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Abstract

Barndorff-Nielsen’s celebrated p∗-formula and variations thereof have amongst their var-

ious attractions the ability to approximate bimodal distributions. In this paper we show

that in general this requires a crucial adjustment to the basic formula. The adjustment is

based on a simple idea and straightforward to implement, yet delivers important improve-

ments. It is based on recognizing that certain outcomes are theoretically impossible and the

density of the MLE should then equal zero, rather than the positive density that a straight

application of p∗ would suggest. This has implications for inference and we show how to use

the adjusted p∗∗-formula to construct improved confidence regions. These can be disjoint as

a consequence of the bimodality. The degree of bimodality depends heavily on the value of

an approximate ancillary statistic and conditioning on the observed value of this statistic is

therefore desirable. The p∗∗-formula naturally delivers the relevant conditional distribution.

We illustrate these results in small and large samples using a simple nonlinear regression

model and an errors in variables model where the measurement errors in dependent and

explanatory variables are correlated and allow for weak proxies.

∗Corresponding author. K.J.vanGarderen@uva.nl, Dept of Economics and Econometrics, University of

Amsterdam, Roetersstraat 11, P.O. Box 15867, 1001 NJ, Amsterdam, The Netherlands.

We thank Grant Hillier, Peter Phillips, Richard Smith and participants at the Cambridge conference in

his honour, participants at the NESG conference, the Co-editors, and especially two referees for earlier comments

that substantially improved the paper.

1



1 Introduction

The p∗-formula was developed and investigated by Barndorff-Nielsen (1980, 1983) and later

work, building on the original result in Fisher (1934) and related work including Fraser (1968),

Daniels (1954, 1980), Barndorff-Nielsen & Cox (1979), Hinkley (1980), Cox (1980), and Durbin

(1980). It provides an approximation to the conditional distribution of the maximum likelihood

estimator (MLE) θ̂ given an exact or approximate ancillary a when the true parameter value is

θ. The basic formula for the approximate density of θ̂ at θ̂ = q given a = a is simply:

p∗
θ̂

(q|a, θ) = c (θ, a) |j(q, a)|1/2 exp {`(θ; y)− `(q; y)} , (1)

where `(θ; y) is the log-likelihood function for θ given a sample of observations y, assumed

to be regular and two times continuously differentiable, |j(q, a)| is the absolute value of the

determinant of the observed information, i.e. minus the second derivative of the log-likelihood,

evaluated at the MLE. The norming constant c (θ, a) should ensure that the density integrates

to 1 and in general depends on θ and a.

In some cases p∗ is exact (e.g. inverse Gaussian and transformation models, see e.g.

Barndorff-Nielsen, 1980, and Daniels, 1980) and in other cases, despite its apparent simplic-

ity, provides a powerful approximation that is not restricted to a small deviation region. It has

a relative rather than an absolute error and can capture asymmetry and bimodality of the true

distribution.

Care ought to be taken however, when implementing the formula, since not all combinations

of q and a are theoretically possible. These values can nevertheless be substituted in the formula

and this mechanistic substitution leads to positive values of the approximate density when it

should evidently be zero. The first contribution of the paper is making this observation and to

identify these points for which the density is logically zero on theoretical grounds. This does not

seem to have received any attention in the literature. Asymptotically this problem is negligible

in a neighborhood of the true θ. In finite samples however, or cases with weak instruments and

little information, this can be crucial as we will demonstrate.

The issue is related to the underlying assumption that the likelihood has a single stationary

point and has a unique global maximum. The formula needs adapting when the likelihood is

multimodal and has multiple stationary points. In the one parameter case at least one of these

stationary points is a local minimum with a positive second derivative of the log-likelihood.

There will also be points of inflexion where the observed information is singular and hence

|j(q, a)| = 0 and the p∗-approximation (1) equals 0, but with a higher value of the likelihood

than at the minimum. This implies that the basic p∗-approximation (1) has a higher value

in a local minimum of the likelihood than at the points of inflection, regardless of how much

higher the likelihood is in those points. This logical inconsistency is easily resolved by setting

the density to zero when the observed information is negative, or in the multivariate case has

negative eigenvalues. This, however, is not sufficient. There may be other combinations of

(q, a) that are theoretically impossible, despite having a positive definite observed information
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matrix. We propose a simple adjusted version of the p∗-formula that is zero when the density

is theoretically zero.

A second reason for additional care is that for bimodal distributions the normalizing constant

c tends to vary much more with a and θ than in standard, unimodal cases. In fact, as stated by

Barndorff-Nielsen (1983, p.348), for large enough sample size c can often be approximated well

by a constant c0 independent of a and θ, and in view of the asymptotic normality frequently

taken as (2π)−d/2 , with d the dimension of θ. The reason this does not hold in multimodal cases

is that 1/c(θ, a) is obtained by an integration explained below. Combinations of (q, a) that are

impossible make zero contribution to this integral. This heavily depends on the value of a and

the integral can be much smaller, leading in some cases to extremely large values of c(θ, a), even

if the sample size is large.

The asymptotic theory for p∗ and related saddlepoint approximations has been well estab-

lished. Under standard regularity conditions only one unique mode of the likelihood near the

true θ0 remains as the sample size increases beyond all bounds. Other modes will disappear

and the MLE is consistent. The adjusted p∗∗-approximation introduced below will then coincide

with the standard p∗-formula. This has the obvious advantage that asymptotic theory already

established simply caries over from the original p∗-approximation to the adjusted p∗∗. On the

other hand, superiority of the adjusted formula can therefore not be shown by asymptotic tech-

niques. We use logical arguments why the density must be theoretically zero in certain regions.

In those regions our p∗∗ is strictly dominating other approximations that are not zero.

For outcomes with positive density, we show in Appendix 3 that the method of proof in

Barndorff-Nielsen (1980) also applies to p∗∗. The proof is based on a transformation of variables

which is valid regardless of the sample size and not dependent on asymptotic arguments. The

Jacobian of the transformation is relevant for multimodal cases and other situations where the

value of the MLE is not necessarily in a neighborhood of the true θ0. The method of proof

is related to Hillier and Armstrong (1999) who derive the exact distribution of the MLE even

when no explicit formula for the MLE is available. They apply this to exponential regression

and show how the p∗-formula follows from their result when there is no conditioning.

We will use a number of stylized econometric models that, despite their simplicity, have

interesting features and show that the p∗∗-formula is extremely accurate. The nonlinear regres-

sion model illustrates large possible differences with the p∗-formula. In weak instrument type

asymptotics, when information does not accrue at the usual rate, techniques that are relevant

in small samples, like our p∗∗-approximation may still be relevant. We show this to be the case

for an errors in variables type model with correlated measurement errors in the dependent and

independent variables and weak proxies.

The examples are members of the general class of curved exponential models introduced by

Efron (1975). This class has received particular attention in the development of p∗ and other

saddlepoint related approximations (reviewed in e.g. Barndorff-Nielsen and Cox, 1994). They

serve as a paradigm for smooth models where the dimension of the minimal sufficient statistic
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is larger than the dimension of the parameter, similar to an overidentified GMM setting. Van

Garderen (1997) gave a number of prominent examples in Econometrics and in this paper we

will use this class of models and examples to make points that are relevant more generally

outside the class of exponential models.

The second main contribution of the paper is to show how the adjusted p∗∗-formula can be

applied successfully to construct confidence regions. In multimodal cases smallest prediction and

confidence sets can consist of unconnected regions. The adjusted p∗∗-formula can be extremely

useful in improving over standard first order techniques when constructing confidence regions.

In particular when the distribution of the MLE is seriously bimodal, this cannot be captured

by techniques based on first or even higher order Edgeworth type approximations. We will use

p∗∗ to construct smallest prediction- or acceptance regions and invert them to obtain reliable

confidence regions for the parameter of interest. These confidence regions can be disjoint, but

this will depend heavily on the value of the ancillary statistic. It is therefore very important to

condition on the actual sample value of the ancillary statistic.

The modified confidence regions have conditionally accurate coverage levels, and are there-

fore also unconditionally accurate. The standard confidence intervals suffer from two defects.

First, the overall (marginal) coverage rate can be far too low. We give an example where

coverage is only 80% for a nominal 95% confidence interval. Second, the coverage rate varies

significantly with the value of the ancillary. In the example it drops below 50% for values of the

ancillary that are not extreme. The reason is that if the density of the MLE has a substantial

second mode this is ignored by standard methods. Our adjusted p∗∗-based confidence regions

are less than 1% point from its nominal value.

These results are relevant from a theoretical and practical point of view in econometrics.

Many models of interest in econometrics have multiple solutions to the first order conditions

of the criterion function, be it likelihood, GMM, or other methods, and multimodality is of

increasing concern. Our inference procedure provides a solution to the apprehension one might

experience when the global optimum differs only slightly from another local optimum.

The paper is organized as follows. Section 2 briefly discusses curved exponential models,

introduces the two leading examples, and provides arguments for the adjustment of p∗. Sec-

tion 3 considers a partitioning of the sample space to formalize the sets where the density is

identically zero and used to adjust the p∗-formula defined and illustrated in Section 5, after

having introduced the affine ancillary used for conditioning in Section 4. Section 6 deploys the

adjusted p∗∗-formula to obtain conditional confidence intervals and shows the superiority over

standard methods based on the Normal approximation of the MLE. Section 7 concludes. Proofs

and further results are relegated to the Appendix.
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2 Curved Exponential Models

Curved exponential models were introduced by Efron (1975) and instrumental in the develop-

ment of differential geometry in statistics and the derivation of the p∗-formula by Barndorff-

Nielsen (1980). He also proposed an ancillary to serve as conditioning statistic in his p∗-formula.

We will also use and discuss this score based ancillary statistic here, because it allows adapting

his method of proof to multi-modal likelihoods. A Curved Exponential Model of order (k, d),

or CEM(k, d) for short, can be characterized by the property that the number of parameters in

the model, d, is smaller than the dimension of the minimal sufficient statistic, k, as was shown

by Van Garderen (1997) in an extension of the familiar theorem of Pitman-Koopman-Darmois

to CEMs. He further showed that a variety of leading econometric models, including nonlin-

ear regression models, the Single Structural Equations (SSE) model, the Seemingly Unrelated

Regressions (SUR) model, Vector Autoregressive (VAR) models (and the cointegrated VAR

investigated by Mavroeidis and Van Garderen, 2006), are all examples of CEMs.

An exponential family is a family P = {Pη|η ∈ N} of distributions with densities that can

be written as:

pY (y; η) = exp {〈η, t (y)〉 − κ (η)}h (y) , (2)

with respect to a common σ-finite dominating measure on the sample space of Y . The parameter

η is a vector with values in a k-dimensional vector space, t is a k-dimensional vector function

of y or of Y when T = T (Y ) ≡ t(Y ) is a random variable taking values in a sample space T,

and 〈·, ·〉 : N×T→ R a non-degenerate bilinear product, which in our derivations will be of the

form 〈η, t〉 = η′t. The representation is minimal if k is the smallest integer such that (2) holds,

and (2) is a Full Exponential Model of order k, or FEM(k) for short, assuming η is genuinely k

dimensional in the sense that there is a k-dimensional cube in N in which η can take any value.

If η is restricted to lie on a smooth subsetM of N such that η = η (θ) is a smooth continuously

differentiable function of a d-dimensional parameter θ ∈ Θ ⊆ Rd with d < k, then the model is

a CEM(k, d), and the density can be expressed in terms of θ as:

pY (t(y); η(θ)) = exp
{
η (θ)′ t (y)− κ (θ)

}
h̃ (t(y)) , (3)

with h̃ (t(y)) such that the density integrates to 1 and κ (θ) ≡ κ (η (θ)), a notation used to

avoid separate functions for the FEM and embedded CEM. Whenever the parameter θ is used

it obviously refers to the CEM. For the log-likelihood we similarly write ` (η; t) and ` (θ; t).

Further discussion and results can be found in for instance Efron (1978) and Barndorff-Nielsen

and Cox (1989, Sect.6.4, 1994, p.61-72). Our FEMs are assumed to be regular and therefore

steep.

Moments and cumulants of t can be obtained using the embedding FEM with parameter η

and differentiating the identity
∫
p (t; η) dt = 1 w.r.t. η, assuming that interchanging integration

and differentiation is permitted:

Eη [T ] =
∂κ (η)

∂η
≡ τ (η) ; V arη [T ] =

∂2κ (η)

∂η∂η′
≡ Σ (η) . (4)

5



The score of the FEM is: s(η; t) = ∂` (η; t) /∂θ = t− τ(η), which has mean 0 and variance Σ(η).

The MLE η̂ solves t− τ(η̂) = 0 and is unique for a regular FEM.

For the CEM, mean and variance of T can be obtained by evaluating (4) at η = η (θ). This

gives the so called expectation manifold Eθ [T ] = τ (θ) = τ (η (θ)) and V arθ(T ) = Σ(θ) =

Σ (η(θ)) as a function of θ. For the derivatives of η(θ) and τ(θ) we write:

B(θ) =
∂η (θ)

∂θ′
and C(θ) =

∂τ (θ)

∂θ′
=
∂2κ (η)

∂η∂η′
∂η (θ)

∂θ′
= Σ (θ)B(θ). (5)

The score of the CEM, ∂` (θ; t) /∂θ can be written using B(θ) as:

s (θ; t) = B(θ)′ (t− τ (θ)) , (6)

which is d× 1 and not equal to s(η(θ); t) because of the differentiation involved. The expected

Fisher information matrix i (θ) = Eθ
[
s (θ;T ) s (θ;T )′

]
equals:

i (θ) = B(θ)′Σ (θ)B(θ),

and, since Σ (θ)B(θ) = C(θ), could be written as i (θ) = B(θ)′C(θ) which does not require

explicit knowledge of the k × k matrix Σ(θ). The observed information evaluated at the MLE

θ̂ = q equals:

j(q; t) = −∂
2` (θ; t)

∂θ∂θ′

∣∣∣∣
θ=q

= i (q)−
k∑
l=1

(t− τ (q))l −
∂2ηl (θ)

∂θ∂θ′

∣∣∣∣
θ=q

. (7)

It is easy to see by induction that all higher order derivatives of the log-likelihood will also

be linear (affine) in (t− τ (θ)) . The expectation of the corresponding term will be 0 and the

difference in expected and observed quantities, like the information, will therefore be linear in

(t− τ (θ)) and the affine ancillary a explained in Section 4 will be based on a sample version of

this term: a = A(θ̂)′[T − τ(θ̂)] with an appropriate choice of A(θ̂).

2.1 Examples

The examples we will use to illustrate the limitations of p∗ and the improvements of the adjusted

version are based on restricted versions of the simultaneous equations model and the non-linear

regression model.

Single Structural Equation Model (SSEM)

In the context of exponential families, Van Garderen (1997) considered the SSEM:

y1 = Y2β + Z1γ1 + u1,

Y2 = (Z1 : Z2)

[
Π12

Π22

]
+ V2,

with y1, u1 : n× 1, Y2, Z2 : n×G2, (Z1 : Z2) : n× (K1 +K2) and the disturbances (u1 : V2) are

i.i.d. normally distributed. This SSEM constitutes a CEM(k, d) with k = (K1 +K2) (G2 + 1) +
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(G2 + 1)(G2 + 2)/2, and d = k− (K2 −G2). So k− d = K2−G2 (degree of overidentification in

Phillips (1983) terminology) and under the exogeneity restriction (Y2 ⊥ u1) the model reduces

to a FEM of lower dimension. Basic versions of this model have been used to analyze the effects

of weak instruments and bimodality.

Woglom (2001) and Hillier (2006) start with the stripped-down exactly identified model with

one explanatory variable:

yi = βxi + ui, (8)

xi = γzi + vi, (9)

and show bimodality of the MLE. The overidentified version is also analyzed by Hillier (2006) as

does Forchini (2006) to investigate and explain the bimodality. Interestingly, Hillier (2006) finds

that under certain conditioning, the conditional distribution is unimodal, but unconditionally

it is bimodal.

Bergstrom (1962) considered a simple Keynesian model and derived the exact marginal

distribution of the MLE for β, the propensity to consume parameter in the model with y

consumption, x income, z (non-random) investment, and instead of (9) had an identity for xi

with γ = 1 in the the equation

xi = yi + γzi (10)

Phillips (2006) used this model in the weak instrument context and showed that bimodality

persists even asymptotically. He assumed a known instrument strength parameter γ and noted

the restriction that ui is the single disturbance. The model is formally equivalent to the model

by Nelson and Startz (1990) as observed by Maddala and Jeong (1992), see Phillips (2006,

Footnote 1). Ariza and Van Garderen (2010) used the p∗-formula for this model and showed

that it is very accurate for the chosen parameter values and captures the bimodality of the

conditional density, but missed the adjustments of the present paper. It should also be noted

that the log-likelihood goes to minus infinity when the parameter β goes to one for any sample

from this model. So the density should always equal zero at one, even without any conditioning.

Errors in Variables Model

We consider another restricted version of this SSEM when explanatory variables are not

observable. If x in (8) and (9) is measured with error, or is a latent, unobservable variable,

then z could be used as proxy or mis-measured version of x. The measurement error in x

may actually be correlated with the measurement error in y in this version of the model. The

likelihood is obtained in Section 5 below by substituting (9) in (8) and will depend only on y

and z, but x will not enter the likelihood since it is not observed. This model is a CEM(2, 1)

used later to illustrate the quality of the adapted p∗∗-formula and improved confidence regions.

The errors in variable model has a very long tradition in Econometrics, see e.g. Durbin

(1954) and its references to earlier work, and is still actively researched today, see De Nadai

and Lewbel (2016) for a recent contribution that also considers correlated measurement errors
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as we do. We use a version that is closely related to the SSEM analyzed in some of the weak

instrument literature. We may anticipate problematic inference when (i) the variance of vi

(measurement error in xi) is large or (ii) vi highly correlated with ui (the measurement errors

in yi and xi are highly correlated) (iii) the sample variation in zi is low or (vi) γ is small (zi

is a weak or a poor proxy), and a key quantity will be γ2
∑n

i=1 z
2
i , as in the weak instrument

literature (see Stock, Wright, and Yogo, 2012, for a review). We keep σ2
u = σ2

v = 1 and ρ = 0.75

fixed, but show that problems persist even when the sample size n is increased from 25 to 1000

and γ reduced from 1 to 0.1.

Nonlinear Regression

The second model that we will expound is the classic linear regression model with nonlin-

ear restrictions1. Consider n independent observations yi with explanatory variables xi and

i.i.N(0, σ2) disturbances vi:

y = Xβ + v, (11)

y, v : n × 1, X : n × k. The k × 1 vector of parameters β is assumed to satisfy nonlinear

restrictions such that β = β (θ) with θ a d× 1 vector d < k .2.

We expand a little on this model here to illustrate the CEM nature, the relevant sample

space, and the issues involved with the p∗-formula. We will show our improvements and con-

fidence regions in later sections. The simplest case would be k = 2, β1 = θ, β2 = θ2, and σ2

known. The parameter of interest θ is one-dimensional, but the two-dimensional OLS estimator

β̂ for the unrestricted β is a minimal sufficient statistic and satisfies:(
β̂1

β̂2

)
∼ N

((
θ

θ2

)
, σ2

(
X ′X

)−1

)
. (12)

For concreteness and explicating the role of the sample size, set σ2 = 10 and let X consist

of two complementary dummies such that σ2 (X ′X)−1 = diag(10/n1, 10/n2) with n1 and n2

the number of observations in each category, e.g. the number of male and female observations.

The log-likelihood is a simple restricted version of a bivariate Normal log-likelihood and for a

specific observed value b = (b1, b2)′ of the estimator β̂ can be written as:

` (θ; b) = b1θ
n1

10
+ b2θ

2n2

10
− 1

20

(
θ2n1 + θ4n2

)
, (13)

1It should be noted in this context that Spady (1991) developed saddlepoint expansions for regression models

and considered an example like (11) where β is unrestricted but the density of the disturbance v is itself bimodal.
2For example if β satisfies r non-linear restrictions h (β) = 0, that are sufficiently smooth and assuming

constant rank of the derivative ∂h (β) /∂β′, we have by the implicit function theorem that r parameters can be

solved and expressed in terms of the k − r remaining parameters. These parameters of interest can be collected

in a vector θ and by reordering and redefinition we may write without loss of generality h ((θ : g (θ))′) = 0 and

β = β(θ).

As a referee highlighted, one could start out with a more general model and use a technique to reduce the

dimension of the model. The Frisch-Waugh Theorem for example if additional regressors Z have associated

parameters not involved in the restrictions and freely varying. y and X would then be the residuals after

regression on Z.
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with all irrelevant terms that do not depend on parameters dropped. It is immediate from The-

orem 1 in Van Garderen (1997) that the model is a CEM(2, 1) with canonical parameter η (θ) =(
θn1/10, θ2n1/10

)′
, canonical statistic b, and cumulant function κ (θ) = 1

20

(
θ2n1 + θ4n2

)
.

Figure 1 shows the sample space with the expectation manifold as a function of θ : τ (θ) =

Eθ[β̂] equal to (θ, θ2)′ here. It also shows three possible realizations of the sufficient statistic

β̂ from a sample of 50 observations with n1 = 10 in the first category and n2 = 40 in the

second. These three realizations b+, b− and b= all satisfy the first order conditions that the

score s(θ; b) = ∂` (θ; b) /∂θ equals zero at 1.5 : s (1.5; b) = B(1.5)′(b − τ(1.5)) = 0. For b+ and

b−, 1.5 is indeed the MLE, but for b= the likelihood is globally maximized when θ = −1.54.

The likelihood only attains a local maximum for 1.5. In between −1.54 and 1.5 the likelihood

has a local minimum at θ = 0.04. The observed information j(θ; b=), evaluated at θ = 1.5 and

θ = −1.54 is positive, but is negative for θ = 0.04.

Figure 1: Sample space for the minimal sufficient statistic b with various outcomes b=, b−, b+

are shown with ML estimates −1.54, 1.5, and 1.5 respectively. They all satisfy the first order

orthogonality condition B(1.5) ⊥ (b− τ(1.5)) with τ(θ) = Eθ[b] = (θ, θ2)′ the expectation of b

as a function of θ,the parabola, is also illustrated. The points τ(1.5), τ(−1.54), and τ(0.04) are

also shown. Sample size n = 50 with n1 = 10, n2 = 40 and variance σ2 = 10.

The graph illustrates a number of important issues relevant for the adjustment of p∗. Even

if θ is much larger than 0, we can have sample realizations b that lead to negative values of θ̂.

This provides a graphical explanation for bimodality in the distribution of θ̂. A second possible

reason for bimodality is that the observed information (as defined below) can change from

positive to negative. The score s(0.04, b) = 0 for all b on the dashed line, but as we observe

values of b from τ(0.04) closer to b=, the observed information decreases and will change to

being negative. Where it is zero and negative, the Jacobian matrix used in Barndorff-Nielsen’s

(1980) derivation of p∗ is no longer appropriate since the basic theorem for the transformation
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of variables breaks down and requires a decomposition of the sample space in sets where the

Jacobian matrix is of constant rank.

The observed information j(q, a) used in the p∗-formula (1) depends on the value a of an

(approximate) ancillary statistic a. Barndorff-Nielsen (1980) introduced his affine ancillary

statistic defined in (15) below for this purpose. Details of a for the example here are given

in Appendix A.4. With q = 0.04 and with values of affine ancillary a smaller than −0.26,

the observed information is negative and θ = 0.04 minimizes the likelihood locally instead

of maximizing it. The outcome b= also shows a global reason for adapting p∗ and its proof.

Although q = 1.5 locally maximizes the likelihood and has positive observed information, q =

−1.54 is the true global maximizer of the likelihood.

This leads to the most important point of the graph since it explains the shortcomings of

p∗ and suggests the adjustment to rectify it. We cannot jointly have θ̂ = 0.04 and negative

values of a < −0.26. Such combinations cannot occur and the density must be 0. There are two

different reasons (i) locally q could minimize the likelihood and q would not be the MLE with

this value of a. This can be checked by the calculation of the observed information (ii) globally

q might not maximize the likelihood. This requires comparing the likelihood values for different

stationary points. Checking positive definiteness of the observed information is not sufficient.

Finally, it may be possible that b has two different values for θ with the same value for

the likelihood. The point b = (0, 2.37)′ has the two values 1.5 and −1.5, that maximize the

likelihood. The MLE is not unique in that case, or for any other point on the b2 axis with

b2 > 1/8.

3 Partitioning the Sample Space

In this section we will discuss a partitioning of the sample space for estimation, closely related

to Efron (1978) and Amari (1985). It is a natural estimation counterpart to the classic Neyman-

Pearson approach to partitioning the sample space for hypothesis testing. The decomposition

will be based on the MLE θ̂ and an ancillary statistic a that complements θ̂ and is used as

conditioning variable in the (adjusted) p∗-formula.

Let Θ denote the parameter space and let y be the sample outcome of the random vector

Y , Y, y ∈ Y ⊆ Rn. Let T = T (Y ) be a minimal sufficient statistic, which we will assume to

be of finite dimension k, although this could be generalized to grow with the sample size. The

relevant sample space of T is of dimension k and denoted T ⊆ Rk. The expectation of T will

vary with θ and if τ (θ) = Eθ [T ] is continuously differentiable, it constitutes a manifold inside

T and hence the name expectation manifold.

We define the following sets in order to characterize points in the sample space that satisfy

the first order conditions (F ), and have positive observed information (F̃ ), and points that have

a global solution (C+), or have multiple solutions (M̃) to the maximum likelihood problem.

The score vector s(θ; t) = ∂` (θ; t) /∂θ will be of use to us in three ways. First, for given t,
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fixed at a sample value, it provides the first order conditions s(q; t) = 0 for the MLE. Second, for

fixed θ0 the score is a measurable function and s(θ0;T ) is a statistic with a distribution. Third,

with θ̂ and T both random variables, s(θ̂;T ) = 0 provides a relation between T and θ̂. When θ̂

is augmented by an ancillary a such that a bijection between (θ̂,a) and T is established, then

the distribution of (θ̂,a) follows from the distribution of T by a transformation of variables.

We define the following score related sets.

Definition 1 For fixed q ∈ Θ let:

Fq = {t ∈ T | s(q; t) = 0} ;

F̃q = {t ∈ Fq | j (q; t) is positive definite};

For a particular value of the estimator θ̂ = q, the set Fq is what Efron (1978) called the

inverted MLE and Amari (1982,1985) called it the ancillary space associated with the estimator

θ̂. This q maximizes the likelihood for given t ∈ Fq, at least locally, if j (q; t) is positive definite.

For local uniqueness of the MLE it is relevant whether the observed information matrix is

positive definite or has eigenvalues smaller than or equal to 0. It will be expedient to refer

to j (q; t) = −∂2`(q; t)/∂θ∂θ′ as the observed information evaluated at q ∈ Θ also when q is

not the true (global) maximizer of the likelihood MLE, for instance when evaluated at q with

t ∈ Fq\F̃q and q minimizes the likelihood locally. With this convention we can have eigenvalues

of the observed information evaluated at q that are zero or even negative.

The aforementioned authors considered cases were the MLE is unique, but in curved models

the sets Fq(1) and Fq(2) may intersect for two different points in Θ : q(1) 6= q(2). This means that

there are points t in the sample space with vanishing scores for two different values of q. This

is not uncommon in econometric models, yet only one point truly maximizes the likelihood in

general. We associate with each fixed q a set in the sample space for which q maximizes the

likelihood as follows:

Definition 2 C+
q = {t ∈ F̃q | q = arg max

θ∈Θ
` (θ; t)}.

If q is the true maximizer of the log-likelihood then C+
q contains all points t for which the

log-likelihood ` (θ; t) is maximized by θ = q.3 The set C+
q could be defined more generally

with t ∈ T but under our smoothness conditions q will satisfy the first order conditions and has

j (q; t) positive definite. The set C+
q can be empty. In the simple Keynesian model (see 10) the

likelihood always goes to minus infinity when β goes to 1 and there is no t that would ever be

mapped onto θ̂ = 1. This holds whether one conditions on an ancillary statistic or not.

For the nonlinear regression example with MLE θ̂ = 1.5, F1.5 is the complete line through

b− and b+, C+
1.5 is the half line through b− and b+ starting at, but not including the point on

the b2 axis. F̃1.5 is a half line (not fully shown) through b+, b−, b= and starting at, but not

including the point (−54, 6.9) because |j (1.5; (−54, 6.9))| = 0 . The point b= is an element of

3In the econometrics literature Hillier and Armstrong (1999) refer to the sets F and C+ as S and Ŝ, but

assume the MLE is unique and rank (j(q; t)) = d for all t ∈ Fq.
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the three sets F1.5, F0.04 and F−1.54, but `(θ; b=) is globally maximized for θ = −1.54. Hence b=

is only an element of C+
−1.54 but not of C+

1.5, C+
0.04, or any other C+

q 6=−1.54. The point b= is also an

element of both F̃1.5 and F̃−1.54, but not of F̃0.04 because the observed information j (0.04; b=)

is negative.

Note that Fq, F̃q, and C+
q are in increasing order of diffculty of verification and that by

definition C+
q ⊆ F̃q ⊆ Fq. The complement Fq\C+

q , if non-empty, contains points t that satisfy

the first order conditions but result in a value of the MLE different from q, or has |j (q; t)| = 0.

The definition of C+
q does not exclude the possibility that there exist points t ∈ T that lie on

two different C+
q(1)

and C+
q(2)

with q(1) 6= q(2). For such points t the MLE is not unique. Non-

uniqueness can also occur locally, when the determinant of the observed information is zero.

Points t in Fq with |j (q; t)| = 0, are on the boundary of F̃q and the closure of F̃q , denoted

cl
(
F̃q

)
, includes these points with singular observed information. The set of all points for which

the MLE is not unique is defined as

Definition 3 M̃ =
{
t ∈ T | ∃q(1), q(2) ∈ Θ : q(1) 6= q(2) : t ∈ cl

(
C+
q(1)

)
∩ cl

(
C+
q(2)

)}
.

This definition covers global non-uniqueness, when two possibly very different q(1) and q(2)

have the same value for the likelihood (otherwise t would be an element of only one C+
q ), and

possible local non-uniqueness when the observed information matrix has an eigenvalue equal to

zero and q(2) approaches q(1) arbitrarily close in the direction of the associated eigenvector.4

In the nonlinear regression example M̃ in Figure 1 consists of the part of the b2 axis with

b2 ≥ 1/8. Note that j (0; (0, 1/8)) = 0 and the likelihood is locally flat.

The sets C+
q and M̃ define a partition of the sample space. Each t is either in M̃ or

in one, and only one C+
q \M̃ . Each t ∈ C+

q \M̃ maps uniquely to the MLE value q when

maximizing the likelihood function. We can therefore decompose the sample space using two

types of coordinates: the MLE θ̂ and the complementary coordinate (vector) a defined in (15)

below, that provides the location of T in the associated space C+

θ̂
. Apart from points T ∈ M̃,

this decomposition is unique. This means that we have a bijective relation.

T ↔ (θ̂,a). (14)

Even under stringent regularity conditions, including smoothness of the log-likelihood func-

tion in both θ and y, this mapping is not continuous in general. There can be regions in the

4A singular Hessian is a necessary condition for non-uniqueness, but is not sufficient. Nevertheless, if t ∈
cl
(
C+

q(1)

)
∩ cl

(
C+

q(2)

)
and v is a unit eigenvector associated with a zero eigenvalue of ∂2`(θ;t)

∂θ∂θ′

∣∣∣
θ=q(1)

and q(2)

approaches q(1) in the direction v such that
(
q(2) − q(1)

)
= λv then a second order Taylor expansion `

(
q(2); t

)
=

`
(
q(1); t

)
+ ∂`(θ;t)

∂θ′

∣∣∣
θ=q(1)

(
q(2) − q(1)

)
+ 1

2

(
q(2) − q(1)

)′
∂2`(θ;t)
∂θ∂θ′

∣∣∣
θ=q(1)

(
q(2) − q(1)

)
+
∥∥∥q(2) − q(1)∥∥∥3 has the second

r.h.s. term vanishing since t ∈ cl
(
F̃q(1)

)
and the third r.h.s. term vanishes since

(
q(2) − q(1)

)
is the direction

associated with the zero eigenvalue. So the difference in likelihoods is `
(
q(2); t

)
−`
(
q(1); t

)
= O

(∥∥∥q(2) − q(1)∥∥∥3).

For the actual implementation local non-uniqueness is no great concern since both the original p∗ and our p∗∗

set the density equal to zero if the observed information matrix is singular.
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sample space where an arbitrarily small change in T leads to a discrete change in θ̂. This dis-

crete change can be large, as in the nonlinear regression model with b2 = 2.37 and b1 around

0. A arbitrarily small difference in outcome b1, e.g. from (very small) ε to −ε leads to a jump

in the estimate from 1.5 to −1.5. This discontinuity occurs when crossing M̃ . For t bounded

away from M̃ there will be a neighborhood of t and (q, a) such that the mapping is continuously

differentiable and the Jacobian of the transformation is properly defined. This will be crucial

in the derivation of p∗ and its adaptation.

The p∗-formula gives an approximation of the conditional distribution of the MLE given an

ancillary a. We will require that a is (i) a function of the minimal sufficient statistic T, (ii)

maximal, i.e. of dimension k − d and such that the mapping from T to (θ̂,a) is invertible, and

(iii) (approximately) ancillary. If the distribution of a does not depend on parameters, then a

by itself will not contain information on the parameters, but can nevertheless contain important

information about the distribution of the MLE. Since we can compute its value using the actual

sample, we can condition on the observed value.

Usually, focus is on the conditional variance. An important example of this is Efron and

Hinkley (1978) who show that the inverse of the observed information is preferred over the

expected information as a measure of variance, given an appropriate ancillary. The usefulness

of the variance is reduced, however, if the density has two modes that are seriously apart. This

paper turns attention away from the variance and focuses on multimodality instead. We show

that it is still appropriate and desirable to condition on a because it contains crucial information

on the degree of bimodality.

4 The Affine Ancillary

Various approximate ancillary statistics are available and a choice has to be made, see for in-

stance the discussion in Barndorff-Nielsen and Cox (1994, 7.2). One could ask which statistic

is most informative about the bimodality, without losing its ancillarity properties. Many of

these ancillary statistics might not be appropriate since they are generally based on the local

geometry of the model around a particular θ, but in contrast bimodality derives from the global

topological structure of the model. One might be able to derive new statistics based on the

global structure, but ancillarity will be difficult to establish, even approximately, and this will

not be investigated here. Instead we will use the affine ancillary which is of the right dimension

and approximately ancillary. There are three main reasons for choosing the affine ancillary.

Despite being a local ancillary, it still contains valuable information on the bimodality of the

distribution of the MLE as we will show. Second, it plays an important role in the derivation of

p∗ and our adjustment. Third, it is easy to calculate a and to invert (θ̂,a), and obtain t(q, a).

As a final comment it should be noted that the C+
q partitioning of the sample space does not

depend on which ancillary is chosen and is an intrinsic property of the model and the chosen

estimator (MLE in our setting).
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The affine ancillary was introduced by Barndorff-Nielsen (1980) in the context of CEMs as

an affine function of the minimal sufficient statistic T such that, for fixed θ̂, it is approximately

ancillary with mean 0 and variance Ik−d. Although not stated explicitly, a should also be

independent of, or at least approximately uncorrelated with θ̂. We can motivate this using

Basu’s Theorem, (Basu, 1955), which states that any ancillary statistic must be independent

of a complete sufficient statistic. The CEM can be approximated locally at θ0 by a FEM of

dimension d. In this approximation θ̂, or equivalently the score statistic, is a complete sufficient

statistic.

Define orthogonal complements C(θ)⊥, B(θ)⊥ : k × (k − d) chosen such that the deter-

minant |B(θ) : C(θ)⊥| = |i(θ)| / |Σ(θ)| and B(θ)⊥ = Σ(θ)C(θ)⊥ which implies B(θ)′B(θ)⊥ =

C(θ)′Σ(θ)−1Σ(θ)C(θ)⊥ = 0.5

Definition 4 The affine ancillary statistic is defined as:

a = A(θ̂)′
(
T − τ(θ̂)

)
, (15)

with

A(θ̂) = C(θ̂)⊥

(
C(θ̂)′⊥Σ(θ̂)C(θ̂)⊥

)−1/2
. (16)

Note that for the true value θ0, the statistic a0 = (C(θ0)′⊥Σ(θ0)C(θ0)⊥)−1/2C(θ0)′⊥ (T − τ(θ0)) ,

has E[a0] = 0 and V ar(a0) = Ik−d, and is uncorrelated with the score statistic s(θ0;T ) =

B(θ0)′(T − τ(θ0)) :

Cov (a0, s(θ0;T )) =
(
C(θ0)′⊥Σ(θ0)C(θ0)⊥

)−1/2
C(θ0)′⊥Σ(θ0)B(θ0) = 0 (17)

This obviously does not prove ancillarity when θ0 is replaced by the MLE. We can establish

approximate ancillarity by relating a to an LM test statistic which, under general regularity

conditions, is asymptotically χ2
k−d distributed independent of parameters.

Proposition 1 The LM test statistic for testing the CEM against the embedding FEM equals

LM = a′a. (18)

It should be clear that other test statistics, such as the Wald or LR test would also qualify

as approximate ancillaries. These tests could alternatively be used as specification tests, similar

to Chesher and Smith (1997), but in our setting the CEM is never rejected and we condition on

the value of the test statistic. Note that the augmented density of Chesher and Smith (1997,

p.631) is like the FEM embedding here and can be used to show our results outside the CEM

setting.

5The sign of each element in a can be freely chosen since post-multiplying C (θ)⊥ by an orthogonal matrix U ,

U ′U = UU ′ = Ik−d still satisfies
∣∣B (θ) : C (θ)⊥ U

∣∣ = |i (θ)| / |Σ (θ)| without affecting the properties E [a0] = 0,

V ar (a0) = Ik−d and Cov (a0, s (θ0;T )) = 0 when a is based on C (θ)⊥ U because the space spanned by the

columns of C (θ)⊥ is not affected. Hence, we can freely choose directions in the column space of C (θ)⊥ in which

the distribution of θ̂|a is most- and least affected.

14



The final property of a to be confirmed is that it is a maximal ancillary of dimension (k−d)

and jointly with θ̂ able to recover T. To show the invertibility combine the first order conditions

with the definition of a to obtain
[
B(θ̂) : A(θ̂)

]′
(T − τ(θ̂) = (0 : a′)′. The matrix

[
B(θ̂) : A(θ̂)

]
is of full rank as shown in the proof of the following lemma.

Lemma 1 [B(θ) : A(θ)] is invertible.

This leads to the following proposition.

Proposition 2 The inverse of the mapping T 7→ (θ̂,a) from the MLE and affine ancillary to

the minimal sufficient statistic T = t(θ̂,a) is:

t(θ̂,a) = τ(θ̂) +

[
B(θ̂)′

A(θ̂)′

]−1(
0

a

)
(19)

This mapping can be extended to arbitrary values q and a for which τ(q), A(q) and B(q) are

defined and is not limited to q being the MLE.

All values t(q, a) will be in Fq but not necessarily in F̃q or C+
q when, for instance in our

nonlinear regression example, a is too negative. The inverse mapping is straightforward to

evaluate and will play an important role in the application of the adjusted p∗∗ formula below.

5 The Adjusted p∗∗ Approximation

Based on the arguments that led to the definition of the set C+
q , we propose to adapt the

p∗-formula using an indicator function to mark whether a particular combination of MLE and

ancillary, (θ̂,a) = (q, a) can occur, or that the density should be set to zero instead. The second

important element of the formula is the explicit calculation of the norming constant since for

multimodal distributions it can vary substantially with a and θ. We will denote it c+ (θ, a) since

it can be very different from c(θ, a) used in the original formula.

Proposition 3 The multimodality adapted p∗∗-formula is defined as:

p∗∗
θ̂

(q | θ; a) = c+ (θ, a) |j(q, a)|1/2 exp {`(θ; t)− `(q; t)} IC+
q
, (20)

with IC+
q

= 1 if t ∈ C+
q and 0 otherwise and c+ (θ, a) determined such that the density integrates

to 1.

Note that p∗∗ can be expressed in terms of (q, a) only or in terms of t only, because of the

one-to-one relation between t and (q, a). As a function of (q, a) we could write for instance

`(θ; q, a) = `(θ; t(q, a)) and j(q, a) = −∂2`(θ; t(q, a))/∂θ∂θ′
∣∣
θ=q

.

The essential elements in the derivation of p∗∗ given in the appendix are:

(i) the quality of the approximation of embedding FEM density of T (e.g. Barndorff-Nielsen

and Cox, 1979),
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(ii) the Jacobian of the transformation from T to (θ̂,a) derived by Barndorff-Nielsen (1980) and

recognizing its continuing validity as we do here for multimodal likelihoods in the neighborhood

of the true (global) MLE,

(iii) identifying (q, a) combinations that are impossible and must have corresponding density 0,

which is a principal contribution of this paper.

The key adjustment in p∗∗ is setting the density to zero when t is not in C+
q . When t /∈ C+

q

it would never be mapped onto the value q for the MLE and could never lead to an outcome

(q, a) for (θ̂,a). This provides a simple way of calculating IC+
q

which we use in practice. We

calculate t = t(q, a) using the inversion formula (19) and calculate the associated ML estimate,

θ̂(t) say, based on this t. If θ̂(t) = q then t ∈ C+
q and IC+

q
= 1. If θ̂(t) 6= q then t(q, a) will not

be mapped on (q, a) and t /∈ C+
q and the density at (q, a) must be zero. Obviously this is true

when j(q, t(q, a)) is not positive definite. This could be used as a first check and the density set

to 0. There may be other points however, with positive definite j(q, t(q, a)) but t /∈ C+
q . Hence

determining the eigenvalues of j(q, t(q, a)) is not sufficient.

We obtain the normalizing constant c+ (θ, a) numerically by integration of the un-normalized

|j(q, a)|1/2 exp {`(θ; t)− `(q; t)} IC+
q

over all relevant values of q, keeping a fixed at the condi-

tioning value. This is straightforward using t(q, a) of Proposition 2 again and requires only

a d-dimensional integration, rather than a k or n dimensional integration, irrespective of the

dimension of a or t.

Nonlinear Regression

Figure 2 compares the empirical density of θ̂ given a = −0.5 and θ0 = 0 in the nonlinear

regression model with the basic p∗-approximation as originally formulated. The original p∗

clearly has a hump around zero that is inappropriate. The value a = −0.5 is such that no θ̂

near 0 could occur and any T value with this a will lead to θ̂ bounded away from 0. The actual

distribution is nil at zero. This is confirmed by the nonparametric kernel density estimate using

simulated data shown as a dashed line.

Figure 3 shows the adapted p∗∗-approximations compared with the empirical distributions

for different outcomes of the ancillary statistic. The true parameter value is θ0 = 1. We see that

there are two modes around 1 and -1 respectively. The second mode is more important when

the value of a is smaller. When a is more negative the realized t is closer to the set M̃ . For

fixed q there will typically be a value for a such that t(q, a) ∈ M̃ and the two modes will in this

case be equal in height.

The p∗∗-formula approximates the true density extremely well, including its bimodal fea-

tures, and equals zero where it should be. For a = −0.75 the p∗∗ is 0 between −0.7 and +0.7.

In the 100000 simulations there are no values for θ̂ between −0.7 and +0.7 when a is (close

to) −0.75. The nonparametric density estimate is slightly misleading in this case. Despite the

absence of observations in this interval, the nonparametric estimate still gives positive density

near ±0.7, but this is the well known boundary effect of kernel density estimators. Without
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Figure 2: p∗-approximation and simulated conditional density of θ̂ given a = −0.5. p̂MC is

kernel density estimate based on 100000 Monte-Carlo replications. True θ = 0, n = 50, n1 = 10,

n2 = 40, σ2 = 10.

p∗∗ this could easily have gone unnoticed and we would not even have located the boundaries

around which the kernel density is biased.

Figure 4 shows the values of c+(θ, a) in the nonlinear regression model with θ ∈ (−3, 3) and

a ∈ (−1, 1). It illustrates the importance of the explicit calculation of c+(θ, a). For positive

values of a and θ away from 0, c+(θ, a) ≈ 0.4 and virtually (2π)−d/2 as predicted by Barndorff-

Nielsen, but for negative values of a, and θ around 0 it can be much larger. In the graph the

largest value of c+ shown is 1.5, about 4 times larger than its asymptotic equivalent, but for

(θ, a) values closer to (0,-1) are even more extreme.
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Figure 3: p∗∗-approximation in the nonlinear regression model for conditional density of θ̂ given

a, ranging from 0 to −0.75. Kernel density p̂MC misleading for a = −0.5. and −0.75 because

of boundary effects. Large positive values of a are not illustrated since the second mode is

negligible and p∗∗ and p̂MC coincide with p∗. True θ = 1, n = 50, n1 = 10, n2 = 40, σ2 = 10.

Figure 4: c+(θ, a) in the nonlinear regression model showing large variation depending on the

values of θ and a. Extreme values are attained for θ ≈ 0 and a < −1 but values larger than 1.5

are not shown. n = 50, n1 = 10, n2 = 40, σ2 = 10.

18



Errors in Variables Model

If the explanatory variable in the single structural equations model (8) is unobservable we

can substitute (9) in (8) and obtain a very limited information model that does not depend

on x, but only on z, as proxy or mis-measured value of x, and yi|zi ∼ N
(
ziγβ, σ

2 (β)
)

with

σ2 (β) = σ2
u + 2βρσuσv + β2σ2

v . The log-likelihood for β based on y given z equals

` (β; y) = −1

2

1

σ2 (β)

n∑
i=1

y2
i +

βγ

σ2 (β)

n∑
i=1

yizi −
1

2

β2γ2

σ2 (β)

n∑
i=1

z2
i −

n

2
log
(
σ2 (β)

)
. (21)

This model is a CEM(2, 1) when assuming σu, σv, ρ, and γ known, since the log-likelihood can

be written in canonical form η (β)′ t(y)− κ (η (β)), so the generic θ is β here and we denote an

outcome of the MLE by b (instead of q). Further details given in Appendix A5. 6

Figure 5 shows p∗∗, p∗, and pMC the distribution obtained by simulation and using a non-

parametric kernel density estimator for an outcome of the ancillary statistic of −0.75.

The original p∗-formula is zero for b = −0.82 and b = −0.68 since the term j(b, t(b,−0.75))

is zero. For values of b in between −0.68 and −0.82, the observed information is negative and

taking those values for β would locally minimize the log-likelihood ` (β; t(b,−0.75)) . Taking

the absolute value leads to the inappropriate hump in p∗. The adjusted p∗∗-formula sets the

density to zero, not only in this interval, but for the larger interval (−0.87,−0.62). The observed

information evaluated at b in the intervals (−0.87,−0.82) and (−0.68,−0.62) is in fact positive.

A value b for β in this interval would locally maximize the log-likelihood ` (β; t(b,−0.75)), i.e.

β = b gives a local maximum, but another value for β will globally maximize the likelihood.

This implies that the combinations (b,−0.75) with b in these intervals would never be observed.

The p∗∗ density is set to zero, even though the observed information is positive definite. The

simulations confirm that this is correct: there are no realizations for b in the whole of the interval

(−0.87,−0.62) when a is (near) −0.75. Again the nonparametric kernel density is misleading

as it assigns positive density to outcomes that never occurred in 100000 replications.

The observed information is not sufficient for determining if the density is zero. It identifies

points Fq\F̃q which have density zero because the observed information is not positive definite

and q is a local minimum, but cannot identify F̃q\C+
q when q is not the global maximum.

Coherency of q and θ̂ needs to be checked by confirming that the MLE θ̂(t(q, a)) equals q.

This also provides straightforward implementation in more complicated models. Invert (q, a) to

obtain t and use the global optimizer required to find the estimator and if it equals q, then t is

in C+
q .

The model is closely related to the SSE model and we can consider a weak instrument type

situation where z is a proxy that is only weakly correlated with x by letting γ go to zero as

the sample size increases. In Figure 6 the sample size is n = 1000 and γ = 0.1. We see that

6Again it might be possible to start with a more general model and reduce the dimension by concentrating the

likelihood for instance, but the resulting profile likelihood is not a proper likelihood based directly on a density

and the implications will be left for future investigations.
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Figure 5: Conditional distributions in the Errors in Variables model: p∗∗, p∗ and nonparametric

kernel density estimate p̂MC based on 100000 Monte Carlo simulations but misleading because

of boundary effects: no draws in the interval (−0.87,−0.62). a = −0.75, true β = −1, n =

25, σ2
u = σ2

v = 1, ρ = 0.75, γ2
∑n

i=1 z
2
i = 4.5.

bimodality persists, but the density around the two modes is much more concentrated. The

adjusted p∗∗ still differs from the original p∗-formula which displays a small hump and is positive

in the region where it should be zero, but less so than for n = 25. The (marginal) probability of

observing an a which is smaller than −0.4, is more than 10%, so not too extreme or impossible.
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Figure 6: Conditional densities in the Errors in Variable model with large n = 1000 and

γ = 0.1. z a weak instrument for unobservable x. Density is still bimodal and p∗ is (slightly)

positive around b = −0.75. a = −0.4, true β = −1, σ2
u = σ2

v = 1, ρ = 0.75, γ2
∑n

i=1 z
2
i = 2.36.
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6 Confidence Regions based on p∗∗

Bimodality of the density of the MLE has consequences for inference. In particular for confidence

regions, it can result in confidence sets that are disjoint, rather than a single connected interval.

Standard confidence intervals based on the usual normal approximation of the MLE can lead to

coverage rates that are very different from their presumed nominal level. Figure 7 below shows

this shortcoming in the nonlinear regression model for a 95% confidence interval when the true

parameter value is θ0 = 0, using the standard first order method with boundaries θ̂±1.96 · ŝe(θ̂).
The standard error ŝe(θ̂) is based on the square root of either the expected information i(θ̂), or

the observed information j(θ̂; t) as advocated by Efron and Hinkley (1978).

 

1storder,  jobserved 

1storder,  iexpected 

p** - based 

Figure 7: Conditional coverage rates as function of a, the observed value of the ancillary

statistic, for standard methods θ̂±1.96 ŝe(θ̂) and standard errors se based on the square root of

the (estimated) expected information i(θ̂) and expected information j(θ̂; a). Confidence regions

based on p∗∗ are explained below. Straight horizontal lines are the marginal coverage rates:

95.1% for p∗∗ based and 80.7% and 80.6% for standard first order method based on expected-

and observed information respectively, n = 50, n1 = 10, n2 = 40, σ2 = 10. Results based on

100000 Monte-Carlo replications.

The graph shows that the coverage rate drops dramatically for negative realizations of the

affine ancillary. The results based on the expected information are shown, but also those based

on the observed information. Efron and Hinkley (1978) showed that the observed informa-

tion provides a more accurate measure of the conditional variance and the affine ancillary is
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equivalent in this case to the ancillary statistic they introduced.

For a bimodal distribution the variance in one point is not very useful since it can only give

a local approximation at one of the modes. The graph illustrates this. If the ancillary a is

more negative then the bimodality is more severe. Confidence intervals based on the observed

information cannot resolve this issue and are very similar to those based on the expected infor-

mation. Overall coverage of 80%, instead of 95%, is also a consequence of the curvature of the

model, causing the marginal variance to be larger than the inverse of the expected information.

The coverage rate can be adjusted of course by adjusting the critical values via a (parametric)

Bootstrap. This, however, will not change the fact that the coverage level drops dramatically

for small values of a.

Figure 7 illustrates three problems with standard first order methods. First, the fact that

the coverage rate depends heavily on the ancillary, is ignored. Second, bimodality is not taken

into account. Third, even marginal coverage rates are well below the nominal level. The figure

also shows that p∗∗-based confidence regions deliver correct coverage rate conditionally, as well

as unconditionally. Construction of these confidence regions is explained next.

The p∗∗-formula gives very accurate approximations to the exact density. This can be used

to construct predictive regions for θ̂ given θ. These predictive- or acceptance regions can be

inverted to obtain confidence regions for θ on the basis of an observed value for θ̂ using standard

arguments on the duality between tests and confidence regions (e.g. Fraser, 1976, p.580).

Define for each θ the set A (θ) that contains the estimator θ̂ with probability (1− α) as:

A (θ) = {q : pθ̂(q|θ) > δ}, (22)

and δ such that Pθ[θ̂ ∈ A (θ)] = 1 − α, i.e. the probability of the event when the parameter

value is θ. If q0 is an observed value of θ̂, define the set B(q0) that collects all parameter values

that are acceptable for the outcome q0 according to the same criterion:

B(q0) = {θ : pθ̂(q0|θ) > δ}. (23)

We have the logical equivalence θ ∈ B(q0)↔ q0 ∈ A (θ) and the confidence region B(q0) based

on the outcome q0 is a proper (1− α) level confidence set as a result.

Our approach is to replace the unknown exact density by the approximate conditional density

p∗∗
θ̂

(q0|a, θ) and choosing c such that the conditional coverage level, given a, is (1− α).

The sets A(θ) and B(q0) are motivated by Corollary 1 in Appendix A.6, which shows that

A(θ) is an optimal (1 − α)-level prediction region that is smallest in the terms of Lebesgue

measure. When the density of the MLE is multimodal, it may happen that the sets consist of

disjoint intervals when pθ̂(q|θ) is larger than c for θ around two distinct modes, but smaller than

c somewhere in between these two modes. This occurs for the two leading examples, depending

on the value of a. The prediction and confidence regions depend heavily on the value of the

ancillary statistic.

Non-linear Regression

Figure 8 shows confidence regions for θ based on p∗∗ as a function of the estimated θ̂ = q, when
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the actual value of the observed ancillary is a = −0.5. The figure shows that the confidence

regions for θ will indeed consist of two disjoint intervals when certain values of θ̂ are realized.

As an example, the result for outcome θ̂ = −1.2 and a = −0.5 is shown. The confidence region

is the union of the two disjoint sets (−1.62,−0.72) and (0.92, 1.43). These disjoint intervals

are quite far apart because the density of the MLE has a mode around the true (hypothesized)

value θ and a second around −θ in this model.

Another notable observation is that for a = −0.5 and q close to 0, no confidence region is,

or has to be, defined. The reason is that we would never observe an MLE value q close to 0

when a = −0.5. The value (q, a) = (0,−0.5) corresponds to a value of the sufficient statistic

t(0,−0.5) = (0, 0.25)′ by the inversion formula (19) of Proposition 2. The point (0, 0.25)′ is

in M̃ and leads to θ̂ = ±0.35 and a = −0.43. The observed information is negative and the

likelihood actually has a local minimum for θ = 0.

The intervals vary significantly with a as is evident when comparing Figure 8 for the value

a = −0.5 with Figure 11 in Appendix A.7 for a = 0. For large positive a there are no disjoint

regions. The intervals should of course change substantially with a because Figure 7 illustrated

that standard methods with intervals that do not vary with a, can show a dramatic drop in

coverage rate as a decreases.

1.43

0.92

-0.72

-1.62

q̂ = -1.2-2 -1 1 2

-2

-1

1

2a = -0.5 θ ↑

→ q: θ

Figure 8: Confidence regions B(q) as a function of q (observed θ̂) for the nonlinear regres-

sion example. Illustrated is an observed value θ̂ = −1.2 which leads to the confidence region

(−1.62,−0.72) ∪ (0.92, 1.43) for this value of a = −0.5. n = 50, n1 = 10, n2 = 40, σ2 = 10.

If conditional coverage rates are correct for each given a, then they are also marginally

correct. Confidence regions based on p∗∗ have, conditional on a, very accurate coverage rates

close to their nominal levels. This implies that also marginally, after averaging out a, the

coverage rate is close to the nominal level. The reliability of the p∗∗ based confidence regions was

illustrated in Figure 7 with a conditional and overall coverage rate close to the 0.95 horizontal
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line.

Errors in Variables Model

The p∗∗ based confidence regions for β in the Errors in Variables model when a = −0.4 are

given in Figure 12 in Appendix A.7 and are very similar to Figure 8. For estimates b around

0 and around −1.4 the confidence regions are disjoint. With a = −0.4 the MLE will never be

close to −0.7.

The weak proxy type setting with n = 1000 and γ = 0.1 is of particular interest and different.

We still have disjoint confidence regions, but both parts are much narrower. Figure 9 shows the

regions as a function of the observed value b for β̂ and γ2
∑n

i=1 z
2
i = 2.36.

-3 -2 -1 1

-3

-2

-1

1

a = -0.4 β ↑

→ b,β

Figure 9: Confidence regions as a function of β̂ = b in the Errors in Variables model when z

is a proxy weakly correlated with unobservable x. n = 1000, γ = 0.1, σ2
u = σ2

v = 1, ρ = 0.75,

γ2
∑n

i=1 z
2
i = 2.36.
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7 Conclusion

In this paper we have proposed a new p∗∗-formula that is a multimodality adjusted version

of Barndorff-Nielsen’s well known p∗-formula. It allows for the possible non-uniqueness of the

solution to the first order conditions. We identified combinations of outcomes for θ̂ and a that

are theoretically impossible. For those cases p∗∗ equals zero and is exact. It is therefore strictly

superior to any other approximation that assigns positive density to such outcomes, such as a

straight application of the original p∗, or even the non-parametric kernel density estimate we

used in the examples.

Using the observed information is not sufficient to identify all the points where the density

should be zero, but could be used as a first practical step. It is easy to calculate and to set the

density equal to zero when one of the eigenvalues is not positive. (Only checking the determinant

is not sufficient: an even number of negative eigenvalues would still result in det(j(q, t)) > 0).

The adjusted formula is shown to be very accurate and capable of capturing the bimodality

of the MLE’s distribution in the non-linear regression and errors in variable models. The

bimodality depends heavily on the ancillary statistic. Previous asymptotic results have been

concerned with how the variance of the MLE depends on ancillary statistics. This paper has

focused on bimodality instead and has shown that it depends heavily on the value of a. By itself

a has approximately no information on the parameter, but it contains valuable information

on the shape of the distribution. We should therefore condition on the observed value of a

calculated from the actual sample. The non-linear regression and errors in variables model have

been chosen as leading examples because they have interesting global curvature properties and

a changing local curvature and allowed for the illustration of weak instrument (proxy) type

effects.

Both examples have only one parameter and one ancillary statistic and the first order con-

ditions for the MLE are in both cases cubic in the parameter. This facilitated the exposition

of the main points and the explicit calculation of the confidence regions. The results are not

restricted to CEM(2,1) families however, and hold for arbitrary k and d. The definition of a, the

partitioning of the sample space, definitions of the sets Fq, F̃q, C
+
q are still applicable when d

and/or (k− d) are larger than one and the p∗∗-formula can still be applied. Practically, having

d larger requires integration over a d-dimensional surface, but is conceptually not difficult and

only has to be carried out for one outcome of a. If (k − d) is larger than one then this higher

dimension of a is practically not difficult but opens the possibility of different directions in

the orthogonal space of the expectation manifold and choosing direction in which the density

changes most.

We have shown how the adjusted p∗∗-formula can be successfully used to obtain accurate

conditional confidence intervals when the distribution of the MLE is bimodal. The resulting

confidence intervals can be disjoint, depending on the value of the observed ancillary and the

estimated parameter value. The resulting p∗∗ based confidence regions are very accurate, both

conditionally and unconditionally.
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A Appendix

A.1 Proof of Lemma 1

Since the covariance matrix is a symmetric positive definite matrix we have an eigendecompo-

sition Σ (θ)−1 = U ′Λ−1U with U ′U = UU ′ = Ik and Λ−1 = diag (1/λ1, ..., 1/λk) and {λi}ki=1

the strictly positive eigenvalues of Σ (θ) . Pre-multiplication by the full rank matrix ΛU leaves

the rank of [B(θ) : A(θ)] unchanged and post-multiplication of A (θ) by (C(θ)′⊥Σ(θ)C(θ)⊥)−1/2

does not alter the column space, nor the rank of [B(θ) : A(θ)]. Hence:

rank ([B(θ) : A(θ)]) = rank ([B(θ) : C⊥(θ)])

= rank
([
B(θ) : Σ (θ)−1B⊥(θ)

])
= rank ([ΛUB (θ) : UB (θ)⊥])

= rank
([

ΛB̃ : B̃⊥

])
.

For the rank to be smaller than k, there must exist a vector v = (v′1 : v′2)′ 6= 0 with v1 : d× 1

and v2 : (k − d) × 1 such that 0 =
[
ΛB̃ : B̃⊥

]
v = ΛB̃v1 + B̃⊥v2. The k × 1 vectors b̃ ≡ B̃v1

and b̃⊥ ≡ B̃⊥v2 are in the column spaces of B̃ and B̃⊥ respectively and hence orthogonal. The

rank is therefore reduced only if there exist b̃ and b̃⊥ such that b̃⊥ = Λb̃ =
(
λ1b̃1, ..., λk b̃k

)′
.

Orthogonality implies that b̃i and
(
b̃⊥

)
i

must have opposite signs for at least one i, or have

a zero when the other one is non-zero for at least one i, since otherwise b̃′b̃⊥ is a sum of only

positive terms and b̃′b̃⊥ > 0. In these cases with sign
(
b̃⊥i

)
= −sign

(
b̃i

)
, or b̃⊥i = 0 6= b̃i, or

b̃i = 0 6= b̃⊥i, there does not exist a λi > 0 such that b̃⊥i = λib̃i. Hence no v 6= 0 exists such

that
[
ΛB̃ : B̃⊥

]
v = 0 and [B(θ) : A(θ)] has rank k and is invertible. This holds for any value

of θ ∈ Θ for which B(θ) and Σ (θ) are regular with full column rank d and k respectively, and

in particular for θ̂. Hence the inverse of
[
B(θ̂) : A(θ̂)

]
exists. �

A.2 Proof of Proposition 1

The score function of the embedding FEM is:

s (η;T ) = T − ∂κ (η)

∂η
= T − τ(η), (24)

which can be evaluated at the restricted CEM as η(θ̂). Using the covariance matrix of T at the

restricted estimate η(θ̂) we have:

LM = [T − τ(θ̂)]′Σ(θ̂)−1[T − τ(θ̂)], (25)

26



which asymptotically will have χ2
k−d distribution under the implicit regularity conditions. Since

[B(θ̂) : A(θ̂)] is invertible by Lemma 1 and because B(θ̂)′
(
T − τ(θ̂)

)
= 0 we may write:

(
T − τ(θ̂)

)
=

[
B(θ̂)′

A(θ̂)′

]−1 [
B(θ̂)′

A(θ̂)′

](
T − τ(θ̂)

)

=

[
B(θ̂)′

A(θ̂)′

]−1
 0

A(θ̂)′
(
T − τ(θ̂)

)  . (26)

Hence:

LM =

 0

A(θ̂)′
(
T − τ(θ̂)

) ′ [( B(θ̂)′

A(θ̂)′

)
Σ(θ̂)

(
B(θ̂) : A(θ̂)

)]−1
 0

A(θ̂)′
(
T − τ(θ̂)

)  .
We have A(θ̂)′Σ(θ̂)B(θ̂) = 0 since A(θ̂)′ =

{
C⊥(θ̂)′Σ(θ̂)C⊥(θ̂)

}−1
C⊥(θ̂)′ and Σ(θ̂)B(θ̂) = C(θ̂)

we obtain:

LM =

 0

A(θ̂)′
(
T − τ(θ̂)

) ′ [ B(θ̂)′Σ(θ̂)B(θ̂) 0

0 A(θ̂)′Σ(θ̂)A(θ̂)

]−1
 0

A(θ̂)′
(
T − τ(θ̂)

) 
=
(
T − τ(θ̂)

)′
A(θ̂)

{
A(θ̂)′Σ(θ̂)A(θ̂)

}−1
A(θ̂)′

(
T − τ(θ̂)

)
=
(
T − τ(θ̂)

)′
C⊥(θ̂)

{
C⊥(θ̂)′Σ(θ̂)C⊥(θ̂)

}−1
C⊥(θ̂)′

(
T − τ(θ̂)

)
= a′a. �

A.3 Derivation of p∗∗

The derivation of the p∗-formula as given by Barndorff-Nielsen (1980) depends on having an

accurate approximation for the density of T in the FEM and determining the Jacobian of the

transformation from T to (θ̂, a). The derivation of the Jacobian here is essentially the same

and the saddlepoint approximation for FEMs was derived in Barndorff-Nielsen and Cox (1979,

p.299):

p∗T (t; η) =
1

(2π)k/2
|Σ (η̂)|1/2 exp

{
(η − η̂)′t− (κ(η)− κ (η̂))

}
, (27)

which has proved to be highly accurate, not only asymptotically in an i.i.d. context when the

relative error is of order O(n−1), but also in small samples with dependent data.

The derivation of the Jacobian is based on the relation:[
B(θ̂)′

C(θ̂)′⊥

](
T − τ(θ̂)

)
=

(
0

c

)
. (28)

The first d zeros correspond to the first order conditions for the MLE θ̂, which are commonly

used for in the derivation of the asymptotic distribution of the MLE in an expansion of the type

0 = s(θ̂) = s(θ0) + ∂s(θ0)
∂θ′ (θ̂ − θ0) + remainder. The term c stems from the second term in the
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definition of the ancillary. Denote particular values of θ̂, c,a, and T by q, c, a and t respectively.

On taking differentials we obtain:[
B(q)′

C(q)′⊥

]
dt+

k∑
l=1

(t− τ(q))l

[
F (q)l

G(q)
l

]
dq −

[
B(q)′

C(q)′⊥

]
Σ(q)B(q)dq = Ik−d dc, (29)

with G(q)l =
[
∂
∂θ{(C(θ)′⊥)l}

]
θ=q

. Using C(q)′⊥Σ(q)B(q) = C(q)′⊥C(q) = 0 we have:

dt =

[
B(q)′

C(q)′⊥

]−1 [
j(q; t) 0

−
∑k

l=1 (t− τ(q))lG(q)
l
Ik−d

](
dq

dc

)
, (30)

and recalling that by construction |B(θ) : C(θ)⊥| = |i(θ)| / |Σ(θ)| the Jacobian of the trans-

formation from t to (q, a) is |i(q)|−1 |Σ(q)| |j(q; t)| . Now dc =
∣∣∣(C(q)′⊥Σ(q)C(q)⊥)1/2

∣∣∣ da =

|i(q)|1/2 |Σ(q)|−1/2 da, since the Jacobian matrix of this transformation does not depend on a (or

c). The Jacobian of the overall transformation from T to (θ̂,a) equals |i(q)|−1/2 |Σ(q)|1/2 |j(q; t)|.
Given the exponential distribution of T, the density of (θ̂, a) becomes:

pθ̂,a (q, a; θ) = |i(q)|−1/2 |Σ(q)|1/2 |j(q; t (q; a))| exp
{
η (θ)′ t (q, a)− κ (θ)

}
h̃ (t(q, a) . (31)

Now letting r = `(η̂; t)− `(q; t) = (η̂−η(q))′t−{κ(η̂)−κ(q)}, with η̂ the MLE of the embedding

FEM,

pθ̂,a (q, a; θ) = |j(q; t (q; a))|1/2 exp
{

(η (θ)− η(q))′t (q, a)− {κ (θ)− κ(q)}
}
·

·
{
|j(q; t (q; a))|
|i(q)|

|Σ(q)|
|Σ(η̂)|

e−2r

}1/2

|Σ(η̂)| exp
{
η̂′t− κ(η̂)

}
h̃ (t) . (32)

In an i.i.d. setting all ratios in the second line are shown by Barndorff-Nielsen (1980) to have

an expansion of the form |j(q;t(q;a))|
|i(q)| = 1 + n−1/2c1(θ, a) + Op(n

−1), |Σ(q)|
|Σ(η̂)| = 1 + n−1/2c2(θ, a) +

Op(n
−1) and e−2r = c3(θ, a){1 + n−1/2c4(θ, a) + Op(n

−1)) when a is the affine ancillary. The

remaining term is of order O(n−1) by the saddlepoint expansion for the FEM. The leading term

of this result is the p∗-formula.

When the distribution of θ̂ is bimodal, there is no guarantee that θ̂ is in a neighborhood

of the true θ0. The Jacobian matrix is still valid however, because it concerns the mapping

between T and (θ̂,a), irrespective of the distance from θ̂ to the true θ0. This mapping is

locally a diffeomorphism as long as T is bounded away from sets where the mapping between

T and (θ̂,a) is not uniquely defined: i.e. M̃ or where |j(q; t)| = 0. To make the point more

explicit consider a realization t which is in Fq(1) and F̃q(2) . Although q(1) satisfies the first order

conditions s(q(1); t) = 0 this point q(1) and associated ancillary a(1) are irrelevant, because t is

mapped uniquely on to q(2) and the associated a(2). Hence the relevant neighborhood is around

(q(2), a(2)) and the Jacobian is evaluated in this point.

In Figure 1 for the nonlinear regression example, b− maps uniquely to the MLE value 1.5

and b= maps uniquely to −1.54 and their associated values for a. The Jacobian is evaluated in

the uniquely defined point and the transformation theorem is valid in this neighborhood where

the rank is constant.
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When t is not in C+
q , the MLE as a function of t will not map t onto (q, a). For a given

value of a this t will be mapped onto a different value θ̂(t) 6= q for the MLE. This implies that

the combination of (q, a) cannot occur and the density must be 0.

The derivation of the Jacobian is independent of the sample size n. Asymptotically, if T

is defined as a sample average, T will converge by a law of large numbers to τ (η0) = τ(θ0)

since the true model is the CEM with parameter value θ0 and expansions in terms of orders of

n make sense. In small samples (or when information accrues slower than linearly in n) this

is no longer true and the quality of the adjusted p∗∗-formula depends on how well the second

line can be approximated by a function of a alone. This may vary by case and sample size.

Our examples show that this approximation can be very good in the small samples or in a

weak instrument (proxy) type setting. Asymptotically we can fall back on the original result

by Barndorff-Nielsen (1980).

A.4 Further details of the Nonlinear Regression Model

The model is embedded in a bivariate normal density:

pdfβ̂ (b|β,Ω) ∼ |2π|−n/2 |Ω|−1/2 exp

{
−1

2
(b− β)′Ω−1 (b− β)

}
,

with Ω = σ2 (X ′X)−1 and σ2 assumed known. This is a FEM with canonical loglikelihood

parameterization:

` (β|b) = b′η − κ (η) + constant,

with η = Ω−1β = σ−2X ′Xβ, κ (η) = 1
2η
′Ωη. The constant includes terms involving the known

σ2, observable b and X ′X , but not β. Our nonlinear regression model is a CEM(2,1) because the

two dimensional η is a smooth function of the single parameter θ. Orthogonality of the columns

in X implies that we can write Ω−1 = diag {r1, r2} and in the example with complementary

dummies, r1 = n1/σ
2 and r2 = n2/σ

2. The loglikelihood of the CEM is:

` (θ) = r1b1θ + r2b2θ
2 − 1

2
r1θ

2 − 1

2
r2θ

4,

η (θ) =

(
r1θ

r2θ
2

)
, B (θ) =

∂η (θ)

∂θ′
=

(
r1

2r2θ

)
, B⊥ (θ) =

(
2r2θ

−r1

)
,

τ (θ) = E
[
β̂
]

=

(
θ

θ2

)
, C (θ) =

∂τ (θ)

∂θ′
=

(
1

2θ

)
, C⊥ (θ) =

1

r1r2

(
−2θ

1

)
,

Σ (θ) = diag {r1, r2} .

The constant term (r1r2)−1 in C⊥ drops out in the construction of A (θ) since (k − d) = 1,

but is chosen in line with the definition which specifies that |B (θ) : C⊥ (θ)| = |i (θ)| / |Σ (θ)| =
r1+4r2θ̂
r1r2

. The determinant |Σ (θ)| = r1r2 and:

i (θ) = var (s (θ)) = r1 + 4r2θ
2 = B (θ)′Σ (θ)B (θ) ,
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with s (θ) the score satisfying:

s (θ) =
∂` (θ)

∂θ
= r1b1 + 2r2b2θ − r1θ − 2r2θ

3 = B (θ)′ (b− τ (θ)) .

The observed information equals:

j (θ; b) = −∂
2` (θ)

∂θ∂θ′
= −2r2b2 + r1 + 6r2θ

2

= r1 + 4r2θ
2 − 2r2

(
b2 − θ2

)
= i (θ)−

2∑
j=1

∂2ηj (θ)

∂θ∂θ′
(b− τ (θ))j ,

since ∂2η1(θ)
∂θ∂θ′ = 0 and ∂2η2(θ)

∂θ∂θ′ = 2r2. From this equation it is immediate that E [j (θ; b)] = i (θ) .

The first order conditions s(θ̂) = 0 for the MLE can be written as:

θ̂3 + d1θ̂ + d0b1 = 0,

with d0 = − r1
2r2
, d1 = −

(
b2 + r1

2r2

)
. The type of roots of this (suppressed) cubic equation in θ̂

depend on the discriminant:

∆ = −4d3
1 − 27d2

0b
2
1.

If ∆ > 0 then there are three distinct real roots. If ∆ = 0 has three real roots of which at

least two are equal, and if ∆ < 0, then there is one real root and two non-real complementary

roots. Any one of these three cases can occur since ∆ depends on the outcomes b1 and b2 which

are normally distributed and independent. This cubic can be exploited to derive algebraically

which values of θ̂ can occur for given value of a defined next.

A(θ̂) = C(θ̂)⊥

(
C(θ̂)′⊥Σ(θ̂)C(θ̂)⊥

)−1/2

=
1

r1r2

(
−2θ̂

1

) 1

r1r2

(
−2θ̂

1

)′(
1/r1 0

0 1/r2

)
1

r1r2

(
−2θ̂

1

)
−1/2

=

(
−2θ̂

1

)
1√

4θ̂2/r1 + 1/r2

or

√
r1r2√

4r2θ2 + r1

(
−2θ̂

1

)
.

Hence the affine ancillary statistic equals:

a =
1√

4θ̂2/r1 + 1/r2

(
−2θ̂

1

)′(
b1 − θ̂
b2 − θ̂2

)

=
−2θ̂b1 + θ̂2 + b2√

4θ̂2/r1 + 1/r2

. (33)

Using Proposition 2 we can determine the outcome of the minimal sufficient statistic b from
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(q, a) .(
b1

b2

)
= τ (q) +

[
B (q)′

A (q)′

]−1(
0

a

)

=

(
q

q2

)
+

1

r1 + 4r2q2

(
1 2r2q

√
4q2/r1 + 1/r2

−2q r1

√
4q2/r1 + 1/r2

)(
0

a

)

=

(
q

q2

)
+ a

1√
4q2/r1 + 1/r2

(
2q/r1

1/r2

)
.

Note that by this result if a = −1
2r1

√
4 q

2

r1
+ 1

r2
then b1 = 0 and b2 = q2 − 1

2
r1
r2

and the

observed information j (q; b) = 4r2q
2 + 2r1 > 0, but the likelihood is symmetric in q: ` (q) =

−1
2q

2
(
2r1 − q2r2

)
and q and −q have the same value of the likelihood and b =

(
0, q2 − 1

2
r1
r2

)′
∈

M̃ , unless the likelihood is globally maximized for θ = 0. This occurs if j
(
0; (0, b2)′

)
=

r1 − 2r2b2 > 0 so for b2 <
r1
2r2

= 1/8 in the example, j (0; (0, 1/8)′) = 0.

A.5 Further details of the Errors in Variables Model

In this example we continue with β as model parameter in the CEM, rather than θ, and still

σ2 (β) = σ2
u + 2βρσuσv + β2σ2

v and we denote σ̇2 (β) = ∂σ2(β)
∂β = 2ρσuσv + 2βσ2

v .

From the loglikelihood (21) it follows:

η (β) =
1

σ2 (β)

(
−1/2

βγ

)
; t =

( ∑n
i=1 y

2
i∑n

i=1 yizi

)
;

κ (β) =
1

2

β2γ2

σ2 (β)

n∑
i=1

z2
i +

n

2
log
(
σ2 (β)

)
.

The embedding FEM has cumulant function, writing szz =
∑n

i=1 z
2
i :

κ (η) = −1

4
szz

η2
2

η1
− n

2
log |−2η1|

and it is easily checked that κ (β) = κ (η (β)) . The expectation of T as a function of β is

quadratic in β:

τ(β) = Eβ[T ] =

(
β2γ2szz + nσ2 (β)

βγszz

)
,

and the variance of the minimal sufficient statistic equals:

Σ (β) = V ar [T ] = σ2 (β) szz

(
4β2γ2 + 2 n

szz
σ2 (β) 2βγ1

2βγ 1

)
,

with |Σ (β)| = 2nszzσ
6 (β) .

The score can be written as:

s (β) =

3∑
j=0

βjdj ,
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with coefficients:

d0 =
{

2t1ρσuσv + 2t2γσ
2
u − 2nρσ3

uσv
}
/
(
2σ2 (β)

)
,

d1 = 2t1σ
2
v − 2σ2

u ·
(
szzγ

2 + nσ2
v

{
1 + 2ρ2

})
/
(
2σ2 (β)

)
,

d2 = −2t2γσ
2
v − 2ρσuσv

(
szzγ

2 + 3nσ2
v

)
/
(
2σ2 (β)

)
,

d3 = −2nσ4
v/
(
2σ2 (β)

)
.

After multiplying s(β̂) = 0 by the positive σ2 (β) the first order condition is a cubic in β̂.

The expected Fisher in formation equals

i (β) =
1

σ2 (β)

(
γ2szz − 2n

(βσv + ρσu)σ2
υ

σ2 (β)

)
.

The observed information is more involved, but can of course be written as i(β) plus a term

linear in (t− τ(β)) as in (7) j (β; t) = i (β)−
∑k

l=1 (tl − τl (β)) ∂
2ηl(β)
∂β∂β′ .

The gradients to the canonical manifold and expectation manifold and there orthogonal

complements are

B (β) =
∂η (β)

∂β
=
σ̇2 (β)

σ4 (β)

(
1/2− 1/2σ2 (β) /σ̇2 (β)

−γβ + γσ2 (β) /σ̇2 (β)

)
; B⊥ (β) =

(
2γ(β − σ2 (β) /σ̇2 (β))

1− σ2 (β) /σ̇2 (β)

)
;

C (β) =
∂τ (β)

∂β
=

(
2βγ2szz + nσ̇2 (β)

γszz

)
; C⊥ (β) = λ

(
−γszz

2βγ2szz + n · σ̇2 (β)

)
;

with λ such that |B (β) : C⊥ (β)| = |i (θ)| / |Σ (β)|. This scalar is slightly complicated and

cancels in the expression for A (β) so there is little use for an explicit expression here. Since:

C⊥ (β)′Σ (β)C⊥ (β) = λ2n szzσ
2 (β)

(
2 szz β γ

2σ2 (β) + nσ̇2 (β)
)
,

we obtain:

A (β) =
1√

n szzσ2 (β) (2 szz β γ2σ2 (β) + nσ̇2 (β))

(
−γszz

2βγ2szz + n · σ̇2 (β)

)
,

and

a =
−γszz

(
t1 −

(
β̂2γ2szz + nσ2

(
β̂
)))

+
(

2β̂γ2szz + nσ̇2
(
β̂
))(

t2 − β̂γszz
)

√
n szzσ2

(
β̂
) (

2 szz β̂ γ2σ2
(
β̂
)

+ nσ̇2
(
β̂
)) . (34)

Although this formula is analytically more involved, it can easily be stored and derived using

symbolic algebra packages and numerically evaluated. All calculations of the derivatives, the

ancillary statistic, and the inverse mapping are straightforward and we will not present their

analytic formulas here.
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A.6 Smallest Prediction Regions

Analogues to a standard proof of the Neyman-Pearson Lemma we have the following proposition

for the smallest prediction region, see for instance Juola, (1993).

Theorem 1 Suppose pT (t) is a continuous density for T ∈ T, g(t) a continuous and strictly

positive function, and A a measurable subset of T and let P [A] =
∫
A pT (t)dt then:

min
A

∫
A
g(t)dt, (35)

s.t. P [A] = 1− α, (36)

with 0 < α < 1, is solved by:

A = {t ∈ T : pT (t)/g(t) > δ} , (37)

with δ > 0 chosen to satisfy the condition P [A] = 1− α.

Proof. Let R be any measurable subset of T that satisfies (36) and denote the complements

of A and R by Ā and R̄ respectively, then:

0 =

∫
R
pT (t)dt−

∫
A
pT (t)dt =

∫
Ā∩R

pT (t)dt−
∫

A∩R̄
pT (t)dt

≤
∫

Ā∩R
cg(t)dt−

∫
A∩R̄

cg(t)dt = c

(∫
R
g(t)dt−

∫
A
g(t)dt

)
,

and since δ > 0 it follows that
∫
R g(t)dt ≥

∫
A g(t)dt which means that A is better in the sense

of (35), or at least as good, as any other set. �

Corollary 1 If g (t) = 1 and the density is pT (t; θ) then the (Lebesgue) smallest prediction

region is:

A (θ) = {t ∈ T : pT (t; θ) > δ} . (38)
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A.7 Additional Figures

Approximate Ancillarity in Nonlinear Regression model.

-1 0 1 2 3 4

0.1

0.2

0.3

0.4

0.5
θ = 0
θ = ± 0.5
θ = ± 1
θ = ± 2

pdf(a|θ) ↑

→ a

Figure 10: Density of the approximate ancillary in the Nonlinear Regression for different values

of θ. If a was truly ancillary, this density would not depend on θ and all four would be identical.

n = 50, n1 = 10, n2 = 40, σ2 = 10.

Confidence Regions in the Nonlinear Regression Model when a = 0.

-2 -1 1 2

-2

-1

1

2a = 0 θ ↑

→ q: θ

Figure 11: Confidence regions B(q) as a function of q (observed θ̂) in the nonlinear regression

model when a = 0. n = 50, n1 = 10, n2 = 40, σ2 = 10.
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Confidence Regions for the Errors in Variables model.

-1.5 -1.0 -0.5 0.5

-1.5

-1.0

-0.5

0.5

a = -0.75 β ↑

→ b,β

Figure 12: Confidence regions B(q) as a function of q (observed θ̂) in the Errors in Variable

model when a = −0.75 . n = 50, n1 = 10, n2 = 40, σ2 = 10.
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