
Correlated Combinatorial Bandits for Online Resource Allocation
Samarth Gupta*, Jinhang Zuo*, Carlee Joe-Wong, Gauri Joshi and Osman Yağan

Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT
We study a sequential resource allocation problem where, at each

round, the decision-maker needs to allocate its limited budget

among different available entities. In doing so, the decision-maker

obtains the reward for each entity in that round. The goal of the

decision-maker is to maximize the expected cumulative reward or

equivalently minimize cumulative regret over a total of 𝑇 rounds.

Sequential resource allocation can be modeled as a combinatorial

bandit by viewing the allocation of a budget to an entity as a base

arm. In the context of resource allocation, the rewards received

under different budget allocations are likely to be correlated. We

propose a novel correlated combinatorial bandit framework that

explicitly models such correlations. We develop a novel Correlated-

UCB algorithm for online resource allocation, which yields signifi-

cantly reduced regret relative to correlation-agnostic algorithms.

In certain cases, our proposed algorithm even achieves bounded

regret, which is an order-wise reduction in the regret relative to

the correlation-agnostic approach which incurs logarithmic regret

under all scenarios. We validate these performance gains through

experiments on several applications such as online power allocation

across wireless channels, job scheduling in multi-server systems

and online channel assignment for the slotted ALOHA protocol.
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1 INTRODUCTION
1.1 Background and Motivation
Resource allocation is a fundamental challenge that arises in wide

ranging applications, including wireless networks [1, 2], computer

systems [3], multi-server scheduling [4] and financial optimization

[5]. In the case of financial optimization, the company needs to

decide the investment of its limited financial budget across different

products with the goal of maximizing its overall revenue. In the

context of power allocation in multi-channel wireless systems, the

goal is to maximize the throughput of the system by allocating the
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power across different available channels. In such problems, the

task is to distribute a limited budget (i.e., money, power, etc.) among

available entities (i.e., product teams, channel etc.) with the objective

of maximizing the reward attained (i.e., revenue, throughput, etc.).

These budget allocation problem can be framed as the following

optimization problem,

maximize

𝑺=(𝑎1,𝑎2,...𝑎𝐾 )

𝐾∑︁
𝑘=1

𝑓𝑘 (𝑎𝑘 )

subject to

𝐾∑︁
𝑘=1

𝑎𝑘 ≤ 𝑄, 𝑎𝑘 ∈ A,

(1)

with 𝑺 being the budget allocation vector (𝑎1, 𝑎2, . . . 𝑎𝐾 ) and𝑄 rep-

resenting the total available budget. The function 𝑓𝑘 (𝑎𝑘 ) represents
the reward attained from entity 𝑘 upon allocating a budget of 𝑎𝑘 to

entity 𝑘 . This budget is selected from a set A which may or may

not be countable. Depending on the problem setting, the reward

functions 𝑓𝑘 may or may not be known. For instance, under the

financial optimization example, the company distributes its total

budget of 𝑄 among 𝐾 different products with the goal of maximiz-

ing the total revenue, which is the sum of revenue 𝑓𝑘 (𝑎𝑘 ) from
individual products. In this example, the reward function 𝑓𝑘 (𝑎𝑘 )
may not be known. In the power allocation problem for wireless

systems, a total power of 𝑄 needs to be distributed across 𝐾 dif-

ferent channels, and the throughput at each channel depends on

the power allocated to that channel and is typically known as a

function of the power allocated to the channels.

Moreover, in these problems, the reward obtained upon allocat-

ing a budget of 𝑎𝑘 to entity 𝑘 may be random and may depend

on the underlying randomness associated with entity 𝑘 . For in-

stance, the revenue of the product may depend on the underlying

unknown demand/market factors. Similarly, in the power alloca-

tion problem, with allocated power 𝑎𝑘 , the throughput at channel

𝑘 is log

(
1 + 𝑎𝑘

𝑋𝑘

)
, where 𝑋𝑘 is the background noise associated

with channel 𝑘 and is random. As a result, the problem of budget

allocation would now be

maximize

𝑺=(𝑎1,𝑎2,...𝑎𝐾 )
E

[
𝐾∑︁
𝑘=1

𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )
]

subject to

𝐾∑︁
𝑘=1

𝑎𝑘 ≤ 𝑄, 𝑎𝑘 ∈ A .

(2)

In this scenario, the optimization problem can be solved if

E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] is known for all (𝑎𝑘 , 𝑘) pairs, i.e., the mean reward

of each entity 𝑘 is known at all budget allocations 𝑎𝑘 for entity

𝑘 . In view of this, we refer to (2) as the offline budget allocation
problem. In practice, the reward function may be unknown and

the 𝑋𝑘 ’s may be unknown parameters in the reward function. For

instance, in the financial optimization, the reward obtained for a

given budget allocation 𝑎𝑘 for product 𝑘 may depend on underlying

market conditions 𝑋𝑘 and one may not know the corresponding
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reward function 𝑓𝑘 . As a result, E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] remains unknown.

In the power allocation example,𝑋𝑘 corresponds to the background

noise, which is a latent variable whose distribution is unknown,

and correspondingly one does not know E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] a priori.
Motivated by this, we study the online resource allocation prob-

lem, where the goal is to sequentially decide a budget allocation

𝑺𝒕 = (𝑎1,𝑡 , 𝑎2,𝑡 . . . 𝑎𝑘,𝑡 , . . . 𝑎𝑘,𝑡 ) for each round 𝑡 , so as to maximize

the cumulative reward attained over a total of𝑇 rounds. To perform

this allocation, there is a need to estimate E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] for each
(𝑎𝑘 , 𝑘) pair and subsequently use these estimates to decide a bud-

get allocation 𝑺𝒕 that generates the maximum possible reward in

round 𝑡 . When deciding a budget allocation 𝑺𝑡 , the decision-maker

has two conflicting goals. Firstly, the allocation 𝑺𝑡 should try to

gather as much information as possible about the unknown reward

distributions (exploration), and secondly the allocation should try

to maximize the reward in each round (exploitation).

Resource allocation as a combinatorial bandit problem. In
order to balance this exploration-exploitation trade-off, we can

view the online resource allocation problem as a combinatorial

bandit problem, which is a variant of the classical multi-armed ban-

dit (MAB) problem [6, 7]. Under the classical multi-armed bandit

framework, the decision-maker is faced with𝑀 different base arms

whose distributions are unknown and the goal is to maximize the

long-term cumulative reward over a total of 𝑇 rounds by selecting

one amongst the available 𝑀 base arms in each round 𝑡 and ob-

serving its reward. Under the combinatorial bandit framework [8],

the decision-maker can select multiple base arms in a given round

from a given pre-defined set and observe the reward for each of the

selected base arms. By viewing the allocation of budget 𝑎𝑘 to entity

𝑘 as a base arm (𝑎𝑘 , 𝑘), we can view the online resource allocation

problem as a combinatorial bandit problem [8]. The underlying

distribution of the reward of each base arm (𝑎𝑘 , 𝑘), i.e., 𝑓𝑘 (𝑎𝑘 , 𝑘), is
unknown and the goal is to maximize the cumulative reward over

a total of𝑇 rounds by selecting 𝐾 different base arms in each round

𝑡 , i.e., one corresponding to each entity 𝑘 . Upon the budget alloca-

tion, we receive rewards for all the base arms selected in round 𝑡 ,

which is then used to decide the budget allocation in round 𝑡 + 1.

By modeling the resource allocation problem as a combinatorial

multi-armed bandit problem, we can use the existing combinatorial

bandit algorithms to solve the resource allocation. However, these

algorithms do not exploit the structural correlations in reward func-

tions 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ). Taking advantage of these correlations is the main

challenge of our work.

1.2 Main contributions
Novel correlated combinatorial bandit framework for on-
line resource allocation. The combinatorial bandit framework

described above considers the reward obtained for different base

arms to be independent of each other. However, in the context of

resource allocation, the rewards may be correlated in two ways. i)

the rewards received for one entity 𝑘 at budget 𝑖 and for the same

entity 𝑘 at budget 𝑗 are likely to be correlated. For instance, in the

power allocation example, the throughput observed at channel 𝑘

under power 𝑖 gives some information on what the throughput

would have been if power 𝑗 were allocated to channel 𝑘 . ii) the re-

wards received across two different entities may also be correlated.

In the financial optimization example, the revenue obtained from

product 𝑘 under budget 𝑖 may give some information on what the

revenue would have been at product ℓ under budget 𝑗 . This may

occur if the sales of two products are related to one another. In this

work, we model such correlations through pseudo-rewards, which
are upper bounds on conditional expected reward of each base-arm

( 𝑗, ℓ) given reward sample of base-arm (𝑖, 𝑘). In the financial opti-

mization example, this amounts to the knowledge of the form "what

is the maximum revenue the company can expect from product ℓ

at budget 𝑗 given the observed revenue of product 𝑘 under budget

𝑖?". The details of this framework are presented in Section 2.

Correlated and Combinatorial UCB. For this novel framework,

we propose the correlated upper confidence bound algorithm for

online resource allocation. It makes use of the correlations across

base-arms to select an allocation 𝑺𝒕 that balances the task of gain-

ing information about the reward distributions of 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) for
each (𝑎𝑘 , 𝑘) pair and maximizing the expected reward in round 𝑡

based on the available information. More specifically, it computes

an upper confidence bound on E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] for each (𝑎𝑘 , 𝑘) pair
through the reward samples observed of 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) observed till

round 𝑡 . These reward samples may be obtained directly from the

past reward samples of base arm (𝑎𝑘 , 𝑘) or indirectly through the

pseudo-rewards of base arm (𝑎𝑘 , 𝑘) from the past reward sam-

ples of other base arms ( 𝑗, ℓ). These upper confidence bounds on
E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] are then used to select an allocation 𝑺𝑡 to be played

in round 𝑡 + 1. The proposed algorithm is detailed in Section 3 of

the paper. As our proposed approach makes use of the correlation

information in selection of 𝑺𝑡 , as opposed to prior work which were

correlation-agnostic, we observe significant performance gains.

Reduction in cumulative regret through correlations. We

evaluate our proposed algorithm in terms of the cumulative regret,
which is defined as the difference between the total reward ob-

tained by our online algorithm and the total reward obtained by the

optimal offline solution, where the offline problem has complete

knowledge about the joint distribution of 𝑋 . We introduce novel

proof techniques to analyze the regret, and show that the regret of

our proposed algorithm is 𝐶 · O(log𝑇 ) where 0 ≤ 𝐶 ≤ 𝐾𝐴, with 𝐴
denoting the size of the set A from which budget 𝑎𝑘 is allocated

to each entity. This is a significant improvement over approaches

that are agnostic to correlation [9], which have a regret of the form

of 𝐾𝐴 · O(log𝑇 ). In a lot of practical settings, 𝐶 = 0, which implies

that our proposed algorithm achieves a bounded regret. This is an
order-wise improvement over correlation-agnostic approaches as

shown in Section 4 of our paper.

Synthetic experiments on real-world problems.We validate

the performance of our algorithm by evaluating it on three practical

problems in Section 6. We conduct experiments for i) the power

allocation problem in wireless systems, ii) channel assignment in

slotted ALOHA protocol and iii) scheduling of jobs in a multi-server

system. For all the three problems, we see that using our correlated

and combinatorial UCB algorithm achieves significant improvement

in performance relative to correlation agnostic approaches.

1.3 Related works
The classical offline resource allocation problem, i.e., the setting

where the distributions of 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) are known, has been exten-

sively studied for decades [1, 10, 11] and has been applied in several
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application settings such as financial optimization [5], wireless sys-

tems [1, 2], scheduling in multi-server systems [12] etc. Recently,

the online resource allocation problem has attracted much attention

as the distribution of rewards 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) is typically unknown in

practice [9, 13–15]. First, the online resource allocation problem

was studied in a setting where the reward functions 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )
were assumed to be linear [13, 16]. This was extended by [15], as

they assume the reward functions to be concave. More recently,

[9] studied this problem in the most general setting by placing no

restriction on the type of reward functions 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ).
In [9], the online resource allocation is modeled as a combina-

torial multi-armed bandit problem by viewing the allocation of

budget 𝑎𝑘 to entity 𝑘 as a base arm. Subsequently, they extend

the UCB algorithm for combinatorial bandits [17] to the online

resource allocation problem. The action space A in [9] is allowed

to be countable, unlike [17] which restricted the action space to be

binary. A drawback of the approach in [9] is that it considers the

rewards corresponding to different base arms to be independent

of each other, and does not make use of the fact that the reward

obtained from one base arm may give some information on what

the reward would have been for a different base arm.

In this paper, we fill this gap by proposing our correlated combi-

natorial bandit framework to study the online resource allocation

in the most general setting. To the best of our knowledge, this is

the first work that models the correlation in a combinatorial bandit

framework. The idea of capturing correlations in reward across

different arms was previously studied in the context of classical

multi-armed bandits, i.e., the setting where only one base-arm is

played in each round 𝑡 , in [18, 19]. We extend this idea to the com-

binatorial bandit framework, where multiple base-arms may be

played in each round 𝑡 , and propose the correlated UCB algorithm

for online resource allocation. The extension is non-trivial as the

classical multi-armed bandit and combinatorial bandit often require

different design of algorithms and regret analysis due to selection

of multiple base arms within provided constraints as opposed to the

selection of single base arm in each round 𝑡 . Upon doing so, we are

able to exploit the correlations to obtain significant performance

improvements as demonstrated in Section 4, 6. To the best of our

knowledge, this is the first work to show that O(1) regret can be

achieved in certain online resource allocation problems.

2 PROBLEM SETUP
2.1 Offline Resource Allocation
Consider the offline resource allocation problem where a decision-

maker splits the available budget among 𝐾 different entities. For

each entity 𝑘 ∈ [𝐾], the decision-maker needs to decide a budget

𝑎𝑘 ∈ A, where A is the feasible budget space. Notice that the

budget spaceA could be either discrete (e.g., N) or continuous (e.g.,
R≥0). We focus on the discrete action space first and then consider

the case of continuous action space separately in Section 5. We

denote the overall budget allocation vector as 𝑺 = (𝑎1, · · · , 𝑎𝐾 ). We

consider a general reward function 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) for each entity 𝑘 ,

where 𝑋𝑘 (which can be discrete or continuous) is a hidden ran-

dom variable which reflects the random fluctuation of the obtained

reward within entity 𝑘 . We also consider 𝑚 general constraints,

denoted as ℎ𝑖 (𝑺) ≤ 0, 𝑖 = 1, 2, · · · ,𝑚.

For the offline settingwhere the joint distribution𝑫 = (𝐷1, . . . , 𝐷𝐾 )
of 𝑿 = (𝑋1, 𝑋2 . . . 𝑋𝐾 ) is known, our goal is to maximize the ex-

pected total reward collected from all entities, which we denote

by 𝑟 (𝑺,𝑫) = E
[∑𝐾

𝑘=1
𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )

]
. This can be formulated as the

following optimization problem.

maximize

𝑺=(𝑎1,· · · ,𝑎𝐾 )
E

[
𝐾∑︁
𝑘=1

𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )
]

subject to ℎ𝑖 (𝑺) ≤ 0, 𝑖 = 1, 2, · · · ,𝑚
𝑎𝑘 ∈ A, ∀𝑘 ∈ [𝐾]

(3)

The above formulation is a general version of (1) and (2) which
contain just one constraint ℎ1 (𝑺) =

∑
𝑘 𝑎𝑘 −𝑄 . We could have more

complex constraints on 𝑺 through ℎ𝑖 (𝑺), e.g., 𝑚𝑎𝑥𝑘𝑎𝑘 −𝑊 ≤ 0.

These constraints on budgets are known to the decision-maker. For

instance, if 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) is convex over 𝑎𝑘 , ℎ𝑖 (𝑺) is convex over 𝑺 , and
A is a convex set, it becomes a convex optimization problem that

might be solved exactly; if A is a discrete set, it can be a NP-hard

combinatorial optimization problem.

As the reward functions 𝑓𝑘 (¤) may not be known in practice

(e.g., the financial optimization example in Section 1), we do not

specify the exact form of the reward functions 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) and con-

sider them to be unknown. We assume that there exists an offline

approximation oracle A, which outputs an allocation SO such

that 𝑟 (𝑺O ,𝑫) ≥ 𝛼 · opt(𝑫), where 𝛼 is the approximation ratio

and opt(𝑫) = sup𝑺 𝑟 (𝑺,𝑫) is the optimal solution to the budget

allocation problem. The oracle can output such an allocation if

E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )] is known for all (𝑎𝑘 , 𝑘) ∈ A × K .

2.2 Online Resource Allocation as a
Combinatorial Bandit Problem

Now we introduce the online version of the resource allocation,

which is a sequential decision making problem. In each round 𝑡 ,

we allocate 𝑎𝑘,𝑡 budget to each entity 𝑘 , subject to the budget con-

straints, ℎ𝑖 (𝑺) ≤ 0, 𝑖 = 1, 2, · · · ,𝑚. We then obtain 𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )
reward from each entity 𝑘 , where 𝑋𝑘,𝑡 is sampled from an un-

known distribution 𝐷𝑘 . The total reward obtained in round 𝑡 is∑𝐾
𝑘=1

𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 ). Our goal is to accumulate as much total reward

as possible through this sequential budget allocation.

We denote the overall budget allocation in round 𝑡 as

𝑺𝒕 = (𝑎1,𝑡 , · · · , 𝑎𝐾,𝑡 ) and the joint distribution of all 𝑋𝑘,𝑡 ’s as

𝑫 = (𝐷1, . . . , 𝐷𝐾 ). We define the expected total reward obtained

in round 𝑡 as 𝑟 (𝑺𝒕 ,𝑫) = E
[∑𝐾

𝑘=1
𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )

]
. We consider a

learning algorithm 𝜋 that makes the budget allocation 𝑺𝝅𝒕 in round

𝑡 . We can measure the performance of 𝜋 by its (expected) regret,

which is the difference in expected cumulative reward between

always taking the best offline allocation and taking the budget

allocation selected by algorithm 𝜋 . The best offline allocation can be

obtained through the offline oracle O, which knows the underlying

joint distribution D, and attains 𝑟 (𝑺O𝑡 ,𝑫) ≥ 𝛼 · opt(𝑫). In view of

that, we use the following approximation regret for 𝑇 rounds:

𝑅𝑒𝑔𝜋𝛼 (𝑇 ;𝑫) = 𝑇 · 𝛼 · opt(𝑫) −∑𝑇
𝑡=1

𝑟 (𝑺𝜋𝑡 ,𝑫). (4)

Since the obtained reward 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) of entity 𝑘 is determined by

the allocated budget 𝑎𝑘 , following the combinatorial multi-armed

bandit framework [8], we can view allocating budget 𝑖 to entity 𝑘 as

3
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Figure 1: The rewards corresponding to a base arm (𝑖, 𝑘), i.e.,
budget 𝑖 to entity 𝑘 , is a function of the allocated budget 𝑖
and underlying randomness 𝑋𝑘 associated with entity 𝑘 . The
rewards for base arms (𝑖, 𝑘) and ( 𝑗, 𝑘), i.e., different budget
allocations within entity 𝑘 , are correlated through 𝑋𝑘 . There
may be also correlation in the rewards across different enti-
ties if 𝑋1, 𝑋2, . . . 𝑋𝐾 are correlated.

a base arm and denote it as (𝑖, 𝑘). The overall budget allocation 𝑺𝒕
can be considered as a super arm that consists of multiple base arms.

For each base arm (𝑖, 𝑘), we denote the expected reward of playing

it as 𝜇𝑖,𝑘 = E𝑋𝑘,𝑡∼𝐷𝑘
[
𝑓𝑘 (𝑖, 𝑋𝑘,𝑡 )

]
. We can rewrite the expected total

reward obtained in round 𝑡 :

𝑟 (𝑺𝒕 ,𝑫) = E
[
𝐾∑︁
𝑘=1

𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )
]
=

𝐾∑︁
𝑘=1

∑︁
𝑖∈A

𝜇𝑖,𝑘 · 1{𝑎𝑘,𝑡 = 𝑖}, (5)

Note that the expected total reward depends only on the mean

rewards of base arms (𝑖, 𝑘), therefore we can re-write the expected

total reward as

𝑟 (𝑺𝒕 , 𝝁) =
𝐾∑︁
𝑘=1

∑︁
𝑖∈A

𝜇𝑖,𝑘 · 1{𝑎𝑘,𝑡 = 𝑖}. (6)

If the mean rewards 𝜇𝑖,𝑘 of individual base arms (𝑖, 𝑘) were
known, then one can use the offline oracle to obtain the optimal

budget allocation in each round. As the mean rewards of individual

base arms are unknown, they need to be estimated from the histor-

ical observations until round 𝑡 . The mean reward of the base arm

(𝑖, 𝑘) can be estimated either through the past samples in which

budget 𝑖 was allocated to entity 𝑘 , or through the side information

collected from other observations. We discuss the latter next.

2.3 Proposed Correlated Combinatorial Bandit
Framework

In several application settings, there may be some information

on the knowledge of reward functions 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ). As a result, the
knowledge of the reward from one base arm (𝑖, 𝑘) may provide

some information on the reward that would have been obtained

from entity 𝑘 if budget 𝑗 was allocated to entity 𝑘 . This is illustrated

in Figure 1. For instance, in the power allocation example, where the

objective is to allocate the total power𝑄 among𝐾 different channels

to maximize the total throughput, the throughput at channel 𝑘 is

given by log

(
1 + 𝑎𝑘,𝑡

𝑋𝑘,𝑡

)
. Here, 𝑎𝑘,𝑡 represents the power allocated in

channel 𝑘 and 𝑋𝑘 denotes the hidden noise in channel 𝑘 at round 𝑡 .

As the expression of throughput, i.e., the reward function 𝑓 (𝑎𝑘 , 𝑋𝑘 ),
is known, the throughput in channel 𝑘 at power 𝑖 provides some

information on what the reward would have been if power 𝑗 was

allocated to channel 𝑘 . More generally, rewards obtained from one

base arm (𝑖, 𝑘) may provide some information on the reward of

another base arm ( 𝑗, ℓ). As a result, the rewards corresponding to
different base arms are correlated. We capture the presence of such

correlations in the form of pseudo-rewards, as defined below:

Definition 1 (Pseudo-Reward). Suppose that we sample the
base arm (𝑖, 𝑘) and observe reward 𝑟 . We call a quantity 𝑠 ( 𝑗,ℓ),(𝑖,𝑘) (𝑟 )
as the pseudo-reward of base arm ( 𝑗, ℓ) with respect to base arm (𝑖, 𝑘)
if it is an upper bound on the conditional expected reward of base arm
( 𝑗, ℓ), i.e.,

E[𝑓ℓ ( 𝑗, 𝑋ℓ ) | 𝑓𝑘 (𝑖, 𝑋𝑘 ) = 𝑟 ] ≤ 𝑠 ( 𝑗,ℓ),(𝑖,𝑘) (𝑟 ) . (7)

For convenience, we set 𝑠 ( 𝑗,ℓ),( 𝑗,ℓ) (𝑟 ) = 𝑟 ∀𝑗, ℓ .

When no information is known, pseudo-rewards between two

base arms are not known, then they can be set equal to the maxi-

mum possible reward. This makes our formulation quite general

and in fact subsumes the correlation agnostic combinatorial frame-

work studied in [9], the connection will be made explicit through

Remark 1 in Section 3. Next, we show how the pseudo-rewards can

be evaluated in practice.

Obtaining pseudo-rewards from reward correlations within
the same entity. These pseudo-rewards can be evaluated easily

in several different practical settings. For instance, if the form of

the functions 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) is known, then the pseudo-reward of base

arm ( 𝑗, 𝑘) with respect to base arm (𝑖, 𝑘) can be obtained as

𝑠 ( 𝑗,𝑘),(𝑖,𝑘) (𝑟 ) = max

𝑋𝑘
𝑓𝑘 ( 𝑗, 𝑋𝑘 ) s.t. 𝑓𝑘 (𝑖, 𝑋𝑘 ) = 𝑟 . (8)

Note that pseudo-rewards can be obtained even in the scenario

where only probabilistic upper and lower bounds on 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) are
known, i.e., 𝑓

𝑘
(𝑎𝑘 , 𝑋𝑘 ) ≤ 𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) ≤ ¯𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) w.p. 1 − 𝜅. In

this scenario, we can construct pseudo-rewards as follows:

𝑠 ( 𝑗,𝑘),(𝑖,𝑘) (𝑟 ) = (1 − 𝜅)2×
©« max

{𝑋𝑘 :𝑓
𝑘
(𝑖,𝑋𝑘 ) ≤𝑟 ≤ ¯𝑓𝑘 (𝑖,𝑋𝑘 ) }

¯𝑓𝑘 ( 𝑗, 𝑋𝑘 )
ª®¬

+ (1 − (1 − 𝜅)2) ×𝑀, (9)

where𝑀 is the maximum possible reward that a base arm can pro-

vide. We evaluate this pseudo-reward by first identifying the range

of values within which 𝑋𝑘 lies based on the reward with proba-

bility 1 − 𝜅. The maximum possible reward of the base arm ( 𝑗, 𝑘)
within the identified range of 𝑋𝑘 is then computed with probability

1 − 𝜅. Due to this, with probability (1 − 𝜅)2, conditional reward of

base arm ( 𝑗, 𝑘) is at most max𝑋𝑘 :𝑓
𝑘
(𝑖,𝑋𝑘 ) ≤𝑟 ≤ ¯𝑓𝑘 (𝑖,𝑋𝑘 )

¯𝑓𝑘 ( 𝑗, 𝑋𝑘 ). As
the maximum possible reward is𝑀 otherwise, we get (9).

Obtaining pseudo-rewards from reward correlation across
entities. In the most general scenario, there may be knowledge of

reward correlations across entities as shown in Figure 2. This can

occur if the random variables 𝑋𝑘 and 𝑋ℓ , i.e., the hidden random

variables corresponding to two different entities 𝑘 and ℓ , are cor-

related. These correlations can be incorporated in our framework

through pseudo-rewards 𝑠 ( 𝑗,ℓ),( 𝑗,𝑘) , which are an upper bound on

the conditional expected reward. For instance, in the application

of financial optimization, the company may invest its total budget

among different products. As the performance of different products

are likely to be correlated, the reward feedback under budget 𝑖

for product 𝑘 may inform something about the reward feedback
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Figure 2: Upon observing a reward 𝑟 from a base arm, pseudo-
rewards 𝑠 ( 𝑗,ℓ),(𝑖,𝑘) (𝑟 ), give us an upper bound on the condi-
tional expectation of the reward from base arm ( 𝑗, ℓ) given
that we observed reward 𝑟 from arm (𝑖, 𝑘). Reward received
for entity 𝑘 at a given budget 𝑖 may provide some informa-
tion on what the reward would have been if budget 𝑗 were
allocated to entity 𝑘 , leading to correlations within entity.
The rewards of different entities may also be correlated.

for product ℓ under budget 𝑗 . Such correlations can be modeled

through pseudo-rewards, which may either be known from domain

knowledge or from previously performed controlled experiments.

For example, based on previously performed experiments, it may

be known that the expected reward obtained from product ℓ under

budget 𝑗 is at most 𝑦 whenever the reward obtained for product 𝑘

under budget 𝑖 is 𝑥 . Note that in this modeling, one does not need

to explicitly capture what the inherent randomness 𝑋𝑘 represents

and its corresponding values. This is a key strength of our proposed

framework, as in a several applications 𝑋𝑘 could be hard to inter-

pret and model. For instance, in the financial optimization example,

𝑋𝑘 may represent underlying market conditions which are complex

and subsequently the reward functions 𝑓𝑘 (𝑎𝑘 , 𝑘) are also unknown.
Even in such settings, the pseudo-reward based framework allows

one to capture the correlation across different base arms.

3 PROPOSED ALGORITHM
We now propose the correlated-Upper Confidence Bound algorithm

for resource allocation (corr-UCB-RA) that uses existing correlation

in rewards across base arms to maximize the long-term cumulative

reward. Before describing our algorithm, we first review the UCB

algorithm for resource allocation (UCB-RA) proposed in [9].

3.1 The UCB algorithm for resource allocation
In order to solve the online resource allocation problem, the UCB-

RA algorithmmaintains a set of base arms {(𝑘, 𝑎) | 𝑘 ∈ [𝐾], 𝑎 ∈ A},
where the total number of base arms is equal to𝐾𝐴, with𝐴 denoting

the size of the discrete set A. If the mean reward of each base

arm were known, then the resource allocation problem can be

easily solved by the use of the available offline oracle O, which
produces an allocation 𝑺O𝑡 such that 𝑟 (𝑺O𝑡 , 𝝁) ≥ 𝛼 · opt(𝝁). As the
underlying mean rewards of the base arms are unknown, the UCB-

RA algorithm maintains the empirical mean 𝜇𝑖,𝑘 (𝑡) for each base

arm (𝑖, 𝑘) at round 𝑡 . Using these empirical means, it then computes

an upper confidence bound (UCB) index for each base arm (𝑖, 𝑘) as

𝑈𝑖,𝑘 (𝑡) = 𝜇 (𝑖,𝑘) (𝑡) +
√︄

2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)
,

where 𝑛 (𝑖,𝑘) (𝑡) denotes the number of times budget 𝑖 was allocated

to entity 𝑘 . UCB-RA algorithm then feeds these upper confidence

indices of the base arms to the available offline oracle and obtains

an allocation 𝑺𝑡 = (𝑎1,𝑡 , 𝑎2,𝑡 , . . . 𝑎𝐾,𝑡 ). It then uses this allocation

for round 𝑡 and observes the feedback of 𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )∀𝑘 . Note
that the upper confidence indices are large if base arm (𝑖, 𝑘) has a
large empirical mean reward or if it has been sampled fewer times

relative to other base arms. The algorithm description is presented

in Algorithm 1 in the appendix.

3.2 The proposed correlated-UCB algorithm for
resource allocation

Under the correlated combinatorial bandit framework, the pseudo-

reward for base arm ( 𝑗, ℓ) with respect to the base arm (𝑖, 𝑘) pro-
vides an estimate on the reward of base arm ( 𝑗, ℓ) based on the

reward obtained from base arm (𝑖, 𝑘). We now define the notion of

empirical pseudo-reward, which can be used to obtain an optimistic
estimate of 𝜇 ( 𝑗,ℓ) through just reward samples of base arm (𝑖, 𝑘).

Definition 2 (Empirical and Expected Pseudo-Reward). Af-
ter 𝑡 rounds, a base arm (𝑖, 𝑘) is sampled 𝑛 (𝑖,𝑘) (𝑡) times. Using these
𝑛 (𝑖,𝑘) (𝑡) reward realizations, we can construct the empirical pseudo-
reward ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) for each base arm ( 𝑗, ℓ) with respect to base arm
(𝑖, 𝑘) as follows.

ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) ≜
∑𝑡
𝜏=1

1(𝑖,𝑘) ∈S𝑡 𝑠 ( 𝑗,ℓ),(𝑖,𝑘) (𝑓𝑘 (𝑖, 𝑋𝑘,𝑡 ))
𝑛 (𝑖,𝑘) (𝑡)

, (10)

( 𝑗, ℓ) ∈ K × A \ {(𝑖, 𝑘)}. (11)

The expected pseudo-reward of base arm ( 𝑗, ℓ) with respect to base
arm (𝑖, 𝑘) is defined as

𝜙 ( 𝑗,ℓ),(𝑖,𝑘) ≜ E
[
𝑠 ( 𝑗,ℓ),(𝑖,𝑘) (𝑓𝑘 (𝑖, 𝑋𝑘 ))

]
. (12)

For convenience, we set ˆ𝜙 (𝑖,𝑘),(𝑖,𝑘) (𝑡) = 𝜇 (𝑖,𝑘) (𝑡) and 𝜙 (𝑖,𝑘),(𝑖,𝑘) =
𝜇 (𝑖,𝑘) . Note that the empirical pseudo-reward ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) is defined
with respect to base arm (𝑖, 𝑘) and it is only a function of the rewards
observed by sampling base arm (𝑖, 𝑘).

Definition 3 (PseudoUCB Index𝑈 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡)). We define the
PseudoUCB Index of base arm ( 𝑗, ℓ) with respect to base arm (𝑖, 𝑘) as
follows.

𝑈 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) ≜ ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) +
√︄

2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)
(13)

Furthermore, we define𝑈 ( 𝑗,ℓ) (𝑡) = min(𝑖,𝑘) 𝑈 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡), the tightest
of the 𝐾𝐴 upper bounds for base arm ( 𝑗, ℓ).

At each round, the algorithm computes these pseudo-UCB in-

dices𝑈 ( 𝑗,ℓ) for each base arm ( 𝑗, ℓ). These indices are then fed to

the oracle to obtain the budget allocation vector 𝑺𝒕 at round 𝑡 . At
the end of each round we update the empirical pseudo-rewards

ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) for all ( 𝑗, ℓ), the empirical reward for arm (𝑖, 𝑘) ∈ S𝑡 ,
where S𝑡 denotes the set of base arms played in round 𝑡 . The de-

scription of this algorithm is given in Algorithm 2 in the appendix.

The algorithmic blocks for UCB-RA and Corr-UCB-RA are presented in the appendix

of the full paper at www.andrew.cmu.edu/user/gaurij/corr_comb_bandits.pdf.
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Remark 1 (Reduction to Combinatorial Multi-Armed Ban-

dits). When all pseudo-reward entries are unknown, then all pseudo-
reward entries can be filled with the maximum possible reward for
each base arm, that is, 𝑠 (𝑖,𝑘),( 𝑗,ℓ) (𝑟 ) = 𝑀 ∀𝑟, ℓ, 𝑘, 𝑖, 𝑗 . In that case, the
proposed Corr-UCB-RA algorithm reduces to the UCB-RA algorithm.

4 REGRET BOUNDS AND ANALYSIS
4.1 Main results
We now characterize the performance of our proposed algorithm

in terms of regret (See eq (4)).

𝑅𝑒𝑔𝜋𝛼 (𝑇 ;𝑫) = 𝑇 · 𝛼 · opt(𝑫) −∑𝑇
𝑡=1

𝑟 (𝑺𝝅𝒕 ,𝑫) . (14)

Here, 𝑟 (𝑺𝝅𝒕 ,𝑫) represents the expected total reward obtained in

round 𝑡 , which can be written as,

𝑟 (𝑺𝒕 , 𝝁) = E
[
𝐾∑︁
𝑘=1

𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )
]
=

𝐾∑︁
𝑘=1

∑︁
𝑎∈A

𝜇𝑖,𝑘 · 1{𝑖 = 𝑎𝑘,𝑡 }. (15)

For the regret analysis, we assume without loss of generality that

the rewards are between 0 and 1 for all base arms (𝑖, 𝑘). Further-
more, we denote the oracle’s optimal budget allocation vector as

𝑺∗, i.e., the allocation vector that provides an 𝛼-optimal solution

to the offline resource allocation problem, where E [𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 )]
is known for all base arms. For simplicity, we assume that there

is a unique solution 𝑺∗ to the offline resource allocation problem.

Correspondingly, we denote the set of base arms selected in 𝑺∗ as
the set of optimal base arms S∗. To bound the regret, we rely on

two properties of 𝑟 (𝑺, 𝜇).

Property 1. (Monotonicity). The expected reward of playing any
super arm 𝑺𝑡 is monotonically increasing with respect to the expecta-
tion vector of base arms, i.e., if for all (𝑖, 𝑘) ∈ A × K , if 𝜇𝑖,𝑘 ≤ 𝜇 ′𝑖,𝑘 ,
then we have 𝑟 (𝑺𝒕 , 𝝁) ≤ 𝑟 (𝑺𝒕 , 𝝁 ′) ∀𝑺𝒕 .

Property 2. (Bounded Smoothness). ∃ an increasing function
𝑔(.) such that, if 𝑺𝒕 is the super-arm selected in round 𝑡 and | |𝝁𝑺𝒕 −
𝝁 ′
𝑺𝒕
| |∞ < 𝜆, then

|𝑟 (𝑺𝒕 , 𝝁) − 𝑟 (𝑺𝒕 , 𝝁 ′) | < 𝑔(𝜆).

Here, the infinity norm between 𝝁𝑺𝒕 and 𝝁 ′
𝑺𝒕

is defined as
max(𝑖,𝑘) ∈S𝑡 |𝜇 (𝑖,𝑘) − 𝜇 ′(𝑖,𝑘) | with S𝑡 denoting the set of base arms
played in round 𝑡 .

It is easy to see that both properties hold from the definition of

𝑟 (𝑺𝒕 , 𝝁) in Eq. (5). Before stating our main result for the correlated

UCB algorithm, we first review the regret bound under the UCB-RA

algorithm [9].

Lemma 1. The regret for UCB-RA algorithm is upper bounded as

Reg𝛼 (𝑇,𝑫) ≤
∑︁

(𝑖,𝑘) ∈K×A
Δ
(𝑖,𝑘)
min

©«
8 log𝑇(

𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2

ª®®¬ + 4𝐾𝐴Δmax

= 𝐾𝐴 · O(log𝑇 ) + O(1), (16)

The full proofs and the intermediate Lemmas are available in the appendix of the full

paper at www.andrew.cmu.edu/user/gaurij/corr_comb_bandits.pdf.

with Δ
(𝑖,𝑘)
min = 𝑟 (𝑺∗, 𝝁) −max(𝑟 (𝑺, 𝝁) |𝑺 ∈ S𝐵, (𝑖, 𝑘) ∈ A × K),

Δ
(𝑖,𝑘)
max = 𝑟 (𝑺∗, 𝝁) −min(𝑟 (𝑺, 𝝁) |𝑺 ∈ S𝐵, (𝑖, 𝑘) ∈ A × K),

Δmax = max

(𝑖,𝑘) ∈A×K
Δ
(𝑖,𝑘)
max ,

where S𝐵 is the set of all sub-optimal super arms and 𝑺∗ is the oracle’s
optimal allocation.

The result follows from the intuition that after the UCB indices

of all the base arms are relatively close to their true mean rewards,

the algorithm selects the budget allocation 𝑺∗ with high probability.

Under the UCB-RA algorithm, each base arm needs to be sampled

O(log𝑇 ) times to ensure that the UCB indices are close to their

true means. Due to which, the regret of UCB-RA algorithm is of

the form of 𝐾𝐴 · O(log𝑇 ). We formalize this intuition for both the

UCB-RA and our proposed Corr-UCB-RA algorithms through the

following claim. This claim is a novel contribution of our work

and it provides an alternative methodology to analyse the generic

combinatorial bandit formulation [8] as well.

Claim 1.

If 𝑈 (𝑖,𝑘) ≥ 𝜇 (𝑖,𝑘) ∀(𝑖, 𝑘) ∈ K × A
and the UCB-RA and Corr-UCB-RA algorithms select a budget allo-
cation 𝑺𝒕 at round 𝑡 where,

𝜇 (𝑖,𝑘) ≤ 𝑈 (𝑖,𝑘) < 𝜇 (𝑖,𝑘) ∀(𝑖, 𝑘) ∈ S𝑡 ,
then 𝑺𝒕 is equal to the oracle’s optimal allocation 𝑺∗.
Here, the thresholds 𝜇 (𝑖,𝑘) are defined as

𝜇 (𝑖,𝑘) = 𝜇 (𝑖,𝑘) + 𝑔−1 (Δ(𝑖,𝑘)min ).

Using this claim, we will show regret bounds for our proposed

Corr-UCB-RA algorithm. To state our results, we first define the

notion of competitive and non-competitive base arms.

Definition 4 (Competitive and Non-Competitive base arms).

If 𝜙 ( 𝑗,ℓ),(𝑖,𝑘) ≤ 𝜇 ( 𝑗,ℓ) for some (𝑖, 𝑘) ∈ S∗ then base arm ( 𝑗, ℓ) is
called Non-competitive, otherwise it is called Competitive. Here, S∗
denotes the set of base arms played in the oracle’s optimal budget
allocation vector 𝑺∗. Furthermore, we define pseudo-gap of a base arm
( 𝑗, ℓ) as Δ̄( 𝑗,ℓ) = 𝜇 ( 𝑗,ℓ) −max(𝑖,𝑘) ∈S∗ 𝜙 ( 𝑗,ℓ),(𝑖,𝑘) .

Note that the pseudo-gap is greater than zero for non-competitive

base arms and is less than or equal to zero for competitive base arms.

The definition of pseudo-gap is useful to state our regret bounds.

Intuitively, a base arm ( 𝑗, ℓ) is non-competitive if it can be inferred

that the mean reward of ( 𝑗, ℓ) is smaller than the threshold 𝜇 ( 𝑗,ℓ)
through just the samples of a base arm belonging to the oracle’s

optimal budget allocation S∗. In what follows, we refer to the total

number of competitive base arms as 𝐶 and the set of competitive

base arms as C. As mentioned earlier, the Corr-UCB-RA algorithm

selects the budget allocation 𝑺∗ with high probability if the indices

of base arms 𝑈 (𝑖,𝑘) are close to their true means. In the presence

of correlations, we show that this can be achieved by sampling

competitive base arms O(log𝑇 ) times and non-competitive base

arms only O(1) times. This occurs as the non-competitive base

arms can be identified as sub-optimal based on samples of optimal

base arms. We formalize this intuition to get the following regret

bound for our Corr-UCB-RA algorithm.
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Theorem 1 (Upper Bound on Cumulative Regret). The ex-
pected cumulative regret of the Correlated-UCB algorithm for resource
allocation is upper bounded as

Reg𝛼 (𝑇,𝑫) ≤
∑︁
(𝑖,𝑘) ∈C

Δ
(𝑖,𝑘)
max

©«
8 log𝑇(

𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+ 2

ª®®¬ +

∑︁
(𝑖′,𝑘′) ∈K×A\{C}

Δ
(𝑖′,𝑘′)
max (4𝐾𝐴𝑡0 + 6(𝐾𝐴)3) +

2(𝐾𝐴)2Δmax, (17)

= 𝐶 · O(log𝑇 ) + O(1), (18)

where C ⊆ K ×A is set of competitive base arms with cardinality𝐶 ,

where 𝑡0 = inf

{
𝜏 ≥ 2 : 𝑔−1

(
Δ
(𝑖,𝑘)
min

)
≥ 4

√︃
2𝐾 log𝜏

𝜏 ∀(𝑖, 𝑘),

Δ̄(𝑖,𝑘) ≥ 4

√︃
2𝐾 log𝜏

𝜏 ∀(𝑖, 𝑘) ∈ A × K \ C
}
.

We now present a proof of our Claim 1, which is then used to

obtain the provide a proof sketch of Theorem 1. The proof of Claim

1 is of independent interest as well as these techniques can be used

to analyse the regret of the UCB algorithm in generic combinatorial

bandits as well (e.g., the combinatorial UCB algorithm in [8]).

4.2 Proof Sketch
Proof of Claim 1. In total there are |𝐾 | × |𝐴| base arms. Index

these base arms with indices 𝑧 in the set {1, 2, . . . |𝐾 | × |𝐴|} such
that Δ

(1)
min
≥ Δ

(2)
min
≥ . . . Δ(𝑧)

min
≥ . . . ≥ Δ

( |𝐾 |× |𝐴 |)
min

.

We consider a casewhere, 𝜇𝑧 ≤ 𝑈𝑧 (𝑡) < 𝜇𝑧+𝑔−1 (Δ(𝑧)
min
) ∀𝑧 ∈ S𝑡

and 𝑈𝑧 > 𝜇𝑧∀𝑧. Define 𝑦 to be the smallest index such that base

arm 𝑦 is selected in 𝑺𝑡 . From definition of base arm 𝑦 and through

Property 2 we have,

| |𝑈𝑺𝒕 (𝑡) − 𝜇𝑺𝒕 | |∞ < 𝑔−1 (Δ(𝑦)
min
) (19)

⇒ |𝑟 (𝑺𝒕 , 𝑼 (𝒕)) − 𝑟 (𝑺𝒕 , 𝝁) | < Δ
(𝑦)
min

. (20)

As 𝑈𝑧 (𝑡) > 𝜇𝑧 ∀𝑧, we have the following from the monotonicity

condition (Property 1),

𝑟 (𝑺𝒕 , 𝝁) + Δ(𝑦)
min

> 𝑟 (𝑺𝒕 , 𝑼 (𝒕)) (21)

≥ 𝑟 (𝑺∗, 𝑼 (𝒕)) (22)

≥ 𝑟 (𝑺∗, 𝝁) (23)

Here, we have (22) as the allocation 𝑺𝒕 is obtained from offline

oracle and hence it is optimal for the UCB index vector, and its

expected reward is larger than the allocation 𝑺∗. (23) arises from
the monontonicity condition as 𝑈𝑧 > 𝜇𝑧∀𝑧. This shows that if
𝜇𝑧 ≤ 𝑈𝑧 (𝑡) < 𝜇𝑧 + 𝑔−1 (Δ(1)

min
) ∀𝑧 ∈ 𝑆𝑡 and 𝑈𝑧 > 𝜇𝑧 ∀𝑧, then the

expected reward for the budget allocation 𝑆𝑡 ,

𝑟 (𝑺𝒕 , 𝝁) > 𝑟 (𝑺∗, 𝝁) − Δ(𝑦)
min

. (24)

As base arm 𝑦 is selected in 𝑺𝒕 , then by definition of Δ
(𝑦)
𝑚𝑖𝑛

,

max(𝑟 (𝑺𝒕 , 𝝁) |𝑺𝒕 ∈ S𝐵, (𝑖, 𝑘) = 𝑦 ∈ S𝑡 ) ≤ 𝑟 (𝑺∗, 𝝁) − Δ
(𝑦)
min

, (25)

which shows that the maximum reward that can be attained if

the allocation 𝑺𝒕 was sub-optimal and base arm 𝑦 was selected

is upper bounded by 𝑟 (𝑺∗, 𝝁) − Δ
(𝑦)
min

. Upon comparing (25) and

(24), we conclude that if 𝜇𝑧 ≤ 𝑈𝑧 (𝑡) < 𝜇𝑧 + 𝑔−1 (Δ(𝑧)
min
) ∀𝑧 ∈ S𝑡

and 𝑈𝑧 > 𝜇𝑧∀𝑧, then the budget allocation vector 𝑺𝑡 is equal to
𝑺∗, which is the oracle’s unique optimal solution to the budget

allocation problem.

Proof of Theorem 1. We now discuss the regret analysis of Theo-

rem 1. In order to bound the regret, we first define the notion of a

responsible base arm.

Definition 5 (Responsible). A base arm (𝑖, 𝑘) is said to be re-
sponsible at round 𝑡 , if

(1) It was selected in round 𝑡 and
(2) 𝑈 (𝑖,𝑘) (𝑡) ≥ 𝜇 (𝑖,𝑘)
By Claim 1, if a sub-optimal budget allocation was selected in

round 𝑡 , it implies that either 𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) for some (𝑖, 𝑘) ∈
K×A or at least one of the selected base arms in 𝑺𝒕 was responsible.
Therefore, the expected number of rounds in which a sub-optimal

allocation was played (referred to as bad rounds) can be upper

bounded by

E[Bad rounds(𝑇 )] ≤
∑︁

(𝑖,𝑘) ∈K×A
E[𝑟 (𝑖,𝑘) (𝑇 )]

+
∑︁

(𝑖,𝑘) ∈K×A
E[𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 )], (26)

with 𝑟 (𝑖,𝑘) (𝑇 ) denoting the number of rounds for which base arm

(𝑖, 𝑘) is responsible up until round 𝑇 and 𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 ) repre-
senting the number of rounds in which 𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) for some

(𝑖, 𝑘) till round 𝑇 . This inequality arises as a result of the union

bound and linearity of expectation. Moreover, whenever arm (𝑖, 𝑘)
is responsible in round 𝑡 , the regret incurred in that round can be

upper bounded by by Δ
(𝑖,𝑘)
max

(by definition of Δ
(𝑖,𝑘)
max

in Lemma 1).

In scenarios where,𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) for some (𝑖, 𝑘), the regret in-
curred in that round can be upper bounded by Δmax (by definition

of Δmax in Lemma 1). Using this observation, we can now bound

the regret as

E[Reg(𝑇 )] ≤
∑︁

(𝑖,𝑘) ∈K×A
E[𝑟 (𝑖,𝑘) (𝑇 )] × Δ

(𝑖,𝑘)
max

+
∑︁

(𝑖,𝑘) ∈K×A
E[𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 )] × Δmax . (27)

Using Hoeffding’s inequality, it can be shown that the second

term is upper bounded by an O(1) constant, the details are pre-

sented in Lemma 7 in the appendix. To bound the regret in (27), we

bound E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
separately for non-competitive and competitive

base arms. More specifically, we show that E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
is upper

bounded by an O(1) constant for non competitive base arms and is

O(log𝑇 ) for competitive base arms. There are two key components

to show upper bounds on E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
for non-competitive base

arm (𝑖, 𝑘). Suppose the base arm is non-competitive with respect

to ( 𝑗, ℓ), i.e., 𝜙 (𝑖,𝑘),( 𝑗,ℓ) < 𝜇 (𝑖,𝑘) and ( 𝑗, ℓ) ∈ S∗.

(1) The probability of base arm (𝑖, 𝑘) being responsible in round 𝑡

jointly with the event that 𝑛 𝑗,ℓ (𝑡) > 2𝑡
3
is small.

Pr

(
(𝑟𝑒𝑠𝑝 (𝑖,𝑘) (𝑡), 𝑛 ( 𝑗,ℓ) (𝑡) ≥

2𝑡

3

)
≤ 𝑡−3 ∀𝑡 > 3𝐾𝐴𝑡0 .

7
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This occurs as upon obtaining a large number of samples of base

arm ( 𝑗, ℓ), the expected pseudo-reward of base arm (𝑖, 𝑘) is smaller

than 𝜇 (𝑖,𝑘) with high probability. As a result, the probability that

base arm (𝑖, 𝑘) is responsible is small. The details of this can be

seen in Lemma 4.

(2) The probability that a sub-optimal budget allocation is made

for more than
𝑡
3
times till round 𝑡 is upper bounded as,

Pr

(
𝑇 sub-opt (𝑡) ≥ 𝑡

3

)
≤ 6(𝐾𝐴)2

( 𝑡

3𝐾𝐴

)−2

∀𝑡 > 3𝐾𝐴𝑡0,

We show this in Lemma 9 through Lemma 6,8 by showing that

𝑟 (𝑖,𝑘) (𝑇 ), which is the number of rounds for which base arm (𝑖, 𝑘) is
responsible till round 𝑇 , is smaller than

𝑡
3𝐾𝐴

with high probability.

Additionally, 𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 ), representing the number of rounds

in which 𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) for some (𝑖, 𝑘) till round 𝑇 , is smaller

than
𝑡
3
with high probability. Using these two arguments (1) and (2)

above, we bound the expected times a non-competitive base arm

(𝑖, 𝑘) is responsible until round 𝑡 in Lemma 10 as

E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
≤ 3𝐾𝐴𝑡0 +

𝑇∑︁
𝑡=3𝐾𝐴𝑡0

𝑡−3 + 6(𝐾𝐴)2
( 𝑡

3𝐾𝐴

)−2

(28)

= O(1) . (29)

Next, we bound the term E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
for competitive sub-optimal

arms. We do so in Lemma 11, by showing that after base arm (𝑖, 𝑘)
has been sampled O(log𝑇 ) times, the probability of base arm being

responsible at round 𝑡 decays as 𝑡−2
and as a result E

[
𝑟 (𝑖,𝑘) (𝑇 )

]
is

O(log𝑇 ). This combined with (29), leads to Theorem 1.

4.3 Discussion on the regret bound
Competitive and Non-competitive base arms. Recall that a
base arm (𝑖, 𝑘) is said to be non-competitive if the expected pseudo-

reward of base arm (𝑖, 𝑘) with respect to some base ( 𝑗, ℓ) ∈ S∗ is
smaller than 𝜇 (𝑖,𝑘) . Note that the optimal set of arms S∗, reward
distribution of individual base arms is unknown at the beginning

and as a result the Corr-UCB-RA initially does not know which

base arms are competitive and non-competitive.

Reduction in the effective set of base arms. Upon comparison

with the regret of the UCB-RA algorithm, from Lemma 1, we see

that our proposed algorithm reduces the regret from 𝐾𝐴×O(log𝑇 )
to𝐶×O(log𝑇 ), since only𝐶 out of the total 𝐾𝐴 need to be sampled

O(log𝑇 ) times before the condition in Claim 1 is met with high

probability. As a result, the Corr-UCB-RA only explores 𝐶 out of

the 𝐾𝐴 base arms explicitly and effectively reduces the problem

with 𝐾𝐴 base arms to one with 𝐶 base arms.

Bounded regret in certain settings.Whenever the set C is empty,

the proposed Corr-UCB-RA algorithm achieves bounded regret,

which is an order-wise improvement over the regret of correlation

agnostic UCB-RA algorithm. One scenario in which this can occur

is if the functions 𝑓𝑘 (·) are invertible with respect to 𝑋𝑘 given

𝑎𝑘 . More generally, whenever the sub-optimal base arms can be

identified as sub-optimal through just the samples of optimal base

arms, we get a bounded regret. Note that the algorithm initially has

no knowledge about the optimality/sub-optimality of base arms

and in such cases it identifies them by sampling the sub-optimal

base arms only O(1) times.

5 CONTINUOUS BUDGET SETTING
So far we have studied the resource allocation problem under the

assumption that the set A from which budget 𝑎𝑘 for each entity 𝑘

is allocated is a countable set. In this section, we discuss settings

where A is uncountable. One instance where this could occur is if

𝑎𝑘 ∈ R. In such scenarios, it is still possible to design an algorithm

while achieving bounded regret in some cases.

Reward functions are invertible. Suppose the reward functions

𝑓𝑘 (𝑎𝑘 , 𝑋𝑘 ) are invertible in 𝑋𝑘 and are known to the algorithm.

In this case, it is possible to estimate 𝑋𝑘 directly from the reward

samples of entity 𝑘 . Therefore, one can maintain an empirical mean

𝑋𝑘 (𝑡) for each entity. This empirical mean can then be used to

evaluate the upper confidence bound indices for base arm (𝑖, 𝑘) as

𝑈 (𝑖,𝑘) (𝑡) = 𝑓𝑘 (𝑖, 𝑋𝑘 (𝑡)) +

√︄
2 log𝑇

𝑛𝑘 (𝑡)
,

where 𝑛𝑘 (𝑡) =
∑
𝑗 𝑛 𝑗,𝑘 (𝑡) and 𝑋𝑘 (𝑡) =

∑𝑡
𝜏=1

𝑔−1

𝑎𝑘 (𝜏 ),𝑘
(𝑟𝑘 (𝜏))

𝑛𝑘 (𝑡 ) . Here

𝑔𝑎𝑘 (𝜏),𝑘 (𝑋𝑘 (𝑡)) = 𝑓𝑘 (𝑎𝑘 (𝜏), 𝑋𝑘 (𝑡)) and 𝑟𝑘 (𝜏) is the reward attained
from entity 𝑘 at round 𝜏 .

One can then use these UCB indices to obtain an allocation 𝑺𝒕
from the offline oracle as done in Corr-UCB-RA algorithm, which

will then be used to select the super arm in the next round. Using

techniques in Section 4.2, it can be shown that this algorithm in

cases where reward functions are invertible will lead to an O(1)
regret. This occurs as the information about the sub-optimal base

arms can be obtained through the samples of optimal super arm.

Non-invertible reward functions. In scenarios where reward

functions are non-invertible, it is still possible to extend the Corr-

UCB-RA algorithm. This can be done by discretizing the budget

space and making assumptions about Lipschitz continuity as done

in [9]. Specifically, the regret is affected by the discretization gran-

ularity and [9] provided an optimized value for it. After the dis-

cretization, we can use Corr-UCB-RA on the countable action set.

6 EXPERIMENTAL RESULTS
To validate the effectiveness of our algorithm, we conduct experi-

ments on three applications with synthetic and real data. First, we

consider a dynamic user allocation problem in wireless networks,

where we need to allocate new incoming users to different wireless

access points with unknown number of existing users. We evaluate

our algorithm in the setting with non-invertible reward function.

Next, we study an online server assignment problem, where the

servers need to be assigned to different job streams with unknown

job arrival rates. Different from the first application, the reward

function of this problem is invertible, so it is possible to obtain O(1)
regret. However, we also study a partial feedback setting for this

application, which leads to sublinear regret. Finally, we apply our

algorithm to an online water filling problem [20] that is essential

to the power allocation in OFDM systems [21]. It is a continuous

budget allocation problem with invertible reward functions, and

we study its partial feedback setting as well.

6.1 Dynamic User Allocation
In this section, we apply our corr-UCB-RA algorithm to a dynamic

user allocation problem in wireless networks. Our goal is maximize

8
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Figure 3: Comparison between regret of UCB-RA and Corr-
UCB-RA as a function Q (new incoming users) for the appli-
cation of dynamic user allocation.

the total throughput of wireless access points (APs) by allocating

new incoming users to them. The number of existing users associ-

ated to each AP is time-varying, which affects the traffic load on the

AP. We assume each user has a fixed traffic load of 0.2 and consider

the well-known ALOHA protocol [22] for each AP. We consider 𝐾

APs and 𝑄 new incoming users at each round. Let 𝑋𝑘 denote the

number of existing users in each AP 𝑘 and 𝑎𝑘 denote the number

of new users allocated to it. Note that we assume all the users of

an AP will leave when the round ends, so 𝑎𝑘 in the current round

will not affect 𝑋𝑘 in the future rounds. Our goal is to maximize the

total throughput of all APs:

max

𝑎𝑘

𝐾∑︁
𝑘=1

0.2(𝑋𝑘 + 𝑎𝑘 )𝑒−0.2(𝑋𝑘+𝑎𝑘 ) , s.t.

𝐾∑︁
𝑖=𝑘

𝑎𝑘 = 𝑄, 𝑎𝑘 ∈ N.

We extract {𝑋𝑘 }, the number of existing users in each AP, from a

real-world dataset [23]. We choose 4 APs (91, 92, 94, 95) on the 3rd

floor of Building 3 on campus, and record their associated users

from 13:00 to 16:00 on March 2, 2015. The detailed distribution

of the number of existing users on different access points can be

found in the Appendix. In our experiment, at each round, we first

sample {𝑋𝑘 } from the extracted distribution, then allocate 𝑄 = 8

new users to these four APs. Since the throughput function is non-

invertible, our algorithm cannot directly infer𝑋𝑘 from the observed

throughput of each AP and needs to maintain the pseudoUCB in-

dices of base arms as explained in Section 3. We compare it with

the UCB-RA algorithm. Figure 4a shows the average regrets with

95% confidence interval over 20 experiments. The result is consis-

tent with our analysis in Section 4: corr-UCB-RA achieves 25% less

regret than correlation agnostic UCB-RA algorithm. This occurs as

the corr-UCB-RA algorithm is able to make use of the correlations

between the reward of base arms to incur a regret of𝐶 ·O(log𝑇 ) as
opposed to𝐾𝐴 ·O(log𝑇 ). We also show the relationship between𝑄

and the total regrets after 2000 rounds in Figure 3: with the increase

of 𝑄 , the total regret of corr-UCB-RA increases much more slowly

than that of UCB-RA.

6.2 Online Server Assignment
We consider 4 independent job streams (i.e., 𝐾 = 4) with unknown

expected job arrival rates 𝝀 = (0.2, 0.4, 0.6, 0.8). For each job stream

𝑘 , the realized job arrival rate 𝑋𝑘 follows a uniform distribution

𝑈 (𝜆𝑘 − 0.1, 𝜆𝑘 + 0.1). We assume each job stream has one initial

server to ensure it is a stable systemwith bounded expected waiting

time. There are 8 additional servers (i.e., 𝑄 = 8) to be assigned and

we denote the number of additional servers allocated to stream 𝑘

as 𝑎𝑘 . We assume the service rate of all servers as 1, and our goal is

to minimize the average expected waiting time of all job streams:

min

𝑎𝑘

𝐾∑︁
𝑘=1

1

1 − 𝑋𝑘
𝑎𝑘+1

· 𝑋𝑘∑𝐾
𝑘=1

𝑋𝑘
, s.t.

𝐾∑︁
𝑖=𝑘

𝑎𝑘 ≤ 𝑄, 𝑎𝑘 ∈ N.

We consider both the full feedback and the partial feedback settings.

In the full feedback setting, we assume the waiting times of all job

stream are always observable. Since the waiting time function is

invertible, our algorithm can directly infer {𝑋𝑘 } and update the

pseudo-rewards of other base arms as per (8). Notice that our goal

is to minimize the expected waiting time, so we need to maintain

the lower confidencce bound (LCB) indices of all base arms, instead

of the UCB indices for reward maximization and correspondingly

pseudo-rewards would be lower bounds on conditional expected

reward. In the partial feedback setting, the waiting time can only be

observed when 𝑎𝑘 ≥ 1, i.e., at least one additional server is assigned

to stream 𝐾 . When no server is assigned to stream 𝐾 , the pseudo-

reward of other assignments with respect to such an assignment is

set to the minimum possible reward. We repeat the experiment 20

times and Figure 4b shows the average regrets with 95% confidence

interval. In the full feedback setting, corr-UCB-RA obtains O(1)
regret as there is no cost for inferring {𝑋𝑘 }. In the partial feedback

setting, corr-UCB-RA has to balance between the actions of 𝑎𝑘 = 0

and 𝑎𝑘 ≥ 0, which incurs a sublinear regret. It still outperforms

UCB-RA due to the utilization of correlation information.

6.3 Online Water Filling
We finally consider the water filling problem where a total amount

of one unit power has to be assigned to 4 communication channels,

i.e.,𝑄 = 1, 𝐾 = 4, with the objective ofmaximizing the total through-

put. The throughput of the 𝑘th channel is given by log(𝑋𝑘 + 𝑎𝑘 ),
where 𝑎𝑘 represents the power allocated to channel 𝑘 and 𝑋𝑘 rep-

resents the floor above the baseline at which power can be added

to the channel. It can be written as a convex optimization problem:

max

𝑎𝑘

𝐾∑︁
𝑘=1

log(𝑋𝑘 + 𝑎𝑘 ), s.t.

𝐾∑︁
𝑖=𝑘

𝑎𝑘 ≤ 𝑄, 𝑎𝑘 ≥ 0.

For the online water filling problem, the {𝑋𝑘 } are unknown and

need to be learned. For each channel 𝑘 , we assume the expectation

𝜇𝑘 = E[𝑋𝑘 ] is uniformly sampled from [0.8, 1.2], and the realization
of 𝑋𝑘 follows a uniform distribution 𝑈 (𝜇𝑘 − 0.5, 𝜇𝑘 + 0.5). As it
is a online continuous resource allocation problem, we choose

UCB-RA algorithm with discretization granularity 0.2 (i.e., A =

{0, 0.2, 0.4, 0.6, 0.8, 1}) as the baseline. Similar to the online server

assignment problem, we consider both the full feedback and the

partial feedback settings. In the full feedback setting, the throughput

log(𝑋𝑘 + 𝑎𝑘 ) is always observable. Since the reward function is

invertible, our algorithm can directly infer {𝑋𝑘 } and update the

pseudoUCB indices as described in Section 5. In the partial feedback

setting, we assume log(𝑋𝑘 + 𝑎𝑘 ) can be observed only if 𝑎𝑘 ≥ 0.2.

For channel 𝑘 with 𝑎𝑘 < 0.2, we update the pseudo-rewards of

other base arms with the maximum possible rewards. We repeat

the experiment 20 times and Figure 4c shows the average regrets

with 95% confidence interval. We see that corr-UCB-RA algorithm

9
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(a) Dynamic User Allocation
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(b) Online server assignment.
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(c) Online water filling.

Figure 4: Performance comparison between the Corr-UCB-RA and the UCB-RA algorithm for different application problems.

achieves significantly reduced regret relative to UCB-RA in both the

full feedback and the partial feedback settings. For the full feedback

case, corr-UCB-RA obtains O(1) regret as the water filling reward

function is invertible and there is no cost in inferring {𝛽𝑘 }. For the
partial feedback case, since the minimal power needs to be 0.2 to

observe the throughput, corr-UCB-RA needs to balance between

the actions of 𝑎𝑘 < 0.2 and 𝑎𝑘 ≥ 0.2, due to which it incurs a

sublinear regret. The regret is still smaller than UCB-RA as it makes

use of the available correlation information.

7 CONCLUDING REMARKS
In this paper, we study the problem of sequential resource allo-

cation by modeling it through a combinatorial bandit framework,

where the allocation of a budget to an entity is considered as a base

arm. In several practical settings, rewards received under different

budget allocations are often correlated. We propose a novel corre-

lated combinatorial bandit framework to tackle the online resource

allocation problem. In particular, we model the correlations through

pseudo-rewards, which represent an upper bound on the conditional

expected reward of a budget-entity pair. Using the knowledge of

these pseudo-rewards, we propose the correlated UCB algorithm

for resource allocation (Corr-UCB-RA) which incurs a regret of

𝐶 ·O(log𝑇 ) as opposed to 𝐾𝐴 · log𝑇 regret attained by prior corre-

lation agnostic approach in [9]. The value of𝐶 can be much smaller

than 𝐾𝐴 and can even be 0 in certain settings, under which our

proposed Corr-UCB-RA algorithm attains O(1) regret. These re-
sults are validated by our experimental results on multiple different

application settings. While we study this problem in the context

of online resource allocation, the algorithm and analysis could be

easily extended to the general combinatorial bandit framework

[8] as well. An interesting future direction is to learn correlations

in an online manner. As multiple base arms are sampled in each

round, it is possible to learn correlation information on the go and

subsequently use them for budget allocation in the future rounds.

We believe this is a challenging open problem which will require

non-trivial extensions of the ideas proposed in this work.
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A ALGORITHM BLOCKS

Algorithm 1 UCB for resource allocation with offline oracle O
1: Input: Constraints 𝑔𝑖 (𝑺), Oracle O.
2: For each base arm (𝑖, 𝑘) ∈ A × K , 𝑛𝑖,𝑘 (𝑡) ← 0. {maintain the total number of times base arm (𝑖, 𝑘) is played so far.}

3: for 𝑡 = 1, 2, 3, . . . do
4: For each base arm (𝑖, 𝑘) ∈ A × K , compute the UCB index

𝑈 (𝑖,𝑘) (𝑡) = 𝜇𝑖,𝑘 (𝑡) +
√︄

2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)

5: 𝑺𝒕 ← O((𝑈𝑖,𝑘 (𝑡)) (𝑖,𝑘) ∈A×K )
6: Take allocation 𝑺𝑡 , observe feedback 𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )’s
7: For each 𝑘 ∈ [𝐾], update 𝑛𝑎𝑘,𝑡 ,𝑘 , empirical mean rewards 𝜇𝑎𝑘,𝑡 ,𝑘
8: end for

Algorithm 2 Correlated UCB for resource allocation with offline oracle O
1: Input: Constraints 𝑔𝑖 (𝑺), Oracle O.
2: For each base arm (𝑖, 𝑘) ∈ A × K , 𝑛𝑖,𝑘 (𝑡) ← 0. {maintain the total number of times base arm (𝑖, 𝑘) is played so far.}

3: for 𝑡 = 1, 2, 3, . . . do

4: For each base arm ( 𝑗, ℓ) ∈ K × A, evaluate its KA pseudoUCB indices𝑈 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) ≜ ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) + 𝐵
√︂

2 log 𝑡

𝑛 (𝑖,𝑘 ) (𝑡 )
5: For each ( 𝑗, ℓ) ∈ A × K, 𝑈 ( 𝑗,ℓ) (𝑡) = min(𝑖,𝑘) 𝑈 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡)
6: 𝑺𝒕 ← O((𝑈𝑖,𝑘 (𝑡)) (𝑖,𝑘) ∈A×K )
7: Take allocation 𝑺𝑡 , observe feedback 𝑓𝑘 (𝑎𝑘,𝑡 , 𝑋𝑘,𝑡 )’s
8: Update 𝑛 (𝑎𝑘,𝑡 ,𝑘) , the empirical pseudo-rewards

ˆ𝜙 ( 𝑗,ℓ),(𝑖,𝑘) (𝑡) for all ( 𝑗, ℓ), the empirical reward for base arm (𝑖, 𝑘) ∈ S𝑡
9: end for

B EXPERIMENTAL DETAILS
We discuss more details about our experiments in this section. In the dynamic user allocation experiment, the throughput function of the AP

is just the throughput function of the ALOHA system. Figure 5 shows the relationship between the throughput and the traffic load in the

ALOHA system, and it is easy to see the throughput function is non-invertible.

Figure 5: Relationship between the throughput and the traffic load.

Figure 6 shows the distribution of the number of associated users on the access points considered in Section 6.1.
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Figure 6: Distribution of the number of existing users on different access points for dynamic user allocation.

C STANDARD RESULTS FROM PREVIOUS WORKS
Fact 1 (Hoeffding’s ineqality). Let 𝑍1, 𝑍2 . . . 𝑍𝑛 be i.i.d random variables bounded between [𝑎, 𝑏] : 𝑎 ≤ 𝑍𝑖 ≤ 𝑏, then for any 𝛿 > 0, we

have

Pr

(����∑𝑛𝑖=1
𝑍𝑖

𝑛
− E [𝑍𝑖 ]

���� ≥ 𝛿) ≤ exp

(
−2𝑛𝛿2

(𝑏 − 𝑎)2

)
.

Lemma 2 (Standard result used in bandit literature). If 𝜇𝑘,𝑛𝑘 (𝑡 ) denotes the empirical mean of arm 𝑘 by sampling arm 𝑘 𝑛𝑘 (𝑡) times
through any algorithm and 𝜇𝑘 denotes the mean reward of arm 𝑘 , then we have

Pr

(
𝜇𝑘,𝑛𝑘 (𝑡 ) − 𝜇𝑘 ≥ 𝜖, 𝜏2 ≥ 𝑛𝑘 (𝑡) ≥ 𝜏1

)
≤

𝜏2∑︁
𝑠=𝜏1

exp

(
−2𝑠𝜖2

)
.

Proof. Let 𝑍1, 𝑍2, ...𝑍𝑡 be the reward samples of arm 𝑘 drawn separately. If the algorithm chooses to select arm 𝑘 for𝑚𝑡ℎ time, then it

observes reward 𝑍𝑚 . Then the probability of observing the event 𝜇𝑘,𝑛𝑘 (𝑡 ) − 𝜇𝑘 ≥ 𝜖, 𝜏2 ≥ 𝑛𝑘 (𝑡) ≥ 𝜏1 can be upper bounded as follows,

Pr

(
𝜇𝑘,𝑛𝑘 (𝑡 ) − 𝜇𝑘 ≥ 𝜖, 𝜏2 ≥ 𝑛𝑘 (𝑡) ≥ 𝜏1

)
= Pr

((∑𝑛𝑘 (𝑡 )
𝑖=1

𝑍𝑖

𝑛𝑘 (𝑡)
− 𝜇𝑘 ≥ 𝜖

)
, 𝜏2 ≥ 𝑛𝑘 (𝑡) ≥ 𝜏1

)
(30)

≤ Pr

((
𝜏2⋃

𝑚=𝜏1

∑𝑚
𝑖=1

𝑍𝑖

𝑚
− 𝜇𝑘 ≥ 𝜖

)
, 𝜏2 ≥ 𝑛𝑘 (𝑡) ≥ 𝜏1

)
(31)

≤ Pr

(
𝜏2⋃

𝑚=𝜏1

∑𝑚
𝑖=1

𝑍𝑖

𝑚
− 𝜇𝑘 ≥ 𝜖

)
(32)

≤
𝜏2∑︁
𝑠=𝜏1

exp

(
−2𝑠𝜖2

)
. (33)

□

Lemma 3 (From Proof of Theorem 1 in [24]). Let𝑈𝑘 (𝑡) denote the UCB index of arm 𝑘 at round 𝑡 , and 𝜇𝑘 = E [𝑔𝑘 (𝑋 )] denote the mean
reward of that arm. Then, we have

Pr(𝜇𝑘 > 𝐼𝑘 (𝑡)) ≤ 𝑡−3 .

Observe that this bound does not depend on the number 𝑛𝑘 (𝑡) of times arm 𝑘 is pulled. UCB index is defined as𝑈𝑘 (𝑡) = 𝜇𝑘,𝑛𝑘 (𝑡 ) +
√︃

2 log 𝑡

𝑛𝑘 (𝑡 ) .

Proof. This proof follows directly from [24]. We present the proof here for completeness as we use this frequently in the paper.

Pr(𝜇𝑘 > 𝐼𝑘 (𝑡)) = Pr

(
𝜇𝑘 > 𝜇𝑘,𝑛𝑘 (𝑡 ) +

√︄
2 log 𝑡

𝑛𝑘 (𝑡)

)
(34)

≤
𝑡∑︁

𝑚=1

Pr

(
𝜇𝑘 > 𝜇𝑘,𝑚 +

√︂
2 log 𝑡

𝑚

)
(35)
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=

𝑡∑︁
𝑚=1

Pr

(
𝜇𝑘,𝑚 − 𝜇𝑘 < −

√︂
2 log 𝑡

𝑚

)
(36)

≤
𝑡∑︁

𝑚=1

exp

(
−2𝑚

2 log 𝑡

𝑚

)
(37)

=

𝑡∑︁
𝑚=1

𝑡−4
(38)

= 𝑡−3 . (39)

where (35) follows from the union bound and is a standard trick (Lemma 2) to deal with random variable 𝑛𝑘 (𝑡). We use this trick repeatedly

in the proofs. We have (37) from the Hoeffding’s inequality. □

D BOUNDING CONTRIBUTION OF NON-COMPETITIVE BASE ARMS
Lemma 4. If the base arm (𝑖, 𝑘) is non-competitive with respect to ( 𝑗, ℓ), i.e., 𝜙 (𝑖,𝑘),( 𝑗,ℓ) < 𝜇 (𝑖,𝑘) , where ( 𝑗, ℓ) = arg min( 𝑗,ℓ) ∈S∗ 𝜙 (𝑖,𝑘),( 𝑗,ℓ)

then, the probability that base arm (𝑖, 𝑘) is responsible at round 𝑡 jointly with 𝑛 ( 𝑗,ℓ) being larger than
𝑡
𝐾𝐴

is upper bounded as,

Pr

(
resp(𝑘,𝑎) (𝑡), 𝑛 ( 𝑗,ℓ) (𝑡) ≥

𝑡

4𝐾𝐴

)
≤ 𝑡 exp

©«
−2𝑡 Δ̃2

(𝑖,𝑘)
𝐴𝐾

ª®¬ .
Moreover, if the pseudo-gap Δ̃𝑖,𝑘 = 𝜇 (𝑖,𝑘) − 𝜙 (𝑖,𝑘),( 𝑗,ℓ) ≥

√︃
4

2𝐾𝐴 log 𝑡0
𝑡0

for some constant 𝑡0 > 0. Then,

Pr

(
resp(𝑘,𝑎) (𝑡), 𝑛 ( 𝑗,ℓ) (𝑡) ≥

𝑡

4𝐾𝐴

)
≤ 𝑡−3 ∀𝑡 > 𝑡0 .

Proof. We now bound this probability as,

Pr

(
resp(𝑖,𝑘) (𝑡), 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
≤ Pr

(
𝑈 (𝑖,𝑘) (𝑡) > 𝜇 (𝑖,𝑘) , 𝑛 ( 𝑗,ℓ) (𝑡) ≥ 𝑠

)
(40)

≤ Pr

(
ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) +

√︄
2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡)
> 𝜇 (𝑖,𝑘) , 𝑛 ( 𝑗,ℓ) ≥ 𝑠

)
(41)

= Pr

(
ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) − 𝜙 (𝑖,𝑘),( 𝑗,ℓ) > 𝜇 (𝑖,𝑘) − 𝜙 (𝑖,𝑘),( 𝑗,ℓ) −

√︄
2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡)
, 𝑛 ( 𝑗,ℓ) (𝑡) ≥ 𝑠

)
(42)

= Pr

(
ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) − 𝜙 (𝑖,𝑘),( 𝑗,ℓ) > Δ̄(𝑖,𝑘) −

√︄
2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡)
, 𝑛 ( 𝑗,ℓ) (𝑡) ≥ 𝑠

)
(43)

≤ 𝑡 exp
©«−2𝑠

(
Δ̄(𝑖,𝑘) −

√︂
2 log 𝑡

𝑠

)
2ª®¬ (44)

≤ 𝑡−3
exp

(
−2𝑠

(
Δ̄2

(𝑖,𝑘) − 2Δ̄(𝑖,𝑘)

√︂
2 log 𝑡

𝑠

))
(45)

≤ 𝑡−3
for all 𝑡 > 𝑡0 . (46)

From the definition of a responsible arm, we have (40) as this condition needs to be satisfied in order for base arm (𝑖, 𝑘) to be responsible

at round 𝑡 . By definition of index𝑈 (𝑖, 𝑘) (𝑡) = min( 𝑗,ℓ) 𝑈 (𝑖,𝑘),( 𝑗,ℓ) , we get (41). Inequality (44) follows from Hoeffding’s inequality and the

term 𝑡 before the exponent in (44) arises as the random variable 𝑛 ( 𝑗,ℓ) (𝑡) can take values from 𝑠 to 𝑡 (Lemma 2). Inequality (46) follows from

the fact that 𝑠 > 𝑡
4𝐾𝐴

and Δ̄(𝑖,𝑘) ≥ 4

√︃
2𝐾𝐴 log 𝑡0

𝑡0
for some constant 𝑡0 > 0. □

Lemma 5. The probability that any base arm (𝑖, 𝑘) is responsible at round 𝑡 jointly with the event that it has been sampled for at least 𝑠 > 𝑡
𝐾𝐴

rounds till round 𝑡 is upper bounded as

Pr

(
resp(𝑖,𝑘) (𝑡), 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
≤ 𝑡−3 for 𝑠 >

𝑡

4𝐾𝐴
∀𝑡 > 𝑡0,

where 𝑡0 is the least integer larger than 2 that satisfies 𝑔−1 (Δ(𝑖,𝑘)min ) ≥ 4

√︃
2𝐾𝐴 log 𝑡0

𝑡0
.
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Proof.

Pr

(
resp(𝑖,𝑘) (𝑡), 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
≤ Pr

(
𝑈 (𝑖,𝑘) (𝑡) > 𝜇 (𝑖,𝑘) , 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
(47)

≤ Pr

(
𝜇 (𝑖,𝑘) (𝑡) +

√︄
2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)
> 𝜇 (𝑖,𝑘) , 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
(48)

= Pr

(
𝜇 (𝑖,𝑘) (𝑡) − 𝜇 (𝑖,𝑘) > 𝜇 (𝑖,𝑘) − 𝜇 (𝑖,𝑘) −

√︄
2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)
, 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
(49)

= Pr

(
𝜇 (𝑖,𝑘) (𝑡) − 𝜇 (𝑖,𝑘) > 𝑔−1 (Δ(𝑖,𝑘) ) −

√︄
2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)
, 𝑛 (𝑖,𝑘) (𝑡) ≥ 𝑠

)
(50)

≤ 𝑡 exp
©«−2𝑠

(
𝑔−1 (Δ(𝑖,𝑘)

min
) −

√︂
2 log 𝑡

𝑠

)
2ª®¬ (51)

≤ 𝑡−3
exp

(
−2𝑠

((
𝑔−1 (Δ(𝑖,𝑘)

min
)
)

2

− 2𝑔−1 (Δ(𝑖,𝑘)
min
)
√︂

2 log 𝑡

𝑠

))
(52)

≤ 𝑡−3
for all 𝑡 > 𝑡0 . (53)

From the definition of a responsible arm, we have (47) as this condition needs to be satisfied in order for base arm (𝑖, 𝑘) to be responsible at

round 𝑡 . By definition of index𝑈 (𝑖,𝑘) (𝑡) = min( 𝑗,ℓ) 𝑈 (𝑖,𝑘),( 𝑗,ℓ) , we get (48). Inequality (51) follows from Hoeffding’s inequality and the term 𝑡

before the exponent in (51) arises as the random variable 𝑛 (𝑖,𝑘) (𝑡) can take values from 𝑠 to 𝑡 (Lemma 2). Inequality (53) follows from the

fact that 𝑠 > 𝑡
4𝐾𝐴

and 𝑔−1

(
Δ
(𝑖,𝑘)
min

)
≥ 4

√︃
2𝐾𝐴 log 𝑡0

𝑡0
for some constant 𝑡0 > 0. □

Lemma 6. The probability that any base arm (𝑖, 𝑘) ∈ A × K is responsible for more than 𝑡
3𝐾𝐴

rounds up until round 𝑡 is upper bounded as,

Pr

(
𝑟 (𝑖,𝑘) (𝑡) >

𝑡

3𝐾𝐴

)
≤ 3𝐾𝐴

( 𝑡

3𝐾𝐴

)−2

∀𝑡 > 3𝐾𝐴𝑡0,

where 𝑡0 is the least integer larger than 2 that satisfies 𝑔−1 (Δ(𝑖,𝑘) ) ≥ 4

√︃
2𝐾𝐴 log 𝑡0

𝑡0
.

Proof.

Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴

)
= Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴
, 𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 𝑡

3𝐾𝐴

)
+ Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴
, 𝑟 (𝑖,𝑘) (𝑡 − 1) = 𝑡

3𝐾𝐴
− 1

)
(54)

≤ Pr

(
𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 𝑡

3𝐾𝐴

)
+ Pr

(
resp(𝑖,𝑘) (𝑡), 𝑟 (𝑖,𝑘) (𝑡 − 1) = 𝑡

3𝐾𝐴
− 1

)
(55)

≤ Pr

(
𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 𝑡

3𝐾𝐴

)
+ Pr

(
resp(𝑖,𝑘) (𝑡), 𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 𝑡

3𝐾𝐴
− 1

)
(56)

≤ Pr

(
𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 𝑡

3𝐾𝐴

)
+ (𝑡 − 1)−3, (57)

with (57) coming from Lemma 5. This gives us

Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴

)
− Pr

(
𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 𝑡

3𝐾𝐴

)
≤ (𝑡 − 1)−3, ∀(𝑡 − 1) > 𝑡0 .

Now consider the summation,

𝑡∑︁
𝜏= 𝑡

3𝐾𝐴

Pr

(
𝑟 (𝑖,𝑘) (𝜏) ≥

𝑡

3𝐾𝐴

)
− Pr

(
𝑟 (𝑖,𝑘) (𝜏 − 1) ≥ 𝑡

3𝐾𝐴

)
≤

𝑡∑︁
𝜏= 𝑡

3𝐾𝐴

(𝜏 − 1)−3 .

This gives us,

Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴

)
− Pr

(
𝑟 (𝑖,𝑘)

( 𝑡

3𝐾𝐴
− 1

)
≥ 𝑡

3𝐾𝐴

)
≤

𝑡∑︁
𝜏= 𝑡

3𝐾𝐴

(𝜏 − 1)−3 .
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Since Pr

(
𝑟 (𝑖,𝑘)

(
𝑡

3𝐾𝐴
− 1

)
≥ 𝑡

3𝐾𝐴

)
= 0, we have,

Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴

)
≤

𝑡∑︁
𝜏= 𝑡

3𝐾𝐴

(𝜏 − 1)−3
(58)

≤ 3𝐾𝐴

( 𝑡

3𝐾𝐴

)−2

∀𝑡 > 3𝐾𝐴𝑡0 . (59)

□

Lemma 7. The probability that the index𝑈 (𝑖,𝑘) (𝑡) for a base arm (𝑖, 𝑘) is smaller than the mean reward of base arm (𝑖, 𝑘) is upper bounded as

Pr(𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) ) ≤ 𝐾𝐴 × 𝑡−3 .

Moreover, the expected number of times𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) till round 𝑇 is upper bounded as

E
[
𝑛𝜇 (𝑖,𝑘 )>𝑈 (𝑖,𝑘 ) (𝑡 )

]
≤

𝑇∑︁
𝑡=1

𝐾𝐴𝑡−3,

which is O(1).

Proof.

Pr(𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) ) = Pr
©«
⋃
( 𝑗,ℓ)

𝑈 (𝑖,𝑘),( 𝑗,ℓ) < 𝜇 (𝑖,𝑘)
ª®¬ (60)

≤
∑︁
( 𝑗,ℓ)

Pr

(
ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) +

√︄
2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡 − 1) ≤ 𝜇 (𝑖,𝑘)

)
(61)

≤
∑︁
( 𝑗,ℓ)

Pr

(
ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) +

√︄
2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡)
≤ 𝜙 (𝑖,𝑘),( 𝑗,ℓ)

)
(62)

≤ (𝐾𝐴)𝑡−3 . (63)

Here, (60) comes from the definition of 𝑈 (𝑖,𝑘) = min( 𝑗,ℓ) 𝑈 (𝑖,𝑘),( 𝑗,ℓ) (𝑡). We get (61) from union bound and the definition of 𝑈 (𝑖,𝑘),( 𝑗,ℓ) (𝑡).
Inequality (62) arises as 𝜙 (𝑖,𝑘),( 𝑗,ℓ) upper bounds on conditional expectation. The last inequality arises due to Lemma 3.

Subsequently, E
[
𝑛𝜇 (𝑖,𝑘 )>𝑈 (𝑖,𝑘 ) (𝑡 )

]
=

∑𝑇
𝑡=1

Pr(𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) ), which provides the desired bound on E
[
𝑛𝜇 (𝑖,𝑘 )>𝑈 (𝑖,𝑘 ) (𝑡 )

]
.

□

Lemma 8. Let 𝑛𝜇>𝑈 (𝑡) denote the number of rounds in which 𝜇 (𝑖,𝑘) > 𝑈 (𝑖,𝑘) for some (𝑖, 𝑘) ∈ K × A. The probability of such rounds being
more than 𝑡

3
till round 𝑡 is upper bounded as,

Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

)
≤ 3(𝐾𝐴)2

( 𝑡
3

)−2

∀𝑡 .

Proof.

Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

)
= Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

, 𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+ Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

, 𝑛𝜇>𝑈 (𝑡 − 1) = 𝑡

3

− 1

)
(64)

≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+ Pr

(
𝜇 (𝑖,𝑘) ≥ 𝑈 (𝑖,𝑘) (𝑡) for some (𝑖, 𝑘), 𝑛𝜇>𝑈 (𝑡 − 1) = 𝑡

3

− 1

)
(65)

≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+

∑︁
(𝑖,𝑘)

Pr

(
𝜇 (𝑖,𝑘) ≥ 𝑈 (𝑖,𝑘) (𝑡), 𝑛𝜇>𝑈 (𝑡 − 1) = 𝑡

3

− 1

)
(66)

≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+

∑︁
(𝑖,𝑘)

Pr

(
𝜇 (𝑖,𝑘) ≥ 𝑈 (𝑖,𝑘) (𝑡)

)
(67)

≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+

∑︁
(𝑖,𝑘)

∑︁
( 𝑗,ℓ)

Pr

(
𝜇 (𝑖,𝑘) ≥ 𝑈 (𝑖,𝑘),( 𝑗,ℓ) (𝑡)

)
(68)
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≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+

∑︁
(𝑖,𝑘)

∑︁
( 𝑗,ℓ)

Pr(
(

ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) +
√︄

2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡 − 1) ≤ 𝜇 (𝑖,𝑘)

)
(69)

≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+

∑︁
(𝑖,𝑘)

∑︁
( 𝑗,ℓ)

Pr(
(

ˆ𝜙 (𝑖,𝑘),( 𝑗,ℓ) (𝑡) +
√︄

2 log 𝑡

𝑛 ( 𝑗,ℓ) (𝑡 − 1) ≤ 𝜙 (𝑖,𝑘),( 𝑗,ℓ)

)
(70)

≤ Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
+ (𝐾𝐴)2 (𝑡 − 1)−3 . (71)

The steps (67) to (71) follow through the arguments made in Lemma 7.

This gives us

Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

)
− Pr

(
𝑛𝜇>𝑈 (𝑡 − 1) ≥ 𝑡

3

)
≤ (𝐾𝐴)2 (𝑡 − 1)−3, ∀(𝑡 − 1) .

Now consider the summation,

𝑡∑︁
𝜏= 𝑡

3

Pr

(
𝑛𝜇>𝑈 (𝜏) ≥

𝑡

3

)
− Pr

(
𝑛𝜇>𝑈 (𝜏 − 1) ≥ 𝑡

3

)
≤

𝑡∑︁
𝜏= 𝑡

3

(𝐾𝐴)2 (𝜏 − 1)−3 .

This gives us,

Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

)
− Pr

(
𝑛𝜇>𝑈

( 𝑡
3

− 1

)
≥ 𝑡

3

)
≤

𝑡∑︁
𝜏= 𝑡

3

(𝐾𝐴)2 (𝜏 − 1)−3 .

Since Pr

(
𝑛𝜇>𝑈

(
𝑡
3
− 1

)
≥ 𝑡

3

)
= 0, we have,

Pr

(
𝑛𝜇>𝑈 (𝑡) ≥

𝑡

3

)
≤

𝑡∑︁
𝜏= 𝑡

3

(𝐾𝐴)2 (𝜏 − 1)−3
(72)

≤ 3(𝐾𝐴)2
( 𝑡

3

)−2

∀𝑡 . (73)

□

Lemma 9. The probability that a sub-optimal budget allocation is pulled for more than 𝑡
3
times till round 𝑡 is upper bounded as,

Pr

(
𝑇 sub-opt (𝑡) ≥ 𝑡

3

)
≤ 6(𝐾𝐴)2

( 𝑡

3𝐾𝐴

)−2

∀𝑡 > 3𝐾𝐴𝑡0,

with 𝑇 sub-opt (𝑡) denoting the number of sub-optimal budget allocations made till round 𝑡 .

Proof. From Claim 1, the number of sub-optimal rounds, denoted by 𝑇 sub-opt
can be written as the union of the rounds with at-least one

responsible arm and the rounds in which 𝜇 (𝑖,𝑘) > 𝑈 (𝑖,𝑘) for some (𝑖, 𝑘). This can be be upper bounded as follows using the union bound,

𝑇 sub-opt ≤
∑︁
𝑗

𝑟 (𝑘,𝑎) (𝑡) + 𝑛𝜇>𝑈 (74)

Furthermore, the probability that 𝑇 sub-opt (𝑡) ≥ 𝑡
3
can be upper bounded as

Pr

(
𝑇 sub-opt ≥ 𝑡

3

)
≤

∑︁
(𝑖,𝑘)

Pr

(
𝑟 (𝑖,𝑘) (𝑡) ≥

𝑡

3𝐾𝐴

)
+ Pr

(
𝑛𝜇>𝑈 ≥

𝑡

3

)
(75)

This follows through the argument that at least one of these events need to occur for the number of sub-optimal rounds to be at-least 𝑇 /3.
The two probabilities are upper bounded by 3𝐾𝐴

(
𝑡

3𝐾𝐴

)−2

and 3(𝐾𝐴)2
(
𝑡
3

)−2 ∀𝑡 ≥ 3𝐾𝐴𝑡0 through Lemma 7, 8 respectively. As a result,

Pr

(
𝑇 sub-opt ≥ 𝑡

3

)
≤ 3(𝐾𝐴)2

( 𝑡

3𝐾𝐴

)−2

+ 3(𝐾𝐴)2
( 𝑡

3

)−2

∀𝑡 ≥ 3𝐾𝐴𝑡0 . (76)

□

Lemma 10. The expected number of times a non-competitive base arm (𝑖, 𝑘) is responsible up until round 𝑇 is upper bounded as

E
[
𝑟 (𝑘,𝑎) (𝑇 )

]
≤ 3𝐾𝐴𝑡0 +

𝑇∑︁
𝑡=3𝐾𝐴𝑡0

𝑡−3 + 6(𝐾𝐴)2
( 𝑡

3𝐾𝐴

)−2

(77)

= O(1) . (78)
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Proof.

E
[
𝑟 (𝑖,𝑘) (𝑡)

]
=

𝑇∑︁
𝑡=1

Pr

(
resp(𝑖,𝑘) (𝑡),𝑇 sub-opt (𝑡) ≤ 𝑡

3

)
+ Pr

(
resp(𝑖,𝑘) (𝑡),𝑇 sub-opt (𝑡) ≥ 𝑡

3

)
(79)

≤
𝑇∑︁
𝑡=1

Pr

(
resp(𝑖,𝑘) (𝑡),𝑇 opt (𝑡) ≥ 2𝑡

3

)
+ Pr

(
𝑇 sub-opt (𝑡) ≥ 𝑡

3

)
(80)

≤
𝑇∑︁
𝑡=1

Pr

(
resp(𝑖,𝑘) (𝑡), 𝑛 ( 𝑗,ℓ) ≥

2𝑡

3

)
+ Pr

(
𝑇 sub-opt (𝑡) ≥ 𝑡

3

)
, ( 𝑗, ℓ) ∈ S∗ (81)

≤ 3𝐾𝐴𝑡0 +
𝑇∑︁

𝑡=3𝐾𝐴𝑡0

𝑡−3 + 6(𝐾𝐴)2
( 𝑡

3𝐾𝐴

)−2

(82)

≤ 3𝐾𝐴𝑡0 + 2 + 6(𝐾𝐴)3 (83)

= O(1) (84)

Here, (82) follows from Lemma 9 and Lemma 4.

□

E BOUNDING CONTRIBUTION OF COMPETITIVE BASE ARMS
Lemma 11 (Contribution of competitive base arms). The expected number of times a competitive base arm (𝑖, 𝑘) is responsible up until

round 𝑇 is upper bounded as

E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
≤ 8 log𝑇(

𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+ 2 (85)

= O(log𝑇 ). (86)

Proof.

E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
= E

[
𝑇∑︁
𝑡=1

1
base arm (i,k) is responsible at round t

]
(87)

≤ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+

𝑇∑︁
𝑡=1

E

1base arm (i,k) is responsible at round t, 𝑟 (𝑖,𝑘 ) (𝑡 ) ≥ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘 )
min

))
2

 (88)

=
8 log𝑇(

𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+

𝑇∑︁
𝑡=1

Pr

©«resp(𝑖,𝑘) (𝑡), 𝑟 (𝑘,𝑎) (𝑡 − 1) ≥ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2

ª®®¬ (89)

≤ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+

𝑇∑︁
𝑡=1

Pr

©«𝑈 (𝑖,𝑘) (𝑡) ≥ 𝜇 (𝑖,𝑘) , 𝑟 (𝑘,𝑎) (𝑡 − 1) ≥ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2

ª®®¬ (90)

≤ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+

𝑇∑︁
𝑡=1

Pr

©«𝜇 (𝑖,𝑘) (𝑡) ≥ 𝜇 (𝑖,𝑘) −
√︄

2 log 𝑡

𝑛 (𝑖,𝑘) (𝑡)
, 𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 8 log𝑇(

𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2

ª®®¬ (91)

≤ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2
+

𝑇∑︁
𝑡=1

Pr

©«𝜇 (𝑖,𝑘) (𝑡) ≥ 𝜇 (𝑖,𝑘) +
𝑔−1 (Δ(𝑖,𝑘)

min
)

2

, 𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 8 log𝑇(
𝑔−1

(
Δ
(𝑖,𝑘)
min

))
2

ª®®¬ (92)

≤ 8 log𝑇(
𝑔−1

(
Δ
(𝑘,𝑎)
min

))
2
+

𝑇∑︁
𝑡=1

𝑡−2
(93)

≤ 8 log𝑇(
𝑔−1

(
Δ
(𝑘,𝑎)
min

))
2
+ 2 (94)

= O(log𝑇 ) (95)
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□

This proof closely follows the analysis of O(log𝑇 ) regret bound under the UCB algorithm for classical multi-armed bandits [24]. Here,

(92) follows from the fact that 𝑟 (𝑖,𝑘) (𝑡 − 1) ≥ 8 log𝑇(
𝑔−1

(
Δ(𝑖,𝑘 )
min

))
2
implies that 𝑛 (𝑖,𝑘) (𝑡) ≥

8 log𝑇(
𝑔−1

(
Δ(𝑖,𝑘 )
min

))
2
. The inequality (93) then follows them the

Hoeffding’s inequality yielding the desired bound on E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
for competitive base arms.

F PROOF OF THEOREM 1
By Claim 1, if a sub-optimal super arm allocation was played, it implies that either𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) for some (𝑖, 𝑘) ∈ K × A or at least one

of the base arms in 𝑺𝒕 was responsible. Therefore the expected number of rounds in which a sub-optimal allocation was played (referred to

as bad rounds) can be upper bounded by

E[Bad rounds(𝑇 )] ≤
∑︁

(𝑖,𝑘) ∈K×A
E[𝑟 (𝑖,𝑘) (𝑇 )]

+
∑︁

(𝑖,𝑘) ∈K×A
E[𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 )], (96)

with 𝑟 (𝑖,𝑘) (𝑇 ) denoting the number of times base arm (𝑖, 𝑘) is responsible up until round 𝑇 and 𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 ) representing the number

of rounds in which𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) till round 𝑇 . This inequality arises as a result of union bound and linearity of expectation. Moreover,

whenever arm (𝑖, 𝑘) is responsible in round 𝑡 , the regret incurred in that round can be upper bounded by by Δ
(𝑖,𝑘)
max

(by definition of Δ
(𝑖,𝑘)
max

in

Lemma 1). In scenarios where,𝑈 (𝑖,𝑘) (𝑡) < 𝜇 (𝑖,𝑘) , the regret incurred in that round can be upper bounded by Δmax (by definition of Δmax in

Lemma 1). Using this observation, we can now bound regret as

E[Reg(𝑇 )] ≤
∑︁

(𝑖,𝑘) ∈K×A
E[𝑟 (𝑖,𝑘) (𝑇 )] × Δ

(𝑖,𝑘)
max

+
∑︁

(𝑖,𝑘) ∈K×A
E[𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 )] × Δmax . (97)

This can further be broken down by separating the E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
term for competitive and non-competitive base arms. As a result,

E[Reg(𝑇 )] ≤
∑︁
(𝑖,𝑘) ∈C

E[𝑟 (𝑖,𝑘) (𝑇 )] × Δ
(𝑖,𝑘)
max
+

∑︁
(𝑖,𝑘) ∈(K×A)\C

E[𝑟 (𝑖,𝑘) (𝑇 )] × Δ
(𝑖,𝑘)
max
+

∑︁
(𝑖,𝑘) ∈K×A

E[𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 )] × Δmax . (98)

Using results from Lemma 9, 10 we have E
[
𝑟 (𝑖,𝑘) (𝑇 )

]
for competitive and non-competitive base arms. Moreover from Lemma 8, we have

the bound on E[𝑛𝑈 (𝑖,𝑘 )<𝜇 (𝑖,𝑘 ) (𝑇 )]. Putting these together gives us the desired regret upper bounds for our proposed algorithm.
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