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Abstract

Parallel systems such as supercomputers are valuable re-
sources which are each commonly shared among a commu-
nity of users. The problem of job scheduling is to determine
how that sharing should be done in order to maximize the
system’s utility. This problem has been extensively studied
for well over a decade, yielding a great breadth of knowl-
edge and techniques. In this work, we survey the ideas and
approaches that have proven most influential to how jobs
are scheduled on today’s large-scale parallel systems. With
this background in mind, we discuss how deployed schedul-
ing policies can be improved to meet existing requirements
and how trends in parallel processing are currently altering
those requirements.

1 Introduction

Parallel systems, such as supercomputers, are valuable
resources that are commonly shared by communities of
users. Users continually submit jobs to the system, each
with unique resource and service-level requirements as well
as value to the user and resource owner. The charge of job
scheduling is to decide when and how each job should ex-
ecute in order to maximize the system’s aggregate utility to
its owners.

For well over a decade, the field of job scheduling has
been the subject of great scrutiny, producing a sizeable body
of work [20] and increasing returns on HPC investments
by millions of dollars. Despite this progress, one may ar-
gue that the problem of scheduling on parallel systems may
not be closer to being solved today than it was a decade
ago. Scheduling is an inherently reactive discipline, mir-
roring trends in HPC architectures, parallel programming
language models, user demographics, and administrator pri-
orities. No scheduling strategy is optimal for all of today’s
scenarios, let alone all of tomorrow’s.

In recent years, relative stability in the aforementioned

forces has gradually moved large supercomputer installa-
tions towards workable though imperfect de facto stan-
dards. The production of large Massively Parallel Process-
ing (MPP) machines today centers around MIMD archi-
tectures [23] in pure or shared distributed memory con-
figurations, such as Cache Coherent Non-Uniform Mem-
ory Access. This architectural trend has given rise to the
dominance of rigid programming models such as MPI, and
consequently of complementary scheduling policies such as
batch queued space-sharing and its variants.

Nevertheless, as parallel processing is increasingly her-
alded as the savior of Moore’s Law, a shift in user demo-
graphics, system architectures, and programming models
is underway. No longer the exclusive realm of supercom-
puters, parallel processing is moving onto commodity clus-
ters, geographically distributedgrid ensembles, and even
the desktop. Concurrently, the rigidity and explicit par-
allelism of MPI is slowly giving way to alternative pro-
gramming models which challenge traditional scheduling
assumptions.

In this work, we illuminate the issues and approaches
that have defined how parallel jobs are scheduled in today’s
production environments and highlight as yet unresolved is-
sues in the field. Before this backdrop, we discuss current
trends in parallel processing and emphasize their implica-
tions for the future of job scheduling.

2 Definitions and Assumptions

Because the terms involved have held multiple meanings
and implied various assumptions over time, we define them
here for this survey.

This work is concerned primarily withjob scheduling,
a discipline whose purpose is to decide when and where
each job should be executed from the perspective of the
system. This is related to, but distinct from, the study of
application/task scheduling[39, 31] where the question is
how a single parallel application should schedule each of
its threads.



We use the termsupercomputerto reference a computer
capable of massively parallel processing and shared among
a community of users. Such machines today typically scale
to thousands of processors that often cooperate in a Multi-
ple Instruction Multiple Data (MIMD) architecture [23] and
offer a pure distributed memory or distributed shared mem-
ory interface. The processor pools of such machines are
normally homogenous.

We use the termjob to refer to some parallel program,
composed of multiple concurrentthreads, submitted to the
system for execution. As such, a job is inherently associ-
ated with a submission time and scheduling algorithms must
makeonlinescheduling decisions based on the current state
of an ordered job stream.

Each job is characterized along two dimensions: its
lengthas measured by execution time and itswidth or size
as measured by the number of threads; we will assume that
each of a job’s threads executes on a separate processor.

Job sizes are not necessarily fixed before or during exe-
cution, but are often so in practice. The literature catego-
rizes job sizes according to the following behavioral taxon-
omy [21]:

Rigid - The number of processors made available to the job
is specified by the user and is external to the scheduler.
Exactly that number of processors is made available to
the job throughout its execution

Moldable - The number of processors assigned to the job
is determined by the scheduler but within certain con-
straints, potentially provided by the user. Once the job
begins, it uses the same number of processors through-
out its execution.

Evolving - The job goes through different phases that re-
quire different numbers of processors. The number of
processors allocated may change during execution in
response to the job requesting or relinquishing some.

Malleable - The number of processors assigned to the job
may change during execution at the discretion of the
scheduler.

In production environments, jobs are almost always
rigid, though research has shown that moldable jobs can
increase throughput in a variety of scheduling approaches
[58, 9]. Evolving and malleable jobs are not widely sup-
ported due to increased programming burden, migration and
checkpointing overheads, and lack of operating system sup-
port.

Given a set of jobs and of available processors, asched-
ule is an ordered series of mappings between some threads
of those jobs and the processors. In practice, schedules are
readily subject to change as dictated by job stream con-
ditions but advanced reservations are sometimes possible
[25].

The term time-sharing refers to any scheduling ap-
proach whereby threads can be preempted by others dur-
ing execution and restarted later. The number of jobs that
each processor can execute concurrently is known as the
multiprogramming level. Contrastingly,space-sharingap-
proaches provide a thread exclusive use of a processor until
its execution is complete or a maximum time limit has been
eclipsed and the thread is terminated. Space-sharing ap-
proaches manage time by placing each job in a queue and
executing all of its threads concurrently upon release from
that queue.

This divide in approaches reflects a duality of job re-
quirement sets.Interactivejobs that require low latency are
usually executed using time-sharing, whilebatch jobs that
require unperturbed performance are executed on dedicated
processors using space-sharing. Supercomputing facilities
often meet the requirements of both categories by statically
partitioning a machine’s processors into time-sharing and
space-sharing subsets.

3 What Is a Good Schedule?

For such a well studied problem, the evaluation of
scheduling algorithms has proven surprisingly elusive. The
objective of scheduling, and of system administration in
general, is to maximize system utility. Unfortunately, utility
is not directly observable, but rather is some subjective and
context-specific function of many factors. Should one job
starve to decrease the running time of five others by 10%?
How much more productive will a user be if he knew ex-
actly when his job will run? What if he knew within 20%?
These determinations must be informed by context well out-
side the scope of the scheduler and even then, objectivity is
impossible.

We can identify certain qualities as desirable for sched-
ulers, includingperformance, fairness, andpredictability.
Because these qualities are largely intangible, many observ-
able metrics intended to mirror them, particularly perfor-
mance, have emerged and enjoyed wide use.

However, consensus exists neither on how these metrics
relate to the desired qualities, nor on how these desired qual-
ities relate to utility. It is simply posited that each relates
along some unknown, non-decreasing function. Objectively
evaluating the effects of scheduling decisions on a specific
quality is therefore difficult; evaluating the relative effects
of each metric on utility is nearly impossible.

Observable metrics enable us to make only very weak
statements regarding scheduling policies, such as “an in-
crease in metric A, while all other factors are held equal,
will cause a non-negative change in system utility.” Un-
fortunately, all other factors are rarely held equal; metric
A may be in conflict with metric B while their relative ef-
fects on utility are unknown. The value of metrics is there-



fore to support administrative decision-making by describ-
ing scheduling tradeoffs in regrettably non-uniform units.

In this section we discuss each of the three desired
scheduling qualities mentioned above, some of the metrics
that have been used to observe each, and the tradeoffs that
exist among them.

3.1 Performance

The most often evaluated scheduling quality is perfor-
mance. For online scheduling algorithms, this quality is of-
ten measured using variations onresponse time[15, 50].
Response time, also known asflow timeor turnaround time,
is the amount of time elapsed between a job’s submission
and completion. The intuition behind this metric is that
users are happier with speedier response times, though the
exact correlation is not clear [21].

Theslowdownof a job, sometimes referred to asstretch,
is the ratio of a job’s response time with respect to its run-
time on an unloaded system [5]. Feitelson et. al have ob-
served that this metric overemphasizes the importance of
extremely short jobs and proposed abounded slowdown
[21]:

bounded slowdown = max{ Tw + Tr

max{Tru, τ} , 1}

whereTw is the job’s waiting time,Tr the runtime,Tru

the runtime on an unloaded system. Naturally, bounded
slowdown is sensitive to the value ofτ .

A troublesome quality of both slowdown and bounded
slowdown is that jobs with the same response time and
processor time can have different slowdown numbers. For
example, a job running immediately on 1 processor for 100
seconds will have a slowdown of 1, while a 10 processor job
that waits in a queue for 90 seconds and runs for 10 seconds
will have a slowdown of 10, even though it has the same
100s response time and utilizes the same 100 cpu seconds.
In response, Zotkin et. al. have proposed aper processor
slowdown(pp-slowdown), derived by simply dividing the
slowdown by the number of processors used [66].

Another problem with the slowdown metrics is the tie
between performance and job lengths. AsTr andTru in-
crease, the impact ofTw on the slowdown is diminished.
This can have undesirable consequences for polices that
try to minimize these metrics. On a space-sharing system
for example, such a policy encourages jobs that use fewer
processors because they run longer and often start more
quickly [8]. This contradiction with the goals of parallel
processing has led some to prefer response time to slow-
down as a performance metric.

To compare two scheduling schemes, the workload must
be held equal. For this reason, many studies usemakespan
[46, 60, 45, 50], a throughput measure that denotes the

amount of time required for a particular machine to exe-
cute some closed set of jobs. The intuition is that a shorter
makespan on some job set might indicate higher throughput
in production. Higher throughput presumably means more
utility.

Of course, high performance alone is insufficient for
high utility. For instance, a scheduler that only chooses fast
running jobs that minimize fragmentation in the schedule
may easily achieve high throughput and low productivity.
This is because it is trading fairness for performance.

3.2 Fairness

Unless told otherwise, a scheduler must assume that util-
ity is best served by providing comparable service to every
job. This is because the job mix is a product of external
policy and market forces that cannot be anticipated by the
scheduler. Providing uneven service levels to certain jobs
risks the general utility of the machine. Fairness is there-
fore an important quality of schedules, though it is seldom
quantified.

Most scheduling algorithms make the minimum fairness
guarantee that no job will be starved, that is, each job will
eventually execute. Stronger fairness guarantees are contin-
gent on the scheduling scheme. In space-sharing, fairness
may imply some first-come-first-serve (FCFS) ordering or
that a job will not be delayed by any job that is behind it in
the queue [38]. In time-sharing, it may be that each thread
receives an equal slice of the processor or a slice weighted
by the job size [22].

As evidenced by the makespan example above, fairness
is often directly at odds with performance and evaluating
tradeoffs between the two is difficult.

3.3 Predictability

Predictability is the gap between a job’s response or flow
time and the user’s expectation as created through previous
experience. Predictability can indirectly increase produc-
tivity by enabling users to anticipate job completion times
and plan resource usage accordingly. Some have proposed
that predictability, under other realistic assumptions, may
be even more central to the user experience than perfor-
mance [61].

4 Job Scheduling on MPP Supercomputers

The dominant resource for parallel processing in recent
years has been the MPP supercomputer. Consequently, par-
allel job scheduling research in this space has matured into
a reasonably understood topic. In this section, we highlight
some of the influential issues and ideas that have helped
shape this maturation.



4.1 Space-Sharing

The simplest way to schedule a parallel system is with a
queue. Each job is submitted to the queue and, upon reach-
ing the head, is executed to completion while all other jobs
wait. The queue can be hypothetically FIFO, but the scheme
extends to priority queues without loss of generality.

Though providing maximum fairness and predictability,
this scheme is inefficient. Since each application utilizes
only a subset of the system’s processors, those processors
not in the subset are left idle during execution. This effect
is known asfragmentationand its reduction is the primary
focus of much scheduling research.

The most natural extension to the queue scheme is space-
sharing, which is the simple idea of allowing another job in
the queue to execute on the idle processors if enough are
available. This is primarily how supercomputers are sched-
uled today.

Deceptively however, even simple scheduling models
such as queued space-sharing hide many assumptions, re-
sulting in keen research interest. In the remainder of this
section, we will discuss some of the heuristics used to se-
lect the next job to execute and the implications, assump-
tions, and repercussions of such choices.

4.1.1 Backfilling

The most basic queued space-sharing approach is known as
blocking First-Come-First-Serve (FCFS) [44]. Under this
scheme, if sufficient idle processors exist to serve the next
job in the queue, that job is executed. Otherwise, the queue
blocks until sufficient resources become available.

This approach remains prone to severe fragmentation
with system utilization rates between 50-80% [30, 16, 27].
Because the queue is only accessed at the head, a wide job
may block others behind it from executing while it waits for
a large portion of the machine to become available.Back-
filling is the idea that while the wide job waits, the scheduler
may choose to execute some narrower jobs situated further
back in the queue. The question is, which job should jump
ahead?

The first implementation of a backfilling scheduler was
the Extensible Argonne Scheduling sYstem (EASY) [34].
The scheduler was deployed on the Argonne National Lab-
oratory’s 128-node IBM SP system and was successful
enough to be eventually incorporated into IBM’s commer-
cial LoadLeveler scheduling software [28].

EASY backfilling, as it has come to be known, works by
allowing a narrower job Jn, to jump in front of a waiting
wide job Jw, so long as the execution of Jn does not delay
the projected start of Jw. The job furthest ahead in the queue
that satisfies these width and length requirements is selected
for backfilling.

This scheme relies on a significant assumption, that is,
that job lengths are known a priori. Argonne’s approach,
which preponderates today, was to simply ask the users for
an expected runtime. Though this approach has proven ser-
viceable, the problem of job length estimation under dis-
parate assumptions has created an active field of research as
described in Section 4.1.2.

The other problem with EASY backfilling is fairness, as
cutting can cause unfairness even if not to the job at the head
of the queue. This is the fundamental observation motivat-
ing conservative backfilling[38].

Figure 1. EASY backfilling can cause unfair-
ness.

Figure 1 demonstrates how this unfairness can occur. In
the figure, jobs are ordered from left to right and the Y-
axis represents the number of processors. Job J0 is currently
executing, leaving too few processors to execute J1. The
first job that can satisfy the length and width requirements
of the EASY backfilling algorithm is J3, so it is scheduled.
However, though it has no effect on J1, the execution of J3
delays the start time of J2.

Conservative backfilling only backfills when the maneu-
ver causes no job to be delayed. This approach trades some
of the performance of the more aggressive EASY scheme
for an increase in fairness, though the extent is naturally
workload-dependant [38].

The tradeoffs between conservative and EASY backfill-
ing can be generalized to anumber of reservations, where
EASY backfilling makes a single reservation for the job at
the head of the queue and conservative backfilling makes
one for each job in the queue. Some schedulers, such as
Maui [26], allow administrators to explicitly set this num-
ber; Chaing et. al. have suggested that 2-4 is a good com-
promise between performance and fairness [7]. Alterna-
tive approaches such as dynamic reservation policies which



make reservations based on observed runtime delays have
also been proposed [54].

4.1.2 Estimating Job Lengths

As mentioned in the previous section, backfilling is pred-
icated on knowledge of the job lengths before execution.
The approach taken by Lifka’s EASY scheduler, to simply
ask the users to submit an expected runtime along with the
job, is in wide use today. Unfortunately, estimates gathered
in this manner are notoriously inaccurate.

Figure 2 displays the percentage of requested runtime ac-
tually used by jobs over a two year period at the San Diego
Supercomputer Center’s IBM SP2 installation. The large
spike at 100% is indicative not of accurate estimates, but of
jobs being killed upon exceeding their respective runtime
estimates. The distribution is almost even across all per-
centages, meaning that user-supplied runtime estimates are
essentially arbitrary.

Figure 2. Percent of user runtime estimate
used by users at SDSC (128-node IBM SP2,
April 1998 - April 2000)

Conventional wisdom has explained this behavior
through thepadding hypothesiswhich suggests that users
overestimate runtimes because their motivation to avoid
having their jobs killed is much stronger than their moti-
vation to enable better packing. Subsequent research how-
ever, has suggested that padding is not entirely to blame and
that users may be unable to provide tight runtime estimates,
even when the threat of job termination is removed and a
monetary incentive is provided for tight estimates [32].

This has led some to propose that the scheduler should
automatically generate runtime estimates instead of users.
The most commonly used and successful approach for do-
ing this is through analysis of historical runtime logs. It is
well documented that users tend to run identical or similar

jobs many times consecutively [16, 13]. A number of exper-
imental results have shown that this phenomenon can be ex-
ploited to produce accurate runtime estimates [38, 47, 24].

Nevertheless, no such automated prediction schemes are
deployed today. There are several reasons for this. First, if
the system underestimates the runtime in a backfilling con-
text, a user’s job will be killed. Mu’alem and Feitelson’s
technique for example, underestimates once for approxi-
mately every five predictions [38]. Administrators are there-
fore justifiably uneasy about adopting such an approach un-
til other assumptions are changed.

Secondly, some have interestingly argued that more ac-
curate runtime estimates are not critical for scheduling. Nu-
merous studies have shown that inaccuracy in this regard
is not detrimental to performance, but on the contrary, may
actually be beneficial [38, 47, 66]. This has motivated sug-
gestions that doubling user runtime estimates [38, 66] or
applying other randomization [42] may actually increase
throughput. If this is true, then why fuss about accuracy?

The answer is that performance is not the only desirable
quality of a schedule. Indeed, inaccurate runtime estimates
have profound effects on fairness and predictability.

To see this, we must first understand why wildly exag-
gerated runtime estimates result in greater system through-
put. This happens because the premature termination of
jobs causes fragmentation in the schedule. In backfilling,
that fragmentation is mitigated by executing shorter jobs
from the back of the queue. It is no surprise that this
arrangement increases performance as scheduling theory
has long recognized that the Shortest Job First (SJF) heuris-
tic results in optimal throughput [29]. SJF is not widely
used on today’s production installations because of its inad-
equate fairness. Coaxing an SJF algorithm out of a backfill-
ing scheduler through inflated runtime estimates may there-
fore not be desirable, though his analysis has gone largely
unrecognized [64, 38, 47, 66, 42].

Erratic runtime estimates can also manifest unfairness
through a phenomenon known aspseudo-delay[26]. An
example is shown in Figure 3. JobJ1 is prevented from ex-
ecuting at the same time asJ0. Relying on false runtime
estimates, the scheduler decides to backfillJ2. Soon there-
after,J0 completes execution, butJ1 cannot begin because
of the decision to backfillJ2. The backfilling fairness guar-
antee thatJ1 would not be delayed by any job behind it in
the queue is broken.

Like fairness, system predictability also suffers because
of poor runtime estimates. For queued space-sharing, this
unpredictability is manifested as inconsistent queue wait
times which are often quite significant with respect to over-
all flow times. As described in Section 3.3, predictability
has a tangible impact on productivity. Statistically mean-
ingful queue time predictors have therefore become a topic
of research interest.



Figure 3. Example of pseudo-delay

4.1.3 Predicting Queue Times

Queue time predictability can be correlated with produc-
tivity through many scenarios. The most obvious example
is a user with accounts on numerous machines who wants
his job to finish most quickly. More subtle is the lost util-
ity caused when the user’s job does not finishing in time to
provide useful output (e.g. a one day weather simulation
finishing in twenty five hours) or the schedule perturbation
caused when the user submits to multiple sites in order to
guarantee the earliest possible start time.

Increasingly, distributed grid applications must also
schedule their components across a set of machines which
may exhibit disparate queue times for each type of subtask.
Meaningful queue time predictions are an important com-
ponent of effective grid workflow scheduling [51, 35].

A third example arises when jobs are moldable. Such
jobs must decide whether to begin execution when some set
of processors becomes available or to wait for a larger set
to come free. Such a decision must compare the additional
wait time versus the speedup provided by extra processors.
Predictability of the queue wait times therefore has a direct
impact on the response time of such an application.

Much research has sought to derive statistically mean-
ingful queue time predictions. In 1997, Downey observed
that job runtimes on the San Diego Supercomputer Cen-
ter’s Paragon system trended towards a uniform log distri-
bution [11]. Using this observation, he showed that rea-
sonable start time estimates could be calculated for the job
at the head of a FCFS queue by calculating the probabil-
ity of enough processors coming available before a certain
time. This technique was also applied to processor alloca-
tion for moldable jobs and shown to increase average re-
sponse times and system throughput [12].

Both Gibbons [24] and Smith [47] show that more ac-
curate job runtime estimates can be derived from histori-

cal job logs. They derive these estimates for each job in
the system and predict the queue time for any job by sim-
ulating the schedule. Smith’s results indicate that the tech-
nique can predict queue times to within 30-60% on average
for four different workloads and three different scheduling
strategies. The greater difficulty with this approach is that
it requires detailed knowledge of the often capriciously pa-
rameterized scheduling policy of the target machine. This
is burdensome for a single supercomputing installation and
impractical for a distributed grid infrastructure.

Recently, Brevik and Wolski have proposed a more gen-
eralized approach called theBinomial Method Batch Pre-
dictor (BMBP) [6]. The BMBP derives a maximum bound
for a job’s waiting time by using only historically observed
queue wait times. The approach thus obviates the need
for specific knowledge of a machine’s scheduling policy.
Whether or not these bounds are tight enough to be useful
remains to be evaluated.

4.2 Time-Sharing

Aside from space-sharing, the other major approach to
parallel scheduling is time-sharing. The term time-sharing,
or time-slicing, refers to the sharing of a processor’s time
among threads of different parallel programs. In such ap-
proaches, each processor executes a thread for some time,
pauses it, and begins executing a new thread. Applica-
tions therefore exhibit short wait times but execute more
slowly than under the dedicated set of processors provided
by space-sharing.

Today, the context switching overheads and complex job
resource requirements of time-sharing, particularly memory
management, have led most supercomputing installations to
prefer the simplicity and predictability of space-sharing for
executing performance-critical applications. Time-sharing
is most often used to execute interactive jobs that do not
necessarily require peak performance.

Though time-sharing has been largely marginalized for
high performance scientific computing, its applicability to
emerging scenarios remains promising. Interactivity is a
critical requirement if parallel processing is to move beyond
scientific supercomputing and into widespread deployment.
Parallel processing on the desktop for example, is inextri-
cably interactive. The same is true of web application in-
frastructures and consequently, many dynamic grid comput-
ing scenarios.

4.2.1 Local Scheduling

The simplest way to implement a parallel time-sharing
scheduler is to run a uni-processor system on each node and
share a global run queue. Threads that are ready to exe-
cute are placed in the queue. When a processor becomes



available, it simply removes the next thread from the queue,
executes it for some time, and returns it to the back of the
queue. This approach was once widely used in small-scale
uniform memory access machines [4, 55].

An obvious advantage of this approach is fairness. Each
thread receives an equal share of the machine and priority
mechanisms are straightforward to enable.

Local scheduling, however, is beset by numerous short-
comings. Contention for the global queue is a potential per-
formance bottleneck, frequent context switching disturbs
cache locality, and thread migration can be costly across
processors, particularly when large chunks of data need be
ported from one memory bank to another.Affinity schedul-
ing, which avoids thread migration by scheduling each
thread on the same processor during each time slice, has
been proposed to counteract some of these shortcomings to
a limited extent [37].

Affinity scheduling however, does not address local
scheduling’s most significant shortfall: the uncoordinated
execution of an application’s threads. One thread of an ap-
plication may block for much of its time slice while waiting
for communication from another, currently inactive thread
of the application [19]. Even when the operating system is
able to recognize this situation and preempt the blocking
thread, excessive context-switching, known asprocessor
thrashing, may result in significant slowdown [41]. Con-
sequently, codes with fine-grained communication between
threads are unlikely to perform well under local scheduling.

The inefficiency of uncoordinated thread execution must
be addressed by a more application-centric approach such
asgang scheduling.

4.2.2 Gang Scheduling

The most accepted form of time-sharing is gang schedul-
ing, an approach by which all threads of an application are
executed concurrently as onegang [41]. This approach is
regarded as a confluence of space-sharing and time-sharing
techniques and has been shown to outperform local schedul-
ing in numerous studies [19, 41, 14, 17].

Under gang scheduling, applications can perform more
fine-grained communications without suffering a significant
performance penalty. Further, since gang scheduling as-
signs threads to processors, the approach enjoys all the ben-
efits of affinity scheduling, including some local cache effi-
ciencies and an obviated need for memory porting.

Gang scheduling, however, is limited in other respects.
In addition to inheriting the drawbacks of memory manage-
ment and context switching overheads from its time-sharing
heritage, it also inherits many of the fragmentation issues of
space-sharing [18].

Several variations and relaxations of gang scheduling
have been proposed to overcome this challenge. One ap-

proach isdynamic coscheduling[50]. First proposed for
commodity clusters, DCS observes that only threads that
communicate often need be scheduled together and at-
tempts to reduce fragmentation by scheduling each thread
when a message arrives for it. DCS is part of a class
of communication-driven approaches for clusters including
spin blocking [40], periodic boost [40], and coordinated
coscheduling [3].

Also, job moldability can be leveraged to reduce frag-
mentation in gang scheduling [9] just as is done under
space-sharing [58].

Another inefficiency of gang scheduling, at least with re-
spect to other time-sharing approaches, is its handling of
I/O-intensive jobs [33, 43, 65]. Such jobs cause degra-
dation in both processor and I/O efficiency because gang
scheduling fails to overlap I/O requests with computation.
Processor efficiency suffers when threads idly await I/O re-
sults, neither making progress nor allowing compute inten-
sive threads to execute. I/O efficiency degrades when an I/O
request returns, but the subsequent request cannot be issued
because a compute-intensive job occupies the processor.

To improve I/O performance, certain relaxations in gang
scheduling protocols have been proposed.Flexible gang
scheduling[33] achieves optimal response times by cus-
tomizing the length of each application’s time-slices ac-
cording to observed behavior. Alternatively,paired gang
scheduling[62] coschedules I/O and compute-bound codes
on the same processors and allows a local scheduler at each
processor to choose which thread to run.

5 Improving Supercomputer Scheduling

Although MPP job scheduling is a rather mature field,
there are still many improvements that could be addressed
by the research community.

In backfilling systems, it seems the responsibility of es-
timating job runtimes is misplaced. Though users might
specify the maximum amount of time for which they are
willing to “finance” a specific job, relieving them of length
estimation duties may be desirable for several reasons.

Most immediate is usability. Job runtime estimation cre-
ates a burden on the user that requires sedulous and error-
prone submission script maintenance. Further, providing
such estimates requires a level of expertise regarding both
the application and hardware that most users evidently do
not possess. As the number of supercomputing installations
grows and users acquire accounts on multiple machines,
such expertise will become increasingly scarce.

Despite their trouble, it is clear that users are either un-
able or unwilling to provide accurate runtime estimates.
The inaccuracy exits both because many users do not posses
the required expertise and because the current conditions do
not motivate them to acquire it. While the scheduler is in-



terested in the tightest bounds possible, users are only mo-
tivated to supply estimates that yield wait times with simi-
lar levels of user satisfaction. Perhaps this explains why a
recent study of accounting logs at six supercomputing in-
stallations over several years has found that twenty values
account for 90% of runtime estimates [57].

There are many examples. If a user submits a three hour
job at 7:00 PM, it likely makes little difference to him if
the job starts within one or five hours. The possibility of an
earlier start time would be unlikely to motivate the user to
even edit the submit script.

Suppose further that some user wants to perform a pa-
rameter sweep of an application by submitting twenty jobs.
He writes a program that will automatically generate and
submit twenty different run scripts. If he knows that each
job will begin execution within one hour, he has little moti-
vation to study the scaling of the application carefully and
invest the additional programming burden of creating cus-
tomized runtime estimates in each script.

This example highlights an even larger issue, that is, that
runtime estimates require a “man in the loop”. The partic-
ipation of expert users is not a luxury that schedulers will
always enjoy. Distributed grid applications for example,
will need to dynamically submit jobs to various resources
with no human intervention. Producing accurate runtime
estimates under such assumptions would be very difficult.

The answer is not to artificially increase the stakes for
users, but rather to place the burden of job length estimation
on the current stakeholder: the scheduler. System adminis-
tered prediction mechanisms have repeatedly been shown
to be rather accurate [11, 24, 47, 38] and their deployment
should not be precluded by backfilling’s reservation guaran-
tees. Relaxing this termination policy is a viable alternative
which has been shown to significantly improve throughput
over EASY scheduling when more accurate runtimes are
introduced [56].

If users are nevertheless required to describe their job
submissions, it would be more productive to submit pro-
filing data which would allow the system to automatically
predict the job’s runtime using existing performance mod-
elling techniques [36, 48, 49]. Such techniques have been
shown to predict runtimes to accuracies within 90%.

Profiling data can be leveraged not only to predict run-
times, but also to help the scheduler perform effective
processor allocation. Paired gang scheduling for example,
proposes to match compute intensive and I/O intensive jobs
on the same processors. Profiling data enables the scheduler
to identify these categories.

This concept is highly applicable to space-sharing as
well. Current implementations measure a job by the num-
ber of processors used and assign other resources such as
memory and I/O accordingly. This assumption can lead to
an under-utilization of system resources when jobs that re-

quire little memory make poor use of their memory allo-
cations and jobs that require much memory spread across
more, consequently lightly loaded, processors. If profiling
data is provided and job categories are known, techniques
such assymbiotic space-sharing[60, 59] can be leveraged
to boost throughput by an estimated 20%.

It may even be possible to avoid burdening the user with
the task of acquiring and supplying this information. In
some cases, the system could acquire the data automatically
by using partial executions (provided the application’s ef-
fects are idempotent). As suggested by Perkovic [42], an
ideal opportunity for partial executions exists in schedule
fragmentation. If no job can be backfilled, idle processors
should be used to perform partial executions of queued jobs.

Aside from collecting profiling data, partial executions
can be used to provide other benefits. For instance, recent
work in performance modelling has shown that the runtimes
of highly iterative codes such as those commonly found in
the sciences, can be very accurately anticipated by using
partial executions [63]. Such techniques yield runtime esti-
mates whose accuracy is very competitive with other exist-
ing modelling techniques. Existing schedule fragmentation
can be exploited to produce these estimates.

Partial executions also have the potential to eliminate
a perennial cause of schedule fragmentation and unpre-
dictability: job crashes. When jobs crash upon starting, as
many do because of misconfiguration or programming er-
ror, fragmentation and pseudo-delay may result. Eliminat-
ing such instances helps to create more efficient, fair, and
predictable schedules.

Jobs that can checkpoint may also benefit from partial
executions. Fragmentation holes may be used to make
headway on certain jobs while they wait in the queue,
thereby increasing throughput and system utilization levels.

6 Trends in Parallel Processing

At first glance, scheduling research may appear to be
quite stable and mature. There are however, several trends
in parallel processing that are reinvigorating the discipline
and motivating novel scenarios and studies.

6.1 Parallelism in the Mainstream

Despite reports to the contrary, Moore’s law is con-
tinuing unabated, doubling transistor densities every eigh-
teen months. It is the accompanying doubling in proces-
sor speeds, and particularly in computing speeds, that is
hobbled. Chip makers have long used increased densities
to make faster serial chips and hid memory latencies with
cache hierarchies and clever compilation. Recently, how-
ever, these techniques have been unable to keep pace.



In response, system architects are increasingly turning
their attention to HPC technologies such as chip multi-
processors where a typical serial processor is replicated sev-
eral times on a single chip. These designs can be exploited
both by instruction level parallelism [53] and by parallel ap-
plications as discussed in this work.

Consequently, parallel processing is quickly entering the
mainstream. The implication for job scheduling is an ex-
pansion in the types of users, scenarios, architectures, and
applications that must be supported. For example, industry
is relying on these technologies to support heavily loaded
web services, application servers, and online transaction
processing systems. These systems have users, interfaces,
and requirements that are well outside of traditional HPC
contexts. The necessity for scheduling policies that can op-
timize system performance under these conditions and in
the face of complex and fluid business priorities, has already
given rise to viable businesses.

Mainstream deployment of parallel applications may
also drive innovation in programming models. The ex-
plicit parallelism of MPI is cumbersome for general pur-
pose software development. Even in the respectively tol-
erant academic and scientific communities, more dynamic
initiatives are taking hold. OpenMP [2], for example, a
shared-memory programming interface based on a fork-join
model is making inroads deep enough to marginalize purely
distributed memory architectures.

OpenMP is not alone. The Department of Defense’s
High Productivity Computer Systems program [1] consti-
tutes an immense national effort to create the next genera-
tion of HPC tools and architectures. All three industry part-
ners (Sun, IBM, and Cray) are developing new program-
ming languages to accompany their architecture propos-
als. Independently, Microsoft is also developing a new ver-
sion of C that eases the multi-threaded programming burden
through implicit parallelism [52].

The implication of this trend for scheduling is that jobs
may no longer be strictly rigid. Work that has assumed mal-
leable jobs [10, 9] could be revisited and completely new
scenarios considered.

6.2 Grid Computing

A great source of new requirements for supercomputer
scheduling isgrid computing. Grid computing is the idea
that a single community of users can gain access to mul-
tiple heterogeneous, physically distributed, and indepen-
dently administered machines through a common interface.

The purpose of grids is not necessarily to build a single,
immensely powerful supercomputer, but rather to increase
the utility of the machines involved through better load bal-
ancing and by exploiting application affinities. At any given
time, more lightly loaded machines can relieve pressure on

more heavily loaded ones. Additionally, applications can
increase performance by executing on more affine systems.
Since increased resource utilization is the central goal, job
scheduling is the central problem.

Grid computing does not only create a new field of
scheduling (grid scheduling), but also directly impacts the
requirements of local schedulers. Because Grid computing
systems must respect site autonomy, grid schedulers must
be built to interface with each machine’s local scheduler.
In many respects today’s local schedulers inadequately sup-
port effective grid scheduling.

The most obvious obstacle is predictability. In order
to decide which site is best for a particular job, a grid
scheduler would have to determine the full response time
of the job for each site. The unpredictability of queue wait
times makes this very difficult. What was simply an in-
convenience for local scheduling becomes critical for grid
scheduling. These circumstances could conceivably cause
some shift in priorities for local scheduling algorithms.

Even if queue times were more predictable, local sched-
ulers would still need to provide updated capabilities such
as reservations. Grid applications are often represented as
Directed Acyclic Graphs(DAGs) of tasks, each of which
must be scheduled at the most appropriate site. If task B
is data dependent on task A, and each is to be executed on
a different machine, reservations are likely more efficient
than is serially waiting in each machine’s queue.

Even more important is the case when tasks need to be
coallocated, that is, scheduled to run at the same time but on
different machines. This is a common requirement in work-
flow based grid applications and is impossible to guarantee
without support from the local scheduler. In response, some
have proposed plan-based scheduling schemes in place of
queueing approaches [25].

Another feature of grid computing that cannot exist with-
out local scheduler support is service level agreements.
Such agreements can be rather arbitrary, for example, “up
to 5 requests by user X between Tuesday and Thursday for
a maximum of 16 CPU’s and 12 hours must be fulfilled
within 5 hours”. Local scheduling techniques would have
to be developed for supporting such high level objectives. If
such agreements are dynamically reached, local schedulers
would necessarily play an integral role in negotiations.

Lastly, if local schedulers still require runtime estimates
for each job, generating them automatically is unavoidable.
When a user submits a job to a grid scheduler, he cannot
be expected to even know which machines the jobmayrun
on, let alone provide a reasonably tight runtime estimate for
every possibility. The estimate must be generated dynami-
cally by the grid and local schedulers. All of the approaches
to automating runtime predictions discussed in Section 5 are
applicable; it is therefore reasonable to expect such tech-
nologies to mature and take hold.



7 Conclusions

Job scheduling on parallel machines is a well studied
research field that has led to widespread de facto stan-
dards: queued space-sharing with backfilling. This ap-
proach works well but can be improved through many tech-
niques including automated runtime estimates, partial exe-
cutions, and more intelligent processor allocation schemes.

While single site MPP scheduling is settling down, over-
all trends in parallel processing are ensuring that scheduling
researchers will not bore. Parallel processing is expanding
onto emerging architectures that are deployed in new sce-
narios and in support of disparate users and objectives.

Grid computing has created an entirely new field of
scheduling research aimed at the efficient distribution of
jobs across heterogeneous and independently administered
machines. Concurrently, it is pressuring local schedul-
ing research to provide expanded interfaces and reevaluate
scheduling objectives.
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