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Abstract—Decentralized stochastic gradient descent (SGD) has
recently become one of the most promising methods to use data
parallelism in order to train a machine learning model on a
network of arbitrarily connected nodes/edge devices. Although
the error convergence of decentralized SGD has been well
studied in the last decade, most of the previous works do
not explicitly consider how the network topology influences the
overall convergence time. Communicating over all available links
in the network may give faster error convergence, however, it
will also incur higher communication overhead. The MATCHA
algorithm proposed in [1] achieves a win-win in this error-
runtime trade-off by judiciously sampling the communication
graph. In this paper, we propose several variants of the MATCHA
algorithm and show that MATCHA can work with many other
activation schemes and decentralized computation tasks. It is a
flexible framework to reduce the communication delay for free
in decentralized environments.

I. INTRODUCTION

The advent of federated learning [2], [3] has results in both
data collection and model training to shift to edge devices.
In cross-silo federated learning, the devices are connected
through an arbitrary network topology, without a central
coordinator. Decentralized stochastic gradient descent (SGD)
is workhorse for training machine learning models [4]–[6] in
such settings. Previous works have studied the error conver-
gence of decentralized SGD in terms of iterations or commu-
nication rounds in both synchronous [6], [7] and asynchronous
[8] settings. However, they do not consider how the topology
affects the wall-clock runtime of the algorithm.

The performance of any decentralized optimization scheme
centers around the communication-computation trade-off.
With communication being the bigger bottleneck, have been
lots of work from both the perspectives of algorithms [9]–
[12] and systems [13]–[15] to improve the communication
efficiency of synchronous distributed SGD in a fully-connected
network. However, it is not clear whether aforementioned
schemes can be extended to arbitrary decentralized networks.
Other approaches towards communication efficiency in de-
centralized SGD include quantization of transmitted messages
to reduce bandwidth [16], [17], increasingly sparse commu-
nication [18], [19] to reduce the number of messages over
time. However, such approaches do not take into account
communication delays and network latency.

This work was supported in part by NSF CCF grant # 1850029, a
Qualcomm Innovation Fellowship (Jianyu) and an IBM Faculty Award.

To address the error vs runtime trade-off while keeping
communication efficiency in mind for arbitrary decentralized
graphs, MATCHA was recently proposed in [1]. In particular,
MATCHA tries to obtain the best error vs runtime trade-
off by carefully tuning inter-node communication. MATCHA
decomposes the graph into sets of disjoint links called match-
ings which allows for non-blocking parallel communication.
Furthermore, the probability of activations of these matchings
are optimized so as to maximize the algebraic connectivity of
the graph. This helps MATCHA in avoiding communication
over redundant links, while ensuring frequent communication
over connectivity-critical links thereby making way for faster
information exchange in the graph. In spite of the tuned inter-
node communication, MATCHA preserves the same error vs
iterations rate as that of classical decentralized optimization on
general non-convex objectives. However, in terms of empiri-
cal performance MATCHA outperforms other decentralized
schemes in terms of error vs wall-clock time while preserving
the error vs iterations rate.

In this paper, we extend the MATCHA algorithm in multiple
ways, demonstrating that MATCHA is a flexible algorithmic
framework to reduce the communication delay in decentral-
ized computation tasks. The main contributions are listed as
follows:

• In MATCHA, matchings are activated independently with
different probabilities at each iteration. Instead, we show
that one can also use other activation schemes: (1)
ordering all matchings with respect to their importance
to the algebraic connectivity and only activating the
most important ones; (2) sampling matchings without
replacement according to their importance. Both these
two activation schemes can achieve similar performance
as the original MATCHA algorithm.

• We show that MATCHA not only works for vanilla
decentralized SGD (DecenSGD) but also can be applied
to other decentralized optimization algorithms, such as
DecenSGD with gradient tracking. Experimental results
show that using MATCHA on the top of these algorithms
can save communication delay as well as preserve the fast
error convergence speed.

• We also examine the performance of MATCHA in the
cases where nodes have non-IID local datasets. The
results show that the effectiveness of MATCHA is not
influenced by the distribution of data.



II. PRELIMINARIES OF MATCHA

In this section, we will introduce the problem formulation
and review the MATCHA algorithm proposed in [1]. In
decentralized optimization, suppose there are total m nodes
and the model parameters are represented by a vector x. Then,
the objective function is formulated as follows:
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where Fi(x) is defined as the local objective function, s
denotes a single data sample, and `(x; s) is the loss function
for sample s, defined by the learning model. For simplicity, we
assume that all nodes have the same size of local datasets, that
is, |Di| = |Dj |,∀i 6= j. Besides, we consider a setting where
all nodes are organized in a network without a central coordi-
nator. The network topology is denoted by G(V, E), where the
vertex set V = {1, 2, . . . ,m} corresponds to the nodes index
and the edge set E represents the communication links among
worker nodes. Node i and node j can communicate with each
other if and only if (i, j) ∈ E .

Vanilla Decentralized SGD (DecenSGD). The basic al-
gorithm to minimize (1) using a network of nodes is vanilla
decentralized SGD. Worker nodes first perform one step of
local SGD and then average their local models with their
neighbors. This procedure repeats until convergence. The
update rule of DecenSGD on each node can be written as
follows:
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where x
(k)
i denotes the model parameters of node i at the k-th

iteration, gi(xi) = 1
|ξ|
∑

s∈ξ∇`(x; s) denotes the stochastic
gradient evaluated on node i’s local dataset, and η is the
learning rate or step size. Additionally, the weight Wij 6= 0 if
and only if (i, j) ∈ E . The matrix W = [Wij ] is defined as
mixing matrix.

Matching Decomposition Sampling (MATCHA). In order
to reduce the communication delay in the consensus step as
shown in (2), [1] proposes to let worker nodes communicate
more frequently over connectivity-critical links and less on
others. Based on this insight, they develop the Matching
Decomposition Sampling (MATCHA) algorithm. MATCHA
contains the following four key components.

a) Matching Decomposition: The algorithm first decom-
pose the base topology into disjoint subgraphs {Gj(V, Ej)}Mj=1

such that E =
⋃M
j=1 Ej and Ei

⋂
Ej = ∅,∀i 6= j. In particular,

each subgraph is a matching of G in which each vertex is
incident with at most one edge. The benefit of using matchings
as the decomposition basis is that all links in one matching can
be communicated over in parallel. At each training iteration,
there is only a random subset of matchings will be activated
for communication. As a result, the communication delay
per iteration in MATCHA is proportional to the number of

active matchings. One can reduce the communication delay
by simply activate (i.e., let worker nodes communicate over)
less matchings in each iteration.

b) Determine the Importance of Subgraphs: In
MATCHA, matchings are activated independently for
communication. In order to achieve this, we assign a Bernouli
random variable Bj with mean pj for each matching.
The activation probabilities {pj}Mj=1 are determined by
maximizing the algebraic connectivity subject to some
communication delay constraints. Specifically, the algorithm
solves the following optimization problem:

max
p1,...,pM

λ2

(∑M
j=1pjLj

)
subject to E[t(

∑M
j=1Bj)] ≤ Cb · t(M),

0 ≤ pj ≤ 1, ∀j ∈ {1, 2, . . . ,M},

(3)

where Lj denotes the Laplacian matrix of the j-th matching
and

∑M
j=1 pjLj can be considered as the Laplacian of the

expected graph. Note that λ2 represents the algebraic con-
nectivity and is a concave function [20], [21]. Moreover, t(·)
denotes a monotonically increasing function and describes how
the communication delay scales with the maximal degree in
the graph. For simplicity, we assume t(·) is a linear function.
In this case, (3) reduces to a concave optimization problem
and can be solved efficiently.

c) Generate a Random Graph Sequence: Given the ac-
tivation probabilities obtained by solving (3), in each iteration
k, MATCHA generates an independent Bernoulli random
variable B

(k)
j for each matching j = 1, . . .M . Thus, in the

k-th iteration, the activated topology G(k)(V, E(k)), in which
E(k) =

⋃M
j=1 B

(k)
j Ej , can be sparse or even disconnected.

d) Construction of the Mixing Matrix: Based on
the matching decomposition and random graph sequence,
MATCHA constructs the mixing matrix as follows: W (k) =

I − α
∑M
j=1 B

(k)
j Lj , where α is parameter that controls the

weights of neighbors. This kind of construction is common in
the literature. The best value of α that gives the fatest con-
vergence is obtained by solving a semi-definite programming
problem:

min
ρ,α,β

ρ,

subject to α2 − β ≤ 0,

I − 2αL+ β[L
2
+ 2L̃]− 1

m
11> � ρI

(4)

where β is an auxiliary variable, L =
∑M
j=1 pjLj and L̃ =∑M

j=1 pj(1− pj)Lj .
Convergence Guarantee of MATCHA. In [1], the authors

also provide a convergence analysis for the MATCHA algo-
rithm. It is worth highlighting that, for a suitable communica-
tion budget, MATCHA can achieve the same or even faster
convergence than vanilla DecenSGD. That is, unlike other
communication-efficient methods which reduce the commu-
nication cost by sacrificing the convergence speed, MATCHA
can reduce communication for free. Moreover, note that the



convergence of MATCHA depends on the value of ρ =∥∥E[W (k)>W (k)]− 1
m11>

∥∥
2
. A smaller value of ρ yields a

better convergence guarantee.

III. EXPERIMENTAL SETTINGS

In this paper, we focus on training a deep neural network
(ResNet-50 [22]) on the CIFAR-10 dataset [23], which has
total 50000 training images and 10000 test images. We man-
ually partition the dataset across all worker nodes with equal
size. The default network topology we use is a randomly
generated geometric graph with 16 nodes, as shown in Fig-
ure 1. In our experiments, each node is equipped with one
NVIDIA TitanX Maxwell GPU and has a 40 Gbps (5000
MB/s) Ethernet interface. For vanilla DecenSGD, we tuned the
learning rate from {0.01, 0.02, 0.04, 0.08, 0.1, 0.2} and found
that η = 0.08 works the best. For other algorithms, we use the
same learning rate as vanilla DecenSGD in order to guarantee
a fair comparison.

Fig. 1: Default network topology (a geometric graph) used in
the experiments. There are total 16 nodes and the maximal
degree is 10.

IV. STRATEGIES TO GENERATE SPARSE COMMUNICATION
TOPOLOGIES

In MATCHA, there are many different ways to construct the
sparse graph sequence. One does not have to stick with the
original method in [1] (i.e., activating matchings independently
but with different probabilities). In this section, we explore two
other matching activation/sampling methods and validate their
effectiveness.

A. Removing the Least Important Matchings from the Base
Topology

One simple way to sparsify the base topology is to remove
the unimportant links. After obtaining the matching decompo-
sition in MATCHA, one can also determine the importance of
different matchings using the following optimization problem:

max
p1,...,pM

λ2

(∑M
j=1pjLj

)
subject to

M∑
j=1

pj = 1,

0 ≤ pj ≤ 1, ∀j ∈ {1, 2, . . . ,M},

(5)

Then we can order all matchings based on their weights pj
and only use the top-q matchings for communication. Unlike
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Fig. 2: The performance of a variant of MATCHA: removing
the least important matchings from the base topology and
using the remaining topology for communication.

the original MATCHA, this activation scheme uses a fixed
(i.e., does not change with iteration k) sparse subgraph E(k) =⋃q
j=1 E(j), where E(j) denotes the edge set for the matching

with the j-th largest weight.
Construction of the Mixing Matrix. When removing the

least important matchings from the base topology, one can
set the mixing matrix as W = I − α

∑q
j=1 L(j) where L(j)

denotes the Laplacian matrix for the matching with the j-th
largest weight. The parameter α can be set by minimizing∥∥W 2 − 1

m11>
∥∥
2
.

Experimental Results. The experimental results are pre-
sented in Figure 2. Recall that the maximal node degree in
the base topology Figure 1 is 10, and hence, DecenSGD uses
q = 10 matchings to perform communication at each iteration.
We can observe that when the number of active matchings q
reduces, the algorithm costs much less time to finish training.
In terms of the error convergence, q = 8 can even achieve
a lower training loss and a higher test accuracy than vanilla
DecenSGD. If we further decrease the value of q, the final test
accuracy of MATCHA has a slight drop.

B. Sampling q Matchings without Replacement

In MATCHA, different matchings are activated indepen-
dently at each iteration. There also exists an alternative way
to randomly activate matchings. One can sample q matchings
without replacement according to their importance/weights as
derived in (5). As long as q < M , the communication delay
per iteration is reduced compared to vanilla DecenSGD.

Construction of the Mixing Matrix. Similar to the original
MATCHA algorithm, the mixing matrix is defined as W (k) =

I−α
∑M
j=1 B

(k)
j Lj . However, the activation random variables

Bj’s are no longer independent of each other. Besides, we
cannot use (4) to determine the value of α automatically.
Instead, we manually tune α for each value of q.

Experimental Results. The training curves are presented in
Figure 3. When reducing the number of activated matchings
and manually tuning the value of α, we observe that MATCHA
can not only significantly reduce the total training time but also
achieve even higher test accuracy than vanilla DecenSGD. For
example, when q is set to 4, the final accuracy of MATCHA
is 82.33% while vanilla DecenSGD is 80.20%.
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Fig. 3: The performance of a variant of MATCHA: sampling
matchings without replacement at each iteration.

V. APPLYING MATCHA TO OTHER DECENTRALIZED
OPTIMIZATION ALGORITHMS

It is worth noting that the MATCHA framework can be
applied to any decentralized algorithm to save communication
delay. In this section, we provide an example on how to extend
MATCHA to gradient tracking methods.

Decentralized SGD with Gradient Tracking (DecenSGD-
GT). Gradient tracking (GT) [24] is a technique that is used
to accelerate the convergence of DecenSGD. Instead of using
the stochastic gradient to update local models, DecenSGD-GT
uses an auxiliary variable yi, to approximate the global gradi-
ent 1

m

∑m
i=1 gi(xi). The detailed update rule of DecenSGD-

GT is provided as follows:
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Note that y
(0)
i and gi(x

(−1)
i ) are initialized to zero. More

properties and convergence analysis of DecenSGD-GT can be
found in [25].

Combination with MATCHA. As shown in (6) and (7),
there are two consensus steps in DecenSGD-GT. We choose to
apply MATCHA on both of them. The activated sparse graph
sequence is generated in the same way as original MATCHA
and at each iteration, (6) and (7) use the same activated
topology. The mixing matrix at the k-th iteration is defined
as W = I − α

∑M
j=1 B

(k)
j Lj . Unlike the original MATCHA

algorithm where α is selected via optimizing (4), we found
that α should be manually tuned when combining MATCHA
and gradient tracking.

Experimental Results. We present the training curves
of the combination of MATCHA and gradient tracking in
Figure 4. Observe that although DecenSGD-GT can achieve
lower loss value than vanilla DecenSGD at the end of train-
ing, it costs more wall-clock time since it requires doubled
communication at each iteration. When applying MATCHA
on the top of DecenSGD-GT, the training time can be signifi-
cantly reduced and the training loss is still better than vanilla
DecenSGD.
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Fig. 4: Combination of MATCHA and gradient tracking.

VI. CONCLUSION

In this paper, we have explored the error-runtime trade-off in
decentralized optimization by extending the MATCHA frame-
work to incorporate importance based matchings sampling and
to decentralized optimization algorithms involving gradient
tracking. We have empirically demonstrated the performance
of our proposed extensions on deep network training for image
recognition tasks. Future work includes extending MATCHA
to network topologies having directed links.
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