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Abstract

In this thesis, we consider the problem of minimizing playback delay in streaming
over a packet erasure channel with fixed bandwidth. In recent years, there has been
a rapid increase in live streaming applications where packets have to be played back
at the receiver in order. With instantaneous feedback, the automatic-repeat-request
(ARQ) protocol is delay optimal. However, with no feedback or delayed feedback,
there is a trade-off between transmitting new packets and retransmitting old packets,
to reduce the playback delay.

Existing erasure codes such as Reed-Solomon codes and fountain codes that oper-
ate without feedback have delay proportional to the length of the stream, and hence
are not suitable for streaming applications. Other coding schemes specifically de-
signed for delay-constrained packet transmission aim to minimize the decoding delay.
However, playback delay is a more natural metric for applications requiring in-order
playback at the receiver.

We aim to find good streaming codes that minimize playback delay for such chan-
nels with limited or no feedback. We analyze three cases, namely no-feedback, delayed
feedback and broadcast with instantaneous feedback. We find that in all cases the
playback delay grows logarithmically with the time elapsed since the start of trans-
mission, and we evaluate the growth constant, i.e. the pre-log term, as a function of
the transmission bandwidth (relative to the source bandwidth). The main tool used
in the analysis of delay in all cases is to model packet decoding in terms of threshold
crossing of a random walk.

We can show that the expected playback delay is asymptotically equal to 1/λ log n
where λ is referred to as the growth constant. For the no-feedback case, the optimal
value is λ = D(1/b||ρ) where b is the bandwidth in packets per slot and ρ is the success
probability of the erasure channel. We prove that the simple coded repetition scheme
where the source transmits combinations all packets generated so far in every slot
achieves this optimal growth constant.

With instantaneous feedback, the ARQ scheme is optimal and we can determine
the exact expression for λ. For the delayed feedback case we propose a greedy coding
scheme and use it to determine a lower bound on λd as a function of feedback delay d.
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We can prove that the growth constant with feedback is strictly better that the one
without, but they have the same asymptotic value in the limit of infinite bandwidth.

We further extend the analysis to a broadcast streaming scenario with instanta-
neous feedback where the source is transmitting a common packet stream to N users
over independent erasure channels. We determine how the growth constant λN scales
with the number of the users N .

It can be shown that greedy coding is optimal for the without feedback and instan-
taneous feedback cases, however we have not yet proved its optimality for the delayed
feedback and broadcast streaming. This is the major part of ongoing research efforts.
Other future research directions include extending the results to packet networks and
considering more general channel models.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering at MIT

Thesis Supervisor: Yuval Kochman
Title: Senior Lecturer at Hebrew University of Jerusalem, Israel
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Chapter 1

Introduction

1.1 Motivation

In recent years there has been a widespread proliferation of audio/video streaming

applications on both wired and wireless media. Unlike transmission of a file of large

size where the only the delay until completion of the data transfer matters, streaming

imposes delay constraints on each individual packet. Packets have to be decoded and

then played back in order to ensure good quality of service experienced by the user.

Guaranteeing quality of streaming is a challenge when the channel is lossy or has

a large transmission delay, such as the satellite communications channel. If unlimited

transmission bandwidth was available, one could repeat a packet endlessly until it is

successfully received. However, with limited available bandwidth one has to make a

choice whether to repeat the packets which were already transmitted, or introduce

new packets into the stream. Thus, there is a need to design efficient coding schemes

which deliver packets with low delay while using a limited transmission bandwidth.

1.2 Previous Work

Traditionally automatic-repeat-request (ARQ) protocols are used for bandwidth lim-

ited packet transmission over a lossy channel. The source transmits a packet and waits

for an acknowledgment (ACK) or negative acknowledgment (NACK). If a NACK is
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received, the source retransmits the lost packet, and if an ACK is received it moves

forward and transmits the next packet. ARQ protocols are throughput optimal, that

is they deliver the packet correctly with the minimum number of retransmissions.

However, when feedback is lossy, delayed or completely absent, more efficient erasure-

correcting codes are needed. This is because the encoder has inherent uncertainty

about the state of the decoder, and it must strike a balance between transmitting

new packets and repeating old packets that could have been erased.

Reed-Solomon codes [1] which map K source symbols to N (for N > K) channel

symbols, can successfully correct up to N − K erasures. However, these codes are

practical only for small file size K. Fountain codes proposed in [2, 3, 4] are codes

which can transmit files with large size K over an erasure channel without feedback.

The source transmits a linear combination of a randomly chosen set of source symbols.

The number of symbols included in each combination is determined by a carefully

designed degree distribution. Fountain codes achieve channel capacity and have low

encoding and decoding complexity.

Fountain codes are also referred to as rateless codes which means that the encoder

generates a potentially limitless number of linear combinations of source symbols,

such that the file of size K can be recovered when around K combinations are re-

ceived without erasures. There is no fixed code rate such as the rate K/N of the

Reed-Solomon codes described above. The receiver collects linear combinations, but

almost no source symbols are decoded until around K combinations are successfully

received. At this point, there is an avalanche of decoding and a large number of sym-

bols are decoded from the linear combinations. Thus, the average decoding delay is

proportional to the file size K. As a result, fountain codes are not suitable for packet

streaming in which we have delay constraints because packets need to be decoded

and played as soon as possible.

Only a few papers in literature have analyzed codes for packet streaming. Provably

delay-optimal codes without feedback for adversarial and cyclic burst erasure channels

have been extensively explored in [5]. The thesis also proposes universal codes for

more general erasure models and analyzes their decoding delay. These codes are

16



based upon sending linear combinations of source packets; indeed, it can be shown

that there is no loss in restricting the codes to be linear.

This reduces the task of the coding scheme to deciding which packets should be

included in every combination. The universal codes proposed in [5] are greedy codes

where all packets generated so far are included in a combination. Greedy codes have

also been proposed for other applications: in [6] for packet networks, and in [7] for a

broadcast scenario with perfect feedback and proposes algorithms to reduce the buffer

size at the source encoder. However, the delay performance of greedy codes has not

been analyzed.

Many streaming applications involve playback. We thus choose to look at the

playback delay, which takes this into account and reflects the end-to-end perfor-

mance, rather than the more common decoding delay metric. In audio and video

applications with correlation between packets, some packets can be dropped without

affecting the quality of streaming. However, several other applications such as remote

desktop have strict order constraints. For example, in remote desktop if the set of

instructions moving a window and then closing another window behind it have to be

executed in the exact order. Even if the decoding of one instruction is delayed, all

the subsequent instructions get delayed. Our definition of playback delay is suitable

for these applications. This definition was previously used in [8].

1.3 Our Contributions

The delay performance of greedy codes has not been analyzed and compared to other

codes. This work aims to fill that gap, and in particular consider the playback delay.

For the no-feedback case, we show that expected playback delay is proportional to

log n for time index n. Thus, the key parameter in understanding the asymptotic

behavior of delay is the proportionality constant, or pre-log. We find the optimal

constant within a family of schemes that we call time-invariant, and conjecture that

this is the optimum for any scheme. This optimum is attained by the conceptually

simple coded repetition scheme.
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With instantaneous feedback a simple ARQ based scheme is optimal. We show

that even in this case, the playback delay has similar logarithmic growth, although

with a smaller pre-log term. We evaluate that constant, and prove that feedback

strictly helps reduce the growth of delay, though the gain vanishes in the limit of

infinite bandwidth.The main results on the no-feedback and instantaneous feedback

cases are presented in [9].

Unlike instantaneous feedback, the optimal code is not obvious when feedback is

delayed. This is because the source has to make assumptions about erasures in the

past slots while transmitting new packets. We propose a greedy coding scheme for

streaming with delayed feedback and determine how the pre-log term in the growth

of playback delay scales with feedback delay.

Finally, we extend the analysis of the point-to-point case to a broadcast streaming

scenario where the source transmits a common packet stream to multiple users over

erasure channels with instantaneous feedback. At any given time, each user has

decoded a different subset of the stream based on its channel erasures. We present

insights into designing an optimal scheme to transmit combinations such that each

user decodes of packets immediately required for playback at each user. We analyze

how the pre-log term in the growth of playback delay scales with the number of users

served by the source. In particular, we can show that the case of infinite number of

users is equivalent to point-to-point streaming without feedback.

1.4 Outline of the thesis

In Chapter 2, we define the system model and the class of coding schemes called

full-rank codes that are of interest to us in this thesis. We list various notions of

delay and compare their usefulness as a suitable metric to evaluate the performance

of coding schemes. We also introduce the important concept of renewals in packet

decoding which plays a key role in our analysis of delay in all subsequent chapters.

Chapter 3 to Chapter 5 aim to determine the coding scheme which is optimal in terms

of playback delay for three different streaming scenarios namely, no-feedback, delayed

18



feedback, and broadcast with instantneous feeback.

In Chapter 3 we consider streaming over an erasure channel without feedback.

We propose the coded repetition scheme and show that its expected playback delay

is asymptotically equal to 1/λ · log n where n is the time slot index. We can determine

a closed form expression for the growth constant λ in terms of the bandwidth and the

erasure probability of the channel. Further we can show that the coded repetition is

optimal among all time-invariant schemes.

In Chapter 4 we consider streaming with feedback about past erasures after a

delay of d slots. We analyze the playback delay and determine how λ decays with

feedback delay d. In particular, for the instantaneous feedback case we determine

the exact value of λ. In Chapter 5 we consider the broadcast streaming setup with

instantaneous feedback to the source. Even for this case, we determine how the

growth constant decays with the number of users in the system.

Finally Chapter 6 gives a summary of results and discusses future research direc-

tions. Appendix A states some standard results that are used in proofs presented in

the thesis.
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Chapter 2

Preliminaries

In this chapter we describe the system model and define the main performance metrics

used in our analysis of delay in packet streaming. In Section 2.1 we present the

system model which is considered for the design of coding schemes in this thesis. In

Section 2.2 we define some basic coding schemes which will be used for design of

optimal codes in the subsequent chapters. In Section 2.3 we introduce the concept of

renewals in packet decoding which play a key role in our analysis of delay performance.

In Section 2.4 we define the different notions of delay that are used to compare coding

schemes and show they can expressed in terms of renewals.

2.1 System Model

We consider a slotted packet transmission scenario as shown in Figure 2-1. A packet

is a collection of some number of bits which we assume fixed and suppress in the

sequel. The source and receiver are connected by an erasure channel with bandwidth

Source Encoder Decoder
Playback

buffer

Erasure 

Channel

Ekyk

1 pkt/slot

1 pkt/slotpk

b pkts/slot

yk

Figure 2-1: System model consists of source and a receiver connected by an erasure
channel with bandwidth b packets per slot. Ek = 1 if the channel is good in slot k
and 0 if that slot is erased. The source generates 1 packet/slot and 1 packet/slot is
played in order at the receiver

21



b packets per slot, where we assume for simplicity that b is an integer and each channel

packet is of the same size as a source packet. All the b encoded packets transmitted

in that slot are received correctly with probability ρ, otherwise all are erased. In

Figure 2-1, Ek = 1 if the channel is good in slot k and 0 if that slot is erased.

The source generates one packet per slot. We use pk to denote the packet gen-

erated in slot k. In every slot, the encoder uses all the packets generated so far

to create b packets of the same size as the source packet, denoted by the vector

yk = [yk,1, yk,2, · · · yk,b] of size b. Each encoded packet yk,i, 1 ≤ i ≤ b is a function

of the past packets f(p1, p2, ..pk). For simplicity of notation we drop the subscript i

and use yk when referring to a combination of packets p1 to pk.

We assume without loss of generality that the transmission delay is zero, that is,

a packet transmitted in slot k arrives at the receiver in slot k, or is erased by the

channel. All notions of delay defined in this chapter can be modified to account for

a non-zero transmission delay by simply adding the transmission delay to the delay

metric.

The decoder can recover at most b source packets in every slot. It plays one

packet per slot strictly in order. We consider that if a packet is decoded in slot k,

it is available for playback from slot k + 1 onwards. If any packet pk has not been

received, but pj, j > k is received, it is buffered until pk is received and played.

In Chapter 3 we use this system model, where we further assume there is no

feedback from the receiver to the source. In Chapter 4 we consider the case where

delayed feedback about channel erasures is available to the encoder.

2.2 Coding Schemes

For the given system model, a simple strategy is to use a basic repetition scheme to

transmit packet pk, b times in slots k, k+ 1, .. k+ b− 1, as shown in Figure 2-2a. It

is clear that a maximum of b packets will be transmitted per slot thus meeting the

fixed bandwidth constraint. If all the b repetitions of a packet are erased, it can never

be decoded and the playback of the stream will cease with probability 1. To avoid
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(b) Augmented with Coding

Figure 2-2: Example illustrating the advantage of augmenting the basic repetition
scheme with coding by transmitting linear combinations of the packets generated so
far. Each bubble is a linear combination and the numbers inside it are the indices of
packets included in that linear combination.

this, the scheme can be augmented with coding in the following simple manner.

Let yk denote a linear combination of packets pj for 1 ≤ j ≤ k. We consider an

augmented scheme where the source transmits combinations yk in each slot as shown

in Figure 2-2b. The combination yk =
∑k

j=1 cjpj where cj ∈ Fq are chosen from a

field of alphabet size q. Multiplication and addition operations in
∑k

j=1 cjpj are also

performed Fq. The alphabet size q is chosen large enough to ensure that with high

probability every each yk is independent of all other yj. Although we consider yn as a

linear combination here, in general it can be any function f(p1, p2, · · · , pn) of packets

p1 to pn.

As pointed out in [8], the delay performance of this coded scheme is at least as

good as the uncoded repetition scheme. This is because pk is played only when all

pj, 1 ≤ j ≤ n− 1 have been decoded and played. Coding offers the added advantage

that if yk is received when pk has been decoded already, yk can be used to decode one

of the previous packets.

Now we use this idea to define a general class of codes called full-rank codes. All

codes considered in this thesis belong to this class of codes.

Definition 2.1 (Full-rank codes). A full-rank code is the transmission scheme where

in every slot the source transmits combinations yk =
∑k

j=1 cjpj of packets p1 through
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pk where cj ∈ Fq for all 1 ≤ j ≤ k and ck > 0. For any n ≥ k combinations

yk = [yk,1, yk,2 · · · , yk,n], the coefficients ci,j 1 ≤ i ≤ n, 1 ≤ j ≤ k are such that the

matrix 
c1,1 c1,2 . . . c1,k

c2,1 c2,2 . . . c2,k
...

...
. . .

...

cn,1 cn,2 . . . cn,k


is full-rank.

This means that packets p1 through pk can be decoded from any k combinations of

the form yk =
∑k

j=1 cjpj. The transmission scheme shown in Figure 2-2b belongs the

class of full-rank codes. We refer to it as the coded repetition scheme and formally

define it as follows,

Definition 2.2 (Coded repetition scheme). The coded repetition scheme is the full-

rank code in which the source transmits combinations yk =
∑k

j=1 cjpj of all packets

generated until time k where cj 6= 0 for all 1 ≤ j ≤ k.

Since we assume cj 6= 0 for all j, we can simplify the notation in Figure 2-2b by

representing each linear combination only by the maximum index among the packets

included as shown in Figure 2-5. This convention is used in Chapter 3. In Chapter 4

and Chapter 5 the source may choose to exclude a past packet pj from the combination

to be transmitted by setting cj = 0. In this case, we go back to the convention of

denoting a linear combination by a bubble enclosing indices of the packets included.

The coded repetition scheme is a special case of a general class of packet trans-

mission schemes which can be defined as follows,

Definition 2.3 (Time-invariant scheme). A time-invariant scheme with pattern a =

[a1 a2 .. ab] is the coding strategy where the source transmits combinations yn−ai of

packets p1 to pn−ai, for 1 ≤ i ≤ b in slot n, where ai > 0, and ai < aj for all i < j.

The coded repetition scheme corresponds to the case ai = i− 1 for all 1 ≤ i ≤ b.

Fig. 2-3 shows a typical transmission using a time-invariant scheme. Each number
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Figure 2-3: Illustration of packet streaming using a time-invariant scheme with b = 3
and a = [0 2 3]

in the packet transmitted shown in the figure denotes the linear combination yk =∑k
j=1 cjpj, with cj 6= 0 for all j.

The constraint that ai < aj for all i < j, is to ensure that each pattern a corre-

sponds to a unique scheme. If ai = ai+1 for some i, setting ai+1 = ai + 1 gives an

equivalent scheme. This is because, when ai = ai+1 we transmit two independent lin-

ear combinations yk−ai and y′k−ai of packets p1 through pk−ai in slot k. By eliminating

pk from one of the combinations, we obtain two equivalent combinations yk−ai and

yk−ai−1, which are exactly the packets transmitted in the scheme with ai+1 = ai + 1.

Thus, a scheme with ai’s taking any non-negative values can be converted to an

equivalent scheme with ai < aj for all i < j.

In Chapter 3 we compare time-invariant schemes with different patterns a, and

determine whether using a particular pattern a is advantageous in reducing the delay

in streaming. In the sequel, we define the concept of renewals which plays a key role

in our analysis of delay of transmission schemes.

2.3 Renewals in packet decoding

The receiver is able to decode all packets up to the current time when the number

of combinations received exceeds the number of packets generated. After this instant

the decoding of future packets is independent of the past, and the system behaves as

if it was reset to time zero. This phenomenon gives rise to the following definition of

renewals in packet decoding.
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Figure 2-4: Illustration of renewals of the scheme with pattern a = [0 2]

Definition 2.4 (Renewal). A renewal is defined as the earliest time n when all packets

pj, 1 ≤ j ≤ n have been decoded.

The time between the (i− 1)th and ith renewal is defined as the ith inter-renewal

time denoted by Ri, where we assume that the 0th renewal occurs at time zero. It

is easy to show that inter-renewal times are i.i.d. The concept of a renewal is used

extensively in stochastic processes [10]. The term information debt introduced in [5] is

also closely related to renewals. Information debt is the amount of more information

needed before successful decoding can occur. A renewal occurs when the information

debt becomes non-positive.

Note that a renewal at time n does not imply that all packets were decoded exactly

at n. A packet pj may be decoded before time k. For example, in Figure 2-4 shows the

scheme with pattern a = [0 2]. For the channel realization shown, packet is decoded

at time 3 although the first renewal takes place at time 4.

In the special case of the coded repetition scheme, decoding occurs only at renewal

instants. Fig. 2-5 illustrates renewals of the coded repetition scheme for b = 2. The

cross marks denote slots which experience channel blockage and tick marks denote

slots in which packets are successfully received. In this example, the first two renewals
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denote slots in which packets are successfully received.
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occur at times 4 and 10. Thus, R1 = 4 and R2 = 6. The plot at the bottom of the

figure shows the trajectory of the number of undecoded combinations received with

time. A renewal takes place whenever the trajectory hits the slope one line.

2.4 Notions of Packet Delay

In this section we define different notions of delay and discuss their usefulness as a

suitable performance metric in the packet streaming scenario. We show how each

metric can be expressed in terms of renewals in packet decoding which simplifies its

analysis.

1. Decoding Delay: A common delay metric is decoding delay, the time between

the generation of a packet and until it is decoded at the receiver. It has been

used in previous work [5, 6, 7, 11]. However, due to the constraint that the

packets have to be played in order, a decoded packet cannot be used until all

the previous packets have been decoded.

2. Playback Delay: The playback delay Pk of packet pk is time between the

generation of a packet at until it is played at the receiver. It is a natural delay

metric for in-order playback, and hence is the main metric of interest in this

thesis. For the coded repetition scheme, with pattern ai = i− 1 for 1 ≤ i ≤ b,

when a renewal takes place at time n, all the packets p1 through pn are decoded

exactly at time n. Thus

Pn = max(R1, R2, ..Rk),

where k is the smallest index such that
∑k

i=1Ri ≥ n. This is illustrated in

Figure 2-5. Playback delay Pk is also equal to the total interruption time, or

the number of slots in which no packet was played until time k. Since packets

are played in strict order, Pk is monotonically increasing with k.

3. Ordered Decoding Delay: We define a new delay metric called ordered
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decoding delay Ck of packet pk which is the time between its generation and

the earliest instant when all packets p1 to pk have been decoded. Unlike playback

delay, the ordered decoding delay is stationary, i.e. the expected value E[Ck]

does not change with time k. Ordered decoding delay is the right metric in

applications where the packets have to be in order, but are not necessarily

played back at the receiver. An example is remote desktop where a set of

instructions are executed immediately after in-order decoding instead playing

them back one by one.

4. Decodable Delay: We introduce another delay metric called decodable delay.

A packet pn is said to be decodable when the receiver can form a linear com-

bination only of packets pj, 1 ≤ j ≤ n. In other words, when pk is decodable,

the decoder has sufficient information to decode it, given packets p1, p2, ..pk−1.

We define decodable delay Dk as the time between generation of pk and when

it first becomes decodable. Decoding implies decodability, but the converse is

not true. Thus, the decoding delay Ck ≥ Dk for all k.

Decodability plays a key role when the source gets feedback about past erasures.

Once the source knows that pk is decodable, it does not need to include that

packet in any future combinations transmitted. Thus, decodability helps control

the number of packets buffered at the source, and also reduces encoding and

decoding complexity. We use the concept of decodability in designing coding

schemes in Chapter 4 and Chapter 5. Another application of decodability is

in designing codes for packet networks. A relay node can forward packets over

to the next hop only after they become decodable. Thus, codes that minimize

expected decodable delay are optimal for the source-relay link.

Decodability is similar to the notion of packet being ‘seen’ defined in [7]. The

difference is just a matter of convention. When a linear combination is received,

the lowest index packet in that combination is marked ‘seen’. Instead, we mark

the maximum-index packet in that combination as decodable.
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The concept of renewals in packet decoding and the various notions of delay

introduce in this chapter play a key role throughout this thesis in the design and

analysis of schemes that minimize delay.
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Chapter 3

Streaming without feedback

In this chapter we consider the problem of packet transmission without feedback over a

point-to-point i.i.d. erasure channel with success probability ρ, and fixed transmission

bandwidth b packets per slot. We use the notions of packet delay defined in Chapter 2

to find the optimal scheme among the class of time-invariant schemes.

In Section 3.1 we determine the distribution of inter-renewal time for time-invariant

schemes. We use this analysis in Section 3.2 to prove our main result that the ex-

pected playback delay E[Pn] grows asymptotically as 1/λ log n, where λ is referred to

as the growth constant. The coded repetition scheme is optimal since it achieves the

largest value of λ, among all time-invariant schemes.

In Section 3.3 we determine the expected ordered decoding delay E[Ck] of the

coded repetition scheme. In Section 3.4 we analyze decodable delay and show that

the coded repetition scheme gives minimum E[Dk] among all time-invariant schemes.

In Section 3.5 we optimize the coded repetition scheme to allow lossy playback and

reduce computational complexity. Finally, Section 3.6 shows how the results derived

for an i.i.d erasure channel can be extended to more general channel models.

3.1 Properties of inter-renewal time

In this section we analyze the coded repetition scheme, which belongs to the class of

time-invariant schemes defined in Chapter 2, and has pattern ai = i − 1, 1 ≤ i ≤ b.
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We determine the closed form expression for probability mass function (PMF) of

inter-renewal time R. This analysis is used in Section 3.2 to study the evolution of

expected playback delay.

3.1.1 PMF of inter-renewal time

Lemma 3.1 (Distribution of inter-renewal time). For an i.i.d. erasure channel with

success probability ρ and bandwidth b packets/slot, the PMF of inter-renewal time R

for the coded repetition scheme is

Pr(R = n) =

(
1− b(k − 1)

n− 1

)(
n− 1

k − 1

)
ρk(1− ρ)n−k, (3.1)

where k = dn/be.

Proof. In each slot the decoder receives b equations with probability ρ and 0 with

probability 1 − ρ. Let Sn be the number of equations received up to time n. Define

the event Gn−1 = {Sj < j for 1 ≤ j ≤ n− 1}, which means that there is no renewal

up to slot n − 1. The Generalized Ballot theorem from [12] given in Appendix A

states that

Pr(Gn−1|Sn−1) =

(
1− Sn−1

n− 1

)+

, (3.2)

where the operator (x)+ = max(x, 0). For a renewal to occur at time n, b (k − 1)

equations, where k = dn/be, should be received in n− 1 slots and the channel should

be good in the nth slot. Thus,

Pr(R = n) = ρ · Pr(Gn−1|Sn−1) Pr (Sn−1 = b(k − 1)) . (3.3)

Substituting (3.2) and the PMF of binomial distribution for Pr (Sn−1 = b(k − 1)), we

get (3.1).
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3.1.2 Asymptotic behavior of the PMF

Since we are interested in the long term evolution of playback delay Pn, it is useful

to look at the behavior of the distribution Pr(R = n) for large n. We show that it

decays exponentially at rate λc , D(1/b||ρ). In this definition, D(p||q) is the binary

information divergence function which is defined for probabilities 0 < p, q < 1 as,

D(p||q) = p log
p

q
+ (1− p) log

1− p
1− q .

Lemma 3.2 (Asymptotic behavior of the PMF). For the coded repetition scheme,

the tail distribution of inter-renewal time R decays exponentially with rate

− lim
n→∞

log Pr(R > n)

n
= D

(
1

b
||ρ
)

= λc (3.4)

Proof. The tail distribution of R is given by,

Pr(R > n) =

dn
b
e−1∑

k=1

Pr(Gn|Sn).P r(Sn = bk), (3.5)

=

dn
b
e−1∑

k=1

(
n

k

)
ρk(1− ρ)n−k

(
1− bk

n

)
, (3.6)

=

dn
b
e−1∑

k=1

√
n

2πk(n− k)
· eµn

eµk+µn−k

(
1− bk

n

)
· e−nD( k

n
||ρ), (3.7)

= e−f1(n)−nD( 1
b
||ρ), (3.8)

.
= e−nD( 1

b
||ρ). (3.9)

We apply the Stirling’s approximation for factorials in the form

n! =
√

2πn
(n
e

)n
eµn

where µn = O(1/n) to the binomial in (3.6) and obtain (3.7). For large n, the k =

dn/be − 1 term in the summation dominates. Thus we get (3.8) where function f1(n)

is such that limn→∞
f1(n)
n

= 0. In (3.9), the ‘
.
=’ sign stands for asymptotic equality
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where the relation f(n)
.
= g(n) between some functions f and g means that,

lim
n→∞

log f(n)

n
= lim

n→∞

log g(n)

n
.

3.2 Playback delay

In this section we analyze the expected playback delay E[Pn] for large n and prove that

the coded repetition scheme is the optimal transmission scheme that gives minimum

rate of growth of playback delay. We prove the following main theorem,

Theorem 3.1 (Expected Playback Delay). For the optimal time-invariant scheme,

the expected playback delay E[Pn] satisfies

E[Pn] =
1

λc
log n+O(log log n). (3.10)

The achievability and converse parts of Theorem 3.1 are proved in the following

Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 Achievability proof

The achievability part of Theorem 3.1 is an immediate corollary of the following

lemma. It shows that coded repetition scheme achieves the optimal λc = D(1/b||ρ) in

(3.10).

Lemma 3.3 (Performance of the coded repetition scheme). For the coded repetition

scheme, the expected playback delay E[Pn] satisfies

E[Pn] ≤ 1

λc
log n+O(1), (3.11)

E[Pn] ≥ 1

λc
log n− log log n+O(1). (3.12)
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Proof. For the coded repetition scheme, Pn = max(R1, R2, .., RJ) where J is the

smallest integer such that
∑J

k=1Rk ≥ n, and Rk’s are i.i.d. with distribution of the

inter-renewal time in Lemma 3.1. Thus,

E[Pn] = EJ

[
E

[
max(R1, R2, ..RJ)

∣∣∣∣∣
J−1∑
i=1

Ri < n,
J∑
i=1

Ri ≥ n

]]
. (3.13)

We use this to prove the upper and lower bounds (3.11) and (3.12) on E[Pn] as follows.

From Lemma 3.2 we know that the tail distribution

Pr(R > m) = e−f1(m)−mλc , (3.14)

where the function f1(m) is such that limm→∞ f1(m)/m = 0.

To get an upper bound, we define a geometric random variable G with decay rate

λc. By its definition, we know that the tail distribution of G, Pr(G > m) = e−mλc ≥
Pr(R > m) for all m. Thus,

E[max(R1, R2, ..RJ)] ≤ E[max(G1, G2, ..GJ)], (3.15)

≤ 1

λc
log J +O(1), (3.16)

where in (3.16) we use the result given in [13] that the expectation of the maximum
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of J geometric random variables with decay rate λc is 1/λc ·
∑J

i=1
1/i, which is asymp-

totically log J . By the strong law of renewal processes stated in Appendix A with

the detailed proof given in [10], we know that J grows linearly with n. Thus, the

expectation of (3.16) with respect to J , replaces log J by log n and adds a constant,

or an O(1) term to give the upper bound (3.11).

Similarly, we derive the lower bound (3.12) by defining another geometric random

variable H with decay rate λc+ε(n) and shifted g(n) units to the left of 0 as illustrated

in Fig. 3-1. The functions g(n) and ε(n) are chosen such that for all m,

Pr(H > m) ≤ Pr(R < m),

e−(m+g(n))(λc+ε(n)) ≤ e−f1(m)−mλc ,

ε(n) ≥ f1(m)− λcg(n)

m+ g(n)
. (3.17)

We choose function g(n) = log log n. For large enough n, the right-hand side of (3.17)

will be negative and hence we can choose ε(n) = 0. Thus for large n we have,

E[max(R1, R2, .. RJ)] ≥ E[max(H1, H2, .. HJ)],

≥ 1

λc + ε(n)
log J − g(n) +O(1),

=
1

λc
log J − log log n+O(1). (3.18)

Again, using the strong law of renewal processes and taking the expectation over J

of (3.18) gives the lower bound (3.12).

Thus, we have shown that the E[Pn] of the coded repetition scheme is asymptoti-

cally 1/λc · log n where λc = D(1/b||ρ).

3.2.2 Converse proof

The converse part of Theorem 3.1 is a corollary of the following lemma where we

prove that no other time-invariant scheme can achieve a larger growth constant λ

than λc achieved by the coded repetition scheme.
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Figure 3-2: Illustration of the difference between the time-invariant scheme with
pattern a = [0 2] and its genie-assisted form for b = 2. The two bottom rows show
the packets played in every slot for the two schemes. Empty boxes indicate interrupted
slots where no packet is played.

Lemma 3.4 (Performance of any time-invariant scheme). For any time-invariant

scheme with pattern a as defined in Definition 2.3, the expected playback delay E[Pn]

satisfies

E[Pn] ≥ 1

λa
log n+O(log log n), (3.19)

where λa ≤ λc for all a.

To simplify the analysis of playback delay, we define a genie-assisted lower bound

for every time-invariant scheme. Whenever the actual scheme decodes the first packet

in a renewal interval at time n, we consider that a genie at the source results in

decoding of all packets up to pn in the genie-assisted scheme. A renewal with the

actual scheme implies a renewal with the genie-assisted scheme at that time instant.

However, the converse is not true. Fig. 3-2 illustrates the difference between the

time-invariant scheme with pattern a = [0 2] and its genie bound.

Let Ra be inter-renewal time of the genie-assisted scheme with pattern a. Then,

the playback delay after n slots P ∗n = max(Ra,1, Ra,2 ..Ra,K) where K is the smallest

integer such that
∑K

i=1Ra,i ≥ n. Let λa be the decay rate of its tail distribution as

defined in Lemma 3.2. We can prove the following result,
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Lemma 3.5 (Asymptotic decay rate for time-invariant schemes). The decay rate λa of

the genie-assisted time-invariant scheme with pattern a is such that, λa ≤ λc for all a.

Proof. We lower bound the tail distribution of Ra by

Pr(Ra > n) ≥ (1− ρ)ab+1 Pr(Ra > n|first ab + 1 slots erased),

≥ (1− ρ)ab+1.Pr(R > n− ab − 1), (3.20)

.
= e−nλc .

where in (3.20), R is the inter-renewal time of the coded repetition scheme and its

tail distribution is as derived in Lemma 3.2.

Proof of Lemma 3.4. Since the genie-assisted version gives a lower bound on the play-

back delay of the actual time-invariant scheme we have,

E[Pn] ≥ E[max(Ra,1, Ra,2 ..Ra,K)], (3.21)

where in K is the smallest integer such that
∑K

i=1Ra,i ≥ n. We then obtain the

results (3.19) by using analysis similar to the proof of Lemma 3.3, but applied to

renewals of the genie-assisted scheme.

Thus, we have shown that the coded repetition scheme gives the largest growth

constant λ among all time-invariant schemes. We have the following conjecture about

time-variant schemes.

Conjecture 3.1. No scheme can achieve a larger value of growth constant λ than λc

for the coded repetition scheme.

We believe this is true because in absence of feedback, the statistics of undecoded

packets are asymptotically stationary. Although the playback delay is not stationary,

it is a function of the undecoded packets. Thus, using a time-varying scheme cannot

improve the playback delay performance.
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3.3 Ordered Decoding Delay

In Section 2.4 we defined the ordered decoding delay Ck. In this section we determine

C̄, the time-averaged ordered decoding delay for the coded repetition scheme in terms

of moments of the inter-renewal time.

Lemma 3.6 (Time-average Ordered Decoding Delay). For the coded repetition scheme

with inter-renewal time R, the time-averaged ordered decoding delay is

C̄ =
E[R2]

2E[R]
− 1

2
with probability 1. (3.22)

Proof. The ordered decoding delay corresponds to the residual life of a renewal process

[10]. Suppose J renewals have occurred till time n. If the length of the jth renewal

interval is Rj, then the ordered decoding delays of the Rj packets in that interval are

Rj − 1, Rj − 2, and 1 respectively as shown in Figure 3-3. Thus, the average Ck over

this time window can be bounded above and below as follows,

J∑
j=1

Rj(Rj − 1)

2n
≤
∑n

k=1Ck
n

≤
J+1∑
j=1

Rj(Rj − 1)

2n
(3.23)
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Taking the limit n → ∞, the upper and lower bounds converge to the same value

with probability one. We now evaluate the lower bound.

lim
n→∞

J∑
j=1

Rj(Rj − 1)

2n
= lim

J→∞

∑J
j=1Rj(Rj − 1)

2J
· lim
n→∞

J

n
(3.24)

=
E[R2]− E[R]

2

1

E[R]
with probability 1 (3.25)

By the strong law of large numbers, the first limit in (3.24) converges to (E[R2] −
E[R])/2 with probability 1. The second limit converges to 1/E[R] with probability 1

by the strong law of renewal processes.

Since Ck is an ergodic process, the time averaged ordered decoding delay C̄ =

E[Ck]. In Section 3.1 we derived the distribution of R and showed that it is asymp-

totically exponential. If R is purely geometric distributed, we get C̄ = E[R] − 0.5.

Thus, E[Ck] = O(E[R]) for the coded repetition scheme. We conjecture that the

coded repetition scheme gives the minimum E[Ck] among all time-invariant schemes.

3.4 Decodable Delay

In Chapter 2 we defined the decodable delay Dk of pk as the time from packet gener-

ation, until when the receiver can form a linear combination of pi and all past packets

pj, 1 ≤ j < i. In this section we present the following main result.

Theorem 3.2. The coded repetition scheme, with ai = i−1 for all 1 ≤ i ≤ b gives the

minimum time-averaged decodable delay among all time-invariant schemes for every

channel realization.

The proof of this theorem given in Appendix B. Since Dk is an ergodic process,

the time-average equals ensemble average and we obtain the following corollary of

Theorem 3.2.
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DRS
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ρ1 ρ2

1 pkt/slot

Figure 3-4: System model of streaming over a line network. The coded repetition
scheme is optimal for the source-relay link because it gives minimum expected decod-
able delay among time-invariant schemes as proved in Theorem 3.2.

Corollary 3.1. The coded repetition scheme gives the minimum expected decodable

delay E[Dk] among all time-invariant schemes. The distribution of Dk is same as

inter-renewal time R given in (3.1).

3.4.1 Application to relay network

An interesting application of Corollary 3.1 is in finding the optimal code for streaming

over a line network without feedback as shown in Figure 3-4. The line network has

a source node and a destination node connected via a relay by two erasure channels

with bandwidth b1 and b2 packets per slot respectively. The success probabilities of

the channels are ρ1 and ρ2 respectively. One packet per slot is generated at the source,

and decoded packets are played one packet per slot in exact order at the destination.

The concept of decodability is applicable here because a relay node can transmit a

combination yk =
∑k

i=1 cipi to the next hop only after pi becomes decodable. Since

the coded repetition scheme gives the minimum expected decodable delay it is the

optimal transmission scheme for the source-relay link. However, we cannot argue

this for the relay destination link because playback of packets at the destination is

involved.

3.5 Reduced coded repetition scheme

The coded repetition scheme was shown to be optimal in terms of playback delay in

Section 3.2. In this section we show that it is possible to reduce the number of packets

included in each combination without affecting playback delay if packets are played

strictly in order at the receiver. In applications such as audio or video streaming, the

receiver can drop some packets or play their interpolated versions without affecting he

41



7

1

1

2

2

1

3

1

1

2

1

2

3

4

1

2

3

4

5

1

2

3

42

1

3

1

6

5

4

1

5

4

1

5

6

1

6

7

5

1 65432

(a) Coded repetition scheme

61

1

2

6

4

1 65432 7

3 4 5 72

2 3

1

4

2

5

3

1

(b) Reduced scheme

Figure 3-5: Reduced coded repetition scheme for b = 2. Each bubble is a linear
combination and the numbers inside it are the indices of packets included in that
linear combination.

quality of streaming. Unlike the coded repetition scheme, the reduced version allows

packet dropping in applications where lossy playback is acceptable. In addition,

minimizing the number of packets in every combination reduces the encoding and

decoding complexity.

3.5.1 Elimination packets from a combination

Our objective is to eliminate as many packets as possible from each transmitted

combination, while ensuring that the received combinations are innovative for every

possible erasure pattern. In other works, we keep packet pi in a combination trans-

mitted in slot n only if it leads to decoding of pi for at least one erasure pattern of

slots 1 to n. The formal algorithm to perform this elimination of unnecessary packets

in each combination is Algorithm 3.1.

The reduced version of the coded repetition scheme is shown in Figure 3-5. We

observe that the reduced scheme divides the packet stream is divided into b parallel

sub-streams such that the ith sub-stream consists of combinations of packets pn where

i = n mod b. With strict in-order playback, the reduced scheme is equivalent to the

original scheme, that is, it gives the same playback delay as the coded repetition

scheme for every packet in the stream.

42



Algorithm 3.1 Minimizing packets in a combination

for i = n to 1 do
set of patterns ← all erasure patterns up to time n − 1 for which pi is not
decodable.
keep in combn[i]← false
while set of patterns is not empty and keep in combn[i] = 0 do

if Adding pi to this combination leads to decoding of pi then
keep in combn[i]← 1

else
Remove current pattern from set of patterns

end if
end while

end for
Form a combination of all pi for which keep in combn[i] = 1

3.6 Generalizing the channel model

So far we considered an i.i.d erasure channel with channel success probability ρ.

We now show how the results on analysis of delay for streaming without feedback

can be extended to more general channel models. The analysis of playback delay

for streaming with feedback and broadcast streaming considered in Chapter 4 and

Chapter 5 respectively can also be extended in a similar manner.

3.6.1 Markov Erasure Channel

Consider the two-state Markov channel model shown Figure 3-6. ρ1 and ρ2 are the

bad-to-good and good-to-bad state transition probabilities respectively, where 0 <

ρ1, ρ2 < 1. We require the condition ρ1b
(ρ1+ρ2)

> 1 to ensure that the rate of packet

generation at the source is less than channel capacity.

For every visit to state 1, b combinations are received and a renewal takes place

when the number of combinations exceeds the number of time slots. Clearly, the

channel has to be in the good state when a renewal takes place and by the Markov

property, successive inter-renewal times Ri are i.i.d. Let Sk be the time of the kth

visit to state 1. Then, Sk = Z1 +Z2 + ..Zk where Zi is the time between the (i− 1)th

and ith visit to state 1.
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0 11− p1 1− p2

p1

p2

Figure 3-6: Two state Markov channel model. ‘0’ denotes bad state or erasure and ‘1’
denotes good channel state. ρ1 and ρ2 are the bad-to-good and good-to-bad transition
probabilities respectively.

Asymptotic Behavior of PMF of R

The decoder receives b equations every time the system visits state 1. A renewal does

not take place after k visits to state 1 if, Si > ib for all 1 ≤ i ≤ k. Thus,

Pr(R > n) = Pr{S1 > b, S2 > 2b, ..Sdn
b
e > n}, (3.26)

= Pr{S ′1 > 0, S ′2 > 0, ..S ′dn
b
e > 0}, (3.27)

= Pr
(
K > dn

b
e
)
, (3.28)

where in (3.27), S ′k corresponds to the shifted random walk with Z ′i = Zi − b. The

new random walk has a negative drift since E(Z ′) = E(Z) − b < 0. In (3.28), K

is the smallest integer for which S ′K ≤ 0. We now apply Wald’s identity given in

Appendix A to determine the tail distribution Pr(K > k) of stopping time.

1 = E[exp(rS ′K −Kγ(r))], (3.29)

≥ Pr(K > k) · E[exp(rS ′K − Jγ(r))|K > k], (3.30)

≥ Pr(K > k) · E[exp(rZ ′K − kγ(r))], (3.31)

≥ Pr(K > k) · exp(− inf
r>0

γ(r)(k − 1)), (3.32)

where γ(r) is the log of the moment generating function of Z ′. Since γ′(0) = E(Z ′) <

0, and γ(r) is a convex function, there exists γ(r) < 0 for some r > 0. Hence, in

(3.28) Pr(K > dn
b
e) decays exponentially with rate λm , − infr>0 γ(r).
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Playback Delay

We can prove Theorem 3.1 in Chapter 3 for the Markov erasure channel. The achiev-

ability and converse parts can be proved in the same way as Lemma 3.3 and Lemma 3.4

with λc replaced by λm.

Achievability proof : For the coded repetition scheme, the playback delay Pn after

n slots is given by Pn = max(R1, R2, · · ·RJ) where J is the smallest integer such that∑J
j=1Rj ≥ n. Since Pr(R > k)

.
= exp(−λmk), the expected playback delay satisfies,

E[Pn] ≤ 1

λm
+O(1) (3.33)

E[Pn] ≥ 1

λm
− log log n+O(1). (3.34)

We prove this by considering geometric random variables G and H and the upper

and lower bounding E[max(R1, R2, · · ·RJ)] as done in the proof of Lemma 3.3.

Converse proof : We can show that no other time-invariant scheme can achieve

a growth constant λ ≥ λm than the coded repetition scheme. We consider a genie-

assisted version of a time-invariant scheme with pattern a where we assume that a

renewal occurs when the first packet is decoded. Then, we can lower bound the tail

distribution of inter-renewal time as follows.

Pr(Ra > n) = Pr(p1 not decoded until time n) (3.35)

≥ Pr(first ab + 1 slots erased).p1.Pr(R > n− ab − 2) (3.36)

= ρ2(1− ρ1)abp1 Pr{S1 > b, S2 > 2b, ..Sdn−ab−2

b
e > n− ab − 2} (3.37)

.
= Pr{S1 > b, S2 > 2b, ..Sdn

b
e > n} (3.38)

.
= exp(−λmn) (3.39)

Thus, we have proved that for all patterns a, the growth constant of playback delay

for any time-invariant scheme is worse than that achieved by the coded repetition

scheme.
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3.6.2 Partial erasures of packets in a slot

So far we assumed that the b packets transmitted a slot are received with probability

ρ, otherwise all are erased. We can generalize this model so that a subset of the b

packets could be erased. Consider that i packets in a slot are received successfully,

with probability ρi. Thus, ρ0 = 1− (ρ1 + ..ρb) is the probability that all the b packets

transmitted in a slot are erased.

PMF of inter-renewal time

For a given window of n slots we define the empirical distribution q = [q0 q1 · · · qb],
where qi is the fraction of slots in which i out the b transmitted packets were erased.

For a renewal to take place at time n, we need
∑b

i=0 iqi ≥ n. Let ξn be i.i.d ran-

dom variables corresponding to the number of equations received in each slot. The

distribution of ξ is,

Pr(ξ = i) = ρi for 0 ≤ i ≤ b (3.40)

Let Sn =
∑n

i=1 ξi, the total number of combinations received up to time n. It has the

multinomial distribution,

Pr(Sn = m) = n!
∑
q∈Qm

( ∏b
i=0 ρ

qin
i∏b

i=1(qin)!

)
(3.41)

where Qm is the set of distributions q such that
∑b

i=0 iqi = m. Define G as the event

there is no renewal until time n− 1. We use the generalized Ballot theorem stated in

Appendix A to determine the PMF of inter-renewal time as follows.

Pr(R = n) =
b∑
i=0

Pr(G|Sn−1 = n− i) · Pr(Sn−1 = n− i) · Pr(ξn = i), (3.42)

=
b∑
i=2

ρi

(
1− n− i

n− 1

)
Pr(Sn−1 = n− i), (3.43)

=
b∑
i=2

ρi

(
i− 1

n− 1

)
n!

∑
q∈Qn−i

( ∏b
i=0 ρ

qin
i∏b

i=1(qin)!

)
, (3.44)
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where in (3.42), Pr(G|Sn−1) is given by the generalized Ballot theorem. In (3.43) we

can remove the i = 0 and i = 1 from the summation because for ξn = 0 and ξn = 1,

there would already be a renewal in some slot before n.

Asymptotic Behavior of the PMF

We now determine the asymptotic behavior of the distribution of inter-renewal time.

We simplify the expression of the tail distribution as follows,

Pr(R > n) =
n−1∑
m=0

Pr(G|Sn) Pr(Sn = m) (3.45)

=
n−1∑
m=0

(
1− m

n

)
n!
∑
q∈Qm

( ∏b
i=0 ρ

qin
i∏b

i=1(qin)!

)
(3.46)

.
=

n−1∑
m=0

exp(−n min
q∈Qm

D(q||ρ)) (3.47)

.
= exp(−n min

q∈Qn−1

D(q||ρ)). (3.48)

Thus, the tail distribution of inter-renewal time decays with λ = minq∈Qn−1 D(q||ρ)).

By the Pythagoras theorem for distributions stated in Appendix A, the optimal q∗

lies on the exponential family starting from p and parametrized by some r. Thus, it

is the solution to the following system of equations,

qi = ρi · exp(ri− ψ(r)) for all 0 ≤ i ≤ b (3.49)

b∑
i=0

i · qi = n− 1 (3.50)

where ψ(r) = logE[exp(rξ)], the log MGF of ξ. The resulting minimum λp ,

D(q∗||ρ) is the rate of decay of the tail distribution of inter-renewal time.

Playback Delay

We can prove that for this erasure model, the expected playback delay of the coded

repetition scheme satisfies Theorem 3.1 with λc replaced by λp and no other time-
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invariant scheme can achieve a larger value of growth constant. The proof of achiev-

ability and converse is same as shown in Lemma 3.3 and Lemma 3.4 respectively.

3.7 Conclusions

In this chapter we analyzed the delay in streaming over an erasure channel with

bandwidth b and success probability ρ, without any feedback to the source. Our main

metric of interest was playback delay. We proposed a simple greedy coding strategy

called the coded repetition scheme and showed that the expected playback delay is

asymptotically 1/λ · log n where λ is referred to as the growth constant. Further, we

proved that the coded repetition scheme is optimal, that is it achieves the largest

growth constant λ = D(1/b||ρ) among all time-invariant schemes.

We also analyzed coding schemes in terms of other delay metrics defined in Chap-

ter 2. In Section 3.5 we modified the coded repetition scheme to allow lossy playback

and reduce the encoding and decoding complexity. Finally, in Section 3.6 we showed

that the analysis presented for an i.i.d erasure channel can be extended to more

general channel models.

From this chapter we conclude that when there is no feedback to the source,

the coded repetition scheme is optimal in terms λ, the pre-log term in the growth

of playback delay. However, if the source receives feedback about the locations of

erasures in previous slots, it can adapt its transmission strategy to increase λ and

hence improve the quality of streaming. This idea is explored in the next chapter

where we analyze streaming with feedback.
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Chapter 4

Streaming with feedback

In Chapter 3 we analyzed streaming codes without feedback and showed that the

quality of streaming can be measured in terms of the rate of growth of playback delay.

We proved that in the no-feedback case, the expected playback delay is asymptotically

equal to 1/λ · log n with λ = D(1/b||ρ), where b is the fixed available channel bandwidth

and ρ is the channel success probability. No other transmission scheme can achieve a

higher value of λ.

If the source receives delayed feedback about past erasures, it can use the feedback

to alter its future transmission strategy. In this chapter we analyze playback delay

for streaming with feedback and show that it also logarithmic growth 1/λ · log n.

Feedback strictly increases λ and thus helps reduce the growth of delay. However

the gain vanishes in the limit of infinite bandwidth where both with feedback and

no-feedback cases converge to the same value of λ = − log(1− ρ).

First we consider streaming with instantaneous feedback in Section 4.2. We show

that a simple ARQ scheme is optimal and we determine the corresponding growth

constant λ. In Section 4.3 we consider a model where the source receives error-free

feedback, but after a delay of d slots. We present a greedy algorithm for the source

to use the feedback to adapt its transmission strategy, and analyze the variation of λ

with d. We conjecture that the proposed scheme is optimal, but the proof is a part

of ongoing work.
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Channel
Source
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b pkts/slot

Feedback delayed by d slots

yk

Figure 4-1: The system model for streaming with delayed feedback. In slot k, source
can transmit packets based on feedback about channel erasures up to slot k − d. If
the channel is erased Ek = 0, otherwise Ek = 1.

4.1 System Model

We use the same system model as described in Chapter 2, with one packet generated

per slot at source, and one packet per slot played at the receiver strictly in order.

The channel has bandwidth b packets/slot. The b packets are received successfully

with probability ρ, otherwise all are erased.

In this chapter, we add a feedback path from the decoder to the encoder. The

feedback is error-free, but with a delay of d slots; that is, the source has complete

knowledge of erasures up to slot k − d before transmitting in slot k. It can use this

information to adapt its transmission strategy in slot k.

A special case of this model is d = ∞, the no-feedback scenario analyzed in

Chapter 3. In Section 4.2 we analyze the other extreme case, d = 1 which corresponds

to instantaneous feedback.

4.2 Streaming with instantaneous feedback

Consider a model where the source receives instantaneous feedback about past era-

sures. For this model, we present the optimal ARQ-based scheme and determine

λ, which was defined as the growth constant in the 1/λ log n asymptotic behavior of

expected playback delay.

4.2.1 Streaming ARQ scheme

We propose the simple ARQ-based scheme illustrated in Figure 4-2 for the source

to adapt its transmission strategy based on the feedback. In every slot, the source
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Figure 4-2: The optimal ARQ-based scheme for streaming with instantaneous feed-
back

transmits the b minimum-index packets that have not been decoded yet. Due to

instantaneous feedback, the source can transmit uncoded packets instead of linear

combinations like the no-feedback case in Chapter 3. If the channel is erased in that

slot, the packets are retransmitted in the next slot. Otherwise, the source moves

ahead and transmits the next b packets. Note that in Figure 4-2 the source transmits

less than b packets in some slots if more packets have not been generated yet.

This ARQ-based scheme is optimal for streaming with instantaneous feedback

because in every unerased slot, b packets become available in the order of playback.

This is unlike the no-feedback case, where if b packets were received, they may not

be available for playback because they may be unsolved combinations, or be out of

order.

The dynamics of the source and receiver buffers can be modeled by considering an

equivalent queueing system shown in Figure 4-3. One packet enters the source queue

S R 1 packet/slot1 packet/slot
ρ

b packets/slot

Figure 4-3: A queuing system modeling the number of packets at the source and
receiver for the streaming ARQ scheme.
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in every slot, and b packets depart from the queue with probability ρ. The departures

from the source queue enter the receiver queue which plays one packet in every slot.

There is an interruption in playback when the receiver queue becomes empty.

4.2.2 Analysis of playback delay

We now study the evolution of playback delay with the optimal streaming ARQ

scheme and prove the following main theorem about expected playback delay.

Theorem 4.1 (Expected Playback delay with instantaneous feedback). The expected

playback delay of the optimal ARQ-based for streaming with instantaneous feedback

satisfies

E[Pn] =
1

λ1
log n+O(log log n). (4.1)

The growth constant λ1 = log(1/α) where α is the real positive root of

αb − 1

α− 1
=

1

ρ
, α 6= 1. (4.2)

To prove this theorem we first model the system as a random walk and express

playback delay in terms of threshold crossing of the random walk. The proof follows

from Lemma 4.1 below and arguments similar to the proof of Lemma 3.3 in Chapter 3.

Random Walk model for the system

We can model the system by a random walk Sn = X1 + X2 + ..Xn where Xi’s are

i.i.d. binary random variables which are b − 1 with probability 1 − ρ and −1 with

probability 1 − ρ. The sum Sn is the difference between the number of packets

decoded at receiver and number of packets generated at source up to time n. Thus,

Sn increases by b−1 in every successful slot and decreases by 1 otherwise. Figure 4-2

illustrates this random walk with b = 2. The condition ρb > 1 on the bandwidth and

channel success probability implies that E[X] > 0; that is, the random walk has a

positive drift.
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Define a renewal as the instant when the random walk crosses 0 and let Rk as the

kth inter-renewal time. A renewal also corresponds to the instant when the source

queue becomes empty. Let Ik be the number of packets remaining in the playback

queue at the kth renewal instant. The random variables Ik are i.i.d. since each belongs

to a different renewal interval. For the first renewal, I1 is equal to the number of

interrupted slots in that interval. For the kth renewal interval, an interruption will

occur only if Ik is greater than Ii for all 1 ≤ i < k. Thus, the playback delay Pn of

packet pn is

Pn = max(I1, I2, I3, .. IK) (4.3)

where K is the smallest integer such that
∑K

k=1Rk ≥ n.

Asymptotic behavior of Pr(I > t)

Since we are interested in the expected playback delay E[Pn] for large n, we analyze

the asymptotic behavior of the tail distribution of I and determine its exponential

decay rate.

Lemma 4.1. For the streaming ARQ scheme, the tail distribution of interruption

time I in a renewal decays is Pr(I > t)
.
= exp(−λ1t) with λ1 = log(1/α) where α is

the real positive root of
αb − 1

α− 1
=

1

ρ
, α 6= 1. (4.4)

Proof. Consider two thresholds 0 and −t such that the random walk stops perma-

nently when it crosses any one of them. A renewal corresponds to crossing threshold

0. Consider the first renewal of the system. The number of packets remaining in

the playback queue at the renewal instant, I1, is also equal to one more than the

minimum value attained by the random walk Sn in that renewal interval. Thus, the

tail distribution of I equals

Pr(I > t) = Pr

(⋃
n

{Sn ≤ −t}
)
, (4.5)

which is the probability that the random walk crosses threshold −t before crossing
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0. The Kingman bound [10] is an asymptotically tight bound on this probability. It

states that,

Pr

(⋃
n

{Sn < −t}
)

.
= ert (4.6)

where r is the negative root of γ(r), the semi-invariant moment generating function

of X. For the binary random variable X defined above,

γ(r) = log
(
ρer(b−1) + (1− ρ)e−r

)
(4.7)

Replacing α = er we get (4.4). Thus, the tail distribution Pr(I > t) decays with rate

λ1 = log(1/α).

Using this value of λ1 we can evaluate upper and lower bounds on the expected

value of playback delay in (4.3) by applying the same arguments used in the proof of

Lemma 3.3 in Chapter 3.

4.2.3 Achievable region of λ

Thus we have shown that the dominant term in the growth of playback delay with

time index n is 1/λ · log n. We derived the largest value of λ as a function of b and ρ

for the no-feedback and instantaneous feedback cases.

For streaming without feedback, the proposed coded repetition scheme achieves

λ = λ∞ = D(1/b||ρ). With instantaneous feedback, a simple ARQ based scheme

achieves λ = λ1 = log(1/α) where α is the real positive root of (4.4). The behavior of

λ with bandwidth b is illustrated in Fig. 4-4. As b approaches infinity, both schemes

converge to log(1/1−ρ). However the instantaneous feedback converges at a much faster

rate. The area between the two curves in Fig. 4-4 is the achievable region of growth

constant λ = λd for streaming with feedback to the source after a delay of d slots.

In the next section we propose a coding scheme for streaming with delayed feedback

and analyze how λd varies as a function of delay d.
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Figure 4-4: Comparison of the behavior of λ with bandwidth b for the no-feedback
and instantaneous feedback cases. The success probability ρ = 0.6, and logarithms
are taken to the natural base.

4.3 Streaming with delayed feedback

We now generalize the analysis of instantaneous feedback to streaming with a feed-

back delay of d slots. In the instantaneous feedback case the source has complete

information about past erasures to adapt its future transmission strategy. Thus, we

know that the streaming ARQ scheme described in Section 4.2.1 is optimal in terms

of growth of playback delay.

However, finding the optimal scheme is challenging when the feedback is delayed

by d slots. This is because there is an window of d− 1 slots, [n− d+ 1, n− 1] whose

erasure pattern is unknown to the source in slot n. The performance of a transmission

scheme depends on the assumption that it makes about the unknown erasures, and

there is a trade-off between being too optimistic or pessimistic about the unknown

erasures.

In Section 4.3.1 we propose a greedy scheme for streaming with delayed feedback

which is optimistic about the unknown erasures. In Chapter 3 we showed that the

greedy coded repetition scheme is optimal among all time-invariant schemes. We

believe that even with feedback, a greedy strategy is at least close to optimal. In
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Algorithm 4.1 Greedy coding for streaming with delayed feedback

for i = indices of packets in descending order do
set of patterns← possible erasure patterns of slots [n− d+ 1, n− 1] for which
pi is not decoded
keep in combn[i]← false
while set of patterns is not empty do

if pi is the least undecoded packet and this combination helps decoded it then
keep in combn[i]← true
break from while loop

else
Remove current pattern from set of patterns

end if
end while

end for
Form a combination with pi, with keep in combn[i] = true

Section 4.3.3 we analyze the variation in λd, the growth constant of playback delay

as a function of feedback delay d.

4.3.1 Greedy transmission scheme

In Chapter 3 we optimized coded repetition scheme using Algorithm 3.1. The algo-

rithm includes minimum number of packets in each transmitted combination while

ensuring that it is innovative. A packet pk is added to a combination transmitted

in slot n only if there exists some erasure pattern of slots [1, n − 1] for which this

combination leads to pk being decoded.

We can extend the same algorithm to get Algorithm 4.1, the greedy coding scheme

for streaming with delayed feedback. The only difference is that since the erasure pat-

tern up to slot n−d is already known, the algorithm only has to check channel patterns

of slots [n − d + 1, n − 1] to ensure that the transmitted combination is innovative.

This algorithm is optimal among the class of greedy schemes which guarantee inno-

vation because of the constraint that packet pk added to a combination should be the

least index undecoded packet for some channel pattern. This constraint helps older

packets get decoded as early as possible thus reducing interruptions in playback.

Figure 4-5 illustrates Algorithm 4.1 for b = 2 and d = 3. We explain the operation
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Figure 4-5: Illustration of Algorithm 4.1 for b = 2 and d = 3. The bottom row
denotes the number of past slots for which feedback has been received. For example,
before transmitting in slot 6, the source has feedback about erasures up to slot 3.

of the algorithm in slot 5. Consider the first linear combination transmitted in slot

5. If slot 3 and 4 are successful, p5 is the least undecoded packet for this path. Thus,

we keep it in this combination. Adding any other packet in this combination will not

make it help decode it because p5 is being transmitted for the first time. Thus, the

first linear combination contains only p5. Now we find that second linear combination

transmitted in slot 5. For all the erasure patterns (0,0), (0,1) and (1,0) of slots 3 and

slot 4, p1 is the least undecoded packet. Thus, it has to be the only packet added to

the second linear combination.

The concept of decodability introduced in Chapter 2 plays an important role in

streaming with feedback. When the source knows that packet pk is decodable at the

receiver, it can delete pk from its transmit buffer since it is not necessary to include it

in any future linear combinations. Thus, only non-decodable packets are candidates

for inclusion in any combination to be transmitted.

4.3.2 Packet decoding in terms of threshold crossing

For the no-feedback case, we expressed packet decoding in terms of time when number

of combinations exceeds number of variables. As illustrated in Figure 2-5, decoding

occurs when the trajectory of combinations versus variables crosses the slope one line.

This is not true for the greedy scheme for delayed feedback because some packets
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Figure 4-6: Threshold crossing interpretation of packet decoding. Decoding occurs
when the trajectory crosses the y = x line. It cannot cross y = x−db boundary db at
any point, because the difference between variables and equations can be atmost db.

may be decoded before a renewal takes place. To simplify the analysis, we consider

a simplified version of the greedy scheme where packet decoding cannot occur until

the total number of combinations exceeds the number of variables in the system. For

example, in Figure 4-5 only 6 combinations are received till slot 7, but the number

of variables is 7. In the simplified scheme, we assume that no packet is decoded

although the greedy scheme all packets except p5. Packet decoding occurs for the

first time only in slot 10. Thus, analysis of packet decoding reduces to counting

combinations and variables. The playback delay with the simplified scheme is greater

than the actual greedy scheme for every channel realization. Thus, finding λd for the

simplified scheme gives a lower bound on the growth constant for the actual scheme.

The difference between the delayed feedback and no-feedback cases is that with

delayed feedback there can be at most db variables in the system at any time. The

intuition is that based on the feedback up to slot n− d, the source can avoid adding

new variables in slot n. In terms of threshold crossing, an upper limit of db on the

number of variables means that we have a boundary db units below the slope one line
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as shown in Figure 4-6. The trajectory of combinations versus variables cannot to

the right side of this boundary. Due to this, packet decoding occurs at a faster rate.

In the extreme case of instantaneous feedback where d = 1, the boundary is b units

below the slope one line. Since b combinations are received in every successful slot, b

packets are decoded every time the channel is successful.

We now provide an exact formulation of packet decoding in terms of threshold

crossing. Let vn be the number of new variables added to b transmitted combinations

in slot n. Based on the feedback received up to slot n − d, let D be the deficit, the

difference between the number of variables and combinations received. Assuming that

the d − 1 unknown slots are successful, the projected deficit D′ at the end of n − 1

slots is,

D′ = D − (d− 1)b+
d∑
i=1

vn−d+i (4.8)

Thus, the source adds at most b − D′ new variables in slot n, provided those many

new packets have been generated. Thus the number of variables added in slot n, vn

can be evaluated by using the relation,

vn = min

(
n−

n−1∑
i

vi,max(b−D′, 0)

)
(4.9)

A packet decoding instant is defined as the time when deficit D hits zero. Let

Ai be time between the (i − 1)th and ith decoding instants, and Xi be the number

of packets decoded at the ith decoding instant. Then, the plot of Sn, the number of

decoded minus number of packets generated versus time n is as shown in Figure 4-7.

A renewal occurs whenever
∑m

i=1Xi ≥
∑m

i=1Ai.

4.3.3 Analysis of Playback delay

We now analyze the growth of expected playback delay of the proposed greedy scheme

as a function of feedback delay d. Let λd be the growth constant of playback delay for

a given feedback delay d. We have determined the two extreme values: λ∞ without

feedback in Chapter 3, and λ1 with instantaneous feedback in Section 4.2. They give
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Figure 4-7: Trajectory of Sn the difference between the packets decoded and gener-
ated. Ai is the time between the (i − 1)th and ith decoding instants, and Xi is the
number of packets decoding at the ith instant. A renewal occurs when the trajectory
crosses above 0.

lower and upper bounds respectively on λd for any d. In this section we determine

how λd decays from λ1 to λ∞ as a function of d.

First, it is easy to show that

λd1 ≤ λd2 for all d1 ≥ d2.

because, a system with a feedback delay of d2 slots can choose to incorporate the

feedback in adapting its transmission strategy only after d1 ≥ d2 slots. Thus, it can

achieve growth constant at least λd1 , the growth constant with a feedback delay of d1

slots.

Playback Delay in terms of Renewals

Let Ik be the minimum value attained by the trajectory Sn in the kth renewal interval.

Then, the playback delay is,

Pn = max(I1, I2, · · · , IK), (4.10)

60



Without Feedback

Instantaneous Feedback

X1 = A1

R2 = A2R1 = A1

I1 = A1

I1

X1 = b

A1

R2R1

I2

Figure 4-8: The trajectory of Sn for the no-feedback (d = ∞) and instantaneous
feedback (d = 1) cases.
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where K is the smallest integer for which
∑K

k=1Rk ≥ n.

The special cases of d = 1 and d =∞ are shown in Figure 4-8. We have,

• Instantaneous feedback (d = 1):

Pr(Ai = n) = (1− ρ)n−1ρ (4.11)

Xi = b (4.12)

• Without feedback (d =∞):

Pr(Ai = n) =

(
1− b(dn

b
e − 1)

n− 1

)(
n− 1

dn
b
e − 1

)
ρd

n
b
e(1− ρ)n−d

n
b
e (4.13)

Xi = Ai (4.14)

Ii = Ai (4.15)

Simulation Results

For general d, it is difficult to evaluate closed form expressions for λd. Thus, we use

simulations to determine how λd varies with feedback delay d. We generate Ai and

Xi according to the threshold crossing interpretation of packet decoding described in

Section 4.3.2. Using these we construct the trajectory Sn as shown in Figure 4-7 from

which we get i.i.d. samples Ik for every renewal Rk. λd is the rate of decay of the

probability distribution of Ik.

Figure 4-9 gives a plot of λd for 1 ≤ d ≤ 20. The system parameters are b = 2

packets/slot and ρ = 0.6. We generate the Sn trajectory for 50000 slots to obtain

the empirical probability distribution of I and determine its exponential decay rate

λd. The extreme values λ1 and λ∞ are theoretically computed using the analysis and

marked in Figure 4-9. We observe that they match well with the simulation results.
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Figure 4-9: Simulation plot of λd for feedback delay 1 ≤ d ≤ 20 for streaming over a
channel with bandwidth b = 2 packets/slot and success probability ρ = 0.6.

4.4 Conclusions

In this chapter we analyzed streaming with feedback. For the instantaneous feedback

case, we propose a simple ARQ-based scheme which is optimal in terms of playback

delay. We show that the expected playback delay grows logarithmically with the slot

index n and determine the pre-log term in Theorem 4.1.

When the feedback is delayed by d slots, it is difficult to find the optimal scheme

and the corresponding growth constant λd. We present a greedy scheme which is an

extension of the coded repetition scheme presented in Chapter 3. We analyze the

playback delay of this scheme and obtain an interesting interpretation in terms of

threshold crossing of random walks.
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Chapter 5

Streaming Broadcast with

instantaneous feedback

5.1 Introduction

So far we considered streaming over a point-to-point channel. However, many prac-

tical applications involve the source broadcasting a common stream to a set of users.

In this chapter we consider such a broadcast streaming scenario where the source is

transmitting packets to N users over independent erasure channels with instantaneous

feedback.

The use of network coding for broadcast has been studied in the following pre-

vious work. In [14] the problem of minimizing delay in the broadcast scenario with

instantaneous feedback is analyzed. The notion of delay used in this paper is the

number of coded packets that are successfully received, but do not allow immediate

decoding of a source packet. It can be shown that for N = 2 users, a simple greedy

coding scheme is delay optimal. However, optimality of this scheme has not been

proved for N = 3 or more users. In [15], the authors propose an algorithm for N = 3

and use simulations to show that it achieves asymptotically optimal decoding delay

as the ratio of arrival and departure rate from the source queue goes to 1.

Both these papers focus on minimizing the number of coded packets that do not

lead to immediate decoding at the receiver. However, for streaming data we have

65



additional order constraints on the playback of packets. Thus, even if a scheme gives

minimum delay in terms of immediate decoding, it may not be optimal in terms of

playback delay, because packets are not necessarily decoded in order.

Decoding delay is a more natural delay metric than the metric in terms of im-

mediate decoding used in the papers described above. In [11], the authors analyze

decoding delay given by the greedy coding scheme for N = 2. For the model where

the two channels have different erasure probabilities, the authors propose a method

to ensure packet decoding over the weak channel.

In contrast to [11], we consider playback delay as the performance metric and

analyze the rate of growth of expected playback delay as done in previous chapters.

While previous works give coding schemes only for the N = 2 and N = 3 cases, we

can extend the scheme to an arbitrary number of users. The main contribution is an

analysis of how the growth constant λ scales with N .

This chapter is organized as follows. In Section 5.2 we describe the system model.

In Section 5.3 we propose a greedy scheme to transmit packets to the N users. In

Section 5.4 we analyze the playback delay using a random walk interpretation of

packet decoding. We use this idea in Section 5.5 to analyze how the playback delay

scales with the number of users in the system. Finally Section 5.6 concludes the

chapter and provides directions for future work.

5.2 System Model

The system model for the broadcast scenario is as shown in Figure 5-1. It is a direct

extension of the model used in the previous chapters. As considered earlier, one

packet per slot is generated at the source, and each user plays one packet per slot

strictly in order. In every slot, the source uses the packets generated so far to create b

combinations. It broadcasts these combinations to N users over independent erasure

channels with same success probability ρ. As assumed earlier, the condition ρb > 1 is

necessary to ensure that we are operating below the capacity of the erasure channel.

The source receives instantaneous and error-free feedback about erasures on each of
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Figure 5-1: System Model for broadcast streaming with instantaneous feedback. In
every slot, the source transmits copies of b encoded packets to each of the N users
over independent erasure channels with success probability ρ.

the channels.

If the channels have different erasures probabilities we can have two main types

of transmission strategies. If the source transmits packets greedily, users with strong

channels will get priority and the playback of users with weak channels will grow

faster than O(log n) with time slot n. On the other hand, if the source gives equal

priority to weak channels, the rate of growth of playback delay for all users will be

governed by the success probability of the weakest channel. Thus, in this case we

need a suitable delay metric which takes the different channel qualities into account.

The optimal transmission scheme that minimizes this metric should achieves a trade-

off between these extreme cases described above. In this chapter, we assume equal

success probabilities on all channels so that the expected playback delay is same for

all users and it can be used as the delay metric.

5.3 Proposed coding scheme

At any given time, each user has decoded a different subset of the packet stream

based on the erasures on the channel to that user. Thus, the transmission scheme

needs to combine packets in such a way that each user decodes its required packets.

In this section we propose a greedy coding scheme to achieve low playback delay
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at all users. First, we introduce a notion of rank of a user to represent which packet

it requires for playback. The proposed coding scheme uses the ranks of users to

determine which packets need to be combined in each coded packet.

5.3.1 Assigning Ranks to users

Recall the notion of decodability that we defined in Chapter 2: a packet pk is said

to be decodable when the user can construct a linear combination containing only

packets p1 through pk. In other words, packet pk can be decoded if all previous

packets are decoded. We use this notion of decodability to define the rank of every

user served by the source.

The rank of a user is defined as the index of the oldest non-decodable packet.

We refer to the packet with index equal to rank of user Ui as the ‘required’ packet

for user Ui. The ranks of users are updated after forming every combination. For

example, before constructing the jth combination of slot n, (1 ≤ j ≤ b) the ranks of

users are evaluated using the feedback about erasures till slot n − 1, and assuming

that combinations 1 through j − 1 in slot n are received successfully. For example,

in Figure 5-2, before forming the second combination in slot 3 the ranks of the users

are 4, 2 and 1 respectively.

Suppose the ranks of the users take K distinct values, rk’s 1 ≤ k ≤ K which are

arranged in descending order, that is rk > rj for all k < j. We divide the users into

classes Sk, 1 ≤ k ≤ K where users in class Sk have to kth highest rank, rk. A user is

included in exactly one set, but the converse is not true. The users in set S1 with the

highest rank r1 are referred to as the leaders. For the example shown in Figure 5-2,

users U3 is the leader after slot 4.

5.3.2 Greedy coding scheme

We propose a coding scheme that minimizes the number of packets in each combina-

tion while guaranteeing innovation in every slot. The main idea is that source tries

to include each user’s required packet to the combination. Thus, it transmits a com-
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Figure 5-2: Reduced coding scheme for b = 2 and N = 3 where the minimum number

of packets are included in every combination while ensuring that every combination
is innovative.

bination of packets prk for all 1 ≤ k ≤ K. If the channel is successful in that slot,

users in set S1, the leaders, will decode the required packet pr1 . A user in Sj decodes

prj only if it has decoded the packets prk for all k < j.

We can minimize the number of packets included in every combination in a man-

ner similar to Section 3.5. For every 1 ≤ j ≤ K, packet prj is included in the

combination only if at least one user in Sj has decoded packets prk for all k < j.

This reduced scheme is illustrated in Figure 5-2. Algorithm 5.1 gives a formal state-

ment of this transmission strategy in every time slot. The output of the algorithm

is combn to send which is a vector of the indices of packets to be combined by the

source encoder and transmitted over the broadcast channel. Note that the reduced

version is equivalent to the original scheme in the sense that it gives exactly same

playback delay for every packet at each user.

5.4 Analysis of Playback Delay

In this section we express packet decoding at each user in terms of threshold crossings

of random walk and use it to analyze the playback delay. In general, the decoding of
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Algorithm 5.1 Reduced coding scheme for broadcast streaming

combn to send← []
for i = k → K do

if Packet with index rk has been generated at the source then
if At least one user in Sk can decode packet prk on adding it to this combination
then

Append rk to combn to send
end if

end if
end for
Create a linear combination of packets with indices combn to send

packets at a user in every slot depends on its rank rk and the set of packets pj, k > ri

that are already decodable. Since the rank of a user and the number of distinct ranks

changes after every time slot, it is difficult to exactly determine the distribution of

decoding delay of a packet. We simplify this analysis by considering a scheme that

gives an upper bound on the playback delay of the proposed greedy coding scheme.

5.4.1 Simplified greedy scheme

Instead of the greedy coding scheme, we analyze a simplified greedy scheme in which

packet decoding occurs exactly when the number of combinations received exceeds

number of unknowns. In the actual greedy scheme, some packets may be decoded

earlier. Hence, the playback delay of every packet is lower with the greedy scheme as

compared to its simplified version.

In the simplified scheme, the source transmits b combinations of all packets pk,

rK ≤ k ≤ r1, where r1 and rK are the maximum and minimum ranks among all users.

Recall that the greedy scheme transmitted a linear combination of only K packets,

prk for 1 ≤ k ≤ K. Thus, the simplified scheme is still greedy and ensures innovation,

but adding more packets to each combination delays the decoding of every packet.

5.4.2 Packet decoding with the simplified scheme

Packet decoding for the simplified greedy scheme is easy to analyze because it re-

duces to counting number of combinations (equations) received and number of pack-
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ets (variables) included in those combinations. Decoding occurs at a given user when

the number of equations exceeds that number of variables in the system. In every

slot a user receives b equations of source packets. Since the algorithm is greedy, it

adds new variables in slot n whenever the leader(s) decodes the packets transmitted

up to slot n − 1. Thus, the total number of variables added upto slot n is equal to

number of packets decoded by the leader at the end of n− 1 slots, plus up to b new

variables added in slot n.

Let Ei[n] be the total number of equations received at user Ui in n slots,

Ei[n] = min(n,Ei[n− 1] + b · 1[Zi[n] = 1]) (5.1)

where Zi[n] a binary random variable representing the state of the erasure channel

to Ui at time n. 1[A] is the indicator random variable with takes value 1 is event

A occurs and 0 otherwise. The initial condition for the recursion is Ei[n] = 0 for

all 1 ≤ i ≤ N . In every slot the number of equations received increases by b with

probability ρ. However, the total Ei[n] cannot exceed n because only n packets have

been generated at that time. We define E∗[n] as the maximum number of equations

received in every slot as follows

E∗[n] = max
1≤i≤N

Ei[n] (5.2)

The total number of variables in the system after n slots is given by

V [n] = min(n,E∗[n− 1] + b) (5.3)

because the source can add b new variables to E∗[n − 1], the number of equations

received by the leader(s) until slot n−1. We set the initial condition V [0] = 0. Packet

decoding at user Ui occurs in slot n if Ei[n] ≥ V [n]. From (5.1)-(5.3) we can see that

this happens only when Ei[n − 1] = E∗[n − 1] < n − 1 and Zi[n] = 1, that is the

channel to Ui is not erased in state n. Figure 5-3 illustrates the evolution of Ei[n]

and V [n] for N = 3 users.
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Figure 5-3: Evolution of Ei[n] and E∗[n] for N = 3 users. User Ui decodes all

transmitted packets in slot n if Ei[n] = V [n]. In this example, U1 decodes in slot 6
and 9, U2 decodes in slots 2, 4, and 9 and U3 in slots 1, 2, and 3.
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5.4.3 Playback Delay

We use the above analysis of packet decoding to construct the random walk Sn as

described in Section 4.3 in the previous chapter for a particular user. This trajectory

is then used to analyze the playback delay for that user.

Let Aj be the time between the (j − 1)th and jth decoding instants and Xj be

the number of packets decoded at the jth instant. We can evaluate these from the

trajectories Ei[n] for 1 ≤ i ≤ N and V [n]. Thus, for every user we can plot Sn, the

trajectory of the number of packets generated at source minus the packets decoded in

order at the receiver as shown in Figure 4-7. The analysis of playback delay is same

as Section 4.3 where we defined that a renewal occurs whenever Sn crosses above 0.

The expected playback delay is,

E[Pn] = max(I1, I2, · · · , Ik) (5.4)

where Im is the minimum value attained by the random walk Sn in the mth renewal

interval, and k is smallest number such that
∑k

m=1Rm ≥ n.

5.5 Scaling of delay with the number of users

In this section we analyze how λN , the growth constant of playback delay, scales with

the number of users N . We derive exact expressions for the extreme cases N = 1 and

N =∞. For arbitrary N we present a numerical bound on λN .

5.5.1 Single user, N = 1

The single user case, N = 1, corresponds to the point-to-point streaming with instan-

taneous feedback analyzed in Section 4.2. For N = 1, the greedy scheme is equivalent

to the streaming ARQ scheme presented in Section 4.2.1. The state Sn of the system

is the random walk Sn = Z1 +Z2 + · · ·+Zn, where Zn are i.i.d and taking value b− 1

with probability ρ and −1 with probability 1− ρ. The random variables Xi = b and

Pr(Ai = n) = (1 − ρ)n−1ρ. As proved in Theorem 4.1, we can apply the Kingman
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bound to this random walk and determine the growth constant of playback delay

λ1 = log(1/α) where α is the real positive root of

αb − 1

α− 1
=

1

ρ
, α 6= 1.

5.5.2 Infinite users, N =∞

Now consider the case where infinite number of users are being served by the source.

We can determine a closed expression for the growth constant λ∞ of playback delay

for this case. For N = ∞, the simplified greedy scheme described in Section 5.4.1

becomes equivalent to the coded repetition scheme proved to be optimal for streaming

without feedback in Chapter 3. This is because in (5.3), E∗(n − 1) is always n − 1

because among the infinite number of users, there exists with probablity one a user

which has not experienced any erasure until slot n− 1. Thus, V [n] = n for all n and

Ei[n] increases by b with probability ρ in every slot which is exactly the evolution of

variables and equations in the without feedback case. Thus, as shown by Theorem 3.1

the growth constant of playback delay is,

λ∞ = λc = D

(
1

b
||ρ
)

In addition, the expected ordered decoding delay E[Ck] is as derived in Section 3.3.

5.5.3 Arbitrary number of users N

Unlike the extreme cases N = 1 and N = ∞, it is difficult to find a closed form

expression for the growth constant λN for an arbitrary number of users. We use

Monte Carlo simulations to study the variation of λN with N . We generate erasure

patterns of the N channels, and use the trajectories Ei[n] resulting from these patterns

to evaluate Ai and Xi as described above. Using these we construct the trajectory

Sn as shown in Figure 4-7 from which we get i.i.d. samples Ik for every renewal Rk.

λN is the rate of decay of the probability distribution of Ik.

Figure 5-4 shows a simulation plot of λN versus the number of users N with
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Figure 5-4: Simulation plot of λN for number of users 1 ≤ N ≤ 15 for streaming over
a channel with bandwidth b = 2 packets/slot and success probability ρ = 0.6.

channel bandwidth b = 2 packets/slot and success probability ρ = 0.6. It shows a

sharp decrease in the growth constant from N = 1 to N = 2 or more users. From

this we observe that the delay increases drastically when we stream to more than one

users. Also, the curve of λN is essentially flat for all values N ≥ 2. This indicates

that the number of users N served by the source does not affect λN for N ≥ 2.

5.6 Summary

In this chapter we extended the analysis of delay in point-to-point streaming to a

broadcast scenario where the source transmits a common packet stream to N users

over independent erasure channels with instantaneous feedback. Since at any given

time, each users has decoded a different subset of the source packets, the source has

to combine packets in such a way that every user decodes its required packets.

We proposed a greedy coding scheme in which the source transmits b linear com-

binations of the required packets for each user. We used the idea of modeling packet

decoding in terms of threshold crossing of a random walk to show that expected play-
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back delay grows logarithmically and determine the growth constant λN in terms of

the number of users N .

Future work includes proving whether the proposed greedy scheme is optimal.

First we aim to prove its optimality among schemes that guarantee innovation in

every slot, and then show that there is no gain in the growth constant by using not

sending innovative packets in every slot. Although, we are able to reduce the analysis

of playback delay to a random wal k threshold crossing problem, it is difficult to

determine an exact expression for λN . We aim to at least get an approximation for

λN in terms of N , b and ρ.
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Chapter 6

Conclusions and Future Work

6.1 Major implications

In this thesis we addressed the problem of designing optimal codes for packet stream-

ing over an erasure channel. These codes are relevant to a wide-range of audio/video

applications that impose delay constraints on packets. Design of optimal codes is a

challenging problem because, when the available bandwidth is limited and the source

received delayed or no feedback about past erasures, there is a trade-off between

transmitting new packets and retransmitting old ones.

Previous work on codes with delay-constraints optimize decoding delay. How-

ever, these codes are not necessarily optimal for applications such as live streaming

and remote desktop that require in-order playback at the receiver, immediately after

packets are decoded. Our work fills this gap and proposes codes that are optimal in

terms of playback delay.

One major implication of this work is to define a suitable notion of delay to

compare streaming codes. We analyzed three streaming scenarios: without feedback,

delayed feedback and broadcast with instantaneous feedback. We showed that in all

cases the expected playback delay is asymptotically equal to 1/λ log n. The pre-log

term λ is referred to as the growth constant. We used this quantity as the metric of

interest and design codes with the objective of maximizing λ.

The second main contribution of this thesis is that we proved the optimality of
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simple greedy coding schemes in the no feedback and instantaneous feedback cases and

determined the corresponding values of growth constant λ. The growth constant with

feedback is strictly better that the one without, but they have the same asymptotic

value in the limit of infinite bandwidth. By this analysis, we have found the limits

on delay in streaming over a channel with any finite feedback delay.

A direct application of our analysis of playback delay is to help system designers

estimate the size of the source and receiver buffers required to ensure that packets

are not dropped due to buffer overflow.

6.2 Summary of results

We described the system model and introduced the concept of renewals in packet

decoding in Chapter 2. Modeling renewals in terms of threshold crossing of a random

walk is the main tool used for analysis of delay in the subsequent chapters.

We studied the no-feedback case in Chapter 3 and showed that the optimal value

is λ = D(1/b||ρ) where b is the bandwidth in packets per slot and ρ is the success

probability of the erasure channel. We proved that the simple coded repetition scheme

where in every slot the source transmits combinations all packets generated so far

achieves the largest λ among the class of time-invariant schemes.

In presence of feedback, the source can adapt its transmission strategy based on

past erasures. We proposed greedy coding scheme and analyzed playback delay for

streaming with feedback in Chapter 4. With instantaneous feedback, the ARQ scheme

is optimal and we can determine the exact expression for λ. For the delayed feedback

case we determined a lower bound on λd as a function of feedback delay d.

Finally, we extended the analysis to a broadcast streaming scenario with instan-

taneous feedback where the source is transmitting a common packet stream to N

users over independent erasure channels. We proposed a greedy coding scheme and

analyzed its playback delay by modeling packet decoding as threshold crossing of a

random walk. Using this analysis we determined how the growth constant λN scales

with the number of the users N .
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6.3 Future perspectives

We have shown that greedy coding is optimal for the without feedback and instanta-

neous feedback cases. However we have not yet proved its optimality for the delayed

feedback and broadcast streaming. This is a major part of ongoing research efforts.

The first step is to prove that the proposed scheme is optimal among the class of

schemes that guarantee innovation in every slot. Then we need to prove there is no

further reduction in delay by using a non-innovative packet transmission scheme.

An immediate research direction is to extend the results of this thesis to streaming

over packet networks. In [6], the authors have shown that greedy coding where every

node in the network transmits combinations all available packets is capacity-achieving

for unicast or multicast over lossy packet networks. However, delay performance of

such codes has not been analyzed. A scheme based on fountain coding to minimize

decoding delay over line networks is proposed in [16]. These codes may not be optimal

for streaming applications which require playback at the receiver.

Although we have only considered the i.i.d erasure channel in this thesis, it is

possible to generalize the results to other channel models. In Section 3.6 we showed

that the expected playback delay has the same logarithmic growth even for certain

channels with memory such as the two-state Markov erasure channel. One could

also analyze streaming with lossy feedback to the source in contrast to the error-free

feedback assumed in this thesis.

There are several interesting open problems in the broadcast streaming scenario.

Firstly, we aim to get a better characterization of the decay of λN with the number

of users N . From a system design perspective, it would be useful to determine the

required increase in bandwidth as N grows. Another research direction is to consider

different priority classes among users. In this cases, there will be an achievable region

of growth constants unlike the same λ for all users when all users have equal priority.

Even for the simple case N = 2, it would be interesting to analyze this trade-off

between the growth constants of the two users.

In this thesis we used the idea of expressing packet decoding in terms of threshold
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crossings of a random walk renewals of a stochastic process to study the behavior of

playback delay. From a broader perspective, The random walk simply represents the

evolution of the information asymmetry between two parties that are communicating

over a lossy medium. A renewal occurs when the asymmetry reduces to zero. Thus, it

can be a novel analysis tool useful in variety of applications beyond packet streaming.

For example, in financial setting, the random walk could represent the evolution

of the uncertainty in predicting a stock price in the future, when we are receiving

information about it in every time instant.
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Appendix A

Standard Results Used

Theorem A.1 (Generalized Ballot Theorem). Let ξj, 1 ≤ j ≤ n be i.i.d. non-

negative integer valued random variables, let Sk = ξ1 + ξ2 + ..+ ξk and let G = {Sj <
j for 1 ≤ j ≤ n}. Then,

P (G|Sn) =

(
1− Sn

n

)+

(A.1)

Theorem A.2 (Strong Law of Renewal Processes). For a renewal process with mean

inter-renewal time E[R] <∞, the number of renewals X(n) up to time n satisfies

lim
n→∞

X(n)

n
=

1

E[R]
(A.2)

Theorem A.3 (Kingman Bound). Let Sn =
∑n

j=1Xj be a random walk with Xj

are i.i.d with E[X] < 0. For thresholds α < 0, β > 0 such that the random walk

stops permanently after crossing either of them. The probability that the random walk

crosses threshold α before crossing β is,

Pr

(⋃
n

{Sn < α}
)
≤ er

∗α (A.3)

where r∗ is the largest positive root of the log-MGF of X given by logE[erX ].

Theorem A.4 (Wald’s identity). Let {Xi; i ≥ 1} be IID, and let γ(r) = E(erX) be

the semi-invariant moment generating function of each Xi. Assume γ(r) is finite in
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the open interval (r−, r+) with r− < 0 < r+. For each n ≥ 1, let Sn = X1+X2+ ..Xn.

Let J be the smallest n for which either Sn ≥ α or Sn ≤ β. Then for r ∈ (r−, r+),

E(e(rSJ−Jγ(r))) = 1 (A.4)

Theorem A.5 (Expected maximum of geometric random variables). Let Mn be the

maximum of n i.i.d. geometric random variables with mean 1/p where 1 − p = e−λ.

Then, the expected value of Mn satisfies

1

λ

n∑
k=1

1

k
≤ E[Mn] ≤ 1 +

1

λ

n∑
k=1

1

k
(A.5)

Theorem A.6 (Pythagoras theorem for distributions). Let p be a probability distri-

bution of X, and Qγ be a family of distributions q such that Eq[X] = γ. Then the

distribution q∗ in Qγ that minimizes D(q||p) satisfies,

q(x) = p(x) · exp(−rx) for all x (A.6)

and for some scalar parameter r.
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Appendix B

Proof of Theorem 3.2

We compare the coded repetition scheme with other time-invariant schemes by in-

troducing the concept of renewal epochs in Section B.1. The proof of Theorem 3.2

follows from Lemma B.1 and Lemma B.2 for two types of renewals epochs, presented

in Section B.3. For simplicity of notation, we refer to the coded repetition scheme as

Scheme 1, and any other time-invariant scheme as Scheme 2.

B.1 Renewal Epoch

From the definition of time-invariant schemes, it is clear that for every channel real-

ization, the number of combinations received with Scheme 1 is greater than or equal

to that with Scheme 2, at every time slot. As a result, for every renewal of Scheme 2

there are always one or more renewals of Scheme 1. We define the interval between

Type B

Scheme 1

Scheme 2

Renewal 
Epoch

Renewal of
Scheme 1 only

Renewal of both
Scheme 1 and Scheme 2

Type A Type A Type A Type AType B

Figure B-1: Illustration of Type A and Type B renewal epochs
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Channel State

5 6 7 108 9 11

3 4 5 7 8 9 1021

2 3 4

6

1

2 3 4 5 6 7 108 9

43 5 6 7 821

1 11

9

Type A Type B Type A

Scheme 2

Scheme 1

Figure B-2: Example of channel patterns that cause Type A and Type B renewal
epochs. Dotted lines indicate renewals of Scheme 1 and solid lines indicate renewals
of Scheme 2

two successive renewals of Scheme 2 as a renewal epoch. Renewal epochs can be

classified into two types:

1. Type A renewal epochs: Epochs in which there is only one renewal of Scheme

1 for a renewal of Scheme 2. A channel pattern in which the first b slots are

erased gives rise to this type of renewal epoch.

2. Type B renewal epochs: Epochs in which there are two or more renewals of

Scheme 1 for every renewal of Scheme 2. A channel pattern in which at least

one of the first b slots is not erased gives rise to this type of renewal epoch.

Thus, we can divide the time axis into renewal epochs as shown in Figure B-1. Fig-

ure B-2 illustrates the difference between Type A and Type B epochs for and the

channel patterns that that cause them.

B.2 Analogy to a path-paving problem

Suppose there are MK renewal epochs in a window of K slots. Let Sm be the sum

of the decodable delays of packets in the mth renewal epoch. The time-averaged

decodable delay is given by,
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lim
K→∞

∑K
k=1Dk

K
= lim

K→∞

∑MK

m=1 Sm
K

(B.1)

If a combination yk is received when packet pk is already decodable, it makes

packet pj decodable where j < k is the largest packet index such that pj is not

decodable. This is illustrated in Figure B-3a where the length of arrow indicate the

decodable delay of the packet it points to.

We can map this decoding process to an equivalent problem of paving a path with

tiles. Consider a path of with n gaps corresponding to a renewal epoch. Our objective

is to place tiles on each gap in the path. If the kth gap has been filled by a tile, it

implies that packet pk is decodable. A renewal occurs at time n when the entire path

from 1 is n is paved with tiles at time n. When the channel is good in the kth slot,

b tiles are generated at point k on the path. Extra tiles are moved backward to fill

empty gaps in the path upto point k. For example, the tile paving equivalents of the

channel realizations in Figure B-3a and Figure B-3b are shown in Figure B-4a and

Figure B-4b respectively. The sum of the decodable delays, Sm is the total backward

distance moved by tiles in an epoch.

B.3 Comparison of Sm for a renewal epoch

Now we present two lemmas that prove that for every channel realization, Sm is

minimum with the coded repetition scheme for all m. Theorem 3.2 follows from this

property of Sm.

Lemma B.1. For Type A renewal epochs, Sm for Scheme 1 and Scheme 2 are equal.

Proof. The sum of decodable delays Sm for a renewal epoch is independent of the

order in which gaps are filled. If a tile 1 moves a distance d1 from slot n1 to n1 − d1,
and tile 2 moves distance d2 from n2 to n2−d2 such that n1 > n2 > n1−d1 > n2−d2.
The total backward distance is d1 + d2. Even if we exchange the destinations of the

tiles, the total distance d1 + d2 remains unaffected. For Type A epochs, Scheme 1
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1 2 3 4 5

1 2 3 4 5 6

(a)

1 2 3 4 5 6

1 2 3 4

(b)

Figure B-3: Illustration of decodable delays of packets in a renewal epoch

(a) (b)

Figure B-4: Analogy to a problem of paving a path with tiles

and Scheme 2 receive the same number of tiles and differ only in the order of filling

the gaps. Hence the Sm is equal in Scheme 1 and Scheme 2.

Lemma B.2. For Type B renewal epochs, Sm with Scheme 1 is strictly less than that

with Scheme 2.

Proof. For Type B renewal epochs, Scheme 1 at least one equation more than Scheme

2. If the extra tiles are not used to fill any gap, Sm will be the same in both schemes.

Suppose the extra tile is at slot i, and there is a gap in the part of the path [1, i− 1]

which is currently filled by a tile received in slot j, j > i. Filling such a gap with the

extra tile instead will strictly reduce the total distance. Then, the tile at slot j which

was previously used becomes an extra tile. The same process can then be repeated

to fill a gap in [1, j − 1] with a tile at k where k > j. Hence for a Type B epoch, the

sum of decodable delays is strictly less with Scheme 1.

The proof of Theorem 3.2 by applying Lemma B.1 and Lemma B.2 to Sm in (B.1).
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