
Boosting Service Capacity via Adaptive Task Replication

Gauri Joshi
Carnegie Mellon University

Pittsburgh PA 15213

gaurij@andrew.cmu.edu

1. INTRODUCTION
The service capacity (maximum rate of task completion)

of a multi-server system is typically the sum of the ser-
vice rates of individual servers. Several recent works study
queueing systems with task replication, where the copies are
canceled when any one replica is served. Replication affects
the system in two ways: 1) replicas provide load-balancing
by finding the shortest among the queues that they join, and
2) redundant time spent by multiple servers on the same
task can add load to the system. Contrary to intution, [1–4]
identify cases where replication can in fact reduce the sys-
tem load, and thus increase service capacity. We seek to
find the fundamental limit of this capacity boost, which is
an open problem. We present a Markov Decision Process
(MDP) framework to find the throughput-optimal replica-
tion policy. The MDP is hard to solve in general, and we
have to resort to myopic replication policies. To help quan-
tify the gap from optimality, we present an upper bound on
the service capacity for the two server case.

2. PROBLEM FORMULATION
Consider a system of K servers with a central queue of

tasks, as shown in Fig. 1. Since our objective is to maxi-
mize service capacity, we do not explicitly define an arrival
process and assume that the queue is never idle.

2.1 Task Service Times
Server i takes time S = Y Xi to finish a task assigned

to it. The random variable Xi captures the variability in
task service time due to server slowdown. It is independent
across servers, and i.i.d. across tasks assigned to any one
server. The dependence of the service time on the size of
the task is captured by Y , which is independent of Xi for all
i. This method of multiplying the randomness from the two
sources of variability was introduced in [5]. We also consider
a cancellation delay ∆ at all servers running a replicated
task, after which they can serve subsequent tasks.

2.2 Scheduling Policy
When a server becomes idle, the scheduler can take one

of two possible actions:

• new : assign a new task to that server, or

• rep: replicate a task that is currently running at one
or more servers.

Copyright is held by author/owner(s).

abcd

X2

X1

XK

Each task assigned to
1 or more idle servers

Task Size Variability Y

Fig. 1: A task replicated at two idle servers 1 and 2 takes
time Y min(X1, X2) to finish, where Y captures the task-size
variability and Xi captures the server slowdown.

The space of scheduling policies with the new and rep ac-
tions is denoted by Πn,r. The scheduling policy can based
on the distributions of Y , X1, . . . , XK , but the scheduler
does not know their realizations for currently running tasks.

Note that all policies in Πn,r are work-conserving, that
is, they never allow a server to be idle for a non-zero time
interval. In the extended version [6] we show that there is
no loss of generality in focusing on work-conserving policies.

2.3 Throughput Metric
Our objective is to determine the policy π∗n,r that maxi-

mizes the throughput, which is defined as follows.

Definition 1 (Throughput R). Let T1(π) ≤ T2(π) ≤
· · · ≤ Tn(π) be the departure times of tasks 1, 2, . . . n, sched-
uled using policy π. The throughput is defined as

R(π) , lim
n→∞

n

Tn(π)
. (1)

We denote the maximum achievable throughput over all
policies in Πn,r by R∗n,r = maxπ∈Πn,r R(π). The policy π∗n,r
that achieves R∗n,r is called the throughput-optimal policy.

Claim 1. For any work-conserving policy, R = K/E [C],
where C is the total time spent by the servers per task.

Thus, minimizing E [C] is equivalent to maximizing R.

3. FINDING THE OPTIMAL POLICY

3.1 No Replication and Full Replication
First let us compare the throughput of two extreme poli-

cies: no replication and full replication.

Lemma 1 (No Replication). If each task is assigned
to the first available idle server, the throughput is,

RNoRep =

K∑
i=1

1

E [Y]E [Xi]
(2)

Lemma 2 (Full Replication). Suppose each task is
assigned to all servers, and as soon as one replica finishes,
the others are canceled. The resulting throughput is,

RFullRep =
1

∆ + E [Y]E [min(X1, X2, . . . XK)]
(3)

The proofs are given in [6]. Using Lemma 1 and Lemma 2
we can compare the two policies for any given X1, . . . , XK , Y
and cancellation delay ∆.

Example 1. Consider a system with two servers, and as-
sume that the task size variability Y = 1 and the cancella-
tion delay ∆ = 0. The service times of the two servers are

X1 = 2 (4)

X2 =

{
1 w.p. 1− p
20 w.p. p

(5)

Fig. 2 compares the throughputs with full replication and
no replication as p varies from 0 to 0.5. For p > 0.068, the
FullRep policy outperforms NoRep.

3.2 MDP Formulation of the Optimal Policy
Instead of replicating tasks upfront, replicas could be added

conditionally if the original task does not finish in some given
time. We now propose a Markov Decision Process (MDP)
framework to search for the best replication policy.

3.2.1 State-space
Let us denote the state evolution by s0, s1, . . . si, . . . such

that the system transitions to state si as soon as the ith

task departs. A state s = [B, t, d] where B contains disjoint
sets of server indices that are running the unfinished tasks in
the system. For example, if B = {{1}, {2, 3}} there are two
unfinished tasks in the system, one running on server 1 and
another on servers 2 and 3. The vector t = (t1, t2, . . . tK)
where tk is the time spent by server k on its current task. If
a server is idle, its ti = 0. The d term ensures that each state
transition corresponds to a single task departure. If d + 1
tasks exit the system simultaneously and result in the task
assignment set B and elapsed-time vector t, then the system
goes through states [B, t, d]→ [B, t, d− 1]→ · · · → [B, t, 0].

3.2.2 Actions
In states s = [B, t, 0], the scheduler can assign new tasks to

idle servers, or replicate existing tasks. No tasks are assigned
in the exit states s = [B, t, d] with d > 0. Thus, for these
states, the action spaceAs contains a single placeholder null
action. The system directly transitions to [B, t, d− 1].

3.2.3 Cost
The cost C(s, s′, a) of taking action a in state s and going

to state s′ is defined as the total time spent by the servers
in that interval. Thus, the throughput-optimal policy is

π∗n,r = arg min
π∈Πn,r

∞∑
j=0

C(sj , sj+1, π(sj)). (6)

0.0 0.1 0.2 0.3 0.4 0.5

Probability p that service time X2 is 20

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
h

ro
u

g
h

p
u

t
R

No Replication

Full Replication

MaxRate Policy

Optimal = AdaRep([∞,1])

Upper Bound

Fig. 2: Comparison of the throughputs of different replica-
tion policies, for the service times defined in Example 1. The
derivation of the upper bound on R∗n,r is given in Section 4.

For the service distributions in Example 1, we can solve
the MDP. The optimal policy (illustrated in Fig. 2) is to
replicate a server 2’s task at server 1 only if it does not finish
in 1 second. In general the MDP can have a large state-space
even for simple service distributions. And if Xi for any i or
Y is a continuous random variable, then the MDP will have
a continuous state-space and it is even harder to solve.

3.3 Proposed Replication Policies
As an alternative to solving the MDP, we propose a my-

opic policy called the MaxRate policy.

Definition 2 (MaxRate Policy). When one or more
servers become idle, the MaxRate policy chooses the action
a that maximizes the instantaneous service rate R̂(a) which
is defined as,

R̂(a) ,
M(a)∑
m=1

1

E [Dm(a)]
, (7)

where M(a) is the number of unfinished tasks after taking
action a, and E [Dm(a)] is the expected remaining time until
the departure of task m, assuming it is not replicated further.

Corollary 1. Consider a two server system, with de-
terministic task size (Y = 1) and no cancellation delay
(∆ = 0). Suppose server 1 becomes idle, and the task run-
ning on server 2 has spent time t2 > 0 in service. Then
MaxRate launches a replica at server 1 if

1

E [min(X1, Xrs
2)]

>
1

E [X1]
+

1

E [Xrs
2]

. (8)

where Xrs
2 = (X2−t2)|X2 > t2, the residual computing time.

Otherwise it assigns a new task to server 1.

Fig. 2 illustrates the MaxRate policy for the service dis-
tributions in Example 1. In this case the throughput of the
MaxRate policy is the maximum of the throughputs of the
NoRep and FullRep policies.

In general, (8) can help find replication thresholds ti→j
such that a task running on server i is replicated at server j
if it does not finish in ti→j seconds. Based on this idea we
propose another policy called AdaRep(t), which is directly
parametrized by a replication threshold vector t.

Definition 3 (AdaRep Policy). Consider a vector u =
(j1, j2, . . . jk) for k < K such that a task first launched on
server j1 was later replicated on j2, j3 and so on. Replicate
this task at server i if server jk has spent at least tu→i time
on it. Otherwise assign a new task to the idle server. If
more than one tasks satisfy the replication condition, choose
the task whose elapsed time is closest to its tu→i.

For example forK = 2 servers, the vector t = [t1→2, t2→1].
The optimal policy shown in Fig. 2 obtained by solving the
MDP is AdaRep([∞, 1]). In the next section we propose a
method to choose t for the two-server case.

4. UPPER BOUND ON CAPACITY
To quantify the optimality gap of a policy without solving

the MDP, we need an upper bound on R∗n,r. Recall that in
our problem formulation, tasks can be replicated only at
time instants when one or more servers become idle. To
find an upper bound, we consider that the scheduler is also
allowed to pause ongoing tasks.

Definition 4 (The Pause-and-Replicate System).
A task can be replicated at any server where it is not already
running by pausing the ongoing task on that server. The
paused task is resumed after the replica is served or canceled.

The set of feasible policies Πn,r is a subset of Πp,r, the set
of policies in the pause-and-replicate system. Thus,

R∗p,r = max
π∈Πp,r

R(π) ≥ max
π∈Πn,r

R(π) = R∗n,r.

4.1 Evaluating the Upper Bound
In the pause-and-replicate framework, AdaRep(t) can repli-

cate a task exactly after time tu→i, instead of waiting for
server i to become idle. In Theorem 1 below, we obtain
a closed-form expression for the throughput Rp,r(t) of the
AdaRep policy for K = 2 servers and Y = 1. In [6] we show
that there is no loss of generality in focusing on AdaRep poli-
cies. Thus, the upper bound R∗p,r = Rp,r(t

∗), the through-
put of the best AdaRep policy.

Theorem 1. The throughput Rp,r(t = [t1→2, t2→1]) of
the AdaRep policy in the pause-and-replicate framework can
be expressed as follows. For t1→2 > 0 and t2→1 > 0,

Rp,r(t) =
1

1 + γ1→2 + γ2→1

(
1

E [Xtr
1 (t1→2)]

+
1

E [Xtr
2 (t2→1)]

)
(9)

where,

γi→j ,
Pr(Xi > ti→j)(∆ + E [min(Xrs

i (ti→j), Xj)])

E [Xtr
i (ti→j)]

, (10)

and Xtr
i (τ) = min(Xi, τ), the truncated part of Xi, and

Xrs
i (τ) = (Xi|(Xi > τ)− τ), the residual service time after

τ seconds of service. If t1→2 = 0 or t2→1 = 0, Rp,r(t) =
1/(∆ + E [min(X1, X2)]).

Proof Sketch. Consider the case t1→2 > 0 and t2→1 >
0. Time can be divided into intervals as illustrated in Fig. 3.
In Type 0 intervals, no tasks are replicated. In a Type i
interval, both servers are serving a task that was originally
launched on server i. The overall throughput is

Rp,r = µ0R0 + µ1R1 + µ2R2. (11)

a

b

Time taken to complete tasks

Server 1

c

d

e

e

Δ

g

fServer 2

Type 0 Type 2 Type 0

d’

Type 1

g

Δ

f’

t2à1

t1à2

Fig. 3: Illustration of the types of intervals used to evaluate
the throughput in Theorem 1. Tasks d and f are paused to
launch the replicas of e and g, and are resumed afterwards.

where µi is the fraction of time spent in a Type i interval.
One task departs the system at the end of each Type 1 or
Type 2 interval. Without affecting overall throughput, let
us shift these departure instants to the end of the preceding
Type 0 interval. As a result,

R0 =
1

E [Xtr
1 (t1→2)]

+
1

E [Xtr
2 (t2→1)]

, (12)

and R1 = R2 = 0. To determine µ0, we can find ratios
µ1/µ0 and µ2/µ0 in terms of t1→2 and t2→1, and use the
fact that µ0 + µ1 + µ2 = 1.

The upper bound R∗p,r can be obtained by maximizing
(9) over the parameters [t1→2, t2→1]. For example, for the
service distributions in Example 1, t∗ = [∞, 1]. The upper
bound is shown in Fig. 2.

4.2 Choosing AdaRep replication thresholds
We propose using the optimal t∗ that maximizes Rp,r(t)

as the replication threshold vector for the AdaRep policy
in the original system. This policy tries to emulate the op-
timal pause-and-replicate policy, under the limitation that
it cannot pause ongoing tasks. The AdaRep(t∗) policy is
throughput-optimal for the example in Fig. 2, but check-
ing its optimality in general is an open question. We are
also exploring the idea of choosing t to K > 2 servers by
recursively combining servers, one pair at time.

5. REFERENCES
[1] G. Koole and R. Righter, “Resource allocation in grid

computing,” Journal of Scheduling, vol. 11,
pp. 163–173, June 2008.

[2] N. Shah, K. Lee, and K. Ramchandran, “When do
redundant requests reduce latency?,” in Proceedings of
the Allerton Conference, Oct. 2013.

[3] G. Joshi, E. Soljanin, and G. Wornell, “Efficient
replication of queued tasks for latency reduction in
cloud systems,” in Proceedings of the Allerton
Conference, Oct. 2015.

[4] Y. Sun, Z. Zheng, C. E. Koksal, K. Kim, and N. B.
Shroff, “Provably delay efficient data retrieving in
storage clouds,” in Proceedings of IEEE INFOCOM,
Apr. 2015.

[5] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf,
“A better model for job redundancy: Decoupling server
slowdown and job size,” in Proceedings of IEEE
MASCOTS, Sept. 2016.

[6] G. Joshi, “Synergy via Redundancy: Boosting Service
Capacity with Adaptive Replication.”
https://goo.gl/549f8G, July 2017.

https://goo.gl/549f8G

