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ABSTRACT
Since most data generated by modern applications is stored in the

cloud, there is an exponential growth in the volume of jobs to access

these data and perform computations using them. The volume of

data access or computing jobs can be heterogeneous across differ-

ent files stored in the cloud and can unpredictably change over

time. Cloud service providers cope with this demand heterogeneity

and unpredictability by over-provisioning the number of servers

hosting each job type. In this paper, we propose the addition of

erasure-coded servers that can flexibly serve multiple job types

without additional storage cost. We analyze the service capacity

region and the response time of such erasure-coded systems and

compare them with standard uncoded replication-based systems

currently used in the cloud. We show that coding expands the ser-

vice capacity region, thus enabling the system to handle variability

in demand for different data types. Moreover, we characterize the

response time of the coded system in various arrival rate regimes.

This analysis reveals that adding even a small number of coded

servers can significantly reduce the mean response time, with a

drastic reduction in regimes where the demand is skewed across

different job types.
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1 INTRODUCTION
Modern-day cloud computing systems are used for various big-data

applications such as performing machine learning (ML) inference

tasks [8], hosting large files for web services [21], computing the

PageRank of web graphs [19], and other data-intensive computa-

tions. Since these jobs require access to the specific data stored

on the cloud server(s), each server is dedicated to one job type de-

pending on the availability of data and high-performance hardware

required for it. Therefore, the massive volume of users performing

such cloud computing jobs have to contend for the server(s) storing

data relevant to their job. For example, an ML inference system
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may store one trained model on each server, users that need to

perform inference using that model are directed to that server. Or a

cloud storage system hosting files for NetFlix might use each server

to store one movie, and users requesting that movie are assigned

to that server. Therefore, the massive volume of users performing

different cloud computing jobs have to contend for the server(s)

storing data relevant to their job.

The user traffic for different job types can vary due to diurnal

variations or unpredictable demand fluctuations. These traffic vari-

ations often exhibit a negative correlation, i.e., if one job type is

experiencing high traffic, another job type experiences low traffic.

For example, in an ML inference system hosting different special-

ized models to process pictures captured by users, the inference

traffic for each model can vary periodically depending on the time

zone of the users accessing them. Such computing and inference

jobs are latency-sensitive. Thus, a larger number of servers needs

to be allocated to job types experiencing high traffic to satisfy the

latency requirements of those users. The ideal solution for such

situations is to enable dynamic allocation of servers where the

number of servers provided to a job type depends on its current

traffic. However, the servers often host large files (for example,

the size of the Google Web crawler is over 10 million GB) and

have specialized computing hardware. Dynamically reconfiguring

a server for a different job type would require the movement of

large amounts of data and may even be possible due to hardware

constraints. Hence, there is a critical need to design multi-access

computing systems resilient to traffic variations that do not require

dynamic reconfiguration of servers.

One standard solution to handle traffic variations is to over-

provision the number of servers dedicated to various job types

to meet their peak demand. Overprovisioning can be achieved by

adding replicas of servers dedicated to a job type [7, 23] in pro-

portion to the maximum historical demand for that job type over

a large enough time horizon. While over-provisioning can meet

latency requirements under traffic variations, it comes at the cost

of severe underutilization of expensive computing resources and a

massive energy footprint. Another solution is to supplement job-

type-specific servers with flexible general servers that can serve

more than one job type. However, adding such servers can be ex-

pensive because they need access to data, memory, and computing

capabilities relevant to multiple job types. One such model was

studied by Tsitsiklis and Xu in [24] which showed that the addition

of a small number of flexible servers could give a dramatic reduction

in the queueing delay.

While the solutions mentioned above provide some robustness

to variations in traffic, none of them considers the correlation be-

tween traffic for various job types. For negatively correlated arrival
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rates, the overall traffic in the system varies slowly over time, even

though individual jobs may experience significant changes. A novel

approach that is especially well-suited for such skewed traffic pat-

terns was proposed in [1, 2], where they supplement replicas of the

servers of each type by a set of erasure coded servers. When a job is

sent to an erasure-coded server, the output is a linear combination

of the outputs of two or more of the regular (uncoded) servers. For

example, in a matrix computation task where job type 1 (or type 2)

seeks to compute the product 𝑨𝒙 (or 𝑩𝒙) of an incoming vector 𝒙
with the matrix 𝑨 (or 𝑩) stored at a server, a coded server can store

𝑨 + 𝑩 such that its output is 𝑨𝒙 + 𝑩𝒙 . Thus, a type 1 job can be

served and its output 𝑨𝒙 can be obtained using an uncoded server

storing 𝑩 and a coded server storing 𝑨 + 𝑩. Using this property,

erasure-coded servers can serve multiple job types when combined

with regular servers. Furthermore, unlike the flexible servers pro-

posed in [24], the coded servers do not require extra resources such

as larger memory and specialized hardware. For various encoding

schemes, [1, 2] showed an improvement in the service capacity

region of the system, the set of arrival rates for which the system

is stable. The addition of coded servers significantly expands the

service capacity region, especially in regions where the traffic for

different job types is negatively correlated.

1.1 Main Contributions
While [1, 2] proposed the idea of using coded servers to handle

traffic variations and showed an expansion of the service capacity

region, these works did not analyze the impact of coded servers

on other performance metrics such as mean response time or tail

latency. Since a coded server has to be used with one or more other

servers, coding can increase the system load and result in a higher

response time in some traffic regimes. However, this effect on the

mean response time is not yet well-understood.

In this paper, we build upon the model provided in [1, 2] and

generalize it to consider ≥ 2 job types and an arbitrary allocation

of servers to each job type and the coded servers. We compare the

coded system with an uncoded system with the same total number

of servers and corroborate the insight that the coded system signif-

icantly improves the system’s stability by increasing the volume of

the service capacity region. In addition, we characterize the mean

response times of the coded and uncoded systems in several traffic

regimes. We show that for a large number of servers, our coded

system has a comparable or significantly smaller mean response

time in most traffic regimes. The reduction in mean response time

is prominent when the traffic of various job types is heavy and

skewed, i.e., some job types are experiencing significantly higher

traffic than other job types. The only regime where the uncoded

system is better is when all job types simultaneously have high

traffic, which is unlikely to occur in practical applications. Thus,

we show our coded system can better handle heterogeneous traffic

for different job types, and it improves the stability as well as the

latency of multi-access systems.

1.2 Related Work
Improving the latency of multi-access cloud systems has been ex-

tensively studied in the literature. In the context of storage systems,

it has been studied in the caching literature [4, 17, 20, 27], where

the number and location of replicas are dynamically adjusted. This

paper focuses on data-intensive computing and storage tasks where

such dynamic reconfiguration is not feasible.

Another way to tackle the problem is to use replication, as done

in MapReduce [9] and Hadoop [21]. More generally, several liter-

atures proposed the usage of coded storage systems to improve

latency. Chen et al. in [6] considered general servers using (𝑛, 𝑘)
error correction codes in content replication systems and showed

delay optimality for 𝑘 ≥ 1. Li et al. in [16] considered general

servers partitioned to store chunks of coded files encoded using

MDS code and showed that coding strictly improves over replica-

tion. Erasure codes for fast content downloading have been studied

in [13, 14]. Comparison of various coding schemes for delay re-

duction was studied in [3, 12, 25]. Various scheduling algorithms

were also proposed to minimize the system’s latency. A comparison

between replication-based schedulers and traditional schedulers in

a distributed storage system is studied in [7]. Delay optimal sched-

uling in the centralized and decentralized replication-based system

is studied in [23].

The above works use coding mainly for straggler mitigation,

where a job is divided into many parallel tasks and waiting for the

slowest task is the bottleneck. Coding introduces redundancy into

the job to reduce the effect of stragglers. In contrast, we use coding

to handle skewed traffic of different job types.

2 PROBLEM FORMULATION
We consider a multi-access cloud system consisting of 𝑛 servers

that are used to provide service to 𝑘 types of jobs. Jobs of each type 𝑖

arrive into the system according to a Poisson process. We assume

that the traffic variation happens at a slower time-scale such that

the system reaches a steady state before the traffic pattern changes.

Therefore, it suffices to consider the setting where type 𝑖 jobs have a

constant arrival rate 𝜆𝑖 . The service times of 𝑛 servers are unit-rate

exponential random variables and are i.i.d. across servers and the

jobs assigned to the server.

Uncoded System. Inmost current implementations, the𝑛 servers

are divided into 𝑘 disjoint subsets 𝑺𝑖 , 𝑖 = 1, 2, . . . , 𝑘, each consist-

ing of |𝑺𝑖 | = 𝑛𝑖 = 𝛼𝑖𝑛 servers for fractions 0 < 𝛼𝑖 < 1 such that∑𝑘
𝑖=1 𝛼𝑖 = 1. The fraction 𝛼𝑖 of servers dedicated to type 𝑖 jobs

is a hyperparameter that can be set by the system designer. For

example, 𝛼𝑖 can be set to as proportional to the long-term average

of past values of the arrival rate 𝜆𝑖 . Since future arrival rates are

not known beforehand or they may vary with time, the number of

servers dedicated to each job type may not be sufficient to satisfy its

arrival rate. Dynamically re-configuring a server to serve a different

job type is expensive and slow in cloud systems, because it involves

the movement of large amounts of data. Thus, we consider that the

server types are fixed beforehand and cannot be modified on the

fly, that is, type 𝑖 systematic servers cannot be quickly reconfigured

to serve jobs of type 𝑗 for 𝑗 ≠ 𝑖 .

Coded System. In this paper, we consider a more generalized

setup where out of 𝑛 servers, we reserve a set 𝑺
coded

of 𝑛
coded

≜
|𝑺
coded

| servers to host erasure coded versions of the job types. The

remaining 𝑛 − 𝑛
coded

systematic servers are split across the 𝑘 job-

types such that 𝛼𝑖 (𝑛 − 𝑛
coded

) servers are the systematic set 𝑺𝑖 of
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Figure 1: An example of a multi-access computing system
hosting two matrices 𝑨 and 𝑩, and consisting of 𝑛 unit-rate
servers, out of which 𝑛coded are coded servers. The value
written inside each server is the matrix that is stored in
the server. Tasks corresponding to 𝐴 is represented by blue
squares, while the one for 𝐵 is shown using orange squares.
Different line types represents different ways in which a job
can be served.

job type 𝑖 , with 0 < 𝛼𝑖 < 1 for all 𝑖 = 1, . . . , 𝑘 and

∑𝑘
𝑖=1 𝛼𝑖 = 1. We

illustrate this server assignment for the 𝑘 = 2 case in Fig. 1.

Erasure codes [10] were originally developed in communication

systems to add redundancy to transmitted messages in order to

provide resilience against noise in the communication channel. In

this paper, we employ them for a new purpose – to handle skews in

the arrival rate of various job types. When the arrival rate 𝜆𝑖 of type

𝑖 jobs exceeds the cumulative service rate of the type 𝑖 systematic

servers, the excess arrivals can be served using combination of the

coded servers and systematic servers of type(s) 𝑗 ≠ 𝑖 . To illustrate

the benefit of coded servers, we first give two concrete examples of

erasure coded systems for 𝑘 = 2 job types. Then we describe the

proposed coded system for general 𝑘 .

Example 1. (Coded storage system) Consider an online storage

platform with two video files,𝑉1 and𝑉2 of equal size, and 3 servers

that can host one file each. Consider that the servers store 𝑉1,𝑉2
and (𝑉1⊕𝑉2) respectively, where (𝑉1⊕𝑉2) is the bit-wise XOR of𝑉1
and𝑉2. Note that the data-size stored on the coded server (𝑉1 ⊕𝑉2)
is the same as the file size 𝑉1 and 𝑉2. The jobs of type 1 and 2 are

download requests for files 𝑉1 and 𝑉2. A type 1 job can served in

two ways: 1) it can be sent to the systematic server storing 𝑉1, or

2) it can be sent to the systematic server storing 𝑉2 and the coded

server storing (𝑉1 ⊕ 𝑉2), and after downloading these two files, 𝑉1
can be recovered by taking their bit-wise XOR, (𝑉1 ⊕𝑉2) ⊕𝑉2 = 𝑉1.

Thus, if the server storing 𝑉1 cannot meet the demand for file 𝑉1,

the excess requests can be served using 𝑉2 and (𝑉1 ⊕ 𝑉2).

To design more general coded storage systems with more than

two files and more than one coded server, the files can be repre-

sented in a higher alphabet size than bits which will allow more

flexible linear combinations. Such erasure coding of files is cur-

rently used in commercial cloud storage systems such as RAID [5]

for the purpose of resilience against disk failures.

Besides coded storage systems where the jobs represent down-

load requests, erasure coding can be applied to computing systems,

as illustrated in Example 2 below.

Example 2. (Coded computing system) Consider a online com-

puting system, where a computing job seeks to find the product

of an input vector 𝒙 with the matrix 𝑨 (or 𝑩). Such jobs are com-

mon in machine learning inference systems, where the vector 𝒙
is an inference query and the matrix-vector product 𝑨𝒙 (or 𝑩𝒙) is
the predicted output of a linear model. Suppose we have a system

consisting of 5 servers, where each server stores one of two large

matrices 𝑨 and 𝑩, or their linear combination. Consider that the

5 servers store 𝑨,𝑩, (𝑨 + 𝑩), (𝑨 − 𝑩), and (𝑨 + 2𝑩), respectively.
Given an input vector 𝒙 , the server multiplies the vector with the

stored matrix and outputs the matrix-vector product. A type 1 job

that seeks to find the product 𝐴𝒙 can be served in the following

ways: 1) sending the job to the server storing 𝑨, 2) sending the

job to any two of the three coded servers (𝑨 + 𝑩), (𝑨 − 𝑩) and
(𝑨+2𝑩) and obtain𝑨𝒙 by taking a linear combination of the result-

ing matrix-vector products, or 3) sending the job to the systematic

server storing 𝑩 and any one of the three coded servers, and solving

for 𝑨𝒙 from the resulting matrix-vector products.

Since erasure codes are inherently linear, the coded computing

framework described above can be directly applied only to linear

computations such as matrix-vector multiplication. However, some

recent research in coding theory is designing ways to apply erasure

codes to non-linear computations [15, 18] such as kernel meth-

ods and neural networks. The queueing and scheduling insights

presented in this paper can be extended to the non-linear coded

computing frameworks proposed in these works.

Maximum-Distance Separable Codes andRecovery Sets. The
examples shown above considered just 2 types of jobs. More gener-

ally, when there are𝑘 types of jobs, we propose a codedmulti-access

system that employs a class of erasure codes called maximum-
distance-separable (MDS) codes. MDS codes are often used in dis-

tributed storage systems to provide resilience against disk failures. If

there are 𝑘 files that need to be stored on 𝑙 disks, an (𝑙, 𝑘) MDS code

constructs 𝑙 independent linear combinations of the 𝑘 files such that

a file 𝑖 can be recovered from any set of 𝑘 coded files. A commonly

used MDS code is the Reed-Solomon code, which constructs the

linear combinations by evaluating a 𝑘 − 1-th degree polynomial

at 𝑙 points. A special case of an (𝑙, 𝑘) MDS code is the systematic
MDS code, where 𝑘 of the 𝑙 combinations are uncoded copies of

the 𝑘 files, and the remaining 𝑙 − 𝑘 are other independent linear

combinations. In our coded multi-access cloud system, we consider

such a systematic MDS code. We have |𝑺𝑖 | = 𝛼𝑖 (𝑛 − 𝑛
coded

) servers
storing uncoded copies of each job type 𝑖 and 𝑛

coded
independent

linear combinations of the 𝑘 job types.

In our MDS coded system, we can serve a type 𝑖 job using one of

the following options: 1) one of the systematic servers from set 𝑺𝑖 ,
2) any 𝑘 coded combinations from the set 𝑺

coded
of coded servers,

or 3) 𝑘1 coded servers and 𝑘 − 𝑘1 distinct systematic servers from

the sets 𝑺 𝑗 , where 𝑗 ∈ {1, 2, · · · , 𝑘}\{𝑖} and for some integer 𝑘1 such

that 1 ≤ 𝑘1 < 𝑘 . We denote the union of all these possible subsets of

servers that can serve a type 𝑖 job by 𝑹𝑖 , and refer to it as the set of
recovery sets. The size |𝑹𝑖 | is the number of possible recovery sets for

job type 𝑖 , and 𝑹𝑖 𝑗 denotes the set of servers corresponding to the
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𝑗-th recovery set, for 𝑗 = 1, . . . , |𝑹𝑖 |. For instance, in Example 1, the

set of recovery sets for the file 𝑉1 is 𝑹1 = {{1}, {2, 3}}, consisting
of the two possible combinations that can be used to recover 𝑉1.

Queueing model. Next, we describe the queueing model for

our system, which is also illustrated in Fig. 1. We consider a first-

come-first-served (FCFS) queue at each server. When a type 𝑖 job

arrives, it needs to be assigned to a recovery set in 𝑹𝑖 immediately.

Specifically, if the chosen set consists of a single systematic server

of type 𝑖 , then the job needs to receive service from that systematic

server, and thus we say that the job consists of one task. If the chosen
set contains (𝑘 − 𝑘1) systematic servers and 𝑘1 coded servers for

some 𝑘1 ≥ 0, then the job needs to receive service from all the 𝑘

servers, and thus we say that the job consists of 𝑘 tasks. This service
model induces the following queueing dynamics: when a job arrives,

we send a task to the queue at each server in the chosen set in 𝑹𝑖 .
The job is completed when all of its tasks are completed. We call

the policy that determines which recovery set to assign to each

arriving job as the routing policy.

PerformanceMetrics. Since the coded system provides the flex-

ibility of having multiple ways of serving a job, it improves load

balancing. However, this flexibility comes at the cost of redun-

dancy because to serve a job using a coded combination, we need

responses from 𝑘 servers. To compare the coded and uncoded sys-

tems in terms of flexibility vs redundancy trade-off, we use two

performance metrics: (1) the service capacity region, the set of

arrival rate vectors for which the system is stable, and (2) mean

response time of jobs. We define these metrics formally below.

Definition 1 (Service Capacity Region). The service capacity region
of a multi-access cloud system, denoted by Λ, is the region such that
for any arrival rate vector 𝝀 = (𝜆1, · · · , 𝜆𝑘 ) in the interior of the
region, there exists a routing policy under which

lim

𝑐→∞
lim

𝑡→∞
P (Number of jobs in the system at time 𝑡 > 𝑐) = 0. (1)

The service capacity region consists of all supportable through-

put. Therefore, it is a notion independent of policies, and it measures

the fundamental limit of the system.

Definition 2 (Mean Response time). The response time𝑇 of a job is
the total time that a job spends in the system from its arrival until all
its tasks are completed. If the system is stable, then themean response

time of the system, denoted by E [𝑇 ], is defined as follows when the
limit on the right-hand-side exists with probability 1:

E [𝑇 ] = lim

𝑚→∞
1

𝑚

𝑚∑
𝑗=1

𝑇𝑗 . (2)

where 𝑇𝑗 denotes the response time of the 𝑗-th job that departs from
the system. For an unstable system, we define the mean response time
E [𝑇 ] to be ∞.

The mean response time is a performance metric specific to the

routing policy. In this paper, we consider probabilistic job routing

policies. In particular, for any 𝑹𝑖 , we fix a probability vector 𝒑𝑖 of
length |𝑹𝑖 |, and any incoming job of type 𝑖 is assigned to 𝑹𝑖 𝑗 with
probability 𝑝𝑖 𝑗 , the 𝑗-th element of 𝒑𝑖 . Then, the total arrival rate
of type-𝑖 job to the set 𝑹𝑖 𝑗 is given by 𝜆𝑖 𝑗 = 𝜆𝑖𝑝𝑖 𝑗 .

When comparing the mean response times of the coded and

uncoded systems, we compare the best achievable performances by

considering the optimal probabilistic routing policy that minimizes

the mean response time. For example, for the uncoded system, the

optimal routing policy corresponds to sending a job of type 𝑖 to

one of the systematic servers of type 𝑖 chosen uniformly at random.

Obtaining the optimal routing policy for the coded system can be

difficult. We provide some routing policies that perform well, both

theoretically and practically in Section 4 and Section 5.

For the analysis of the mean response time of the coded and

uncoded system, we assume that the number of coded servers

is 𝑛
coded

= 𝑜 (𝑛). The case of 𝑛
coded

= Θ(𝑛) is both feasible and

interesting. However, the comparison of the mean response times of

the uncoded and coded systems becomes intractable in this regime.

That is why we focus on the 𝑛
coded

= 𝑜 (𝑛) for the response time

characterization presented in Section 4. However, we provide some

insights for on the 𝑛
coded

= Θ(𝑛) regime in our simulations in

Section 5.

We also assume that 𝜆𝑖 = Θ(𝑛) for all 𝑖 . We believe that this is a

mild assumption because the traffic experienced by a job is usually

proportional to the servers allocated to the job type.

Organization of the paper. In Section 3, we analyze the service
capacity region of the coded and uncoded system. Section 4 compare

the mean response times of the coded and uncoded system. In

Section 5.1, we present simulation results that corroborate our

theoretical result given in Theorem 2 for a fixed arrival rate vector.

In Section 5.2, we provide simulations with variable arrival rate

vectors and show how negative correlation in traffic benefits the

coded system. Finally, in Section 6 we provide a conclusion and

directions for future work.

3 SERVICE CAPACITY REGION
The service capacity region is the set of job arrival rates for which

the system is stable, that is, the cumulative arrival rate to any server

does not exceed its service rate, as defined in Definition 1. Lemma 1

and Theorem 1 below provide the service capacity regions for the

uncoded and coded multi-access cloud systems. We show that the

service capacity region of the coded system is significantly larger

than that of the uncoded system.

Lemma 1 (Uncoded Service Capacity Region). Consider an uncoded
multi-access cloud system consisting of 𝑛 servers and 𝑘 job types, with
|𝑺𝑖 | = 𝛼𝑖𝑛 servers allocated to job type 𝑖 . Then, the service capacity
region is the set

Λuncoded = {(𝜆1, . . . , 𝜆𝑘 ) : 0 ≤ 𝜆𝑖 ≤ 𝛼𝑖𝑛,∀𝑖 ∈ {1, . . . , 𝑘}} . (3)

The service capacity region of the uncoded system is the hyper-

cuboid of size 𝑘 and length of the 𝑖-th side being 𝛼𝑖𝑛. This comes

from the fact that the total service capacity of systematic servers

of type 𝑖 is 𝛼𝑖𝑛. The orange region in Fig. 2 illustrates the service

capacity region of the uncoded system for 𝑘 = 2, 3.

Next, we characterize the service capacity region of the coded

system in Theorem 1. We first characterize the service capacity

region of the coded system using (4). However, for any vector 𝝀, it
is difficult to verify whether 𝝀 satisfies (4) or not. Hence, we provide

a simpler characterization via (5) that is necessary and sufficient

condition for an arrival rate to be stabilizable.
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a 𝑘 = 2. b 𝑘 = 3.
Uncoded Coded

Figure 2: Service Capacity region of our system for 𝑘 = 2, 3.
The blue region represents the service capacity region for
the coded system, and the orange one shows the service ca-
pacity region for the uncoded system. The service capacity
region of the coded system expands in regimes where the
traffic is skewed. However, it loses some area when all job
types have similar and high arrival rates.

Theorem 1 (Coded Service Capacity Region). Consider a coded
multi-access cloud system consisting of 𝑛 servers and 𝑘 job types. Let
𝑹𝑖 𝑗 be the 𝑗-th element of 𝑹𝑖 , the set of recovery sets of type 𝑖 . Then,
the service capacity region is the set

Λcoded =

{
(𝜆1, . . . , 𝜆𝑘 ) : ∃𝜆𝑖 𝑗 ≥ 0, s.t. 𝜆𝑖 =

|𝑹𝑖 |∑
𝑗=1

𝜆𝑖 𝑗 ,∀𝑖 ∈ {1, . . . , 𝑘},

𝑘∑
𝑖=1

∑
𝑗 :ℓ∈𝑹𝑖 𝑗

𝜆𝑖 𝑗 ≤ 1,∀ℓ ∈ {1, . . . , 𝑛}
}

(4)

Let 𝑟𝑖 denote the residual capacity for type 𝑖 jobs, given as 𝑟𝑖 ≜ 𝛼𝑖 (𝑛−
𝑛coded) − 𝜆𝑖 . Also define 𝑟+

𝑖
≜ max{𝑟𝑖 , 0}, and 𝑟−

𝑖
≜ −min{𝑟𝑖 , 0}.

Without loss of generality, assume that 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑘 . Then, an
arrival rate vector (𝜆1, . . . , 𝜆𝑘 ) ∈ Λcoded if and only if

min

𝑘0∈{1,...,𝑘 }

{
𝑛coded +

∑𝑘0
𝑖=1

𝑟+
𝑖

𝑘0

}
≥

𝑘∑
𝑖=1

𝑟−𝑖 . (5)

The proof sketch of Theorem 1 is given in Section 3.1 below, and

the complete proof is given in the Appendix B.

For the special case of 𝑘 = 2 and 3, the blue regions in Fig. 2

illustrate the service capacity region of the coded system. The

service capacity region for 𝑘 = 2 was previously derived in [1, 2]

and is also included in Appendix B. However, [1, 2] did not consider

the general case when the number of job types 𝑘 > 2.

From Fig. 2a, observe that there is an expansion in the service

capacity region in the top-left and bottom-right areas, the regions

where the traffic is heavy and skewed. The routing policy reduces

the traffic in the higher loaded systematic servers by redirecting

some of their load to the coded servers and less loaded systematic

servers. The induced load balancing then allows the traffic of a job

type to extend beyond the capacity of its systematic servers, leading

to an expansion in the service capacity region.

However, the coded system loses a portion of the service capac-

ity region in the top right corner, where the traffic is heavy but

not skewed. In this region, the traffic of all job types is usually

greater than the total capacity of their systematic servers, hence

the systematic servers are not enough on their own to serve all job

types. In addition, the coded servers add a significant amount of

redundancy which further increases the traffic, effectively making

it unstable.

For 𝑘 = 2, the total area of the regions gained isΘ(𝑛𝑛
coded

) since
the maximum possible arrival rate of a job of type 𝑖 can increase by

Θ(𝑛
coded

). Likewise, the area of lost region is Θ((𝑛
coded

)2) which
makes the total area of service capacity region in the coded sys-

tem to be

(
𝛼1𝛼2𝑛

2 + Θ(𝑛𝑛
coded

) − Θ((𝑛
coded

)2)
)
. If the number of

coded servers is small, i.e., 𝑛
coded

= 𝑜 (𝑛), then there is an effective

gain in the service capacity region for the coded system.

3.1 Proof Sketch of Theorem 1
The proof of Theorem 1 contains two parts, the proofs of (4) and

(5), and both follow a similar pattern. We first prove that if any

arrival rate vector satisfies the property (the requirement in (4) or

(5)), there is a way to stabilize the system. We then prove that if the

property is not satisfied, no policy can stabilize the system.

We first present the exact proof of (4) and then the proof sketch

of (5). The detailed proof of (5) is provided in Appendix B.

Proof of equation (4). We first prove that if any arrival rate

vector 𝝀 satisfies (4), then there exists a way to stabilize the system.

By the definition of the set Λ
coded

given in Theorem 1, for any

arrival rate vector 𝝀 ∈ Λ
coded

, there exists a set of 𝜆𝑖 𝑗 ’s that satisfies

(4). One routing policy for this arrival rate vector is to serve a job

of type-𝑖 using servers in the recovery set 𝑹𝑖 𝑗 with probability

(𝜆𝑖 𝑗/𝜆𝑖 ). Under this policy, the total arrival rate to ℓ-th server is∑𝑘
𝑖=1

∑
𝑗 :ℓ∈𝑹𝑖 𝑗

𝜆𝑖 𝑗 , where the inner sum represents the total arrival

rate of tasks corresponding to the job of type 𝑖 . Equation (4) ensures

that for all ℓ ∈ {1, . . . , 𝑛}, the total arrival rate to ℓ-th server is less

than 1, the service rate of the ℓ-th server, which implies that the

system is stable.

The other direction of the result, i.e., any 𝝀 outside Λ
coded

makes

the system unstable, can be proven using standard techniques in-

volving the Strict separation theorem and the Strong law of large
numbers (see Chapter 4.2 of [22] for an example). We omit the proof

here for conciseness.

Proof sketch of equation (5). We first prove that for any arrival

rate vector satisfying (5), there exists a policy that stabilizes the

system. We use a water-filling argument where we initially serve

a job only using its systematic servers. We start using the coded

servers when the systematic servers reach their maximum capacity.

Then, the right-hand side of (5) is the total excess service require-

ment after systematic servers are fully utilized. The left-hand side

is the total service capacity available at the coded servers plus the

excess service capacity at the underutilized systematic servers. The

system is stable if the excess service capacity exceeds or equals

the excess service requirement. A pictorial representation of the

water-filling argument is given in Fig. 3.

We then show that every arrival rate vector 𝝀 ∈ Λ
coded

satisfies

(5). The key idea is that for any 𝝀 ∈ Λ
coded

, there exist 𝜆𝑖 𝑗 ’s satis-

fying (4) such that for any 𝑖 either a job of type 𝑖 only use its own

systematic servers or type 𝑖 systematic servers is used to serve only

5
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Coded Coded

:Excess service 

requirement of job 

type 

: Excess service capacity of 

systematic server of type 

After water filling

Figure 3: An illustration of the water filling method for
𝑘 = 3 used in the proof of (5). The water-filling strategy in-
volves first filling the systematic servers to the brink. The re-
maining service requirement is then served using the coded
servers and the under-utilized systematic servers.

jobs of type 𝑖 . This decomposition of 𝝀 ensures that the service

requirement from the coded servers exceeds (

∑𝑘
𝑖=1 𝑟

−
𝑖
). Moreover,

the service capacity available at the coded servers plus the under-

utilized systematic servers is less than (𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖
)/𝑘0 for

any 𝑘0 ∈ {1, . . . , 𝑘}. The proof concludes by using the fact that the

system is stable which implies equation (5) is true.

4 RESPONSE TIME CHARACTERIZATION
In this section, we compare the minimum mean response times

of the coded and uncoded systems, denoted by E
[
𝑇
(𝑛)
coded

]
and

E
[
𝑇
(𝑛)
uncoded

]
respectively. For the remainder of the paper, we use

the notation superscript (𝑛) to denote that the quantity depends

on 𝑛. To characterize and compare the response times, we consider

five different traffic regimes listed and illustrated in Fig. 4. We for-

mally define these regimes in Section 4.1, and then we compare the

response times in each of these regimes in our main theorem in

Section 4.2.

Note that Fig. 4 illustrates the orders of the edges of different areas
as 𝑛 becomes large. Hence, the slanted edges in Fig. 2a translates to

vertical and horizontal lines in Fig. 4.

4.1 Traffic Regimes
Recall that jobs of type 𝑖 arrive at the system according to a Poisson

process with rate 𝜆
(𝑛)
𝑖

. Let 𝛽
(𝑛)
𝑖

, referred to as the slack capacity of

systematic servers of type 𝑖 , be defined as

𝛽
(𝑛)
𝑖

= 𝛼𝑖𝑛 − 𝜆
(𝑛)
𝑖

. (6)

We define five traffic regimes based on the orders of the slack

capacities of all job types. For ease of exposition, we first describe

the regimes for the case where the system has two job types, i.e.,

𝑘 = 2, and then we generalize them to system with any value of 𝑘 .

Traffic regimes for 𝑘 = 2. Without loss of generality, we assume

that 𝛽
(𝑛)
1

≤ 𝛽
(𝑛)
2

.

Light regime: 𝛽 (𝑛)
𝑖

≥ 0 for all 𝑖 ∈ {1, 2}, and

𝛽
(𝑛)
𝑖

= 𝜔

(√
𝑛𝑛

(𝑛)
coded

)
, for all 𝑖 ∈ {1, 2}.

Light

Inner-heavy

Outer-heavy

Uncoded-unstable

Coded-unstable

Figure 4: A pictorial representation of the traffic regimes for
the case 𝑘 = 2. The star represents a possible value of arrival
rate vector and 𝛽

(𝑛)
𝑖

is represented by it distance for the edge.
The response time comparison of the coded and uncoded
system for these regimes is provided in Theorem 2.

This is the regime where the slack capacities are large for both job

types.

Inner-heavy regime: 𝛽 (𝑛)
𝑖

≥ 0 for all 𝑖 ∈ {1, 2}, and

𝛽
(𝑛)
1

= 𝑜

(√
𝑛𝑛

(𝑛)
coded

)
, 𝛽

(𝑛)
1

= Ω
(
𝑛
(𝑛)
coded

)
, 𝛽

(𝑛)
2

= 𝜔

(
𝛽
(𝑛)
2

)
.

In this regime, type 1 jobs experience heavier traffic than type 2

jobs do, and thus type 1 jobs can benefit from a coded system.

Outer-heavy regime: 𝛽 (𝑛)
𝑖

≥ 0 for all 𝑖 ∈ {1, 2}, and

𝛽
(𝑛)
1

= 𝑜

(
𝑛
(𝑛)
coded

)
, 𝛽

(𝑛)
2

= 𝜔

(
𝑛
(𝑛)
coded

)
.

Compared to the inner-heavy regime, the outer-heavy regime has

an even heavier traffic for type 1 jobs, so the traffic intensities are

further skewed.

Uncoded-unstable: This is the regime where the uncoded system

is unstable while the coded system is stable.

Coded-unstable: This is the regime where the coded system is

unstable while the uncoded system is stable.

Traffic regimes for a general 𝑘 . Without loss of generality, we

assume that 𝛽
(𝑛)
1

≤ 𝛽
(𝑛)
2

≤ . . . 𝛽
(𝑛)
𝑘

. To generalize the definitions

of the five traffic regimes, we divide the 𝑘 job types into two groups

based on their slack capacities, referred to as the beneficiaries and
the helpers.

Intuitively speaking, the beneficiaries are the job types that ex-

perience heavier traffic, and the helpers are those who experience

lighter traffic. Therefore, the beneficiaries can benefit from sending

jobs to coded servers and systematic servers of the helpers. In con-

trast, the helpers only need their own systematic servers. Formally,

consider the index 𝑖∗ defined as

𝑖∗ = max

{
𝑗 :

(
𝑗

𝑗∑
𝑖=1

𝛼𝑖

)
< 1

}
. (7)

Then we call job type in {1, 2, . . . , 𝑖∗} the beneficiaries, and job types
in {𝑖∗ + 1, . . . , 𝑘} the helpers. Note that in the special case where
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𝑘 = 2, the index 𝑖∗ = 1, and thus job type 1 is the beneficiary and

job type 2 is the helper. In another special case where 𝛼𝑖 = 1/𝑘 for

all 𝑖 , the index 𝑖∗ is around
√
𝑘 .

The choice of 𝑖∗ in (7) has an intuitive explanation based on

the stability of coded servers as follows. For any 𝑗 , if there are 𝑗

beneficiaries, then their total traffic is given by

∑𝑗

𝑖=1

(
𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

)
.

We demonstrate in Appendix C that a good routing policy is as

follows. Each helper assigns its jobs only to its own systematic

servers. Each beneficiary assigns its jobs to its own systematic

servers with probability (1 − Θ(𝑛 (𝑛)
coded

/𝑛)), and to a recovery set

consisting of (𝑘 − 𝑗) systematic servers from helpers and 𝑗 coded

servers with the rest of the probability. Under this routing policy, the

total traffic to the coded servers is 𝑗 ·Θ
(
𝑛
(𝑛)
coded

/𝑛
) (∑𝑗

𝑖=1
𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

)
which is Θ

(
𝑛
(𝑛)
coded

(
𝑗
∑𝑗

𝑖=1
𝛼𝑖

))
. The choice of the index 𝑖∗ in (7)

then intuitively ensures the stability of coded servers.

Now, to define the traffic regimes, it is sufficient to look at the

orders of 𝛽
(𝑛)
1

and 𝛽
(𝑛)
𝑖∗+1. We define the traffic regimes as follows.

Light regime: 𝛽 (𝑛)
𝑖

≥ 0 for all 𝑖 ∈ {1, 2, . . . , 𝑘}, and

𝛽
(𝑛)
𝑖

= 𝜔

(√
𝑛𝑛

(𝑛)
coded

)
, for all 𝑖 ∈ {1, 2, . . . 𝑘}.

Inner-heavy regime: 𝛽 (𝑛)
𝑖

≥ 0, for all 𝑖 ∈ {1, 2, . . . , 𝑘}, and

𝛽
(𝑛)
1

= 𝑜

(√
𝑛𝑛

(𝑛)
coded

)
, 𝛽

(𝑛)
1

= Ω
(
𝑛
(𝑛)
coded

)
, 𝛽

(𝑛)
𝑖∗+1 = 𝜔

(
𝛽
(𝑛)
1

)
.

Outer-heavy regime: 𝛽 (𝑛)
𝑖

≥ 0, for all 𝑖 ∈ {1, 2, . . . , 𝑘}, and

𝛽
(𝑛)
1

= 𝑜

(
𝑛
(𝑛)
coded

)
, 𝛽

(𝑛)
𝑖∗+1 = 𝜔

(
𝑛
(𝑛)
coded

)
.

The coded-unstable and uncoded-unstable regimes are defined in

the sameway as those given in Section 4.1. Note that the assumption

of 𝑛
(𝑛)
coded

= 𝑜 (𝑛) is necessary for defining the light, inner-heavy and
outer-heavy regimes, but it is not required to define the uncoded-

unstable and coded-unstable regimes. A sufficient condition for an

arrival rate vector to lie inside the coded-unstable regime is given

as 𝛽
(𝑛)
𝑖∗+1 = 𝜔 (𝑛 (𝑛)

coded
) and 𝛽

(𝑛)
𝑖∗+1 ≥ 0. Likewise, a sufficient condi-

tion for an arrival rate vector to lie inside the uncoded-unstable

regime is given as |𝛽 (𝑛)
𝑖∗ | = 𝑜

(
𝑛
(𝑛)
coded

)
, 𝛽

(𝑛)
𝑖∗ ≤ 0, 𝛽

(𝑛)
𝑖∗+1 ≥ 0, and

𝛽
(𝑛)
𝑖∗+1 = 𝜔

(
𝑛
(𝑛)
coded

)
. The proof of the sufficient conditions are given

in Appendix D.

4.2 Main Result
We state our main result in Theorem 2, which compares the re-

sponse time in a coded system with that in an uncoded system in

the five traffic regimes.

Theorem 2 (Response Time Comparison). Consider a multi-access
cloud system consisting of 𝑛 servers and 𝑘 job types. Consider the
minimum response times in a coded system and in an uncoded system

over all probabilistic job assigning policies, denoted by E
[
𝑇
(𝑛)
coded

]
and

E
[
𝑇
(𝑛)
uncoded

]
, respectively. Then we have the following comparison in

the five traffic regimes:

Light regime:
���E [

𝑇
(𝑛)
coded

]
− E

[
𝑇
(𝑛)
uncoded

] ��� = 𝑜 (1); (8)

Inner-heavy regime: E
[
𝑇
(𝑛)
coded

]
≤ E

[
𝑇
(𝑛)
uncoded

]
− 𝜔 (1); (9)

Outer-heavy regime: E
[
𝑇
(𝑛)
coded

]
= 𝑜

(
E

[
𝑇
(𝑛)
uncoded

] )
; (10)

Uncoded-unstable regime: E
[
𝑇
(𝑛)
coded

]
< ∞,E

[
𝑇
(𝑛)
uncoded

]
= ∞;

(11)

Coded-unstable regime: E
[
𝑇
(𝑛)
coded

]
= ∞,E

[
𝑇
(𝑛)
uncoded

]
< ∞.

(12)

4.2.1 Proof sketch of Theorem 2. In this subsection, we provide a

proof sketch for Theorem 2. We first analyze the mean response

time in an uncoded system, and then analyze the mean response

time in a coded system.

Uncoded system. The arrival rate of jobs of type 𝑖 is 𝜆 (𝑛)
𝑖

, which

is served using 𝛼𝑖𝑛 servers. One can prove that the optimal proba-

bilistic routing policy is to serve an incoming job of type 𝑖 using

one of the systematic server of type 𝑖 chosen uniformly at random.

Under this optimal policy, all systematic servers of type 𝑖 behave

like independent𝑀/𝑀/1 queues with arrival rate 𝜆
(𝑛)
𝑖

/(𝛼𝑖𝑛) and
unit service rate. The mean response time of a type 𝑖 job is then

1/
(
1 − 𝜆

(𝑛)
𝑖

𝛼𝑖𝑛

)
=

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

. Therefore, the mean response time of the

uncoded system is given by

E
[
𝑇
(𝑛)
uncoded

]
=

𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

. (13)

Coded system. For the coded system, the routing probability

is the key component deciding the mean response time. To better

understand job routing policies in the coded system, we first give

the Property 1 we observe for any stabilizing policy.

Property 1. Consider any routing policy and let 𝑞 (𝑛)
𝑖0

be the total
probability of sending a job of type 𝑖 to a systematic server of type 𝑖 .
Then, the policy can stabilize the system only if

1 − 𝑞
(𝑛)
𝑖0

= 𝑂
©«
𝑛
(𝑛)
coded
𝑛

ª®¬ , for all 𝑖 . (14)

Property 1 states that the fraction of traffic that any job type

can divert away from its own systematic servers is limited to a

𝑂

(
𝑛
(𝑛)
coded

/𝑛
)
fraction. This provides a lower bound on the traffic

that has to be served by systematic servers, which further leads to a

lower bound on the mean response time. We use this lower bound

in the analysis of the light regime. Moreover, in the heavy regimes

where traffic is more skewed, we need to divert the traffic of heavily

loaded job types as much as we can. In this case, Property 1 also

provides a guideline for choosing a good job routing policy. The

analysis of the individual regimes then proceeds as follows.

(1) Light regime: To prove (8), it suffices to show a lower bound,

E
[
𝑇
(𝑛)
coded

]
≥ E

[
𝑇
(𝑛)
uncoded

]
+ 𝑜 (1), (15)
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a Response time comparison between the coded and uncoded system for 𝑘 = 2.

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

Uncoded setting, n(n)
coded = 0

Coded setting, n(n)
coded = n

Coded setting, n(n)
coded = (n)

34 35 36 37 38

Number of servers (n)
2.48

2.56

2.64

2.72

2.80

2.88

2.96

3.04

R
es

po
ns

e 
tim

e

34 35 36 37 38

Number of servers (n)
3

4

5

6

7

8

9

10

11

12

R
es

po
ns

e 
tim

e

34 35 36 37 38

Number of servers (n)
0

6

12

18

24

30

36

42

R
es

po
ns

e 
tim

e
b Response time comparison between the coded and uncoded system for 𝑘 = 3.
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Figure 5: Comparison of the response times of the coded and uncoded systems. The different marker types (circle, triangle,
square) represent arrival rates from different traffic regimes (light, inner-heavy and outer-heavy), as shown in the bottom-
right illustration. The empirical standard error of the plotted points is 𝑂 (10−3). The coded servers significantly improve the
system’s performance in the inner-heavy and outer-heavy regimes. The coded and uncoded systems have similar response
times in the light regime.

and an upper bound given by

E
[
𝑇
(𝑛)
coded

]
≤ E

[
𝑇
(𝑛)
uncoded

]
+ 𝑜 (1) . (16)

Asmentioned earlier, the lower bound is proved using Property 1. To

show the upper bound, note that it suffices to focus on a particular

routing policy and show that its mean response satisfies (16). In the

light regime, the slack capacity for every job type is large enough.

Therefore, we consider the routing policy that assigns every job

to its own systematic server. Computing the corresponding mean

response time verifies (16).

(2) Heavy regimes: The analysis of the inner-heavy and outer-heavy
regimes follow the same structure. In these regimes, the beneficia-

ries experience heavy traffic and have small slack capacities. To

reduce the mean response times, we divert the traffic of beneficia-

ries from their systematic servers to the recovery sets that utilize

coded servers as much as possible.

In fact, we consider the following routing policy. For some ap-

propriate index 𝑘∗ ≤ 𝑖∗, we choose the routing probability 𝑞 (𝑛)
𝑖0

= 1

for all 𝑖 > 𝑘∗. For any 𝑖 ≤ 𝑘∗, we use the routing probability

𝑞
(𝑛)
𝑖0

= 1 − 𝑣𝑛
(𝑛)
coded

/𝑛 and 𝑞
(𝑛)
𝑖𝑘∗ = 𝑣𝑛

(𝑛)
coded

/𝑛, for some constant 𝑣 .

For any 𝑖 > 𝑘∗, if the routing option is chosen corresponding

to the probability 𝑞
(𝑛)
𝑖𝑘∗ , then a recovery set consisting of 𝑘∗ coded

servers and (𝑘 − 𝑘∗) systematic servers of type 𝑘∗ + 1, . . . , 𝑘 re-

spectively is chosen uniformly at random from all recovery sets

satisfying the property. For any 𝑖 , if the routing option is chosen

corresponding to the probability 𝑞
(𝑛)
𝑖0

, then a systematic server of

type 𝑖 is chosen uniformly at random. Upper-bounding the mean

response time for this policy gives the upper bounds in (9) and (10)

5 SIMULATION RESULTS
In this section, we present our simulation results to demonstrate the

performance comparison between the uncoded and coded system

under various traffic settings. In Section 5.1, we focus on arrival

rates that are time-invariant. Our main goal is to demonstrate the

performance comparison given in Theorem 2, but we have also

investigated the choice of the 𝑛
(𝑛)
coded

not covered in Theorem 2. In

Section 5.2, we consider arrival rates that are time-varying, with a

traffic pattern commonly observed in practical systems. A detailed

description of the simulation setups are provided in Appendix E.

Before we get into the simulation settings, we first describe the

routing policy we use in the simulations for the coded system.

Pseudo-optimal routing policy. Each queue behaves like a

𝑀/𝑀/1 queue; hence the response time of each task is an exponen-

tially distributed random variable. However, finding the optimal

routing policy is non-trivial since the response time of a job is the

maximum of the response time of its tasks, and the queues at each

server are not independent. Moreover, the routing policy discussed

in Section 4.2.1 does not perform well empirically for smaller values

of 𝑛 even though it works well asymptotically.

The difficulty in obtaining the optimal routing policy is the de-

pendence among queues. We derive a policy that we call the pseudo-
optimal routing policy by treating the queues as if they were inde-

pendent. This approximation is based on the commonly observed

phenomenon that queues are asymptotically independent in large

systems [26]. With the independence assumption, one can calculate

a job’s response time as the expectation of maximum of indepen-

dent exponential random variables is known. The pseudo-optimal

routing policy is then the policy that minimizes the approximated

8
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Figure 6: A comparison of the coded and uncoded systems for time-varying traffic in terms of total job in the system. The
leftmost picture shows the search frequency of the words news and movies on Google, demonstrating a real-world example
of negatively correlated traffic. The central figure shows the arrival rate vector as a function of time for a simplified system
with two job types that has a negative correlation in traffic. The rightmost figure shows the number of jobs in the system. The
presence of coded servers helps reduce the load from the heavier loaded systematic servers, making the coded system enjoy a
lesser total job in the system on average.

mean response time. In our simulations, we find the pseudo-optimal

routing policy numerically using Scipy Optimization libraries.

5.1 Time-invariant Arrival Rates
In this subsection, we experimentally demonstrate the performance

comparison between a coded system and an uncoded system. We

provide simulations for systems with 2 and 3 job types. For these

simulations, apart from using 𝑛
(𝑛)
coded

= 𝑜 (𝑛), we also consider

𝑛
(𝑛)
coded

= Θ(𝑛) and show the effect of large number of coded servers.

We simulate until 10
8
jobs leave the system and average it over

50 runs to calculate the mean response time. Finally, based on our

simulation results, we provide intuitions on how our main result

would change for the case of 𝑛
(𝑛)
coded

= Θ(𝑛).

Simulation for systems with 2 job types. We consider 𝑛 = 2
𝑚

servers, where we vary𝑚 ∈ {6, 7, · · · , 11}. For the uncoded system,

we calculate the response time theoretically. For the coded system,

we consider two cases of 𝑛
(𝑛)
coded

= 𝑜 (𝑛) and 𝑛 (𝑛)
coded

= Θ(𝑛).
Fig. 5a shows numerical comparison between mean response

of the coded and uncoded system for 𝑘 = 2. The results for the

case of 𝑛
(𝑛)
coded

= 𝑜 (𝑛) resembles the theoretical results provided in

Theorem 2. In the light regime, the coded systems with 𝑜 (𝑛) coded
servers perform similar to the uncoded system with a diminishing

performance gap as𝑛 increases. In the inner-heavy and outer-heavy

regimes, the coded system with 𝑜 (𝑛) servers outperforms the un-

coded system and the gap increases as 𝑛 increases. Moreover, the

performance gap between the coded and uncoded systems increases

with the skewness in arrival rate, i.e., the coded system performs

significantly better in the outer-heavy regime.

However, as illustrated in Fig. 5a, the results are slightly different

when the number of coded servers increases as 𝑛
(𝑛)
coded

= Θ(𝑛). In
the light regime, the coded systemwithΘ(𝑛) coded server performs

worse than the uncoded system. The redundancy added by Θ(𝑛)
coded servers worsens the system. However, the performance gap

does not change much as 𝑛 increases as the traffic is light enough.

The cost of redundancy is not substantial, and the coded system

is worse only by an Θ(1) term. Compared to the light regime, the

coded system with Θ(𝑛) servers performs considerably better than

both uncoded and coded systems with 𝑜 (𝑛) servers in the inner-

heavy and outer-heavy regimes. Because of the higher skew, the

coded system with Θ(𝑛) coded servers allows more uniform load

balancing, thus greatly improving the performance.

Simulation for systems with 3 job types. We also perform

experiments for systemwith three types of jobs.We consider𝑛 = 3
𝑚

servers, where we vary𝑚 ∈ {4, 5, · · · , 8}.
Fig. 5b shows the response time comparison of the coded and

uncoded system for this simulation setup. For the light and outer-

heavy regime, the trends in Fig. 5b is similar to the simulation

results for the two-job type system and hence follows a similar

reasoning. However, for the inner-heavy regime, the trends are

slightly different. The coded system outperforms the uncoded sys-

tem asymptotically; however, the difference is not as significant as

seen in the simulation with two job types. One plausible reason is

that the system has two beneficiaries and only one helper based

on our arrival rate choice and allocation of servers. Hence, a slight

skew in the arrival rate vector is insufficient to reduce the bene-

ficiaries’ load. However, there is enough skew in the outer-heavy

region such that the coded system outperforms the uncoded system

regardless of the number of coded servers.

Based on the simulations for systems with two or three job types,

we conjecture that for 𝑛
(𝑛)
coded

= Θ(𝑛), the inner-heavy and outer-

heavy regimes would merge into a single heavy regime where the

coded system would outperform the uncoded system. The light

regime would also change, and instead of 𝑜 (1), the mean response

time’s of the coded and uncoded system can differ by Θ(1).
9
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5.2 Time-Varying Arrival Rates
In practical systems such as Google’s search system, the traffic of

a job type usually varies across time and often shows a periodic

nature. For example, as shown in Fig. 6a, search for news in Google

[11] usually peaks during early hours, while the search for movies

peaks during the night.

To model this situation, we consider a system with two job

types where the arrival rate of each job type behaves like a pulse

wave as illustrated in Fig. 6b. The arrival rates of the two job types

have a similar period but are negatively correlated, i.e., if one job

experiences higher traffic, the other job type should experience

lesser traffic. We consider a total of 60 servers for both the coded

and uncoded system, out of which the coded system consists of 7

coded servers. The remaining servers are distributed in the same

proportion to the two job types for the coded and uncoded systems.

Fig. 6c shows a comparison between the mean number of jobs in

the coded and uncoded system. The top plot shows the total number

of jobs in the system as a function of time, while the second and the

third plot shows the number of jobs of type 1 and 2, respectively.

One can observe that whenever a job is experiencing low traffic,

the number of jobs of that type in the uncoded system is slightly

less than that in the coded system. However, whenever a job is ex-

periencing heavy traffic, the number of jobs in the uncoded system

is significantly higher than the coded system. The uncoded system

is underutilizing the lighter loaded systematic servers, while those

underutilized systematic servers are used in the coded system to

serve heavier traffic jobs.

6 CONCLUSION
This paper proposes the usage of erasure-coded servers in a multi-

access cloud system. We characterize the service capacity region of

the coded system showing significant improvements in regions of

skewed traffic. The addition of erasure-coded servers improves load

balancing as the coded system can handle excess demand compared

to the uncoded system. We also compare the latency of the coded

and uncoded systems and show that the coded system is better or at

least comparable in most cases. The erasure-coded servers improve

the system’s flexibility, making it an excellent solution in skewed

traffic regimes by enabling the usage of servers experiencing low

traffic, which would otherwise be idle. Thus, at a slight cost of

redundancy, our coded solution provides a general framework to

improve the system’s stability and latency.

There are substantial directions for future work. Our analysis of

the coded system considered any arbitrary value of 𝑘 . However, a

large 𝑘 is usually not preferred as the decoding cost scales as𝑂 (𝑘3).
One approach for a system with large 𝑘 is to divide it into 𝑟 subsys-

tems with 𝑘/𝑟 job types in each subsystem. A large 𝑟 will save the

decoding cost, but it loses some flexibility offered by coding. Hence,

one can analyze the optimal choice of 𝑟 and optimal strategies to

group the 𝑘 job types into 𝑟 bins. Another open direction can be to

analyze our system for queue length based routing policies instead

of probabilistic ones. Then the technical challenges in comparing

the latency involve proving a complicated state-space collapse and

lower bounding the mean response time.
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A BACHMANN–LANDAU NOTATION
Definition 3 (Bachmann–Landau notation). For any functions 𝑓 and 𝑔, the Bachmann–Landau notations are given below

(1) Small o:

𝑓 = 𝑜 (𝑔) ≜ lim

𝑛→∞
𝑓 (𝑛)
𝑔(𝑛) = 0. (17)

(2) Big O:

𝑓 = 𝑂 (𝑔) ≜ lim sup

𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) < ∞. (18)

(3) Small omega:

𝑓 = 𝜔 (𝑔) ≜ lim

𝑛→∞

���� 𝑓 (𝑛)𝑔(𝑛)

���� = ∞. (19)

(4) Big Theta:

𝑓 = Θ(𝑔) ≜ ∃𝑘1, 𝑘2 > 0 s.t. 𝑘1 ≤ lim

𝑛→∞
𝑓 (𝑛)
𝑔(𝑛) ≤ 𝑘2 . (20)

B PROOF OF SERVICE-CAPACITY REGION
In this section, we prove the service capacity region of system given in (5). We then determine the service capacity region for the special

case of 𝑘 = 2. The proof for the special case is taken from [1, 2] and is included for completion.

B.1 Proof of Equation 5
Proof. Recall the notations given in (5). The residual capacity for a job of type 𝑖 is given by 𝑟𝑖 = 𝛼𝑖 (𝑛 − 𝑛

coded
) − 𝜆𝑖 . Also, 𝑟

+
𝑖
and 𝑟−

𝑖
are

defined as max{𝑟𝑖 , 0} and −min{𝑟𝑖 , 0}, respectively. We also assume 𝑟1 ≤ 𝑟2 ≤ 𝑟3 ≤ · · · ≤ 𝑟𝑘 . We need to prove that the system is stable if

and only if

min

𝑘0∈{1,...,𝑘 }

{
𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖

𝑘0

}
≥

𝑘∑
𝑖=1

𝑟−𝑖 . (21)

The proof consists of two parts.

(1) Proof of “if” statement: Using the water-filling argument, we prove that if (21) is true, the system is stable.

(2) Proof of “only if” statement: We prove that if (21) is not true, then the system is unstable. To prove this, we prove that if an arrival rate

vector lies in the service capacity region, it must satisfy (21).

Proof of if statement. We first fill the capacity of the systematic servers, i.e., serve a job using only its dedicated systematic server to

ensure minimum redundancy in the system. Once the systematic servers reach full capacity, we gradually fill the coded servers.

Based on the notations, the volume of unserved jobs after we fill the systematic servers is

∑𝑘
𝑖=1 𝑟

−
𝑖
. The remaining capacity of systematic

servers of type 𝑖 is 𝑟+
𝑖
and the capacity of the coded servers is 𝑛

coded
. The system is stable if we can serve the remaining unserved jobs using

a coded combination. We prove that using the coded combination, we can serve a volume of min𝑘0∈{1,...,𝑘 }

{
𝑛coded+

∑𝑘
0

𝑖=1
𝑟+𝑖

𝑘0

}
.

If 𝑟1 ≥ 0, then (21) is satisfied because each term on the left hand side is greater than or equal to zero and the right hand side is exactly

zero. Hence, for the remaining proof, we assume that 𝑟1 < 0. Let𝑚 be the minimum index such that 𝑟𝑚 > 0.

Initially, we start filling the systematic servers𝑚,𝑚 + 1, . . . , 𝑘 . If we add 𝑣 volume of water in the systematic servers, we add (𝑚 − 1)𝑣
volume of water in the coded server. Either the coded servers or the systematic server of type𝑚 will fill up. If the coded servers reach the

maximum capacity, we stop. Else, we start filling the systematic servers of type𝑚 + 1, . . . , 𝑘 . For the coded servers, we add water at a𝑚 time

faster rate. We continue this way until the coded servers fill up. If all systematic servers fill up, we then start filling the coded servers by a

multiple of 𝑘 . We now prove that we can add min𝑘0∈{1,...,𝑘 }

{
𝑛coded+

∑𝑘
0

𝑖=1
𝑟+𝑖

𝑘0

}
volume of water using this method.

Observe that after the first step, if the coded servers fill up, then the total volume of water added is 𝑛
coded

/(𝑚 − 1). If not, the remaining

capacity of the coded servers is (𝑛
coded

− (𝑚 − 1)𝑟+𝑚). In the next step, if the coded servers fill up, the total volume water added is

𝑟+𝑚 + (𝑛
coded

− (𝑚 − 1)𝑟+𝑚)/𝑚 = (𝑛
coded

+ 𝑟+𝑚)/𝑚. If not, the remaining capacity of the coded servers is (𝑛
coded

− (𝑚 − 1)𝑟+𝑚 −𝑚(𝑟+
𝑚+1 − 𝑟+𝑚) =

(𝑛
coded

+ 𝑟+𝑚 −𝑚𝑟+
𝑚+1). If the coded servers fill up in the third step, the total volume of added 𝑟+

𝑚+1 + (𝑛
coded

+ 𝑟+𝑚 −𝑚𝑟+
𝑚+1)/𝑚 + 1 =

(𝑛
coded

+ 𝑟+𝑚 + 𝑟+
𝑚+1)/(𝑚 + 1). Following a similar argument, if the coded servers fill up at the 𝑛-th step, then the total volume of water

added is (𝑛
coded

+ 𝑟+𝑚 + 𝑟+
𝑚+1 + . . . 𝑟𝑚+𝑛−2)/(𝑚 + 𝑛 − 2). Moreover, at the end of step 𝑝 < 𝑛, the remaining capacity of coded servers is

(𝑛
coded

+ 𝑟+𝑚 + 𝑟+
𝑚+1 + · · · + 𝑟𝑚+𝑝−2 − (𝑚 + 𝑝 − 2)𝑟𝑚+𝑝−1)/(𝑚 + 𝑝 − 1) which is positive. This implies, for all 𝑝 < 𝑛,

𝑛
coded

+ ∑𝑚+𝑝−1
𝑗=𝑚

𝑟+
𝑗

𝑚 + 𝑝 − 1

<
𝑛
coded

+ ∑𝑚+𝑝−2
𝑗=𝑚

𝑟+
𝑗

𝑚 + 𝑝 − 2

. (22)
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Moreover, since the coded servers fill up at the 𝑛-th step, for all 𝑝 > 𝑛,

𝑛
coded

+ ∑𝑚+𝑝−1
𝑗=𝑚

𝑟+
𝑗

𝑚 + 𝑝 − 1

>
𝑛
coded

+ ∑𝑚+𝑝−2
𝑗=𝑚

𝑟+
𝑗

𝑚 + 𝑝 − 2

. (23)

This proves that the volume of water added is exactly

min

𝑘0∈{1,...,𝑘 }

{
𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖

𝑘0

}
= min

𝑘0∈{1,...,𝑘 }

{
𝑛
coded

+ ∑𝑘0
𝑖=𝑚

𝑟+
𝑖

𝑘0

}
=
𝑛
coded

+ 𝑟+𝑚 + 𝑟+
𝑚+1 + . . . 𝑟𝑚+𝑛−2

𝑚 + 𝑛 − 2

. (24)

We also show that the maximum volume of water filled using 𝑟+
𝑖
capacity of systematic servers of type 𝑖 , for all 𝑖 and 𝑛

coded
coded capacity

cannot exceed min𝑘0∈{1,...,𝑘 }

{
𝑛coded+

∑𝑘
0

𝑖=1
𝑟+𝑖

𝑘0

}
. To prove this, assume 𝑉max is the maximum volume of water that can be added. Then the total

volume of water added in servers of type 1, 2, . . . , 𝑘0 and coded servers is at least 𝑘0𝑉max. This is because anytime one of the systematic

servers in {1, 2, . . . , 𝑘0} is not used, the rate at which water is added in the coded servers increases by 1, keeping the net rate of water addition

at least 𝑘0. But since total volume of systematic servers of type 𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑘0} and coded servers is (𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖
), we have

𝑘0𝑉max ≤ (𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖
). Hence, for any 𝑘0, 𝑉max ≤ 𝑛coded+

∑𝑘
0

𝑖=1
𝑟+𝑖

𝑘0
, which completes the proof.

Proof of only if statement. We now prove that if an arrival rate vector lies in the service capacity region, it must satisfy (21). Assume

that the arrival rate vector 𝝀 = (𝜆1, . . . , 𝜆𝑘 ) lies in the interior of the service capacity region. Using the definition of service capacity region

in Theorem 1, we know there exists 𝜆𝑖 𝑗 ≥ 0 for all 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, 2, . . . , |𝑹𝑖 |} satisfying

𝜆𝑖 =

|𝑹𝑖 |∑
𝑗=1

𝜆𝑖 𝑗 ,∀𝑖 ∈ {1, . . . , 𝑘}, (25)

𝑘∑
𝑖=1

∑
𝑗 :ℓ∈𝑹𝑖 𝑗

𝜆𝑖 𝑗 ≤ 1,∀ℓ ∈ {1, . . . , 𝑛} (26)

We can assume that there exists no 𝑖, 𝑖 ′ s.t. there exists some 𝑗 ∈ {1, . . . , |𝑹𝑖 |} and 𝑗 ′ ∈ {1, . . . , |𝑹𝑖′ |}, for which 𝜆𝑖 𝑗 > 0, 𝜆𝑖′ 𝑗 ′ > 0, 𝑹𝑖 𝑗 contains
a systematic server of type 𝑖 ′ and |𝑹𝑖′ 𝑗 ′ | > 1. If there exists any such 𝑖, 𝑖 ′, then we can use the following operation multiple times such that

the condition becomes true.

(1) If 𝜆𝑖 𝑗 < 𝜆𝑖′ 𝑗 ′ : Change 𝜆𝑖 𝑗 = 0, 𝜆𝑖′ 𝑗 ′ = 𝜆𝑖′ 𝑗 ′ − 𝜆𝑖 𝑗 . Let ℓ be the systematic server of type 𝑖 ′ that lies is in 𝑹𝑖 𝑗 . Change 𝜆𝑖′𝑚 to 𝜆𝑖′𝑚 + 𝜆𝑖 𝑗
where 𝑹𝑖′𝑚 = {ℓ}. If 𝑹𝑖′ 𝑗 ′ contains a systematic server of type 𝑖 , say 𝑛 then change 𝜆𝑖𝑘 = 𝜆𝑖𝑘 + 𝜆𝑖 𝑗 where 𝑹𝑖𝑘 = {𝑛}, else change
𝜆𝑖𝑘 = 𝜆𝑖𝑘 + 𝜆𝑖 𝑗 , where 𝑹𝑖𝑘 = 𝑹𝑖′ 𝑗 ′ .

(2) If 𝜆𝑖 𝑗 > 𝜆𝑖′ 𝑗 ′ : Change 𝜆𝑖′ 𝑗 ′ = 0, 𝜆𝑖 𝑗 = 𝜆𝑖 𝑗 − 𝜆𝑖′ 𝑗 ′ , 𝜆𝑖′𝑘 = 𝜆𝑖′𝑘 + 𝜆𝑖′ 𝑗 ′ where 𝑹𝑖′𝑘 contains only the systematic server of type 𝑖 ′ that is in
𝑹𝑖 𝑗 . If 𝑹𝑖′ 𝑗 ′ contains a systematic server of type 𝑖 say ℓ , change 𝜆𝑖𝑚 = 𝜆𝑖𝑚 + 𝜆𝑖′ 𝑗 ′ , where 𝑹𝑖𝑚 = {ℓ}. Else, change 𝜆𝑖𝑚 = 𝜆𝑖𝑚 + 𝜆𝑖′ 𝑗 ′ ,

where 𝑹𝑖𝑚 = 𝑹𝑖′ 𝑗 ′ .

Note, the above operation does not increase the net arrival rate of tasks to any server. Hence, the conditions in (25) and (26) are still valid. A

consequence of the above assumption is that if a job of type 𝑖 uses a coded combination, it can only use a systematic server of type 𝑗 if the

job of type 𝑗 only uses its systematic server.

Let Γ be the set of indices 𝑖’s such that jobs of type 𝑖 only use its systematic servers to serve its job. For all 𝑖 , let 𝑟+
𝑖
be the remaining service

capacity of systematic servers of type 𝑖 . Note, for all 𝑖 ∈ Γ𝐶 , 𝑟+
𝑖
= 0, since the remaining capacity cannot used. Similarly, for all 𝑖 , let 𝑟−

𝑖
be the

volume of the job of type 𝑖 that is served using a coded combination. Using the fact that the arrival rate vector is in the service capacity

region and arguments in the proof of the Forward part, we know that

min

𝑘0∈{1,...,𝑘 }

{
𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖

𝑘0

}
≥

𝑘∑
𝑖=1

𝑟−𝑖 . (27)

Since the arrival rate vector may not fill the systematic servers, 𝑟−
𝑖
≥ 𝑟−

𝑖
. Also, since for all 𝑖 ∈ Γ𝐶 , 𝑟+

𝑖
= 0, we have for all 𝑖 , 𝑟+

𝑖
≥ 𝑟+

𝑖
. Hence,

min

𝑘0∈{1,...,𝑘 }

{
𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖

𝑘0

}
≥ min

𝑘0∈{1,...,𝑘 }

{
𝑛
coded

+ ∑𝑘0
𝑖=1

𝑟+
𝑖

𝑘0

}
≥

𝑘∑
𝑖=1

𝑟−𝑖 ≥
𝑘∑
𝑖=1

𝑟−𝑖 . (28)

This implies that if an arrival rate lies within the service capacity region, it must satisfy (21).

□
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B.2 Service capacity region for 𝑘 = 2

Proof. (1) 0 ≤ 𝜆1 ≤ 𝛼1𝑛 − (1 + 𝛼1)𝑛 (𝑛)
coded

: The total service capacity of 𝑺1 servers is 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

). If all requests for jobs of type 1
are sent to 𝑺1 servers, then remaining capacity of 𝑺1 servers is at least 𝑛

(𝑛)
coded

. Total service capacity of 𝑺2 servers is 𝛼2 (𝑛 − 𝑛
(𝑛)
coded

).
Therefore, the maximum arrival rate that can be supported for jobs of type 2 is 𝛼2 (𝑛 − 𝑛

(𝑛)
coded

) plus the minimum of total service

capacity of the coded servers and remaining service capacity of 𝑺1 servers. Hence, 𝜆
(𝑛)
2

≤ 𝛼2𝑛 + 𝛼1𝑛
(𝑛)
coded

.

(2) 𝛼1𝑛 − (1 + 𝛼1)𝑛 (𝑛)
coded

≤ 𝜆
(𝑛)
1

≤ 𝛼1 (𝑛 −𝑛
(𝑛)
coded

): If all requests for jobs of type 1 are sent to 𝑺1 servers, then the remaining capacity of 𝑺1

servers is 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

) − 𝜆
(𝑛)
1

. Hence, the maximum arrival rate for jobs of type 2 that may be sent to a recovery set consisting

of one coded server and one systematic server of type 1 is (𝛼1 (𝑛 − 𝑛
(𝑛)
coded

) − 𝜆
(𝑛)
1

). The remaining capacity of 𝑺
coded

servers is

𝑛
(𝑛)
coded

− 𝛼1 (𝑛 −𝑛
(𝑛)
coded

) + 𝜆 (𝑛)
1

. Hence, the maximum arrival rate request that may be sent to the recovery sets consisting of two coded

servers is (𝑛 (𝑛)
coded

− 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

) + 𝜆
(𝑛)
1

)/2. Total service capacity of 𝑺2 servers is 𝛼2 (𝑛 − 𝑛
(𝑛)
coded

). Hence,

𝜆
(𝑛)
2

≤ 𝛼2 (𝑛 − 𝑛
(𝑛)
coded

) + 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

) − 𝜆
(𝑛)
1

+ (𝑛 (𝑛)
coded

− 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

) + 𝜆
(𝑛)
1

)/2 (29)

= (𝑛 − 𝑛
(𝑛)
coded

)
(
1 − 𝛼1

2

)
+
𝑛
(𝑛)
coded

2

−
𝜆
(𝑛)
1

2

. (30)

(3) 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

) ≤ 𝜆
(𝑛)
1

≤ 𝛼1𝑛 + (1/2 − 𝛼1)𝑛 (𝑛)
coded

: If the entire service capacity of 𝑺1 is used for jobs of type 1, then the remaining

required service capacity for jobs of type 1 is 𝜆
(𝑛)
1

− 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

), which would be served by 𝑺
coded

servers. Hence, the remaining

service capacity of 𝑺
coded

servers is 𝑛
(𝑛)
coded

− 2(𝜆 (𝑛)
1

− 𝛼1 (𝑛 − 𝑛
(𝑛)
coded

))). Hence, the maximum arrival rate request possible for jobs of

type 1 is

𝜆
(𝑛)
2

≤ 𝛼2 (𝑛 − 𝑛
(𝑛)
coded

) +
𝑛
(𝑛)
coded

−
(
2𝜆

(𝑛)
1

− 2𝛼1 (𝑛 − 𝑛
(𝑛)
coded

)
)

2

=
(2𝑛 − 𝑛

(𝑛)
coded

)
2

− 𝜆
(𝑛)
1

. (31)

For the remaining portion, we find the service capacity region by fixing 𝜆
(𝑛)
2

and analyzing the range of value of 𝜆
(𝑛)
1

. □

C PROOF OF THEOREM 2
Recall, our system consists of 𝑛 servers that provide service to 𝑘 job types. The 𝑛 servers are divided into two parts, 𝑛

(𝑛)
coded

coded servers,

and the remaining are systematic servers. 𝛼𝑖 represents the fraction of systematic servers dedicated to the job of type 𝑖 . Hence, 𝑛
(𝑛)
𝑖

, the

number of systematic servers for the 𝑖-th job type is given by

𝑛
(𝑛)
𝑖

= 𝛼𝑖 (𝑛 − 𝑛
(𝑛)
coded

). (32)

The arrival rate of job type 𝑖 is 𝜆
(𝑛)
𝑖

and, the residual capacity for job type 𝑖 is 𝛽
(𝑛)
𝑖

, defined as

𝛽
(𝑛)
𝑖

= 𝛼𝑖𝑛 − 𝜆
(𝑛)
𝑖

. (33)

Let 𝑞
(𝑛)
𝑖 𝑗

denote the probability of serving a job of type 𝑖 using 𝑗 coded servers. E
[
𝑇
(𝑛)
coded

]
and E

[
𝑇
(𝑛)
uncoded

]
denotes the response time of

the coded and uncoded system, respectively. Let 𝜈
(𝑛)
𝑖

denote the arrival rate of tasks to any systematic server of type 𝑖 . With the notations

defined, we first determine the response time of the uncoded system.

In the uncoded system, queues corresponding to systematic servers of type 𝑖 behave like independent𝑀/𝑀/1 systems with arrival rate

(𝜆 (𝑛)
𝑖

/𝛼𝑖𝑛) = (1 − (𝛽 (𝑛)
𝑖

/𝛼𝑖𝑛)). Hence, the response time of jobs of type 𝑖 is (𝛼𝑖𝑛/𝛽 (𝑛)𝑖
). Moreover, the fraction of jobs that belongs to type 𝑖

out of all incoming jobs is (𝜆 (𝑛)
𝑖

/∑𝑘
ℓ=1 𝜆

(𝑛)
ℓ

). Hence, the mean response time of the uncoded system is given by,

𝑇
(𝑛)
uncoded

=

𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

. (34)

Because of our assumption that 𝛽
(𝑛)
1

≤ 𝛽
(𝑛)
2

≤ · · · ≤ 𝛽
(𝑛)
𝑘

, the dominant term in the response time of the uncoded system is (𝑛/𝛽 (𝑛)
1

).
In the remainder of the proof, we bound the response time of the coded system. Notice that the response time of the coded system

depends on the routing probability 𝑞
(𝑛)
𝑖 𝑗

’s. Hence, the optimal response time of the coded system depends on the optimal routing probability.

However, because of the combinatorial nature, solving the optimal routing probability is a complicated problem. In addition, the fork-join

nature of the coded system makes the queues dependent. Hence, there is no closed-form expression of the response time in terms of routing

probability and arrival rate vectors. We overcome this problem by using an upper bound expression of the response time for a reasonable
routing probability vector. The proof consists of three separate parts, one for each regime.
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C.1 The Light Regime
Proof of Theorem 2 in the Light Regime. The light regime is the set of arrival rate vectors that satisfy 𝛽

(𝑛)
𝑖

≤ 𝛽
(𝑛)
𝑗

, for all 𝑖 ≤ 𝑗 and

𝛽
(𝑛)
1

= 𝜔

(√
𝑛𝑛

(𝑛)
coded

)
. For this region, we prove that ���𝑇 (𝑛)

coded
−𝑇

(𝑛)
uncoded

��� = 𝑜 (1) . (35)

In order to prove (35), we lower bound and upper bound the response time of the coded system. In particular, we prove the following

properties.

(1) For any routing policy, the response time of the coded system can be bounded by

𝑇
(𝑛)
coded

≥ 𝑇
(𝑛)
uncoded

+ 𝑜 (1) . (36)

(2) There exists a routing policy for which the response time of the coded system can be bounded by

𝑇
(𝑛)
coded

≤ 𝑇
(𝑛)
uncoded

+ 𝑜 (1) . (37)

Combining (36) and (37) completes the proof of(35).

First, we prove (36) and lower bound the response time of the coded system. For this proof, we use Property 1 that states that 𝑞
(𝑛)
𝑖0

=

1 −𝑂 (𝑛 (𝑛)
coded

/𝑛), for 𝑖 = 1, 2. Then, the arrival rate of tasks to any server in 𝑺𝑖 is bounded as follows

𝜈
(𝑛)
𝑖

≥
𝑞
(𝑛)
𝑖0

𝜆
(𝑛)
𝑖

𝑛
(𝑛)
𝑖

=

(
1 −𝑂

(
𝑛
(𝑛)
coded

𝑛

))
(𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

)

𝛼𝑖 (𝑛 − 𝑛
(𝑛)
coded

)
. (38)

Using these, we lower bound the response time of the coded system as follows

𝑇
(𝑛)
coded

=

𝑘∑
𝑖=1

𝑘∑
𝑗=0

𝜆
(𝑛)
𝑖

𝑞
(𝑛)
𝑖 𝑗∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

× (Mean response time of jobs served using 𝑗 coded servers) (39)

≥
𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖

𝑞
(𝑛)
𝑖0

𝜆
(𝑛)
1

+ 𝜆
(𝑛)
2

× (Mean response time of jobs served using 0 coded servers) (40)

=

𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖

𝑞
(𝑛)
𝑖0∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − 𝜈
(𝑛)
𝑖

(41)

≥
𝑘∑
𝑖=1

©«1 −𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬
©«

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − (1−𝑂 (𝑛 (𝑛)
coded

/𝑛)) (𝛼𝑖𝑛−𝛽 (𝑛)
𝑖

)
𝛼𝑖 (𝑛−𝑛 (𝑛)

coded
)

ª®®®®¬
(42)

≥
𝑘∑
𝑖=1

©«1 −𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬ ©«
𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − (1 −𝑂 (𝑛 (𝑛)
coded

/𝑛)) (1 − (𝛽 (𝑛)
𝑖

/𝛼𝑖𝑛)) (1 + (𝑛 (𝑛)
coded

/𝑛))
ª®¬ (43)

=

𝑘∑
𝑖=1

©«1 −𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬
©«

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+𝑂

(
𝑛
(𝑛)
coded

𝑛

) ª®®®®¬
(44)

≥
𝑘∑
𝑖=1

©«1 −𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬ ©«
𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«1 +𝑂 ©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

ª®¬ª®¬ª®¬ (45)

=

𝑘∑
𝑖=1

©«1 −𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬ ©«
𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

+𝑂 ©«
𝑛𝑛

(𝑛)
coded

(𝛽 (𝑛)
𝑖

)2
ª®¬ª®¬ (46)

=

𝑘∑
𝑖=1

©«1 −𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬
(

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

+ 𝑜 (1)
)

(47)
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=

𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

+ 𝑜 (1) (48)

= 𝑇
(𝑛)
uncoded

+ 𝑜 (1), (49)

where

• (42) uses (38) and, Property 1.

• (43) uses 1 + (𝑛 (𝑛)
coded

/𝑛) ≤ (1/(1 − (𝑛 (𝑛)
coded

/𝑛))) for any 0 ≤ 𝑛
(𝑛)
coded

≤ 𝑛.

• (44) uses the fact that for 𝑖 = 1, 2

𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ +𝑂 ©«
𝛽
(𝑛)
𝑖

𝑛
(𝑛)
coded

𝑛2
ª®¬ +𝑂 ©«©«

𝑛
(𝑛)
coded

𝑛

ª®¬
2ª®®¬ +𝑂

©«
𝛽
(𝑛)
𝑖

(
𝑛
(𝑛)
coded

)
2

𝑛3

ª®®¬ = 𝑂
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ , (50)

since 𝑛
(𝑛)
coded

= 𝑜 (𝑛) and 𝛽
(𝑛)
𝑖

= 𝑂 (𝑛) for all 𝑖 .

• (47) and, (48) uses the fact that 𝛽
(𝑛)
𝑖

≤ 𝛽
(𝑛)
𝑖+1 for all 𝑖 and 𝛽

(𝑛)
1

= 𝜔

(√
𝑛𝑛

(𝑛)
coded

)
.

To complete the proof, we now prove (37) and upper bound the response time. To upper bound the response time of the coded system,

we show that there exists a routing probability for which 𝑇
(𝑛)
coded

≤ 𝑇
(𝑛)
uncoded

+ 𝑜 (1). Consider the routing probability 𝑞 (𝑛)
𝑖0

= 1 for all 𝑖 . The

routing probability given above is a sub-optimal routing policy as it never uses the coded servers. Hence

𝑇
(𝑛)
coded

=

𝑘∑
𝑖=1

𝑘∑
𝑗=0

𝜆
(𝑛)
𝑖

𝑞
(𝑛)
𝑖 𝑗∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

× (Mean response time of jobs served using 𝑗 coded servers) (51)

≤
𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − 𝛼𝑖𝑛−𝛽 (𝑛)
𝑖

𝛼1 (𝑛−𝑛 (𝑛)
coded

)

(52)

≤
𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 −
(
1 − 𝛽

(𝑛)
𝑖

𝛼𝑖𝑛

) (
1 + 2𝑛

(𝑛)
coded

𝑛

) (53)

=

𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
− 2𝑛

(𝑛)
coded

𝑛 + 2𝛽
(𝑛)
𝑖

𝑛
(𝑛)
coded

𝛼𝑖𝑛
2

(54)

≤
𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«1 +𝑂 ©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

ª®¬ª®¬ (55)

=

𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

+
𝑘∑
𝑖=1

𝑂
©«
𝑛𝑛

(𝑛)
coded(

𝛽
(𝑛)
𝑖

)
2

ª®®¬ (56)

= 𝑇
(𝑛)
uncoded

+ 𝑜 (1), (57)

where

• (53) uses (1/(1 − (𝑛 (𝑛)
coded

/𝑛)) ≤ 1 + (2𝑛 (𝑛)
coded

/𝑛) for 𝑛 (𝑛)
coded

= 𝑜 (𝑛), and large enough 𝑛.

• (57) uses the fact that 𝛽
(𝑛)
𝑖

≤ 𝛽
(𝑛)
𝑖+1 for all 𝑖 and 𝛽

(𝑛)
1

= 𝜔

(√
𝑛𝑛

(𝑛)
coded

)
.

This completes the proof for the light region. □

C.2 The Inner-heavy Regime
Proof of Theorem 2 in the Inner-heavy Regime. The inner-heavy regime is the set of arrival rate vectors that satisfy 𝛽

(𝑛)
𝑖

≤ 𝛽
(𝑛)
𝑗

for

any 𝑖 ≤ 𝑗 , 𝛽
(𝑛)
1

= Ω(𝑛 (𝑛)
coded

), 𝛽 (𝑛)
1

= 𝑜

(√
𝑛𝑛

(𝑛)
coded

)
, and 𝛽

(𝑛)
𝑖∗+1 = 𝜔

(
𝛽
(𝑛)
1

)
. For this regime, we prove that

𝑇
(𝑛)
coded

≤ 𝑇
(𝑛)
uncoded

− 𝜔 (1) . (58)
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The key idea to upper bound the response time is to use a reasonable routing policy that distributes the load uniformly across all servers.

From our assumption 𝜆
(𝑛)
𝑖

= Θ(𝑛), we know that arrival rate of tasks to the systematic servers is Θ(1). Hence, we want the arrival rate
of tasks to the coded servers to be Θ(1). From Property 1, we know that 1 − 𝑞

(𝑛)
𝑖0

= 𝑂 (𝑛 (𝑛)
coded

/𝑛) for all 𝑖 . However, to ensure that the

arrival rate of tasks to the coded server is Θ(1), we want 1 − 𝑞
(𝑛)
𝑖0

= Θ(𝑛 (𝑛)
coded

/𝑛) for at least some 𝑖 . Let 𝑘∗ be the max𝑘 s.t. 𝑘 ≤ 𝑖∗ and

𝛽
(𝑛)
𝑘

= 𝑂

(√
𝑛𝑛

(𝑛)
coded

)
.

Since 𝛽
(𝑛)
𝑖

≤ 𝛽
(𝑛)
𝑗

for all 𝑖 ≤ 𝑗 , the systematic servers of type 𝑖 , for 𝑖 ∈ {1, . . . , 𝑘∗}, experience heavy traffic. Hence, we want to decrease

their load by serving some of those job types using the coded servers. Therefore, we would like to choose the routing probability where

1 − 𝑞
(𝑛)
𝑖0

= Θ(𝑛 (𝑛)
coded

/𝑛), for all 𝑖 ≤ 𝑘∗. Consider the following routing probability. Define,

𝑣 =
1

𝑘∗
∑𝑘∗

𝑗=1 𝛼 𝑗
(59)

For all jobs of type 𝑖 , such that 𝑖 > 𝑘∗,

𝑞
(𝑛)
𝑖 𝑗

=

{
1 𝑗 = 0

0 else

(60)

For all jobs of type 𝑖 , such that 𝑖 ≤ 𝑘∗,

𝑞
(𝑛)
𝑖 𝑗

=


1 − 𝑣𝑛

(𝑛)
coded

𝑛 𝑗 = 0

𝑣𝑛
(𝑛)
coded

𝑛 𝑗 = 𝑖∗

0 else

(61)

Moreover, when serving a job of type 𝑖 , for 𝑖 ≤ 𝑘∗, according to routing probability 𝑞
(𝑛)
1𝑖∗ , only systematic servers in 𝑺 𝑗 , 𝑗 > 𝑖∗ are used. Then,

𝜈
(𝑛)
𝑖

and 𝜈
(𝑛)
coded

the arrival rate to servers in 𝑺𝑖 , for all 𝑖 ≤ 𝑘 and, 𝑺
coded

servers respectively, are bounded as follows. For all 𝑖 ≤ 𝑘∗

𝜈
(𝑛)
𝑖

=

(
1 − 𝑣𝑛

(𝑛)
coded

𝑛

) (
𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

)
𝛼𝑖 (𝑛 − 𝑛

(𝑛)
coded

)
(62)

=

1 − 𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
− 𝑣𝑛

(𝑛)
coded

𝑛 + 𝑜
(
𝑛
(𝑛)
coded

𝑛

)
1 − 𝑛

(𝑛)
coded

𝑛

(63)

≤ ©«1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
−
𝑣𝑛

(𝑛)
coded

𝑛
+ 𝑜 ©«

𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬ ©«1 + 1 + 𝑣

2

𝑛
(𝑛)
coded

𝑛

ª®¬ (64)

= 1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
− 𝑣 − 1

2

𝑛
(𝑛)
coded

𝑛
+ 𝑜 ©«

𝑛
(𝑛)
coded

𝑛

ª®¬ , (65)

In the uncoded system, the servers in 𝑺𝑖 for 𝑖 ≤ 𝑘∗ experiences a higher traffic and arrival rate of tasks in those servers is (1 −𝑂 (𝛽 (𝑛)
𝑖

/𝑛)).
However, in the coded system, because we distribute the load more uniformly, we decrease the arrival rate to (1−𝑂 (𝛽 (𝑛)

𝑖
/𝑛) −𝑂 (𝑛 (𝑛)

coded
/𝑛)).

For all 𝑖 s.t. 𝑘∗ < 𝑖 ≤ 𝑖∗, the arrival rate is bounded as

𝜈
(𝑛)
𝑖

=
𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

𝛼𝑖 (𝑛 − 𝑛
(𝑛)
coded

)
(66)

=
1 − 𝛽

(𝑛)
𝑖

𝛼𝑖𝑛

1 − 𝑛
(𝑛)
coded

𝑛

(67)

≤
(
1 −

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛

) ©«1 + 1 + 𝑣

2

𝑛
(𝑛)
coded

𝑛

ª®¬ (68)

= 1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+𝑂 ©«

𝑛
(𝑛)
coded

𝑛

ª®¬ , (69)
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where (64) uses 1/(1 − 𝑥) ≤ (1 + (1 + 𝜖)𝑥), for any 𝑥, 𝜖 > 0 when 𝑥 = 𝑜 (1). The bound for these servers is similar to the light arrival regime,

i.e., although the arrival rate is slightly higher compared to the uncoded system, the effect on the mean response time is 𝑜 (1). Similarly, for

all 𝑖 > 𝑖∗

𝜈
(𝑛)
𝑖

=

𝛼𝑖𝑛 − 𝛽
(𝑛)
𝑖

+ ∑𝑘∗
𝑗=1

𝑣𝑛
(𝑛)
coded

𝑛

(
𝛼 𝑗𝑛 − 𝛽

(𝑛)
𝑗

)
𝛼𝑖 (𝑛 − 𝑛

(𝑛)
coded

)
(70)

=

1 − 𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+ 𝑣𝑛

(𝑛)
coded

𝛼𝑖𝑛

∑𝑘∗
𝑗=1 𝛼 𝑗 − 𝑜

(
𝑛
(𝑛)
coded

𝑛

)
1 − 𝑛

(𝑛)
coded

𝑛

(71)

≤ ©«1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+
𝑣𝑛

(𝑛)
coded

𝛼𝑖𝑛

𝑘∗∑
𝑗=1

𝛼 𝑗 − 𝑜
©«
𝑛
(𝑛)
coded

𝑛

ª®¬ª®¬ ©«1 +
2𝑛

(𝑛)
coded

𝑛

ª®¬ (72)

= 1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+ Θ

©«
𝑛
(𝑛)
coded

𝑛

ª®¬ , (73)

Because of uniform load balancing, the arrival rate of tasks to the servers in 𝑺𝑖 for all 𝑖 > 𝑖∗ increases, but the order of the load still remains

the same. Although the traffic loss for servers of heavy job types is similar to the traffic gain for servers of light jobs, their effect on the

response time is not the same. Finally, for the coded servers,

𝜈
(𝑛)
coded

=

𝑘∗
∑𝑘∗

𝑗=1

𝑣𝑛
(𝑛)
coded

𝑛

(
𝛼 𝑗𝑛 − 𝛽

(𝑛)
𝑗

)
𝑛
(𝑛)
coded

(74)

=

𝑘∗∑
𝑗=1

©«𝑣𝑘∗𝛼 𝑗 −
𝑘∗𝑣𝛽 (𝑛)

𝑗

𝑛

ª®¬ (75)

= 1 −
𝑘∗∑
𝑗=1

𝑘∗𝑣𝛽 (𝑛)
𝑗

𝑛
(76)

≤ 1 −
(𝑘∗)2𝑣𝛽 (𝑛)

1

𝑛
. (77)

The coded servers experience higher traffic because of our choice of routing policy. However, because we use the coded servers with

𝑂 (𝑛 (𝑛)
coded

/𝑛) = 𝑜 (1) probability, the impact on the mean response time is small. Using this bound on the arrival rate of tasks, we bound the

mean response time of the coded system as follows.

𝑇
(𝑛)
coded

=

𝑘∑
𝑖=1

𝑘∑
𝑗=0

𝜆
(𝑛)
𝑖

𝑞
(𝑛)
𝑖 𝑗

𝜆
(𝑛)
1

+ 𝜆
(𝑛)
2

× (Mean response time of jobs served using 𝑗 coded servers) (78)

≤
𝑘∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

©«
1 − 𝑣𝑛

(𝑛)
coded

𝑛

1 − 𝜈
(𝑛)
𝑖

+
𝑣𝑛

(𝑛)
coded

𝑛

©«
𝑘∑

ℓ=𝑖∗+1

1

1 − 𝜈
(𝑛)
ℓ

+ 𝑖∗

1 − 𝜈
(𝑛)
coded

ª®¬
ª®®¬+

+
𝑖∗∑

𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − 𝜈
(𝑛)
𝑖

+
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − 𝜈
(𝑛)
𝑖

(79)

≤
𝑖∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

©«
1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+ 𝑣−1

2

𝑛
(𝑛)
coded

𝑛 + 𝑜
(
𝑛
(𝑛)
coded

𝑛

) +
𝑣𝑛

(𝑛)
coded

𝑛

©«
𝑘∑

ℓ=𝑖∗+1

1

Θ

(
𝛽
(𝑛)
ℓ

𝑛

) + 𝑖∗

(𝑖∗)2𝑣𝛽 (𝑛)
1

𝑛

ª®®®®¬
ª®®®®¬
+

+
𝑖∗∑

𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
−𝑂

(
𝑛
(𝑛)
coded

𝑛

) +
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
− Θ

(
𝑛
(𝑛)
coded

𝑛

) (80)
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≤
𝑖∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«
1

1 + 𝛼𝑖 (𝑣−1)
2

𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

+ 𝑜
(
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

) ª®®®®¬
+ Θ

©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
1

ª®¬+

+
𝑖∗∑

𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

1

1 −𝑂

(
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

) +
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«
1

1 − Θ

(
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

) ª®®®®¬
(81)

≤
𝑖∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«1 − 𝛼𝑖 (𝑣 − 1)
4

𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

− 𝑜
©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

ª®¬ª®¬ + Θ
©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
1

ª®¬+
+

𝑖∗∑
𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«1 +𝑂 ©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

ª®¬ª®¬ +
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

©«1 + Θ
©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
𝑖

ª®¬ª®¬ (82)

≤
𝑘∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

−
𝑘∗∑
𝑖=1

Θ
©«
𝑛𝑛

(𝑛)
coded(

𝛽
(𝑛)
𝑖

)
2

ª®®¬ +
𝑘∑

𝑖=𝑘∗+1
Θ

©«
𝑛𝑛

(𝑛)
coded(

𝛽
(𝑛)
𝑖

)
2

ª®®¬ (83)

≤ 𝑇
(𝑛)
uncoded

− 𝜔 (1), , (84)

where

• (79) upper bounds mean of the max response time of tasks by the mean of their sum,

• (82) uses 1/(1 − 𝑥) ≤ (1 + (1 + 𝜖)𝑥), for any 𝑥 = 𝑜 (1) and any 𝜖 > 0,

• (84) uses 𝛽
(𝑛)
1

= 𝑜

(√
𝑛𝑛

(𝑛)
coded

)
. Moreover, from the definition of 𝑘∗, if 𝑘∗ < 𝑖∗, then 𝛽

(𝑛)
𝑗

= 𝜔

(√
𝑛𝑛

(𝑛)
coded

)
for all 𝑗 > 𝑘∗ in which case

the statement is true. If 𝑘∗ = 𝑖∗, then we use the fact that 𝛽
(𝑛)
1

= 𝑜 (𝛽 (𝑛)
𝑖∗+1).

□

C.3 The Outer-heavy Regime
Proof of Theorem 2 in the Outer-heavy Regime. The outer-heavy regime is the set of arrival rate vectors 𝜆

(𝑛)
𝑖

that satisfies the

property that 𝛽
(𝑛)
𝑖

≤ 𝛽
(𝑛)
𝑗

for all 𝑖 ≤ 𝑗 and 𝛽
(𝑛)
𝑖

= 𝑜 (𝑛 (𝑛)
coded

) and, 𝛽 (𝑛)
𝑖∗+1 = 𝜔 (𝑛 (𝑛)

coded
) . For this regime, we prove that

𝑇
(𝑛)
coded

= 𝑜

(
𝑇
(𝑛)
uncoded

)
. (85)

The proof for the outer-heavy regime is similar to the proof of inner-heavy regime, i.e., we figure out a good routing probability that

distributes the load uniformly across the various servers. We consider a similar routing probability that we considered for the inner-heavy

regime. We define 𝑘∗ be the max𝑘 s.t. 𝑘 ≤ 𝑖∗ and 𝛽
(𝑛)
𝑘

= 𝑂 (𝑛 (𝑛)
coded

). Define,

𝑣 =
1

𝑘∗
∑𝑘∗

𝑗=1 𝑐 𝑗
(86)

For all jobs of type 𝑖 such that 𝑖 > 𝑘∗,

𝑞
(𝑛)
𝑖 𝑗

=

{
1 𝑗 = 0

0 else

(87)

For all jobs of type 𝑖 such that 𝑖 ≤ 𝑘∗,

𝑞
(𝑛)
𝑖 𝑗

=


1 − 𝑣𝑛

(𝑛)
coded

𝑛 𝑗 = 0

𝑣𝑛
(𝑛)
coded

𝑛 𝑗 = 𝑖∗

0 else

(88)

For the routing probability given above, we can reuse the bound for 𝜈
(𝑛)
𝑖

and 𝜈
(𝑛)
coded

given in (65), (69), (73) and, (77) respectively, i.e., for all 𝑖

s.t. 𝑖 ≤ 𝑘∗,

𝜈
(𝑛)
𝑖

≤ 1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
− 𝑣 − 1

2

𝑛
(𝑛)
coded

𝑛
+ 𝑜 ©«

𝑛
(𝑛)
coded

𝑛

ª®¬ . (89)
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For all 𝑖 s.t. 𝑘∗ < 𝑖 ≤ 𝑖∗,

𝜈
(𝑛)
𝑖

≤ 1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+𝑂 ©«

𝑛
(𝑛)
coded

𝑛

ª®¬ . (90)

For all 𝑖 s.t. 𝑖∗ < 𝑖 ,

𝜈
(𝑛)
𝑖

≤ 1 −
𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+ Θ

©«
𝑛
(𝑛)
coded

𝑛

ª®¬ , (91)

For the coded servers,

𝜈
(𝑛)
coded

≤ 1 −
(𝑘∗)2𝑣𝛽 (𝑛)

1

𝑛
. (92)

𝜈
(𝑛)
coded

= 1 −
𝛽
(𝑛)
1

𝛼1𝑛
. (93)

The above bounds only use the fact that 𝑛
(𝑛)
coded

= 𝑜 (𝑛) and 𝛽
(𝑛)
𝑖

= 𝑂 (𝑛 (𝑛)
coded

) for all 𝑖 ≤ 𝑘∗, which is also true for the outer-heavy regime.

However, one key difference to note is that unlike the inner-heavy regime, for the outer-heavy regime there is an order-wise decrease in

traffic experienced by the systematic servers of type 𝑖 ∈ {1, 2, . . . , 𝑘∗}. The traffic decreased from (1 −𝑂 (𝛽 (𝑛)
𝑖

/𝑛)) to (1 −𝑂 (𝑛 (𝑛)
coded

/𝑛)). This
enables the coded system to achieve an order-wise improvement in the mean response time. The response time of the coded system is then

upper bounded as follows.

𝑇
(𝑛)
coded

=

𝑘∑
𝑖=1

𝑘∑
𝑗=0

𝜆
(𝑛)
𝑖

𝑞
(𝑛)
𝑖 𝑗

𝜆
(𝑛)
1

+ 𝜆
(𝑛)
2

× (Mean response time of jobs served using 𝑗 coded servers) (94)

≤
𝑘∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

©«
1 − 𝑣𝑛

(𝑛)
coded

𝑛

1 − 𝜈
(𝑛)
𝑖

+
𝑣𝑛

(𝑛)
coded

𝑛

©«
𝑘∑

ℓ=𝑖∗+1

1

1 − 𝜈
(𝑛)
ℓ

+ 𝑖∗

1 − 𝜈
(𝑛)
coded

ª®¬
ª®®¬+

+
𝑖∗∑

𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − 𝜈
(𝑛)
𝑖

+
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

1 − 𝜈
(𝑛)
𝑖

(95)

≤
𝑘∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

©«
1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
+ 𝑣−1

2

𝑛
(𝑛)
coded

𝑛 + 𝑜
(
𝑛
(𝑛)
coded

𝑛

) +
𝑣𝑛

(𝑛)
coded

𝑛

©«
𝑘∑

ℓ=𝑖∗+1

1

Θ

(
𝛽
(𝑛)
ℓ

𝑛

) + 𝑖∗

(𝑖∗)2𝑣𝛽 (𝑛)
1

𝑛

ª®®®®¬
ª®®®®¬
+

+
𝑖∗∑

𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
−𝑂

(
𝑛
(𝑛)
coded

𝑛

) +
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

1

𝛽
(𝑛)
𝑖

𝛼𝑖𝑛
− Θ

(
𝑛
(𝑛)
coded

𝑛

) (96)

≤
𝑘∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

Θ
©« 𝑛

𝑛
(𝑛)
coded

ª®¬ + Θ
©«
𝑛
(𝑛)
coded

𝛽
(𝑛)
1

ª®¬+
+

𝑖∗∑
𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

1

1 − 𝑜 (1) +
𝑘∑

𝑖=𝑖∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

(
1

1 − 𝑜 (1)

)
(97)

≤
𝑘∗∑
𝑖=1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

Θ
©« 𝑛

𝑛
(𝑛)
coded

ª®¬ +
𝑘∑

𝑖=𝑘∗+1

𝜆
(𝑛)
𝑖∑𝑘

ℓ=1 𝜆
(𝑛)
ℓ

𝛼𝑖𝑛

𝛽
(𝑛)
𝑖

(1 − 𝑜 (1)) (98)

≤
𝑘∗∑
𝑖=1

𝑜

(
𝑛

𝛽
(𝑛)
𝑖

)
(99)

≤ 𝑜

(
𝑇
(𝑛)
uncoded

)
(100)

where

• (95) upper bounds the maximum of response times of tasks by their sum.

• (100) uses the fact that 𝑇
(𝑛)
coded

= 𝑂 (𝑛/𝛽 (𝑛)
1

). This is because of 𝛽 (𝑛)
1

= 𝑜 (𝑛 (𝑛)
coded

) and (34).
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Hence, by including coded servers, the order of the response time decreases from Θ(𝑛/𝛽 (𝑛)
1

) to Θ(𝑛/𝑛 (𝑛)
coded

). □

D PROOF OF SUFFICIENT CONDITIONS FOR UNSTABLE REGIMES
D.1 Proof of Sufficient Condition for Uncoded-Unstable Regime

Proof. The region is defined as

���𝛽 (𝑛)𝑖∗

��� = 𝑜 (𝑛 (𝑛)
coded

), 𝛽 (𝑛)
𝑖∗+1 = 𝜔 (𝑛 (𝑛)

coded
) and 𝛽

(𝑛)
𝑖∗ < 0, 𝛽

(𝑛)
𝑖∗+1 ≥ 0. Clearly, the uncoded system is unstable in

this regime. To prove the theorem, it suffices to show that the coded system is stable. Let 𝑘∗ = max 𝑗 such that 𝑗 ≤ 𝑖∗ and 𝛽
(𝑛)
𝑗

< 0. Then, all

jobs of type 𝑖∗ + 1, 𝑖∗ + 2, . . . , 𝑘 can be served by their systematic servers. For a job of type 𝑖 for 𝑖 ≤ 𝑘∗, we send 𝛼𝑖 (𝑛 − 𝑛
(𝑛)
coded

) amount of

traffic to their systematic servers. For the remaining traffic, we send 𝑖∗ tasks to the coded server and (𝑘 − 𝑖∗) tasks to servers, one each to

𝑺𝑖∗+1, . . . , 𝑺𝑘 . The servers in set 𝑺 𝑗 for all 𝑗 ≤ 𝑘∗ are stable.

For 𝑖 > 𝑖∗, the total traffic to systematic servers of type 𝑖 is

(
𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

+ ∑𝑘∗
𝑗=1 (𝛼 𝑗𝑛

(𝑛)
coded

− 𝛽
(𝑛)
𝑗

)
)
=

(
𝛼𝑖𝑛 − 𝜔

(
𝑛
(𝑛)
coded

))
which is less than

its total service capacity 𝛼𝑖 (𝑛 − 𝑛
(𝑛)
coded

). The traffic to the coded server is 𝑖∗ (∑𝑘∗
𝑗=1 (𝛼 𝑗𝑛

(𝑛)
coded

− 𝛽
(𝑛)
𝑗

) which is less than 𝑛
(𝑛)
coded

using definition

of 𝑖∗ and |𝛽 (𝑛)
1

| = 𝑜 (𝑛 (𝑛)
coded

). Hence, the system is stable. □

D.2 Proof of Sufficient Condition for Coded-Unstable Regime
Proof. Given

𝛽
(𝑛)
𝑖∗+1 = 𝜔 (𝑛 (𝑛)

coded
) . (101)

Total service capacity required by files 𝛽
(𝑛)
1

, . . . , 𝛽
(𝑛)
𝑖∗+1 is

∑𝑖∗+1
𝑖=1 (𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

). Let 𝑝 be the fraction of the jobs that are serviced completely by

servers not dedicated to the first (𝑖∗ + 1) servers. For stability, we require

(1 − 𝑝)
𝑖∗+1∑
𝑖=1

(𝛼𝑖𝑛 − 𝛽
(𝑛)
𝑖

) ≤
𝑖∗+1∑
𝑖=1

𝛼𝑖 (𝑛 − 𝑛
(𝑛)
coded

). (102)

Simplifying the equation , we get,

𝑝 ≥
∑𝑖∗+1
𝑖=1 (𝛼𝑖𝑛 (𝑛)

coded
− 𝛽

(𝑛)
𝑖

)∑𝑖∗+1
𝑖=1 (𝛼𝑖𝑛 − 𝛽

(𝑛)
𝑖

)
(103)

Hence, the total service required from the coded servers for the first (𝑖∗ + 1) job types is at least

(𝑖∗ + 1)
(
𝑖∗+1∑
𝑖=1

(𝛼𝑖𝑛 (𝑛)
coded

− 𝛽
(𝑛)
𝑖

)
)
≥ 𝑛

(𝑛)
coded

. (104)

where (104) uses the definition of 𝑖∗ given in (7). Hence, the system is unstable. □

E SIMULATION SETUPS
E.1 Simulations for Fixed Arrival Rate

Simulation for system with two job types. We consider 𝑛 = 2
𝑚

servers, where we vary𝑚 ∈ {6, 7, · · · , 11}. For the uncoded system, we

calculate the response time theoretically. We consider a symmetrical allocation of servers, i.e., 𝛼1 = 𝛼2 = 0.5. For each experiment, we run

the experiment until 10
8
jobs leave the system and average it over 50 runs to calculate the mean response time. For the coded system, we

consider two different values for the number of coded servers 𝑛
(𝑛)
coded

= 𝑛/16, and 𝑛 (𝑛)
coded

=
√
𝑛. The arrival rate vectors for the various traffic

regimes are chosen as follows.

(1) Light regime: 𝝀 (𝑛) = [𝑛/2 − 5𝑛/32, 𝑛/2 − 6𝑛/32].
(2) Inner-heavy regime: 𝝀 (𝑛) = [𝑛/2 − (𝑛/2)0.55, 𝑛/2 − 6𝑛/32].
(3) Outer-heavy regime: 𝝀 (𝑛) = [𝑛/2 − (𝑛/2)0.3, 𝑛/2 − 6𝑛/32].

Simulation for system with three job types. We consider 𝑛 = 3
𝑚

servers, where we vary𝑚 ∈ {5, 7, · · · , 8}. For the uncoded system,

we calculate the response time theoretically. We consider an asymmetrical allocation of servers, i.e., 𝛼1 = 2/11, 𝛼2 = 0.3/11, and 𝛼3 = 6/11.
For each experiment, we run the experiment until 10

8
jobs leave the system and average it over 50 runs to calculate the mean response time.

For the coded system, we consider two different values for the number of coded servers 𝑛
(𝑛)
coded

= 𝑛/27, and 𝑛 (𝑛)
coded

=
√
𝑛. The arrival rate

vectors for the various traffic regimes are chosen as follows.

(1) Light regime: 𝝀 (𝑛) = [𝛼1𝑛 − 5𝑛/48, 𝛼2𝑛 − 7𝑛/48, 𝛼3𝑛 − 9𝑛/48].
(2) Inner-heavy regime: 𝝀 (𝑛) = [𝛼1𝑛 − (𝛼1𝑛)0.55, 𝛼2𝑛 − (𝛼2𝑛)0.65, 𝛼3𝑛 − 9𝑛/48].
(3) Outer-heavy regime: 𝝀 (𝑛) = [𝛼1𝑛 − (𝛼1𝑛)0.3, 𝛼2𝑛 − (𝛼2𝑛)0.7, 𝛼3𝑛 − 9𝑛/48].
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E.2 Simulations for Variable Arrival Rate
We consider a system with 60 servers and two job types. For the uncoded system, the 26 servers are provided to job type 1 and the remaining

to job type 2. We allocate 7 coded servers for the coded system and distribute 22 and 31 systematic servers to job types 1 and 2. For the

arrival rate of job type 1, we consider a pulse wave with a minimum amplitude of 6 jobs/unit, a maximum amplitude of 18 jobs/unit, and a

period of 2000 units. Similarly, for the arrival rate of job type 2, we consider a pulse wave with a minimum amplitude of 12 and a maximum

amplitude of 30 and a period of 2000 units. For job type 1, we consider the same lengths for high amplitude and low amplitude duration. For

job type 2, we consider 1200 and 800 units of length for high amplitude and low amplitude duration, respectively. Moreover, we consider a

100 units of rightward shift in the period of job type 2 compared to the period of job type 1.
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