆+ ) (𝑖 )≠0

{
¯𝜆𝑝∗𝑖 ( ¯𝜆)1

{
𝐴′
LP-LB
( ¯𝜆+) (𝑖) < 0

}
+

(
𝛼𝑖𝜇𝑖 − ¯𝜆𝑝∗𝑖 ( ¯𝜆)

)
1
{
𝐴′
LP-LB
( ¯𝜆+) (𝑖) > 0

}}
max

{
max𝑖:𝑝′

𝑖
≠0

{
|𝑝′
𝑖
|
}
,max𝑖:𝐴′

LP-LB
( ¯𝜆+ ) (𝑖 )≠0

{
|𝐴′

LP-LB
( ¯𝜆+) (𝑖) |

}} .

(119)

For any index 𝑖 , if the sign of the right derivative at the index 𝑖 is negative, i.e., 𝐴′
LP-LB
( ¯𝜆+) (𝑖) < 0,

then the definition of right derivative implies
¯𝜆𝑝∗𝑖 ( ¯𝜆) has to be a positive quantity. Similarly, if

𝐴′
LP-LB
( ¯𝜆+) (𝑖) > 0, then the 𝛼𝑖𝜇𝑖 − ¯𝜆𝑝∗𝑖 ( ¯𝜆) > 0. Hence, 𝜆min-next-barrier is a strictly positive quantity.

Now, for any index 𝑖 s.t. 𝑝𝑖 > 0 and for any 𝜆′′ ∈ [0, 𝜆min-next-barrier], we have 𝐴′
LP-LB
( ¯𝜆+) (𝑖) > 0

and

0 ≤ ¯𝜆𝑝∗𝑖 ( ¯𝜆) ≤ ¯𝜆𝑝∗𝑖 ( ¯𝜆) + 𝜆′′𝑝𝑖 ≤ ¯𝜆𝑝∗𝑖 ( ¯𝜆) + 𝜆min-next-barrier𝑝𝑖 (120)

≤ ¯𝜆𝑝∗𝑖 ( ¯𝜆) +
𝜇𝑖 − ¯𝜆𝑝∗𝑖 ( ¯𝜆)

𝑝𝑖
𝑝𝑖 (121)

= 𝜇𝑖 (122)

For any index 𝑖 s.t. 𝑝𝑖 < 0 and for any 𝜆′′ ∈ [0, 𝜆min-next-barrier], we have 𝐴′
LP-LB
( ¯𝜆+) (𝑖) < 0 and

𝛼𝑖𝜇𝑖 ≥ ¯𝜆𝑝∗𝑖 ( ¯𝜆) ≥ ¯𝜆𝑝∗𝑖 ( ¯𝜆) + 𝜆′′𝑝𝑖 ≥ ¯𝜆𝑝∗𝑖 ( ¯𝜆) + 𝜆next-barrier𝑝𝑖 (123)

≥ ¯𝜆𝑝∗𝑖 ( ¯𝜆) +
¯𝜆𝑝∗𝑖 ( ¯𝜆)
|𝑝𝑖 |

𝑝𝑖 (124)

= 0 (125)

Hence, for all 𝜆′′ ∈ [0, 𝜆min-next-barrier]
0 ≤ ¯𝜆𝒑∗ ( ¯𝜆) + 𝜆′′𝒑 ≤ 𝝁𝜶 (126)

Using similar arguments, we can show that

0 ≤ ¯𝜆𝒑∗ ( ¯𝜆) + 𝜆′′𝐴′
LP-LB
( ¯𝜆+) ≤ 𝝁𝜶 (127)

Hence, 𝜆next-barrier ≥ 𝜆min-next-barrier > 0, which completes the proof. □
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