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sYsteMs that resPoND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why variability exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 
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Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 
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 key insights
    even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 
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Global resource sharing. Applica-
tions running on different machines 
might contend for global resources 
(such as network switches and shared 
file systems); 

Maintenance activities. Background 
activities (such as data reconstruction 
in distributed file systems, periodic log 
compactions in storage systems like 
BigTable,4 and periodic garbage collec-
tion in garbage-collected languages) can 
cause periodic spikes in latency; and 

Queueing. Multiple layers of queue-
ing in intermediate servers and network 
switches amplify this variability. 

Increased variability is also due to 
several hardware trends: 

Power limits. Modern CPUs are de-
signed to temporarily run above their 
average power envelope, mitigating 
thermal effects by throttling if this activ-
ity is sustained for a long period;5 

Garbage collection. Solid-state stor-
age devices provide very fast random 
read access, but the need to periodically 
garbage collect a large number of data 
blocks can increase read latency by a 
factor of 100 with even a modest level of 
write activity; and 

Energy management. Power-saving 
modes in many types of devices save 
considerable energy but add additional 
latency when moving from inactive to 
active modes. 

component-Level variability 
amplified By Scale 
A common technique for reducing la-
tency in large-scale online services is to 
parallelize sub-operations across many 
different machines, where each sub-op-
eration is co-located with its portion of 
a large dataset. Parallelization happens 
by fanning out a request from a root to 
a large number of leaf servers and merg-
ing responses via a request-distribution 
tree. These sub-operations must all 
complete within a strict deadline for the 
service to feel responsive. 

Variability in the latency distribu-
tion of individual components is mag-
nified at the service level; for example, 
consider a system where each server 
typically responds in 10ms but with a 
99th-percentile latency of one second. 
If a user request is handled on just one 
such server, one user request in 100 will 
be slow (one second). The figure here 
outlines how service-level latency in this 
hypothetical scenario is affected by very 

modest fractions of latency outliers. If 
a user request must collect responses 
from 100 such servers in parallel, then 
63% of user requests will take more than 
one second (marked “x” in the figure). 
Even for services with only one in 10,000 
requests experiencing more than one-
second latencies at the single-server 
level, a service with 2,000 such servers 
will see almost one in five user requests 
taking more than one second (marked 
“o” in the figure). 

Table 1 lists measurements from 
a real Google service that is logically 
similar to this idealized scenario; root 
servers distribute a request through in-
termediate servers to a very large num-
ber of leaf servers. The table shows the 
effect of large fan-out on latency distri-
butions. The 99th-percentile latency for 
a single random request to finish, mea-
sured at the root, is 10ms. However, the 
99th-percentile latency for all requests to 
finish is 140ms, and the 99th-percentile 
latency for 95% of the requests finish-
ing is 70ms, meaning that waiting for 
the slowest 5% of the requests to com-
plete is responsible for half of the total 
99%-percentile latency. Techniques that 
concentrate on these slow outliers can 
yield dramatic reductions in overall ser-
vice performance. 

Overprovisioning of resources, care-
ful real-time engineering of software, 
and improved reliability can all be 
used at all levels and in all components 
to reduce the base causes of variability. 
We next describe general approaches 
useful for reducing variability in ser-
vice responsiveness. 

Reducing component variability 
Interactive response-time variability 
can be reduced by ensuring interactive 
requests are serviced in a timely manner 
through many small engineering deci-
sions, including: 

Differentiating service classes and 
higher-level queuing. Differentiated ser-
vice classes can be used to prefer sched-
uling requests for which a user is wait-
ing over non-interactive requests. Keep 
low-level queues short so higher-level 
policies take effect more quickly; for ex-
ample, the storage servers in Google’s 
cluster-level file-system software keep 
few operations outstanding in the op-
erating system’s disk queue, instead 
maintaining their own priority queues 
of pending disk requests. This shallow 

queue allows the servers to issue incom-
ing high-priority interactive requests 
before older requests for latency-insen-
sitive batch operations are served. 

Reducing head-of-line blocking. High-
level services can handle requests with 
widely varying intrinsic costs. It is some-
times useful for the system to break 
long-running requests into a sequence 
of smaller requests to allow interleaving 
of the execution of other short-running 
requests; for example, Google’s Web 
search system uses such time-slicing to 
prevent a small number of very compu-
tationally expensive queries from add-
ing substantial latency to a large num-
ber of concurrent cheaper queries. 

Managing background activities and 
synchronized disruption. Background 
tasks can create significant CPU, disk, 
or network load; examples are log 
compaction in log-oriented storage 
systems and garbage-collector activity 
in garbage-collected languages. A com-
bination of throttling, breaking down 
heavyweight operations into smaller 
operations, and triggering such opera-
tions at times of lower overall load is 
often able to reduce the effect of back-
ground activities on interactive request 
latency. For large fan-out services, it is 
sometimes useful for the system to syn-
chronize the background activity across 
many different machines. This synchro-
nization enforces a brief burst of activity 
on each machine simultaneously, slow-
ing only those interactive requests being 
handled during the brief period of back-
ground activity. In contrast, without syn-
chronization, a few machines are always 
doing some background activity, push-
ing out the latency tail on all requests. 

Missing in this discussion so far is 
any reference to caching. While effec-
tive caching layers can be useful, even a 
necessity in some systems, they do not 
directly address tail latency, aside from 
configurations where it is guaranteed 
that the entire working set of an applica-
tion can reside in a cache. 

Living with Latency variability 
The careful engineering techniques in 
the preceding section are essential for 
building high-performance interactive 
services, but the scale and complexity 
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could 
be achieved in isolated environments, 
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systems with shared computational 
resources exhibit performance fluctua-
tions beyond the control of application 
developers. Google has therefore found 
it advantageous to develop tail-tolerant 
techniques that mask or work around 
temporary latency pathologies, instead 
of trying to eliminate them altogether. 
We separate these techniques into two 
main classes: The first corresponds to 
within-request immediate-response 
techniques that operate at a time scale 
of tens of milliseconds, before longer-
term techniques have a chance to react. 
The second consists of cross-request 
long-term adaptations that perform on 
a time scale of tens of seconds to min-
utes and are meant to mask the effect of 
longer-term phenomena. 

Within Request Short-Term  
adaptations 
A broad class of Web services deploy 
multiple replicas of data items to pro-
vide additional throughput capacity and 
maintain availability in the presence of 
failures. This approach is particularly 
effective when most requests operate on 
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated 
once a day while handling thousands of 
correction requests per second. Simi-
larly, distributed file systems may have 
multiple replicas of a given data chunk 
that can all be used to service read re-
quests. The techniques here show how 
replication can also be used to reduce 
latency variability within a single high-
er-level request: 

Hedged requests. A simple way to 
curb latency variability is to issue the 
same request to multiple replicas and 
use the results from whichever replica 
responds first. We term such requests 
“hedged requests” because a client first 
sends one request to the replica be-
lieved to be the most appropriate, but 
then falls back on sending a secondary 
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received. 
Although naive implementations of 
this technique typically add unaccept-
able additional load, many variations 
exist that give most of the latency-re-
duction effects while increasing load 
only modestly. 

One such approach is to defer send-
ing a secondary request until the first 

request has been outstanding for more 
than the 95th-percentile expected la-
tency for this class of requests. This 
approach limits the additional load to 
approximately 5% while substantially 
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other 
forms of interference. For example, in 
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable 
table distributed across 100 different 
servers, sending a hedging request after 
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values 
from 1,800ms to 74ms while sending 
just 2% more requests. The overhead of 
hedged requests can be further reduced 
by tagging them as lower priority than 
the primary requests. 

Tied requests. The hedged-requests 
technique also has a window of vulner-

ability in which multiple servers can 
execute the same request unnecessar-
ily. That extra work can be capped by 
waiting for the 95th-percentile expect-
ed latency before issuing the hedged 
request, but this approach limits the 
benefits to only a small fraction of re-
quests. Permitting more aggressive 
use of hedged requests with moderate 
resource consumption requires faster 
cancellation of requests. 

A common source of variability is 
queueing delays on the server before 
a request begins execution. For many 
services, once a request is actually 
scheduled and begins execution, the 
variability of its completion time goes 
down substantially. Mitzenmacher10 
said allowing a client to choose between 
two servers based on queue lengths at 
enqueue time exponentially improves 
load-balancing performance over a uni-
form random scheme. We advocate not 
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Table 1. individual-leaf-request finishing times for a large fan-out service tree (measured 
from root node of the tree). 

50%ile latency 95%ile latency 99%ile latency

one random leaf finishes 1ms 5ms 10ms

95% of all leaf  
requests finish

12ms 32ms 70ms

100% of all leaf  
requests finish

40ms 87ms 140ms
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choosing but rather enqueuing copies 
of a request in multiple servers simulta-
neously and allowing the servers to com-
municate updates on the status of these 
copies to each other. We call requests 
where servers perform cross-server sta-
tus updates “tied requests.” The sim-
plest form of a tied request has the cli-
ent send the request to two different 
servers, each tagged with the identity of 
the other server (“tied”). When a request 
begins execution, it sends a cancellation 
message to its counterpart. The corre-
sponding request, if still enqueued in 
the other server, can be aborted imme-
diately or deprioritized substantially. 

There is a brief window of one aver-
age network message delay where both 
servers may start executing the request 
while the cancellation messages are 
both in flight to the other server. A com-
mon case where this situation can occur 
is if both server queues are completely 
empty. It is useful therefore for the cli-
ent to introduce a small delay of two 
times the average network message de-
lay (1ms or less in modern data-center 
networks) between sending the first re-
quest and sending the second request. 

Google’s implementation of this 
technique in the context of its cluster-
level distributed file system is effective 
at reducing both median and tail laten-
cies. Table 2 lists the times for servicing 
a small read request from a BigTable 
where the data is not cached in memory 
but must be read from the underlying 
file system; each file chunk has three 
replicas on distinct machines. The table 
includes read latencies observed with 
and without tied requests for two sce-
narios: The first is a cluster in which the 
benchmark is running in isolation, in 
which case latency variability is mostly 

from self-interference and regular clus-
ter-management activities. In it, send-
ing a tied request that does cross-server 
cancellation to another file system 
replica following 1ms reduces median 
latency by 16% and is increasingly ef-
fective along the tail of the latency dis-
tribution, achieving nearly 40% reduc-
tion at the 99.9th-percentile latency. The 
second scenario is like the first except 
there is also a large, concurrent sorting 
job running on the same cluster con-
tending for the same disk resources in 
the shared file system. Although overall 
latencies are somewhat higher due to 
higher utilization, similar reductions in 
the latency profile are achieved with the 
tied-request technique discussed earli-
er. The latency profile with tied requests 
while running a concurrent large sort-
ing job is nearly identical to the latency 
profile of a mostly idle cluster without 
tied requests. Tied requests allow the 
workloads to be consolidated into a sin-
gle cluster, resulting in dramatic com-
puting cost reductions. In both Table 2 
scenarios, the overhead of tied requests 
in disk utilization is less than 1%, indi-
cating the cancellation strategy is effec-
tive at eliminating redundant reads. 

An alternative to the tied-request and 
hedged-request schemes is to probe re-
mote queues first, then submit the re-
quest to the least-loaded server.10 It can 
be beneficial but is less effective than 
submitting work to two queues simul-
taneously for three main reasons: load 
levels can change between probe and re-
quest time; request service times can be 
difficult to estimate due to underlying 
system and hardware variability; and 
clients can create temporary hot spots 
by all clients picking the same (least-
loaded) server at the same time. The 

Distributed Shortest-Positioning Time 
First system9 uses another variation in 
which the request is sent to one server 
and forwarded to replicas only if the ini-
tial server does not have it in its cache 
and uses cross-server cancellations. 

Worth noting is this technique is not 
restricted to simple replication but is 
also applicable in more-complex coding 
schemes (such as Reed-Solomon) where 
a primary request is sent to the machine 
with the desired data block, and, if no 
response is received following a brief 
delay, a collection of requests is issued 
to a subset of the remaining replica-
tion group sufficient to reconstruct the 
desired data, with the whole ensemble 
forming a set of tied requests. 

Note, too, the class of techniques de-
scribed here is effective only when the 
phenomena that causes variability does 
not tend to simultaneously affect mul-
tiple request replicas. We expect such 
uncorrelated phenomena are rather 
common in large-scale systems. 

cross-Request  
Long-Term adaptations 
Here, we turn to techniques that are ap-
plicable for reducing latency variability 
caused by coarser-grain phenomena 
(such as service-time variations and 
load imbalance). Although many sys-
tems try to partition data in such a way 
that the partitions have equal cost, a 
static assignment of a single partition 
to each machine is rarely sufficient in 
practice for two reasons: First, the per-
formance of the underlying machines 
is neither uniform nor constant over 
time, for reasons (such as thermal 
throttling and shared workload inter-
ference) mentioned earlier. And second, 
outliers in the assignment of items to 
partitions can cause data-induced load 
imbalance (such as when a particular 
item becomes popular and the load for 
its partition increases). 

Micro-partitions. To combat imbal-
ance, many of Google’s systems gener-
ate many more partitions than there 
are machines in the service, then do 
dynamic assignment and load balanc-
ing of these partitions to particular ma-
chines. Load balancing is then a matter 
of moving responsibility for one of these 
small partitions from one machine to 
another. With an average of, say, 20 
partitions per machine, the system can 
shed load in roughly 5% increments and 

Table 2. Read latencies observed in a BigTable service benchmark. 

mostly idle cluster With concurrent terasort

no hedge tied request after 1ms no hedge tied request after 1ms

50%ile 19ms  16ms (–16%) 24ms  19ms (–21%)

90%ile 38ms  29ms (–24%) 56ms  38ms (–32%)

99%ile 67ms  42ms (–37%) 108ms  67ms (–38%)

99.9%ile 98ms  61ms (–38%) 159ms  108ms (–32%)
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in 1/20th the time it would take if the sys-
tem simply had a one-to-one mapping 
of partitions to machines. The BigTable 
distributed-storage system stores data 
in tablets, with each machine managing 
between 20 and 1,000 tablets at a time. 
Failure-recovery speed is also improved 
through micro-partitioning, since many 
machines pick up one unit of work when 
a machine failure occurs. This method 
of using micro-partitions is similar to 
the virtual servers notion as described 
in Stoica12 and the virtual-processor-
partitioning technique in DeWitt et al.6

Selective replication. An enhance-
ment of the micro-partitioning scheme 
is to detect or even predict certain items 
that are likely to cause load imbalance 
and create additional replicas of these 
items. Load-balancing systems can then 
use the additional replicas to spread 
the load of these hot micro-partitions 
across multiple machines without hav-
ing to actually move micro-partitions. 
Google’s main Web search system uses 
this approach, making additional cop-
ies of popular and important docu-
ments in multiple micro-partitions. At 
various times in Google’s Web search 
system’s evolution, it has also created 
micro-partitions biased toward particu-
lar document languages and adjusted 
replication of these micro-partitions 
as the mix of query languages changes 
through the course of a typical day. 
Query mixes can also change abruptly, 
as when, say, an Asian data-center out-
age causes a large fraction of Asian-lan-
guage queries to be directed to a North 
American facility, materially changing 
its workload behavior. 

Latency-induced probation. By ob-
serving the latency distribution of re-
sponses from the various machines in 
the system, intermediate servers some-
times detect situations where the sys-
tem performs better by excluding a par-
ticularly slow machine, or putting it on 
probation. The source of the slowness is 
frequently temporary phenomena like 
interference from unrelated network-
ing traffic or a spike in CPU activity for 
another job on the machine, and the 
slowness tends to be noticed when the 
system is under greater load. However, 
the system continues to issue shadow 
requests to these excluded servers, col-
lecting statistics on their latency so they 
can be reincorporated into the service 
when the problem abates. This situa-

tion is somewhat peculiar, as removal 
of serving capacity from a live system 
during periods of high load actually im-
proves latency. 

Large information 
Retrieval Systems 
In large information-retrieval (IR) sys-
tems, speed is more than a performance 
metric; it is a key quality metric, as re-
turning good results quickly is better 
than returning the best results slowly. 
Two techniques apply to such systems, 
as well as other to systems that inher-
ently deal with imprecise results: 

Good enough. In large IR systems, 
once a sufficient fraction of all the leaf 
servers has responded, the user may 
be best served by being given slightly 
incomplete (“good-enough”) results in 
exchange for better end-to-end latency. 
The chance that a particular leaf server 
has the best result for the query is less 
than one in 1,000 queries, odds further 
reduced by replicating the most im-
portant documents in the corpus into 
multiple leaf servers. Since waiting for 
exceedingly slow servers might stretch 
service latency to unacceptable levels, 
Google’s IR systems are tuned to occa-
sionally respond with good-enough re-
sults when an acceptable fraction of the 
overall corpus has been searched, while 
being careful to ensure good-enough 
results remain rare. In general, good-
enough schemes are also used to skip 
nonessential subsystems to improve re-
sponsiveness; for example, results from 
ads or spelling-correction systems are 
easily skipped for Web searches if they 
do not respond in time. 

Canary requests. Another problem 
that can occur in systems with very high 
fan-out is that a particular request ex-
ercises an untested code path, causing 
crashes or extremely long delays on 
thousands of servers simultaneously. To 
prevent such correlated crash scenarios, 
some of Google’s IR systems employ 
a technique called “canary requests”; 
rather than initially send a request to 
thousands of leaf servers, a root server 
sends it first to one or two leaf servers. 
The remaining servers are only queried 
if the root gets a successful response 
from the canary in a reasonable period 
of time. If the server crashes or hangs 
while the canary request is outstanding, 
the system flags the request as poten-
tially dangerous and prevents further ex-

a simple way 
to curb latency 
variability is to issue 
the same request 
to multiple replicas 
and use  
the results from 
whichever replica 
responds first.
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ecution by not sending it to the remain-
ing leaf servers. Canary requests provide 
a measure of robustness to back-ends in 
the face of difficult-to-predict program-
ming errors, as well as malicious denial-
of-service attacks. 

The canary-request phase adds only a 
small amount of overall latency because 
the system must wait for only a single 
server to respond, producing much less 
variability than if it had to wait for all 
servers to respond for large fan-out re-
quests; compare the first and last rows 
in Table 1. Despite the slight increase 
in latency caused by canary requests, 
such requests tend to be used for every 
request in all of Google’s large fan-out 
search systems due to the additional 
safety they provide. 

mutations 
The techniques we have discussed so 
far are most applicable for operations 
that do not perform critical mutations 
of the system’s state, which covers a 
broad range of data-intensive services. 
Tolerating latency variability for opera-
tions that mutate state is somewhat eas-
ier for a number of reasons: First, the 
scale of latency-critical modifications 
in these services is generally small. Sec-
ond, updates can often be performed 
off the critical path, after responding 
to the user. Third, many services can 
be structured to tolerate inconsistent 
update models for (inherently more 
latency-tolerant) mutations. And, final-
ly, for those services that require con-
sistent updates, the most commonly 
used techniques are quorum-based 
algorithms (such as Lamport’s Paxos8); 
since these algorithms must commit to 
only three to five replicas, they are in-
herently tail-tolerant. 

hardware Trends and Their effects 
Variability at the hardware level is likely 
to be higher in the future due to more 
aggressive power optimizations becom-
ing available and fabrication challenges 
at deep submicron levels resulting in 
device-level heterogeneity. Device het-
erogeneity combined with ever-increas-
ing system scale will make tolerating 
variability through software techniques 
even more important over time. For-
tunately, several emerging hardware 
trends will increase the effectiveness 
of latency-tolerating techniques. For 
example, higher bisection bandwidth 

in data-center networks and network-
interface optimizations that reduce 
per-message overheads (such as remote 
direct-memory access) will reduce the 
cost of tied requests, making it more 
likely that cancellation messages are re-
ceived in time to avoid redundant work. 
Lower per-message overheads naturally 
allow more fine-grain requests, contrib-
uting to better multiplexing and avoid-
ing head-of-line blocking effects. 

conclusion 
Delivering the next generation of com-
pute-intensive, seamlessly interactive 
cloud services requires consistently 
responsive massive-scale computing 
systems that are only now beginning to 
be contemplated. As systems scale up, 
simply stamping out all sources of per-
formance variability will not achieve 
such responsiveness. Fault-tolerant 
techniques were developed because 
guaranteeing fault-free operation be-
came infeasible beyond certain levels 
of system complexity. Similarly, tail-
tolerant techniques are being devel-
oped for large-scale services because 
eliminating all sources of variability is 
also infeasible. Although approaches 
that address particular sources of la-
tency variability are useful, the most 
powerful tail-tolerant techniques re-
duce latency hiccups regardless of 
root cause. These tail-tolerant tech-
niques allow designers to continue to 
optimize for the common case while 
providing resilience against uncom-
mon cases. We have outlined a small 
collection of tail-tolerant techniques 
that have been effective in several of 
Google’s large-scale software systems. 
Their importance will only increase as 
Internet services demand ever-larger 
and more complex warehouse-scale 
systems and as the underlying hard-
ware components display greater per-
formance variability. 

While some of the most powerful 
tail-tolerant techniques require addi-
tional resources, their overhead can be 
rather modest, often relying on existing 
capacity already provisioned for fault-
tolerance while yielding substantial la-
tency improvements. In addition, many 
of these techniques can be encapsu-
lated within baseline libraries and sys-
tems, and the latency improvements 
often enable radically simpler applica-
tion-level designs. Besides enabling low 

latency at large scale, these techniques 
make it possible to achieve higher sys-
tem utilization without sacrificing ser-
vice responsiveness. 

acknowledgments 
We thank Ben Appleton, Zhifeng Chen, 
Greg Ganger, Sanjay Ghemawat, Ali 
Ghodsi, Rama Govindaraju, Lawrence 
Greenfield, Steve Gribble, Brian Gus-
tafson, Nevin Heintze, Jeff Mogul, An-
drew Moore, Rob Pike, Sean Quinlan, 
Gautham Thambidorai, Ion Stoica, 
Amin Vahdat, and T.N. Vijaykumar for 
their helpful feedback on earlier drafts 
and presentations of this work. Numer-
ous people at Google have worked on 
systems that use these techniques.  

References 
1. barroso, l.a. and höelzle, u. the case for energy 

proportional computing. IEEE Computer 40, 12 (dec. 
2007), 33–37. 

2. barroso, l.a. and höelzle, u. The Datacenter as a 
Computer: An Introduction to the Design of Warehouse-
scale Machines. synthesis series on computer 
architecture, morgan & claypool Publishers, may 2009. 

3. card, s.K., robertson, g.g., and mackinlay, j.d. the 
information visualizer: an information workspace. in 
Proceedings of the ACM SIGCHI Conference on Human 
Factors in Computing Systems (new orleans, apr. 28–
may 2). acm Press, new york, 1991, 181–188. 

4. chang f., dean j., ghemawat, s., hsieh, w.c., wallach, 
d.a., burrows, m., chandra, t., fikes, a., and gruber, r.e. 
bigtable: a distributed storage system for structured 
data. in Proceedings of the Seventh Symposium 
on Operating Systems Design and Implementation 
(seattle, nov.). useniX association, berkeley ca, 2006, 
205–218. 

5. charles, j., jassi, P., ananth, n.s., sadat, a., and 
fedorova, a. evaluation of the intel core i7 turbo boost 
feature. in Proceedings of the IEEE International 
Symposium on Workload Characterization (austin, tX, 
oct. 4–6). ieee computer society Press, 2009, 188–197. 

6. dewitt, d.j., naughton, j.f., schneider, d.a., and 
seshadri, s. Practical skew handling in parallel joins. 
in Proceedings of the 18th International Conference on 
Very Large Data Bases, li-yan yuan, ed. (Vancouver, bc, 
aug. 24–27). morgan Kaufmann Publishers, inc., san 
francisco, 1992, 27–40. 

7. google, inc. Project glass; http://g.co/projectglass 
8. lamport, l. the part-time parliament. ACM 

Transactions on Computer Systems 16, 2 (may 1998), 
133–169. 

9. lumb, c.r. and golding, r. d-sPtf: decentralized 
request distribution in brick-based storage systems. 
SIGOPS Operating System Review 38, 5 (oct. 2004), 
37–47. 

10. mitzenmacher, m. the power of two choices in 
randomized load balancing. IEEE Transactions on 
Parallel and Distributed Computing 12, 10 (oct. 2001), 
1094–1104. 

11. mudge, t. and hölzle, u. challenges and opportunities 
for extremely energy-efficient processors. IEEE Micro 
30, 4 (july 2010), 20–24. 

12. stoica i., morris, r., Karger, d., Kaashoek, f., and 
balakrishnan, h. chord: a scalable peer-to-peer lookup 
service for internet applications. in Proceedings of 
SIGCOMM (san diego, aug. 27–31). acm Press, new 
york, 2001, 149–160. 

Jeffrey Dean (jeff@google.com) is a google fellow in the 
systems infrastructure group of google inc., mountain 
View, ca. 

Luiz André Barroso (luiz@google.com) is a google fellow 
and technical lead of core computing infrastructure at 
google inc., mountain View, ca. 

© 2013 acm 0001-0782/13/02


