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ONLINE APPENDIX:
The ESP estimator

Benjamin Holcblat and Fallaw Sowell

This appendix mainly consists of the proofs of Theorem 1, consistency and asymptotic nor-
mality of the ESP estimator, and Theorem 2, asymptotic distributions of the Trintiy+1 test
statistics. The proof of Theorem 1 builds on the traditional uniform convergence proof tech-
nique of Wald (1949). The proof of Theorem 2 adapts the usual way of deriving the trinity
tests. The length of the proofs is mainly due to the variance term |ZT(9)|;§t and the high-level
of details. The latter should make the proofs more transparent, and should ease the use of the
intermediary results in further research.

In addition to the proofs, this appendix contains a table of contents, some formal definitions,
the precise assumptions of the paper, a discussion thereof, and additional information regarding
the examples.
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APPENDIX A. DEFINITIONS AND ASSUMPTIONS

Definition 1 (ESP approximation; Ronchetti and Welsh 1994). The ESP approzimation of the
distribution of the solution to the empirical moment conditions (2) is

]_ ) / T m/2 _ 1
=3 @) }(ﬁ () 3 (1)
t=1

where |.|get, denotes the determinant function, 6% a solution to the empirical moment conditions

(2), Ye(.) = Y(Xy,.), and

T ) “lror T 0¢ -1
Xr(0) = [Zwt,e 8t6’ ] [Z Wy g1y (6 ][Z a ] , (12)

fg;(@) == exp {Tln

t=1 t=1

o . exp [7r(0) ¢(6)] (13)

’ iy exp [rr(0)'4i(9)]
T
71 (0) such that (s.t.) Y ¢y(0) exp [10(0)41(0)] = Omx1. (14)
t=1

Definition 2 (ESP estimator). The ESP estimator Or is a mazimizer of the ESP approzimation
(11), i.e.,

Or € arg%ﬂe&gfe;(@)- (15)

We require the following assumption to prove the existence and the consistency of the ESP

estimator.

Assumption 1. (a) The data (X;)72, are a sequence of i.i.d. random vectors of dimension p on
the complete probability sample space (2,E,P). (b) Let the moment function 1) : RP X O —
R™ be s.t. 0 — ¢(X1,0) is continuously differentiable P-a.s., and V8 € OF, x — (x,0) is
B(RP)/B(R™)-measurable, where, for e > 0, ©° denotes the e-neighborhood of ®. (c) In the
parameter space O, there exists a unique Oy € int(®) s.t. E[p(X1,60)] = Omx1 where E denotes
the expectation under P. (d) Let the parameter space ® C R™ be a compact set, s.t., for all
6 € O, there exists T(0) € R™ that solves the equation E {eTllp(Xl’e)l/J(Xl,H)} =0 fort. (e)

E [sup(eﬁ)ese ezT/w(Xl’e)] < oo where S := {(0,7) : 0 € O&T € T(0)} and T(0) := B (7(0))

with Bey(7(0)) the closed ball of radius ex > 0 and center 7(0). (£f) E [SUPeee lawa)g}’ |2} < 00,

where |.| denotes the Buclidean norm. (g) E [suppcge [¥(X1,0)1(X1,0)?] < oo. (h) For all
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6 € ©, the matrices {Eeﬂeyw(xlﬂ)%} and E [eT(g),d’(Xl’e)w(Xh 9)1/}(X1,9)'] are invertible,

l ¢ -1 ’ ’ O -1 .
50 3(0) = Eer V(X0 UL T [er(@ 000Xy, 0)p(X1, B |[Ber w10 2N | s

also invertible.

We require the following additional assumption to prove the asymptotic normality of the ESP

estimator.

Assumption 2. (a) The function 6 — (X1,0) is three times continuously differentiable in
a neighborhood N of 6y in © P-a.s. (b) There exists a B(RP)/B(R)-measurable function b(.)
satisfying E [SUPeeNSUpTeT(e) ele'w(Xl’e)b(Xl)kz} < oo for ki € [1,2] and ke € [1,4] s.t., for
all 5 € [0,3], suppepn |VI9(X1,0)| < b(X1) where VIh(X1,0) denotes a vector of all partial
derivatives of 6 — 1 (X1,0) of order j.

Assumptions 1 and 2 are stronger than the usual assumptions in the MM literature, but are
similar to assumptions used in the entropy literature and related literatures. Assumptions 1 and
2 are essentially adapted from Haberman (1984), Kitamura and Stutzer (1997), and Schennach
(2007, Assumption 3). See also Chib et al. (2018) for similar assumptions. The Appendix C.1
(p. 83) contains a detailed discussion of Assumptions 1 and 2.

In addition to Assumptions 1 and 2, we require the following standard and mild assumption
to establish the asymptotic distribution of the Wald, LM, ALR, and ET statistics.

Assumption 3 (For the trinity+1). (a) The function r : @ — R in the null hypothesis (9) is

continuously differentiable. (b) The derivative R(6) := 85@?) is full rank at 0.

APPENDIX B. PROOFS

B.1. Proof of Theorem 1(i): Existence and consistency. The proof of Theorem 1(i)
(i.e., consistency) adapts the Wald’s approach to consistency (Wald 1949) along the lines of
Kitamura and Stutzer (1997), Schennach (2007), Chib et al. (2018) and others. More precisely,
standardizing the logarithm of the ESP approximation, we show that, P-a.s. for T" big enough,
the ESP estimator maximizes the LogESP function (8) on p. 5, where

SUPgco ‘ln [% ST eTT(e)ld"(g)} — lnE[eT(e)/“’(Xl’e)]’ =o(1) and

suppce |77 In[X7(0)|act| = O(T™'). The two main differences between our proof of Theorem
1(i) and the proofs available in the entropy literature are the following. Firstly, we need to
ensure that, for T' big enough, for all § € ©, |X7(0)|4et is bounded away from zero, so that the
LogESP function (8) on p. 5 does not diverge to oo on parts of the parameter space. Secondly,
we prove that the joint parameter space for 6 and 7 (i.e., S) is a compact set.

Core of the proof of Theorem 1i. Under Assumption 1(a)(b) and (d)-(h), by Lemma 1 (p. 19),
P-a.s. for T big enough, the ESP approximation and the ESP estimator exist. Moreover, under
Assumption 1(a)-(b) and (d)-(h), by Lemma 6iv (p. 24), P-a.s. for T big enough, |37(0)|qet > 0,
for all € ©. Thus, we can apply the strictly increasing transformation « +— = [In(z) — 2 ln(%)]
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to the ESP approximation in equation (11) on p. 17, so that, P-a.s. for 1" big enough,

Oy € x for (0
T € argmax fo; (6)

T
A 1
& Op € arg %162}3( {ln [? le e () w‘(e)] - — ln |X7(0 |det} (16)
Now, by the triangle inequality,
(1 & 1 1
ggg In 7 tz:;eTT((’) Yu(0) | _ 57 In [S7(6)]ger — In E[e™(@ ¥ (X1.0)]

T
1 /
— 7r(0) w,(e) »(X1,0)
< sgg In E OO _nE[e L]

= o(1) P-as. as T'— o0 (17)

+ sup ‘— In |X7(0)|det

where the last equality follow from Lemma 2iv (p. 20) and Lemma 6v (p. 24) under Assumption
1(a)-(b) and (d)-(h). Thus, regarding f7, it is now sufficient to check the assumptions of the
standard consistency theorem (e.g. Newey and McFadden 1994, pp. 2121-2122 Theorem 2.1,
which is also valid in an almost-sure sense). Firstly, under Assumption 1 (a)-(e) and (g)-(h), by
Lemma 10iv (p. 31), 8 - In E[e@)'¥(X1.0)]| is uniquely maximized at g, i.e., for all § € @\ {fo},
InE[e™@¥(X1.0)] < InE[e™(®0)¥(X1,00)] = 0. Secondly, under Assumptions 1 (a)(b)(d)(e)(g) and
(h), by Lemma 3 (p. 22),  — InE[e"®¥(X1.9)] is continuous in ©. Finally, by Assumption
1(d), the parameter space ® is compact. O

Lemma 1 (Existence of the ESP approximation and estimator). Under Assumption 1(a)(b)
and (d)-(h), P-a.s. for T big enough,
(i) the ESP approzimation fg}(.) exists;
(ii) 0 — 71 (0) is unique and continuously differentiable in ®, so that the ESP approzimation
0 — fg}(@) is also unique and continuous in ©;
(iii) for all 0 € ©, the ESP approzimation w — fg: (0) is £/B(R)-measurable; and
(iv) there exists an ESP estimator O € argmaxgece fo;.(0) that is £/B(R™)-measurable.

Proof. The result follows from Lemmas 2 (p. 20), 3 (p. 22) and 6 (p. 24) and standard
arguments. For completeness, a detailed proof is provided.

(i) Under Assumption 1(a)(b), (d)-(e)(g) and (h), by Lemma 2ii (p. 20), P-a.s. there
exists a B(®) ® £/B(R™)-measurable function 7,(.) s.t., for T big enough, for all § € O,
T Z e (O)Ve(0)4),(0) = 0,,x1 and 77(0) € int[T(0)]. Moreover, under Assumption 1 (a)(b)(d)
(e)(g) and (h), by Lemma 3 (p. 22) with P = = thl dx,, for all T € [1,00], for all (0,7) € S,
0< =+ Z e™¥t(0) 5o that, for all § € ©, 0 < %Z;ﬁzl e (0)Vt(¥)  Thus, the ET term exists.
Now, under Assumption 1(a)-(b) and (d)-(h), by Lemma 6iv (p. 24), P-a.s. for 7" big enough,
infpe@ [27(0)|get > 0, so that the variance term of the ESP approximation exists. Thus, the
ESP approximation exists.

(i) By Assumption 1(b), § — (X1,0) is continuously differentiable in ©¢ P-a.s., so that
it is sufficient to show that 7(.) is unique and continuous, which we prove at once with the
standard implicit function theorem. Check its assumptions. Firstly, under Assumption 1(a)(b),
(d)-(e)(g) and (h), by Lemma 2ii (p. 20), P-a.s. there exists a function 7p(.) s.t., for T" big
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enough, for all 6 € ©, = Zle e OVt O)4) (0) = 0x1 and 77(0) € int[T(0)]. Secondly, for all

. AL ST om' vt (@), (0 s . .
f e o, [+ Z“ZT, o) = LS ey, ()4 (8)', which is full rank P-a.s.

(6,7)=(8,71(6))
for T' big enough for all § € ©, because under Assumption 1(a)-(b) and (d)-(h), by Lemma

6iv (p. 24), P-a.s. for T big enough. infoc@ [X7(0)]aet > 0. Finally, by Assumption 1(b),
0,7)— % E;‘le e V04, (0) is continuously differentiable in S€.

(iii) By Assumption 1(b), for all § € ©, x — ¢ (x, §) is B(RP)/B(R™)-measurable. Moreover,
under Assumption 1(a)(b), (d)-(e)(g) and (h), by Lemma 2ii (p. 20), P-a.s. 7p(.) is a B(®) @
E/B(R™)-measurable function. Thus, the result follows.

(iv) By Assumption 1(d), © is compact, so that, by the statements (i)-(iii) of the present

lemma, the result follows from the Schmetterer-Jennrich lemma (Schmetterer 1966 Chap. 5
Lemma 3.3; Jennrich 1969 Lemma 2). U

Lemma 2 (Asymptotic limit of the ET term). Under Assumption 1(a)(b), (d)-(e)(g) and (h),
(i) P-a.s. as T — oo, supy; es‘ ST rn(0) E[eT/w(Xl’e)]‘ = o(1), which implies that

P-a.s. as T'— 00, sup(g ryes ‘ln [T S ewt(a)} - 1nIE[eT/w(X1’9)]‘ =o(1) ;

(ii) P-a.s. there exists a B(©) ® E/B(Rm)-measumble function TT( ) s.t., for T big enough,
foralld € ©, 7p(0) € argmin, egm % ZtT e ¥e(0) L Z W(Q)wt( ) = Omx1 and
() € int[T(0)];

(iii) P-a.s. as T — o0, supgeg |Tr(0) — 7(0)| = o(1);

(iv) P-a.s. as T — 00, supyce ‘% ZtT:l emr(0) Wi (0) _ E[eT(e)lw(Xlﬂ)]‘ = o(1), which implies

that P-a.s. as T — 00, supgee ‘ln [% Z?Zl eTT(e)'zpt(e)} — lnE[eT(e)/w(Xlﬂ)]‘ = o(1).

Proof. (i) Under Assumptions 1 (a)-(b)(d)(e)(g) and (h), by Lemma 4iii (p. 23), S := {(6,7) :
0 € @AT € T(0)} is a compact set.” Thus, under Assumption 1(a)-(b), (d) (e) and (h), the
ULLN (uniform law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp. 24-25,
Theorem 1.3.3) yields the first part of the result. Now, under Assumptions 1 (a)(b)(d)(e)(g)
and (h), by Lemma 3 (p. 22), (8,7) — E[e” *(X1.9] is continuous, so that {E[e” *(X10]: (9, 7) €
S} is a compact set by Assumption 1(d) —continuous mappings preserve compactness (e.g.,
Rudin 1953, Theorem 4.14). Moreover, = — Inz is continuous, and, under Assumptions 1
(a)(b)(d)(e)(g) and (h), again by Lemma 3 (p. 22), 0 < inf(g g E[e”?X10]. Thus, we can
choose an 1 € |0,inf (g e E[eT/’p(Xlﬁ)] s.t. x — Inzx is uniformly continuous on the closed

n-neighborhood of {E[e™¥(X10)] : (4,7) € S} —continuous mappings on a compact set are
uniformly continuous (e.g., Rudin 1953, Theorem 4.19). Then, the second part follows from
the first part of the result: By the first part, P-a.s. there exists a T € N s.t., VT € [[T,oo[[,
SUD(p,7)es B SL el _ Rl (X0 < g /2.

(ii)- (ii1) The proof follows the overall strategy of Schennach (2007, Step 1 in the proof of Theo-
rem 10). For completeness and in order to justify our different assumptions, we provide a detailed
proof In partlcular note that we formally prove that 0 < infgee inf cr():|r—r(0)>n [Ele” WYX, 9)]
E[e™( D]|: See Lemma 5 (p. 24). Let n €]0, ex] be a fixed constant. By Assumption 1(a)(b),

9Note that, unlike what has been sometimes suggested in the entropy literature, if T(#) is an unspecified
compact set, {(0,7) : 0 € @ AT € T(0)} does not need to be a compact set: {(6,7):0 € ©@ AT € T(0)}
is not a Cartesian product, but the graph of a correspondence. See Lemma 4 (p. 23) for more details.
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(0,w) — = Zle o™ %9 is continuous w.r.t § and £/B(R)-measurable w.r.t to w, so that it is
B(®)®E/B(R)-measurable (e.g., Aliprantis and Border 2006/1999, Lemma 4.51). Moreover, un-
der Assumptions 1 (a)-(b)(d)(e)(g) and (L), by Lemma 4ii (p. 23), 6 — T(6) is a nonempty com-
pact valued measurable correspondence. Then, by a generalization of the Schmetterer-Jennrich
lemma (e.g., Aliprantis and Border 2006/1999, Theorem 18.19), we can define a B(®)®E/B(R)-
measurable function 7p(0) s.t., for all 0 € ©, 7p(f) € argmin ¢y + 23:1 e™ () For the
present proof, put € := infyc@ meeT(@) ir—r(0)|>n |E[e” WXL R [em (@) (X010 which is strictly
positive'® by Lemma 5 (p. 24) under Assumptions 1 (a)(b)(d)(e) and (h).!! Then, by the defini-
tion of £, whenever supycg |[E[e™ () V(X100 _E[e7O V(X010 < 2 then supyeg [7r(0) —7(0)] < 7.
We now show that it is happening P-a.s. as T'— co. Under Assumptions 1 (a)(b)(d)(e)(g) and
(h), by Lemma 10 (p. 31), 7(#) = arg min,cgm E[e™ Y(X19)], 50 that

sup E[E%T(G)’w(Xlﬂ)] _ E[er(e)’w(xl,e)]‘

e®
— sup {E[e%T(H)’w(xl,e)] _ E[eT(G)’w(Xl,e)]}
0c®
(a) 1 T 1 T
\2) 7 P(X 0 7r(0)"11(6 Fr(0) 1 (6) 7(6) v (6)
= sup < Ele (0 L ot + 1 .

T
]. ! /
il T(0)' 1 (0) _ 7(0) 9 (X1,0)
+T E_ e t Ele 1 ]}

¢ sup {E[emm v(X1,0)] _ Zeme) o) L L Z r(0)%0(0) _ [T (0) w<xl7e>]}

0c®
Q sup [Rerr@ w000 lieweywt(e + sup ZeT(Q) Vi) _ 0/ 9(X1.0))
0c® T~ 0<®
@ o(1) P-a.s. as T' — oc. (18)
(a) Add and subtract = Z?:l e™r(0)'%i(0) and L Z 0)09)  (b) Note that, under Assump-

tion 1(d) and (e), by definition, 7(6) € T(f) and TT(G) € argmin, cr(g) 7 ST e 5o that
x Zle T (0)u(0) _ T 23:1 e7@'0) 0. (¢) Triangle inequality w.r.t. the uniform norm. (d)
Under Assumption 1(d)(e), by definition, for all # € ©, 7(8) € T(0) and 7r() € T () so that
the conclusion follows from statement (i).

Inequality (18) implies that supgcg |77(0 ) 7(0)| = o(1) P-a.s. as T — oo. Moreover, by
Assumption 1(e), for all @ € ©, T(0) = Bep(7(f)) where ep > 0. Thus, P-a.s., for T big
enough, for all § € ©, 7r(0) € int[T(¢ )] Now, for all § € ©, 7 — —Z ”/’f is a

- . . 2[ ET eT wt(e)]
convex function (Lemma 291 on p. 86 with P = T thl dx, ensures that —I-=—

+ ST e V@4, (0)4h(6)" > 0), and the local minimum of a convex function is a global minimum
(e.g., Hiriart-Urruty and Lemaréchal 1993/1996, p. 253). Therefore, P-a.s. for T big enough, for

10The argument requires € > 0. If £ = 0, then the upcoming inequality (18) is not sufficient to show that
Supgee |E[e™ (O ¥(X1.0)] _ e ¥ (X1.0))| < ¢,

UStrict convexity of 7 — E[e” ¥X1:9)] and compactness of © are not sufficient to ensure that & > 0:
We also need the continuity of the value function of the first infimum, which we obtain through Berge’s
maximum theorem. See Lemma 5 (p. 24).
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all 0 € ©, 7r(0) minimizes %Zthl ™% not only over T(6), but also over R™, which means
that we can put 7p(0) = 7(0).

(i) Addition and subtraction of E[e™(O)¥(X1.0)] "and the triangle inequality yield P-a.s. for
T big enough

T
]. i /N
. - 77 (0)'e(0) _ 1r1.7(0)¥(X1,0)
;ug 7 E e’ t E[e™?) ¥ 21.90]
€ t=1

+ sup |E[e @)'V(X1.0)] _ ge7@) ¥ (X1,0))
0c®

T
]. i 1,
< il 77 (0) % (0) _ mr(0) ¢¥(X1,0)
< sup | d e Efe ]
€ =1

=o0(1) ,as T — oo,

where the explanations for the last equality are as follows. By the statement (i) of the present
lemma, P-a.s. as T — 00, sup(g ;)es ‘% Zle e ¥i(0) E[ele(Xl’a)]‘ = o(1). Moreover, by the
statement (ii) of the present lemma, P-a.s. for T big enough, 77(f) € int[T(6)], so that, for
all 0 € ©, (0,7r(0)) € S. Thus, the first supremum is o(1) as T — oc. Regarding the
second supremum, under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22), (6,7) —
E[e™¥(X1:0)] is continuous in S. Now, under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma
4ifi (p. 23), S is compact, so that (8,7) > E[e”?(X1.9)] is also uniformly continuous in S
—continuous functions on compact sets are uniformly continuous (e.g., Rudin 1953, Theorem
4.19). Thus, under Assumption 1(a)(b), (d)-(e), (g) and (h), by the statement (iii) of the present
lemma, which states that supgcg |77(8) — 7(0)| = o(1) P-a.s. as T'— oo, the second supremum
is also o(1) P-a.s. as T' — oc.

The second part of the result follows from the first part as in the proof of the statement (i)
of the present lemma. O

Lemma 3. Let P be any probability measure, and Ep denote the expectation under P. Under
Assumption 1 (a)(b)(d)(e)(g) and (h), if Ep[supg r)es 7 V(X10)] < o0, then

0 <inf(gryes Epl[e”vX00], so that 0 < infeee Eple” @ YX10] Moreover, (0, 7) — Ep[e™ ¥(X1.0)]
and 6 — Ep [eT(e)/w(Xl’e)] are continuous in S and O, respectively. All of these results hold for
P =P under the aforementioned assumptions.

Proof. Under Assumption 1 (a) and (b), the Lebesgue dominated convergence theorem and
the lemma’s assumption Ep[supg ;)cs ™ V(X100 < oo imply that (8, 7) — Ep[e” Y(X1:9)] is con-
tinuous. Moreover, under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 4 (p. 23), S is
compact, and continuous functions over compact sets reach a minimum (e.g., Rudin 1953, The-
orem 4.16). Now, if there exist (7,6) € S s.t. 0 = Ep[e*/w(xl’é)], then e”¥(X1.0) = 0 P-a.s.
(e.g., Kallenberg 2002 (1997, Lemma 1.24), which is impossible by definition of the exponential
function. Thus, 0 < inf 1yes Ep [e”?(X10)] 50 that 0 < infgee Eple™® ¥(X1:0)] because by the
definition of S in Assumption 1(e), for all 8 € ®, (0,7(f)) € S. Regarding the second part
of the result, it immediately follows from the Lebesgue dominated convergence theorem, the
lemma’s assumption that Ep[supg ;)es eT,w(Xl’e)] < o0, and the continuity of 7 : ® — R by
Lemma 10iii (p. 31) under Assumptions 1 (a)(b)(d)(e)(g) and (h). Regarding the third part
of the result, it is sufficient to note that, under Assumption 1 (a)(b), by the Cauchy-Schwarz
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inequality, E[supg ,)cs e P(X10)] E[supg r)es 2V (XL0N/2 < oo, where the last inequality
follows from Assumption 1(e). O

Lemma 4 (Compactness of S). Under Assumptions 1 (a)(b)(d)(e)(g) and (h),

(i) The closure of the ep-neighborhood of T(@®) (i.e., T(®)°T ) is compact
(ii) For all 6 € ©, the correspondence 6 — T(0) is nonempty compact-valued and uhc (upper
hemi-continuous), and thus measurable;

(iii) The set S:={(0,7):0 € @ A7 € T(0)} is compact.

Proof. (i) Under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 10iii (p. 31), 7 : @ —
R™ is continuous. Moreover, by Assumption 1(d), ® is compact. Thus, 7(®) is bounded —
continuous mappings preserve compactness (e.g., Rudin 1953, Theorem 4.14). Consequently,
7(©)T =: {r € R™ :inf;c (@) |7 — 7| < er} is bounded, which means that its closure (@)t
is closed and bounded, i.e., compact.

(i) Proof that T is nonempty and compact valued. By Assumption 1(d), for all § € ©, there
exists 7(0) s.t. E[e”@'VX004(X,0)] = 0. Thus, for all § € @, T(0) = B.,(7(0)) is nonempty.
Moreover, by construction, m is compact, so that it is nonempty compact valued.

Proof that T is uhc. Because T is compact valued, we can use the sequential characteri-
zation of upper hemicontinuity (e.g., Aliprantis and Border 2006/1999, Theorem 17.20). Let
(O, Tn))nen € (S)N be a sequence s.t., for all n € N, 7, € T(6,) and 0, — 0 € © as n — oc.
By construction, for all n € N, 7, € Bep(7(6,)) C 7(©)¢T. Moreover, by statement (i), 7(©)eT
is compact, so that there exists a subsequence (Ty(n))neN 8.t Ty — T € T(©)°T, as n — oo.
Again, by construction, for all n € N, (0,,7,) € S, so that [7,4,) — T(0am))| < eT. Now,
under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 10iii, 7 : ® — R™ is continuous.
Thus, |Ta(m) — T(0am))| — |7 —7(8)| as n — oo. Thus, |7 — 7(f)| < er, which means that
7 € B, (7(0)) = T(0).

Proof that T is measurable. Let F' be a closed subset of R™. Then, its complement F°¢ is
an open subset of R™. Now, a correspondence is uhc iff the upper inverse image of a open set
is an open set (e.g., Aliprantis and Border 2006/1999, Lemma 17.4). Thus, by the previous
paragraph, T%(F¢) € B(®), where T" denotes the upper inverse of T. Now, denoting the lower
inverse of T with T, notice that T*(F¢) = [TYF)]¢ (e.g., Aliprantis and Border 2006,/1999,
p. 557), so that [TY(F)]¢ € B(®), which, in turn implies that T'(F) € B(®) because of the
stability of o-algebras under complementation.

(#ii) Note that the compactness of @ and T(f) are not sufficient to ensure the compactness
of S because S is not a Cartesian product. By the statement (ii) of the present lemma, T is
uhc and closed valued, so that it has a closed graph (e.g., Aliprantis and Border 2006/1999,
Theorem 17.10), i.e., S is closed. Now, by construction, S is a subset [7(®)°T x @], which is
compact by statement (i) and Assumption 1(d). Thus, S is also compact —in metric spaces,

closed subsets of compact sets are compact (e.g., Rudin 1953, Theorem 2.35). O

Lemma 5. Under Assumptions 1 (a)(b)(d)(e) and (h),

(i) for any constant n €]0, er], there exists a continuous value function v : @ — Ry s.t.,
for all 6 € ©, v(8) = infrer(o)|r—r(o)|5y [Ble” V0] — E[e7@ V0],
(ii) for any constant n €]0, e, 0 < infge@ Inf cr(6):|r—r(6)|2n |E[e™ ¥ (X1.0)] — E[e7(O)¥(X1,0)]
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Proof. (i) It is a consequence of Berge’s maximum theorem (e.g., Aliprantis and Border 2006/1999,
Theorem 17.31). Thus, it remains to check its assumptions. For the present proof, define the
correspondence ¢ : @ — R s.it. () = {r € T(0) : |7 — 7(0)] > n}, and the function
f:S =Ry st f(0,7) = |E[e” ¥(X10)] — E[em(@)¥(X1.0)],

Proof of the continuity of f. Under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p.
22), (0,7) — E[e”*(X10] and 0 — E[e7@¥(X10] are continuous in S and @, respectively, so
that the continuity of f follows immediately.

Proof that ¢ is nonempty compact valued. By the definition of T in Assumption 1(e), for
all # € ©, T(9) = Be.(7(0)), so that, for any 7 €]0,er], ©(8) = B (7(8)) N{r € R™ : 5 <
IT = 7(0)|} # 0, i.e., @ is nonempty valued. Moreover, for all # € ©, B..(7(0)) is a compact
set and {7 € R™ : n < |7 — 7(0)|} is a closed set, so that ¢(6), which is their intersection, is
compact (e.g., Rudin 1953, Theorem 2.35 and the following Corollary).

Proof of the upper hemicontinuity of . Because ¢ is compact valued, we can use the sequen-
tial characterization of upper hemicontinuity (e.g., Aliprantis and Border 2006/1999, Theorem
17.20). Let ((6n,7n))nen € SN be a sequence s.t., for all n € N, 7, € p(6,) and 0,, — 0 € © as
n — oo. Now, under Assumptions 1 (a)(b)(d)(e)(g) and (h), Lemma 4iii (p. 23), S is a compact
set, so that there exists a subsequence ((0n(n), Ta(n)))JneN 8-t (Oa(n)s Tam)) — — (0,7) € 8, as
n — oo. The definition of S implies that 7 € T(f). Thus, it remains to show that n < |7 —7(0)]
in order to conclude that 7 € ¢(#). By construction, for all n € N, 1 < ITa(n) — T(Oam))]-
Moreover, under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 10iii (p. 31), 7: ® — R™
is continuous, so that |74,) — 7(Oam))| — |7 —7(0 0)| as n — oo, which means that n < |7 —7(0)].

Proof of the lower hemicontinuity of @. Use the sequential characterization of the lower
hemicontinuity (e.g., Aliprantis and Border 2006/1999, Theorem 17.21). Let (0,)nen € ON
be a sequence s.t. 6, — 6 € © and 7 € (). Define the sequence (7,)neN s.t., for all
n € N, 7, = 7(0,) +7 — 7(0). By definition of the correspondence ¢, for all n € N, |7, —
7(0,)] = |7 — 7(0)| € [n, er], which implies that 7, € (). Moreover, under Assumptions 1
(a)(b)(d)(e)(g) and (h), by Lemma 10iii (p. 31), 7 : @ — R™ is continuous, so that lim,_,c 7, =
limy, oo 7(0p) + 7 —7(0) = 7(0) + 7 — 7(0) = 7.

(i) Under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 10 (p. 31), for all 8 € ©, ()
is the unique minimum of the strictly convex minimization problem inf cgm E[eT"/’(X 1’9)]. Thus,
for all 8 € ®, v(f) > 0. Moreover, by Assumption 1(d), © is compact, and by statement (i) of
the present lemma, v(.) is continuous. Thus, there exists €, > 0 s.t. mingeg v(#) > &, because
a continuous function over a compact set reaches a minimum (e.g., Rudin 1953, Theorem
4.16). 0

Lemma 6 (Asymptotic limit of the variance term). Under Assumption 1(a)-(b) and (d)-(h),

(i) P-a.s. for T big enough, 0 < infgce H [Zt 1 Atgawé(eg),} ‘d t‘;
€
(ii) P-a.s. as T — oo, supgce ‘ZT — E[e7(® Xlﬁ)]E(H)‘ =o(1)
(iit) 6 — 2(0) and 6 — E[e™@'V0NN(0) are continuous in ©
(iv) P-a.s. for T' big enough, infoc@ |X7(0)|det > 0;
) = o(1), so that, for

(v) P-a.s. as T — oo, supgeg‘ln]Z]T( )|det—ln’E[e v(Xn0]5 (9 )d
et

alln >0, P-a.s. as T — 00, suppc@ |57 In |7 (6)]det| = o(1).
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Proof. (i) Under Assumption 1(a)-(b) and (d)-(h), by Lemma 7 (p. 26), P-ass. as T' — oo,
SUPgco ‘ [% ZtT:1 wt,eawt(e)l] — 1 E [e T(0) (X, Q)M” = o(1), so that it is suffi-

00 [E[eT(G)/u’)(Xl 0]
oY(Xq,0
mﬂﬂ [e T(0 )w(lee)%} for all # € © and the

continuity of 6 — WE {er(a)’w(xl,e)%;m’} (Lemma 30 on p. 87). Firstly, by As-

/ { -1 /
sumption 1(h), for all 6 € ©, B(4) := [EeT(e) Wﬁﬂ)%} E [eT(e) w<X179>¢(X1,9)¢(X1,9)']

’ a2 . . . ’ /
[EeT(g) V(X1.0) W] is a positive-definite symmetric matrix, and thus [EeT(e) V(X ’G)W

is invertible. Moreover, under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22), and
Assumption 1(e), forall§ € ©,0 < E[eT(e)/w(Xlﬂ)] < 00, 80 that ml&‘ e (9)’1/)(X176)%01,9)’:|
is invertible for all § € ®. Secondly, under Assumption 1(a)-(b), (e)-(f), by Lemma 8i (p. 28),
/ o(X1,0)
E [sup( )es le” (X, )—w(aé ) ]}
and Assumption 1(b) imply the continuity of (6,7) — E [eT/w(Xl’a)%el’e)’] in S. More-
over, by definition in Assumption 1(e), for all § € O, (7(6).0) € S, and under Assump-
tion 1 (a)(b)(d)(e)(g) and (h), by Lemma 10iii (p. 31), 7 : ® — R™ is continuous. Thus,
, /
0 — []EeT(G) d’(Xl’e)w ] is continuous. Then, the continuity of

7(0)'p(X1,0) 9%(X1,0)"
E [em(0) (X )a—é]

cient to check the invertibility of

< 00, so that the Lebesgue dominated convergence theorem

0 — follows from Lemma 3 (p. 22) under Assumption 1

(a)(b)(d)(e)(g) and (h). .
(73) On one hand, by definition, ¥(0):= []EeT(e)/w(lee) W] E [eT(e)lw(Xlﬂ)w(Xl, 0)(Xy, 6‘)’}

’ -1
[EeT(e) »(X1,0) M] , which is symmetric positive definite by Assumption 1 (h), and £7(0) :=

[ZtT 1 Wy 98%%(, )] [Zt | Wy g (0)10:(0) } [Zt | Wy, gaw* o) } , which is well defined P-a.s. for
T big enough by the statement (i) of the present lemma. On the other hand, under Assumption

1(a)-(b) and (d)-(h), by Lemma 7iii (p. 26), P-a.s. as T"— 00, supgcg | [’T thl Atgawé(:) }
H0)y O (X1,0)' .

mﬁl [e ©) “’(Xlﬂ)%} | = o(1), and, under Assumptions l(a)-(b), (d)-(e) and

(g)-(h), by Lemma 8 (p. 28), P-as. as T" — 00, supycg | [ S e @%@y, (g )11},3(9)’] -

mﬁl [ TO VX0 (X1, 0)h (X, 9)’] | = o(1). Thus, the claim follows from the conti-

nuity of the inverse transformation (e.g., Rudin 1953, Theorem 9.8) and the limiting functions,

and the compactness of ©.
(#11) Under Assumption 1(a)-(b), (e)-(g), by Lemma 7i (p. 26) and 8 (p. 28),
. [sup(g,ryes [e7 VX020 | < 00 and B [sup(g e e VD 0(X5, )X, 0)|| < 00, s0
that, by the Lebesgue dominated convergence theorem and Assumption 1(b),
0, 7)—E [eT'w(Xl’e)%gwx} and (0,7) — E [ele(Xl’e)dJ(Xl, 0) (X1, 9)’} are continuous in S.
Moreover, by definition in Assumption 1(e), for all # € ®, (6,7(6)) € S, and under Assumption
1 (a)(b)(d)(e)(g) and (h), by Lemma 10iii (p. 31), 7: ® — R™ is continuous. Thus 6 — X(6)
is continuous, which is the first result. Under Assumption 1 (a)(b)(d)(e)(g) and (h), the second
result follows from Lemma 3 (p. 22), which states that 6 — E[e™(@?(X1.0)] is also continuous.
(iv) By construction, ¥7(f) is a symmetric positive semi-definite matrix (Lemma 29i on p.
86 with P = %Zthl 0x, ), so that |37(8)|qet = 0. Thus, by the statement (ii) and (iii) of present
lemma, it is sufficient to check the invertibility of E[e™(?)"?(X1.0]5(g) for all § € © (Lemma 30
on p. 87). By Assumption 1 (h), for all 6 € ©,
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£(6) 1= [Ber (@) (X10) 2400 E @ 0y(Xy, 8)( Xy, 0)'| [Eer@vxen 2508 -

is a positive-definite symmetric matrix, and thus a fortiori invertible. Moreover, under As-
sumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22), and Assumption 1(e), for all § € ©,
0 < E[e™@¥(X1.0)] < 0o, so that it is also invertible.

(v) Under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22) with P = Zle Ox,
and by the statement (iv) of the present lemma, P-a.s. for T" big enough, In |27 (0)|ge is well-
defined in ©. Similarly, under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22) and
Assumption 1 (h), In E[eT(e)/w(Xl’e)]E(H)‘det is well-defined in ®. Then, the first part of the
result follows from the statement (ii) of the present lemma. Regarding the second part, by the
triangle inequality, P-a.s. as T" — oo,

1
7 sup In [27(0)

T
1 !/ ]_ I
< — _ (0)')(X1,0) ‘ = T(0)'(X1,0)
757 50 10 [22(0)aa] ~ In [[Ele 20| ||+ sup|In (|l =) |
= o(1)

where the explanations of the last equality are as follows. Under Assumption 1(a)-(b) and
(d)-(h), by the statement (iii) of the present lemma 8 +— E[e™@Y(X1.0]%(9) is continuous in
©, which is a compact set by Assumption 1(d). Now, continuous functions over compact sets
are bounded (e.g., Rudin 1953, Theorem 4.16), so that supgcg ’ln HE[eT(e)'w(Xlﬂ)]E(H)‘dej‘

is bounded, which, in turn, implies that = supyce ‘ln HIE[eT(G 1’9)]2(6)’(1 ]
et

= o(1), as

T — oo. Now the last equality follows from the statement (iv) of the present lemma. O

Lemma 7. Under Assumptions 1(a)-(b) and (e)-(f),

. ; 9(X1,6)'
(i) E [Sup(e res eV )%@ < 00;

(ii) under additional Assumption 1(d)(g) and (h), P-a.s. as T — oo,

sup(g ‘ [ Zt e vl th(a) } E [eT'w(lee)—aw(gg’e)/H =o(1), so that
T o ! 7(60) o ,0)'
SUPpee ‘ [T T o) wtw)wé_é@)] - [e (0) wmm%} ‘ = o(1); and

(iii) under additional Assumption 1(d)(g) and (h), P-a.s. asT — oo,
T ~, 8 0 ! T ’ a X ’0 /
SUPgeo ‘ [thlww velf) } - IE[eT(W}V e [e ©) wmm%” = o(1)

Proof. (i) The supremum of the absolute value of the product is smaller than the product of
the suprema of the absolute values. Thus,

E | sup |eT’¢(X179)M|

| (6,7)€S 00

[ /
< E| sup ") sup (X, 0)

| (0,7)€8 (0,r)eS a0

i 1/2 ,11/2
(@ , /
S E| sup [en V02 R sup‘w

[(67)€S 0cO 00

< o0 (19)
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(a) Firstly, note that the expression in the second supremum does not depend on 7, so that

SUp(p.)es ‘aw 1.0) ’ = SUPgco ’M’ Secondly apply the Cauchy-Schwarz inequality. Fi-
nally, note that [sup s [ V12 = sup(y ;e |e7@ VO and fsupyee | 25312 =
SUPgco ‘W because x +— 2 is increasing on Ry. (b) Note that [e7(®)¢(X1.0)2 —

e27(0)¥(X1.0) and then apply Assumption 1(e) to the first term. Then, application of Assumption
1(f) to the second term yields the result.
(ii) By the triangle inequality, as T — oo P-a.s.,

T
1 o () D (8 / D (X, )
LN @ w@ 000 | e [ rorwix.e 99(X1. )
|72 a0 | E° 56
=1
T
1 o (0) / o(Xy,0)
Ly 0@ 2OV | [ornioyvin 0 20107
S e tzle 20 e 20
4 sup [E [err @000 L0 g [ coruee.n 2050, 0)
0c® 00 00
= o(1)

where the explanations for the last equality are as follows. Regarding the first supremum, under
Assumptions 1 (a)-(b)(d)(e)(g) and (h), by Lemma 4iii (p. 23), S:={(0,7) : 0 € © AT € T(0)}
is a compact set, so that Assumptions 1(a)-(b), the statement (i) of the present lemma and
the ULLN (uniform law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp.
24-25, Theorem 1.3.3) imply that, P-a.s. as T' — oo,

T
1 T'14(0) 8¢t( ) _ T'P(X1,0) 6¢(X179)/
[TZ a0 Ele -

sup 90
t=1

(6,7)€S
Now, by Assumption 1(e), for all § € ©, 7(f) € T(f), and under Assumption 1(a)(b), (d)-
(e), (g) and (h), by Lemma 2ii (p. 20), P-a.s. for T big enough, for all § € ©, 7p(0) €
T (). Moreover, under Assumption 1(a)(b), (d)-(e), (g) and (h), by Lemma 2iii (p. 20),
supgeg |7r(8) — 7(0)] = o(1) P-a.s. as T' — oo. Thus, the first supremum is o(1), i.e.,
SUpgee | T S eTT(e)th(e)awé—ge)/ - EeTT(e),w(X179)M| = 0(1), as T — oo P-a.s. Regarding

the second supremum, by Assumption 1(b), (6,7) — €7 MXLH)M

=o(1).

is continuous. More-
over under Assumptions 1(a)-(b), and (e)-(f), by the statement (1) of the present lemma,

E [sup 0,r)eS |e”z’ X160 )%61’9)/@ < o0. Thus, by the Lebesgue dominated convergence theo-

rem and Assumption 1(b), (6,7) — E {ele(Xl’e)%é’e)l} is also continuous in S. Now, under
Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 4iii (p. 23), S is compact, so that (8,7) —
E [ (X Q)M is uniformly continuous in S —continuous functions on compact sets are
uniformly contlnuous (e.g., Rudin 1953, Theorem 4.19). Thus, under Assumption 1(a)(b), (d)-
(e), (g) and (h), by Lemma 2iii (p. 20), which states that supycg |77(0) — 7(0)| = o(1) P-a.s. as
T — o0, the second supremum is also o(1) P-a.s. as T" — oc.
(#ii) Under Assumptions 1 (a)(b)(d)(e)(g) and (h), Lemma 3 (p. 22) yields

0 < infp yes & S rye” Y@ with P = LS 6y, and 0 < inf(y,)es E[e” ¥X19] with P = P.
Consequently, under Assumptlon 1(a)(b), (d)-(f), (g) and (h), by Lemma 2iii and iv (p. 20) and
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the statement (ii) of the present lemma, as 1" — oo, P-a.s., uniformly w.r.t. 6

T
wa@wt = 1 2 Z 0 (0) e (0) O (0)
T Zz 1 eTT )i (0 89
1 ! N (X1,0)’
- 7(0) ¢ (X1,0) ’
= B @] [e = |

Lemma 8. Under Assumptions 1(a)-(b), (e¢) and (g),

(i) E [sup((, F)ese |e »(X1,0 )w(Xl,Q)zb(Xl,H)'ﬂ < 00
(ii) wnder additional Assumption 1(d) and (h), P-a.s. as T — oo,
sup(g ‘ S e Oy ()4 (0) — Eem Y0y (Xy, 0)yh (X1, 0)
SUPge@ ‘T >y €T OOy () () — Bem OV (X, )y (X1, 0)
(iii) under additional Assumption 1(d)(f) and (h), P-a.s. as T — oo,
SUDPgce ‘Z?zl wt’gwt(Q)wt(H)’ - mEGT(Q),w(Xl’Q)w(XL H)T/J(Xh 9),

(1), so that
= o(1)

(1).

Proof. The proof is the same as for Lemma 7 with ¢(X71,0)¢(X1,0) and ¢(0)1(0) in lieu of
aw(gg’e)’ and awg(ee)/, respectively. For completeness, we provide a proof.
(i) The supremum of the absolute value of the product is smaller than the product of the

suprema of the absolute values. Thus,

E| sup |70y (X, 0)p(Xy,0)|
_(0,7’)686

< E| sup |70 sup \1/)(X1,9)7#’(X1,9)’\]

_(0,7)686 (0,7)€Se
@ [ / V2 2 12
< E| sup |e7 V(X102 E [SUP |1/1 (X1, )¢(X179)/’ ]
| (0,7)eSe S
(b)
< 0Q.

(a) Firstly, for any (6, 7) € S¢, § € OF because, for all (7,0) € S, |§ — 0] = \/Z (0, — 03,)2 <

\/Zk L0k — 0,)2 + 07 (1 — )2 = |(0,7) — (7,0)| < e. Thus, as the second supremum does
not depend on 7, supg )ese [¢(X1, 0)p(X1,0)| < SUPee@f |(X1,0)¥(X1,0)|. Secondly apply
the Cauchy-Schwarz 1nequahty Finally, [sup g s le7( X“e)” = SUP(g r)ese |7 () ¥(X1,0) 2
and [supgee« [¥(X1, 0)Y(X1,0)|]? = suppee- [ (X1, )¢(X1,9)'| because x — 22 is increasing
on R;. (b) Note that |(3T(‘9)/¢(X1"9)|2 = 27 O)"V(X1.0) " and then apply Assumption 1(e) to the
first term. Then, application of Assumption 1 (g) to the second term yields the result.
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(ii) By the triangle inequality, P-a.s. as 1" — oo,

T
sup l Z eTT(@)lwt(G)wt(Q)z/;t(Q)/] _E [eT(Q),w(Xl’e)w(Xl; ) (X, 9)/]
veo || 1T
T
< sup %ZeTT”)’wt(@)q/)twm(e)'] B [ OOy, 0)(X5, 6|
0c® P
+sup [E o7 000Xy, 0)(X3,0) | — B [0y, 0)( X, 0)'|
6cO®
= o(1)

where the explanations for the last equality are as follows. Regarding the first supremum, under
Assumptions 1 (a)-(b)(d)(e)(g) and (h), by Lemma 4iii (p. 23), S:={(0,7) : 0 € © AT € T(6)}
is a compact set, so that Assumption 1(a)-(b), the statement (i) of the present lemma and the
ULLN (uniform law of large numbers) a la Wald yields that (e.g., Ghosh and Ramamoorthi
2003, pp. 24-25, Theorem 1.3.3), P-a.s. as T — oo,

1o
[f Z e Oy (0)1y (0)

t=1

sup

(0,7)eS —E [ef/w(Xl,6‘)¢(X17 0 (X1, 9)/}
,T)E

=o(1).

Now, by Assumption 1(e), for all § € ©, 7(0) € T(#), and under Assumption 1(a)(b), (d)-
(e), (g) and (h), by Lemma 2ii (p. 20), P-a.s. for T big enough, for all § € ©, 7(0)

T(0). Moreover, under Assumption 1(a)(b), (d)-(e), (g) and (h), by Lemma 2iii (p. 20),
supgee |7r(8) — 7(0)] = o(1l) P-a.s. as T — oo. Thus, the first supremum is o(1), ie.,
Suppee [+ ST, €O O, (0 (6) — Bemr @' H105(X, 0)p(Xy,68)| = o(1), as T — oo P-
a.s. Regarding the second supremum, by Assumption 1(b), (8, 7) — ™ ¥(X004 (X, 0) (X, 6)’
is continuous in S. Morcover under Assumptions 1(a)-(b), (e) and (g), by the statement (i) of the
present lemma, E [sup(gﬁ)es |e7,¢(X1’0)¢(X1,9)¢(X1,9)’|} < 00. Thus, by the Lebesgue dom-

inated convergence theorem and Assumption 1(b), (0,7) — E [eT,‘p(Xlﬁ)Q/J(Xl,9)1/1(X1,9)’} is
also continuous. Now, under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 4iii (p. 23), S is
compact, so that (6,7) — E [eT'd’(Xl‘ﬂ)l/J(X 1,0)(X1,60) } is uniformly continuous —continuous
functions on compact sets are uniformly continuous (e.g., Rudin 1953, Theorem 4.19). Thus,
under Assumption 1(a)(b), (d)-(e), (g) and (h), by Lemma 2iii (p. 20), which states that
supgeg |7r(8) — 7(0)] = o(1) P-a.s. as T — oo, the second supremum is also o(1) P-a.s. as
T — oo.

(#7i) Under Assumptions 1 (a)(b)(d)(e)(g) and (h), Lemma 3 (p. 22) yields
0 < infry yesm dpge” @ with P = LS 6y, and 0 < inf(y g E[e” *X19] with P = P.
Consequently, under Assumption 1(a)(b), (d)-(e), (g) and (h), by Lemma 2iii and iv (p. 20) and
the statement (ii) of the present lemma, as 1" — oo, P-a.s., uniformly w.r.t. 6,

T T
1 1 /
wt,el/ft(e)ipt(@)/ = 7 T e (®) wt(ﬂ)%(g)wt(g)/
; % Z?:l emr(0)'%:(0) T ;
1 /
- - 7(0) ¥(X1,0) /
- E[eT(ﬁ)”l/J(XL(?‘)]E [e 1 1/1(X1,9)1/)(X1,9)] '
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Lemma 9. Under Assumptions 1(a)(b)(g),

(i) E [SUpaeee [(X1,0)|*| < oo, so that E [supge@e \¢(X1,9)12] < 0o; and
(ii) under additional Assumption 1(e), E [sup(eﬁ)ess ]eT/w(Xl’e)l/J(X1,9)|] < 00

Proof. (i) Put ¢:(X1,0) =: (¢1(X1,0) ¢2(X1,6) -+ ¢(X1,0))'. Note that supgees (X1, 0)|* =
[suppeoc |V (X1, 9)|2]2 because x — 22 is an increasing function. Thus, by the Cauchy-Schwarz

. 572
inequality, E [supyeer [¢/(X1,0)°] < \/E { [supge [(X1,0)]°] } = wﬁz {supgeer [H(X1,0)I'},

so that it remains to show the first part of the statement. On one hand, by the definition of the

2
4 = su
\/E{fe“él L0 = E{ K;W“W) ”

<, mE{ sup [Z 'zj)k(Xl,H)‘l] } (20)
k=1

0e®¢

Euclidean norm,

where the explanation for the last inequality is as follows. By the Jensen’s inequality,
(L3, ak)2 < L3 a}, so that (307, ap)’> <m S i, az. Apply the later inequality with
De(X1,0)* = ay.

On the other hand,

E | sup ‘Q/J(Xla‘))l/)(lee)/‘Q]

loc@-
[ Vi(X1,02 (X0, 0)a(X1,0) < 1 (X1, 0) (X, 0)) |
Po(X1,0)11(X1,0) Vo (X1, 0)? o X1, 0)Ym (X1, 0)
=E | sup ) ) _ )
0e®c N . c. .
Um (X1, 0)1(X1,0) (X1, 0)12(X1,0) --- Ym(X1,0)?

=EQsup | Y (X1, 0)w(X0, 0)

€0 | (ij)eLm]?

=E { sup Zwk(X1,9)4 + Z [¢i(X179)¢J(X179)]2] }
_k:l

feo° (i) [1,m]2:i]

Theref()re, Zgzl wk‘(le 9)4 < ZZ;l wk’(le 0)4 + E(i,j)e[[Lm]]z;z';éj [wl(le H)dJ](le 0)]27
the later equality and inequality (20) yield

JSON JSON

E [sup |¢(X1,9)|2] < \/mE [Sup |¢(X1»9)¢(X17‘9)’|2]
< o0

where the last inequality follows from Assumption 1(g).
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(i) The supremum of the absolute value of the product is smaller than the product of the

suprema of the absolute values. Thus,

E| sup |e7 X 0y(x;,0)|
_(G,T)Esf

< E| sup |eT’¢(X1’6)| sup |¢(X1,0)]
| (0.7)€Se (0,7)eSe

1/2

1/2
T’w(X1,9)|2 E [sup |¢(X1,9)|2]
cO¢

< E| sup |[e
_(0,7’)€S€

b
(<) 00 (21)

(a) Firstly, for any (6, 7) € S, 6 € O because, for all (7,6) € S, |§ — 0] = \/Z?:l(ek — )2 <

\/Zzl:l(@k — 012+ 7 (1 — 7)2 = |(8,7) — (7, 0)| < e. Thus, as the expression in the second
supremum does not depend on 7, supg -yese [¥(X1, 0)¥(X1,0)'| < supgege [¢(X1,0)¢(X1,0)'].
Secondly apply the Cauchy-Schwarz inequality. Finally, note that [sup(eﬁ)esE \(eT((7‘)/“*Z’(X1’(’)|]2 =
b (g.ryese 7@V 2 and [supgee: [1(X1,0)[2 = supgeor [1:(X1, )] because x — o
creasing on Ry. (b) Note that |eT(‘9)'7/’(X1’6')|2 = e27(0)"V(X1.0)  and then apply Assumption 1(e)
to the first term. Then, application of the statement (i) of the present lemma to the second

is in-

term yields the result. U

Remark 1. The first step of the proof shows that even the fourth moment is uniformly bounded.

<&

Lemma 10 (Implicit function 7(.)). Under Assumption 1 (a)(b)(e)(g) and (h),

, SR [ $(X1,0)
(i) for all 8 € ©, 7 — E [eT w(Xl’e)] is a strictly convexr function s.t. # =

E [eT/w(Xl,e)Q/}(Xl, 9)] :

(ii) under additional Assumption 1(d), for all 8 € ©, there exists a unique 7(0) such that
E [eTWVw(Xlﬂ)zp(Xl, e)} —0; and

(iii) under additional Assumption 1(d), T7: ©® — R™ is continuous; and

(iv) under additional Assumption 1(c) and (d), for all § € © \ {6y}, E [eT(e),w(Xl’e)] <
E [eT(é’o)’tﬂ(Xlﬂo)} =1 where 7(0p) = Opmx1-

Proof. (i) Under Assumption 1(a) and (b), by the Cauchy-Schwarz inequality,

E |:Sup(977_)ese eT’d’(Xlﬁ)} < E |:Sup(977_)ese eQT/w(Xl’G)] 1/2, which is finite by Assumption 1(e).
Now, by Assumption 1(e), for all § € O, 7(0) € int[T(A)]. Then, by a standard result on
Laplace’s transform (e.g., Monfort (1980, Theorems 3 on p. 183), 7 — E {ele(Xl’é)} is C* in a

. O |7 ¥ (X1,6) , . 92F [o7 v (X1,6)
neighborhood of 7(6), and 7 +— JeTl =E [eT w(X1,0)¢(X1’9)} and 7 — —%1 =

E |:eT/¢(X1‘é)Q/J(X1, 0)i (X1, 9)’] Moreover, under Assumptions 1(a)-(b), (e) and (g), Assumption
1(h) implies that,
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E [eT/w(leé)w(X 1,9)1/1(X1,9)’] is a symmetric positive-definite matrix because a well-defined
covariance matrix is invertible iff it is invertible under an equivalent probability measure (Lemma
29 and Corollary 1i on p. 86).

(i) Assumption 1(d) ensures existence, while the statement (i) of the present lemma ensures
that 7(0) is the solution of a strictly convex problem, so that it is unique.

(iii) Note that, under our assumptions, an application of the standard implicit function (e.g.,
Rudin 1953, Theorem 9.28) is not directly possible as it requires (6, 7) — E [eT/w(Xlﬂ)@ZJ(Xl, 9)}
to be continuously differentiable in S€¢, which, in turn, typically requires to uniformly bound
the derivative of the latter in S¢ (e.g., Davidson 1994, Theorem 9.31). Thus, we apply the
sufficiency part of Kumagai’s implicit function theorem (Kumagai 1980). Check its assump-
tions. Firstly, under Assumptions 1(a)(b)(e) and (g), by Lemma 9ii (p. 30) and the Lebesgue
dominated convergence theorem, (6,7) — E eflw(Xl’e)w(Xl,H)} is continuous in S¢, i.e., in
an open neighborhood of every (6,7) € S. Secondly, by the inverse function theorem ap-
plied to 7 — E [eT,w(Xl’e)dJ(Xl,H)] (e.g., Rudin 1953, Theorem 9.24), for all § € ©¢, 7 —

E [eTll/’(X L0y ( X, 9)} is locally one-to-one :'2 As explained in the proof of (i), under Assumption

1(a)(b)(e) and (h), 7 +— E [eT/¢(X1'9)¢(X 1, 6)] is continuously differentiable and, under Assump-

IE|e™ X100y (X1,0 ,
tion 1(a)(b)(e)(g) and (h), for all § € ©, [ 817-' G )] =F [eT VXL (X, 9)1/,()(1,9)’] is

invertible, so that the assumptions of the inverse function theorem are valid.

(iv) By the statements (i) and (ii) of the present lemma, for all § € ©, for all 7 # 7(0),
E[e™@4(X10)] < e v(X1:0)]. Now, for all # € © \ {60}, 7(8) # Opx1: If there existed § € @ \
{60} s.t. 7(8) = Opx1, then 0 = ]E[eT(é)llp(Xl’é)z,b(Xl,é)] = E[)(X1,6)], which would contradict
Assumption 1(c). Thus, for all # € @ \ {f}, E[e™@'v(X1.0)] < E[eOxm¥(X1.0)] = 1. Then,
the result follows by the statement (ii) of the present lemma because 0,,x1 = E[¢)(X1,00)] =
E[e0xm(X1:0)4,( X 6)]. O

B.2. Decomposition and derivatives of the log-ESP L (.,.). In this section, we simplify
L1 (6,7) and study its derivatives. Such results are needed for the proof of Theorem 1ii and
other results afterwards.

Lemma 11. Under Assumption 1(a)-(e) and (g)(h), by Lemma 10 (p. 31), define T7(6g) = 79 =
Omx1. Under Assumption 1(a)-(b), (¢) and (h),

(i) under additional Assumption 1(d) and (g), there exist (M,, Mo) € Ry \ {0} s.t. P-a.s.
for T' big enough, M, < inf(y )cs % Ethl ™0 gnd SUDP(9,r)c8 % Zthl e™ V0 < M,;
il) under additional Assumption 1 (c)(d) and (g), there exists an open ball B,(0g, ) cen-
(if) p g /Z
tered at (6o, 70) of radius r > 0, which is a subset of S;
(ili) wnder additional Assumption 1(c)(d)(f) and (g), for all (0,7) in a closed ball By, (0o, 10) C
S centered at (0o, T0) with mdi@s ryg >0, |IEleT,¢(X1"9)Wﬁet > 0, so that, P-a.s. for
T big enough, |7 S elet(e)ag;ﬁlget > 0;
iv) under additional Assumption 1 P-a.s. for T big enough
(iv) p 9), g enough,
2Here it is necessary to work in an e-neighborhood of @ in order to satisfy the assumption of Kumagai’s

implicit function theorem (Kumagai 1980). The standard implicit function theorem would also require
the existence of open neighborhoods around the parameter values at which the function is zero.
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inf (g ryes| w7 YDy (0)1(0) |aet > 0.

Proof. (i) Under Assumption 1(a)(b)(d)(e)(g) and (h), by Lemma 2i (p. 20), which states that,
P-a.s. as T — oo, sup(g ;)es ‘T Zt Le7 V0 _E[emv(X1.0 ]‘ = 0(1), and Lemma 3 (p. 22) with

P = IP, which states that 0 < inf (g ;)cg Ele” DX10] | the result follows.

(i1) First of all, note that the result is not completely immediate, as S := {(0,7) : 0 € O AT €
Bep(1(60))} is not a Cartesian product. Under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma
10iii (p. 31), 7 : ® — R™ is continuous. Thus, by the topological definition of continuity,
Tfl[BeT/g(To)] is an open set of ®. Moreover, by the definition of g, 6y € Tfl[BET/Q(TO)], and,
by Assumption 1(c), fp € int(®),'® so that there exists 79 > 0 s.t. By, (6p) C 7 Bey /2(70)]
and By, (0g) C ©. Now, for this proof, put r = min{rg,er/2}. Then, it remains to show that
B, (60, 70) C S, i.e., for all (8,7) € B,(6, m0), |7 — 7(8)| < er. By the triangle inequality, for any

(977-) c Br(90770)7

|7 —7(0)] < |7 — 70| + |70 — 7(0)]
€T
2

<
T
<_+?:€T

where the explanations for the last inequality are as follows. Firstly, |7—7o| < /> peq (7 — Tox)?
\/Z? LB —002)2 + 00 (7 — Tox)? <7 < < F by definition of 7. Secondly, and similarly,|d —

o] < \/Ek n Hk—GOk \/Zk 1 Gk—l%k) + > (7 —Tok)? < 1 < 1o, so that |ro —
( )| < ET because BTO(QO) cT [ eT/Z(TO)]'

(iii) Under Assumption 1 (a)-(b) and (e)-(f), by Lemma 7i (p. 26), Assumption 1(b) and

— E eT'?/J(Xl,H) ng}ﬂ)

the Lebesgue dominated convergence theorem, (6, 7)

S, and thus in a neighborhood of (g, 7p) in S by Assumption 1(c) and (e). Then, (6,7) —
IE |e (X1, )8¢(X1,9)

} 18 continuous in

] 2., is also continuous. Now, by Assumption 1(h),

|E[e7(¢0) (X1, GO)M”M > 0, so that, under Assumption 1(a)-(e) and (g)-(h), by the state-
ment (ii) of the present lemma, there exists a closed ball m C S centered at (6p, 70)
with radius r9 > 0, s.t., for all (6,7) € m 0 < |E [eT $(X1,0) dw(xl’ } |24 which is
the first part of the result. By Lemma 30 (p. 87), the second part of the result follows from
the continuity of (0,7) — E [eT/‘/’(Xl’H)W}, the invertibility of E [eﬂw(xl’e)W] for all
(0,7) € By,(fo,70), and Lemma 7ii (p. 26), which, under Assumption 1(a)-(b) and (e)-(f),
implies that

! oV (0) T/ oP(X1,0)
SUP (9.r)€B,, (60,70) ‘ [% Z;F:le wt(e)—dé((; ) } —E [e w(Xl’e)—“a; ) } | = o(1), P-a.s. as T — oo.

(iv) It follows from Lemma 30 (p. 87), so that it is sufficient to check its assumptions.
Firstly, under Assumptions 1(a)-(b), (e), (g) and (h), by Corollary 1 (p. 86), for all (6,7) € S,
E [ele(Xl’e)w(X 1,0)(X4,0) ] is a positive definite symmetric matrix, and thus it is invertible.
Secondly, under Assumption 1(a)-(b), (e) and (g), by Lemma 8i (p. 28),

E [sup(gT s e VX0 (X 0) (X, |} < o0, so that by the Lebesgue dominated conver-

0)
gence theorem and Assumption 1(b), (0,7) — E [e Y0 ( X, 0)1(X1,6)' | is continuous in
S. Finally, under Assumptions 1(a)-(b), (d), (e), (g) and (h), P-a.s. as T' — oo,

13This assumption forbids 6y to be on the boundary of 77![B... /2(70)], which is an open set of ©, but
not necessarily of R™.

N
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SUP(g,r)es % Zthl eT'W@)wt(@)wt(@)’ - E[GTIMX“@)TP(XL 0)1(X1,0)']| = o(1).

In order to simplify the analysis of the asymptotic properties of the ESP estimator, we de-
compose the LogESP into three terms.

Lemma 12 (LogESP decomposition). Under Assumption 1, P-a.s. for T big enough, define,
for all (0,7) € By, (09, 70), Lr(6,7) = In [ X1, &7 )]

o7 Pt(0) Oy (0 o™ ¥t () o7 V() O (0)’
—%ln{ [Zt 12 :xp(e) z(e)te(')] [Zt 12 :w(e)@z’t() ()][Zt 12 :W(e) wéé)]

which exists by Lemma 11 (p. 32), and where B,,(8,70) is defined as in the aforemen-
tioned lemma. Then, under Assumption 1(a)(b) and (d)-(h), P-a.s. for T big enough, for
all (9, T) S Bra(eo,Tg),

LT(H, T) = ]\/fLT(H, T) + MQ)T(H, T) + Mg’T(e, T) where

/ ! 2
Ml,T(Ha T):=(1—%) IH[% Zlle e’ wt(e)} s M27T(9, 7'):=% ln[’% erzl e’ (6 —8?9(/9) ‘det] s and

M3,T(9, 7')::—% IHH% 2?21 eq—’lllt(ﬁ)d)t(e)wt(e)/ det] '

Proof. First of all, note that, under Assumption 1, by Lemma 11 (p. 32), Lp(.) is well-defined
P-a.s. for T big enough, for all (6,7) € B,, (0o, 70). Thus, under Assumption 1, P-a.s. for T big

—1
2
de
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enough, for all (6,7) € B,, (0o, 0).

Lr(0,7)
Lz
_ - ' (0)
= In [T Ze 1 ]
t=1
T ) - )
1 o™ e (0) o, (0) o't (0)
“or " ' =g V(0w (0) (22)
2r LZ; ZiT:l e vi(0) 00 ; Zz'T:1 o™i (0)
x [zT: 0 8¢t(9),] _
t=1 Yoy eTvi0) 96 w
T T ’ 2
@ |2 1 (0 e VO 9y (6)
L |53 O+ = | [Y
lT = 2 || ST e |
T ’
1 1 eT wt(e)
—grln || 5 D e V() (0)
2T T e ¥;(0) »
CPNERS
N T’w ]
= In [T Ze ( )]
t=1
1| 1 i oo |
+— || ———— iy (0) OYPL0)
S <% iy e ) z:: 89/ det
N - !
1 1 ,
_—11'1 _— ZeT wt(e)d}t(a)d)t(e)/
T v
S ( T 2zt ) ) =1 det
() m 1 & 1 A 8;[1( ) 2
N S 2 ONC) 1 1§ o) %
(1-57) ! T;e Torh TZ: oo |
B - e
1 1<
o — 7' (0 I
5T In 7 tz_:e ¢ )Q/)t(e)z/)t(ﬁ) ) J . (23)
- e

(a) Firstly, use that the determinant of the product is the product of the determinants (e.g. Rudin
1953, Theorem 9.35). Secondly, the determinant of an inverse is the inverse of the determinant
(e.g. Rudin 1953, p. 233). Finally, use basic properties of the logarithm, and note that we keep
the square in the second logarithm in order to ensure the positivity of the argument (then the
strict positivity is ensured by Lemma 11 on p. 32). (b) Use multilinearity of determinant. (c)
Note that 1+ 3% — 5 =1 — 2. O

B.2.1. Derivatives of M1 7(0,7) := (1 — ﬂ et O)| | First derivative WL—M. B
; T 90; Y

Assumption 1(b), 8 — 9(X1,6) is differentlable in (.-) Pras. "Thus, for all (6,1) © &, for all
j € [[1’m]])

T’ 9 (0
%ZtT:le wt(e)T/'létT(j)

ST

oM r(0,7) _ <1 _ ﬂ) (24)

00, 2T



ESP ESTIMATOR 37

Second derivative a]\a/[é—gé) By Assumption 2(a), 6 — (X7, 6) are three times continuously

differentiable in a nelghborhood of Oy P-a.s. Thus, by equation (24) on p. 35, under Assumptions

1(a)-(e), (g)-(h) and 2(a), by Lemma 11ii (p. 32), P-a.s., for all (f,7) in a neighborhood of
(6o, 70), for all (¢,5) € [1,m]?,
My 1 (0,7)
00,00
- o) [ (6 >] [ ,awtw)] "0 [ Puilo >]

1~ 1 , Oy (0)
X{fze wt(e)}_ Ly e [T i ]
t=1 t=1 J
1 d T’ /32[1(9)
X{:er o [T 50, ]

t=1
_ 0B [ i [ 00O [ O0O)] | e [ 00(0)
B [% ZLGT'W)] {T; [ 90, ] [ 00, ]+ [ 90, aeg]
_ (1_ 2T l - 7' (0 87#075 ) l = th 6) /371%( )}
[% Z’if eT/wt(())i| {T z:: j } X {T tz_; 865 . (25)

Second derivative 81(‘31—7(;6()) Under Assumption 1(a)-(b), by equation (24) on p. 35, P-a.s.,

for all (0,7) € S, for all (k, J) € [1,m]?

O?My (0, 7)
013,00

_ (1 m) 1
- o7 2
2T L eruo)]

43,
4

/ / 81/} ( ) / Yy 1(0)

i (6) TP (0) 1 2 T'9¢(0) J

TZ ] g{ DD a(0) + o 20
T

f Z (6 d}z k( )] } (26)

First derivative 3M+T£9’T). By definition of My (0, 7) in Lemma 12 (p. 34), for all (0,7) € S,

for all k € [1,m],

1 L 0u(9)
—- ' (0 13
TZe 09,

t=1

=1

8]\/[1,'11(97 T) — (1 _ ﬁ) '_%1 ZT let(e),(pt k( ) (27)
aTk 2T T Z elez(g '
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%My 1 (0,7)

Second derivative RIow I

[1,m]?,
O*My (0, 7)

01,07

_ (1" !
= (1 2T> [% > ewi(e)]g X {

Z O (0 Z & YOy, ( ] } (28)

. By the above equation (27), for all (6,7) € S, for all (h,k) €

1 T
=30

i=1

T

1 /

T Z e Ve 1 (0)¢1 1, (6)
t=1

0,

If F(.) is a differentiable matrix function s.t. |F(x)|qet # 0, then DIn[|F(z)|3,] = 2tr[F(z)"'DF(z)]
(Lemma 32ii on p. 88) where DF'(x) denotes the derivative of F'(.) at z. Now, under Assumption

1, by Lemma 11iii (p. 32), P-a.s. for T' big enough, for all (6, 7) in a neighborhood of (6, 70),
%Z?zl eTll/’t(e)aqg;e@ is invertible. In addition, under Assumption 1(a), by Assumption 2(a),

0 — (X1,0) is twice differentiable in a neighborhood of 0y P-a.s., so that, under Assumption
1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), (0,7) — = Z e (0 awt@(,e) is also differentiable

in a neighborhood of (6y,79) P-a.s. Thus, under Assumptlons 1 and 2(a), P-a.s. for T big
enough, for all (0, 7) in a neighborhood of (6y, 1), for all j € [1,m],

B.2.2. Derivatives of My 7(0,7) := 57 In [ Zt L€ o7 (0 Wt( )‘d ] First derivative M
et

-1
My (0,7) 1 N[ 1 g0 Dn(0)
89]' - Ttr T ;e o0’
X liewx;t(e) (’92th(6)+1§€ (o) (2 00e(0) ) () )
= 90;00" T 00; 00’

. . 02 M. . .. . .
Second derivative dl#ge(éﬁ). The trace of a derivative is the derivative of the trace because
005

both the trace and derivative operators are linear (e.g., Magnus and Neudecker 1999/1988, chap.
9 sec. 9). Moreover, if F(.) is a differentiable matrix function s.t., for all = in a neighborhood
of &, |F(x)|aet # 0, then D [F(2)~'| = —F(&)"'[DF(&)]F (&)~ (e.g., Magnus and Neudecker
1999/1988, chap. 8 sec. 4). Now, as explained for the first derivative, under Assumption 1,
by Lemma 11iii (p. 32), P-a.s. for T' big enough, for all (#,7) in a neighborhood of (8, 70),
% Zle eTll/’t(e)azg;e(,m is invertible. In addition, by Assumption 2(a), P-a.s. 0 — (X7, 0) is three
times continuously differentiable in a neighborhood of 6y, so that, under Assumption 1 and 2(a),
0 — % is differentiable in a neighborhood of (6y, 7). Thus, under Assumptions 1 and

2(a), by the above equation (29), P-a.s. for T big enough, for all (#,7) in a neighborhood of
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(6o, 70), for all (£, 5) € [1,m]?,
-1
PMor0.r) L | L o 204(0)
96,00, T T & a0’
1< Pun(0) | 1  0Ui(0) | 0¢4(6)
T (0) L ¥INT) .~ 7' (0) t t
{thzl 90,00' +T;e ( 20, ) 207 }
-1
li ' (0 31/175( )
T & o0
1o Punlt) | 1  O%i(0) ) Dr(0)
T (0) Y FE\Y) t - TP (0) t t
TZe 96,000 z::e ( 26, ) 00’ ]
T —1
1 () e (0)
— 7' (0
72 o0
t=1
T
]_ / f) Q/)t 8¢t( ) 521/)75(9)
il 7' (0 7't (0
X T;e aegae ae' T Z ( a0, ) 00,00
1 ZTJ o) (2 OG0)) Pu(0)
T & 90; ) 06,00

1 i o) (1 O2%u(0) Dvu(6)
T — 8958@- 04’
ZT: o) OG0)\ [, 0(6) ) Di0(6) (30)
— 09, 00, 00’
Second derivative %42—5(59) By a reasoning similar to the one for the derivative —azlgfgz’géfﬁ),

under Assumptions 1 and 2(3,), by the above equation (29), P-a.s. for T big enough, for all (6,

in a neighborhood of (f, ), for all (k,5) € [1,m]?,

7)

GQJWQ T(é’, ’7’)
Rt bl R 1
7,00, (31)
- -1
W00 ] 1 NG o0 Ou(0
1 7u0)00e(0) | | L (o) 7yu(0) 001 (0)
tr { T Z ¢ By T ; ¢ Vik (0 aef T Z 89’

1 / O(0) ,00(0)  9%y(0)
il T/ (0) /
T ;e ( o6 | 08, 90,00

T 1L, T
1 1 4 87/} 1 71
+?tr { ? Z ¢ (0) dt;/ ) ? Ze dt(a)wt,k(e) (
L t=1 _ L t=1
1 o]
= ' (0) TNV - '1(0)
+T“{ TZ T Tz:: ( 0

02y (6)

Iy (0) Oty 1o (6)

o (9) -

81/)7: (6)
o0’ *

00,

I}

I}

(32)

00,00

00,
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First derivative aMZd—ik() If F(.) is a differentiable matrix function s.t. |F(x)|get # 0, then

Dn[|F(z)[3,] = 2tr[F(z)"'DF(z)] (Lemma 32ii on p. 88) where DF(x) denotes the derivative
of F(.) at . Now, under Assumption 1, by Lemma 11iii (p. 32), P-a.s. for 7" big enough, for all
(6,7) in a neighborhood of (6. 79), 7 Zthl eT'wt(e)alg;e(,e) is invertible. Thus, under Assumption
1, by definition of My (6, 7) in Lemma 12 (p. 34), P-a.s. for 1" big enough, for all (0,7) in a
neighborhood of (6y, 79), for all k € [1, m],

8A127T(9,7') Z r'41(0) O¥t\V) 81/%(9)
T oy’

o1

:—tr TZ TV O, a%) . (33)

. . 2 M. . .. . .
Second derivative %ﬁiﬁ’ﬂ. The trace of a derivative is the derivative of the trace because

both the trace and derivative operators are linear (e.g., Magnus and Neudecker 1999 /1988, chap.
9 sec. 9). Moreover, if F(.) is a differentiable matrix function s.t., for all x in a neighborhood
of &, |F(x)|get # 0, then D [F(2)~'] = —F(&) ' [DF(&)]F (&)~ (e.g., Magnus and Neudecker
1999/1988, chap. 8 sec. 4). Now, as explained for the first derivative, under Assumption 1,
by Lemma 11iii (p. 32), P-a.s. for T' big enough, for all (f,7) in a neighborhood of (6y,7p),

T Z o7 () awt(e) is invertible. Thus, under Assumption 1, by the above equation (33), P-a.s.
for T blg enough, for all (,7) in a neighborhood of (6, 7o), for all (h, k) € [1,m]?,

82MQ’T(9,7—)

8Tha7'k
_ Lol |L s ewede@| |1 ZT:GWQ o022 [ 1 ieffwt@ o)
T T = o0’ T & W00 | | T A o0’
S dn(6)
'11(0) t
X thzle i ’l/}tk(e) 00’ }
it | Ly e 200) K $ 0 g (0 (6) 220 (34)
T T = o0/ T & ST N

B.2.3. Derivatives of M3 (0, 7) = —% In H% ZtT=1 e V@) ay (0)1):(0) . t]. First derivative
€

W%’—W. If F(.) is a differentiable matrix function s.t. |F(x)|get > 0, then D In[|F(x)|get] =

tr[F(z)"'DF(z)] (e.g., Magnus and Neudecker 1999/1988, chap. 8 sec. 3). Now, under
Assumption 1(a)-(b), (e) and (g)(h), by Lemma 1liv (p. 32), P-a.s. for T' big enough, for
all (.7) € S, |5 S e Ve @ap,(0)104(0) |ger > 0. In addition, by Assumption 1(b), P-a.s.
6 — (X1, 0) is continuously differentiable in @, so that, P-a.s. for T" big enough, § — Mz (60, 7)
is differentiable in @, for all (¢, 7) € S. Thus, under Assumption 1(a)-(b) and (e)(g)(h), P-a.s.
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for T' big enough, for all (0, 7) € S, for all j € [1,m],

-1

8M3’T(9,T) _ ]_ ]. r let(e) /
89j = Tor T T ;e ¢t(6)1/1t(9)
T
L& o [ O0) u(6)
il e (9) ) TE\T) !
| 2o { 2oy + o)
t=1
a O (9)
/ t
+7 Z e 9)( )m( wt(e)’] } (35)
Second derivative 81‘8/193—59(6) The trace of a derivative is the derivative of the trace because

both the trace and dlfferentlatlon operators are linear (e.g., Magnus and Neudecker 1999/1988,
chap. 9 sec. 9). Moreover, if F(.) is a differentiable matrix function s.t., for all x in a neigh-
borhood of &, |F(z)|qet # 0, then D [F(i) '] = —F(&) '[DF(&)]F (&) (e.g., Magnus and
Neudecker 1999/1988, chap. 8 sec. 4). Now, under Assumption 1(a)-(b), (e) and (g)-(h), by
Lemma 11iv (p. 32), P-a.s. for T big enough, for all (0,7) € S, %Zthl e Oy, (0) ) (0) is
invertible. In addition, by Assumption 2(a), P-a.s. 6 — (X1,0) is three times continuously
differentiable in a neighborhood of 6y, so that, under Assumption 1(a)-(e) and (g)(h), by Lemma
11ii (p. 32), 0 — %éw is differentiable in a neighborhood of (6, 79). Thus, under Assump-
tions 1(a)(b), (e) and (jg)(h), and 2(a), by the above equation (35), P-a.s. for T' big enough, for
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all (6, 7) in a neighborhood of (6, 79), for all (£, j) € [1,m]?,

. -1
PMsr(0,m) L { %Za’%(@)wtwwe)’]
t=1

90,00, 2T

X

1 I by 0y (0) awt()
1> er (20 oy 0) 200 )

t=1

1 & awt( ) ,]
4= o7 i (0) U (0)h (0
p e O+ O ) oo
1 B
" [T e 1"“”%(@)%(6)'}
t=1

T !
7> (25 oy + o) )
t=1

T
+%;eT'wt(e) ( 10 (0 )) V(0 )z/)t(H)/]

X

J

T —1
:1% > eT"“’“%xewt(e))'l
t=1

e (S R O )

- éa’w (f%ﬁ”) (2 oy + vt 24 )

%ia’w (200 (2D 0y + i 2L

= tz:ef’wt@( aa;ige) Jutereatoy

g S22 ]
92 Mg 1 (0,7) 92My,1(0,7)

Second derivative ~ D00, Follow a reasoning similar to the one for the derivative 20,96,
The trace of a derivative is the derivative of the trace because both the trace and differentiation
operators are linear (e.g., Magnus and Neudecker 1999/1988, chap. 9 sec. 9). Moreover, if F(.)
is a differentiable matrix function s.t., for all 2 in a neighborhood of &, |F(x)|qet # 0, then
D [F(&)"'] = —=F(¢) ' [DF(&)]F (&)~ (e.g., Magnus and Neudecker 1999/1988, chap. 8 sec.
4). Now, under Assumption 1(a)-(b), (e) and (g)-(h), by Lemma 11liv (p. 32), P-a.s. for T big
enough, for all (6,7) € S, %23:1 T O)apy (0)4h(0) is invertible. Thus, under Assumptions 1
(a)-(b), (e), (g)(h), by the above equation (35), P-a.s. for T big enough, for all (6,7) € S, for
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all (k,j) € [1,m]?

82M3’T(9,T)
67%8@-
1 1 & - -
=ﬁtr{ 72 Oy (0)6(0) Ze’w})wtk( Jooe(8) (0 Ze’w’)wf (0)un(0 >]
t=1
LN~ o) am() ;L OO) o ()
X ft_zl ( ——(0)Y(0) +T0j¢t(9) + ¢ (0) a6, )
T

% Z eT’W“”wtwwt(e)
t=1

1 o aw 0) ,
ﬁtr{ TZ ) ”f ww)wt(e)]}.
OM3 (0,7

First derivative a—m If F(.) is a differentiable matrix function s.t. |F(x)|get > 0, then
DIn[|F(2)|qet]) = tr[F(z) ' DF(2)] (e.g., Magnus and Neudecker 1999/1988, chap. 8 sec. 3).
Now, under Assumption 1(a)-(b)(e)(g)(h), by Lemma 11iv (p. 32), P-a.s. for 7" big enough, for
all (0,7) €S, |4 32, e P4 (0)44(8) |aer > 0. Thus, under Assumption 1(a)-(b)(e)(g)(h), by
definition of M3 (6, 7) in Lemma 12 (p. 34), P-a.s. for T' big enough, for all (0, 7) € S, for all
ke [1,m],

oMzr(0,7) 1 1
Otk QT‘ er’wz(e)wl( Yabi (0

det

T
5 %Zef’wt“’wtw)we)’
t=1

tI‘
—

det
—1

> e Oy ()1 (0)
t=1

T
% ZeT’“*”“%k(6)%(9)%(@'} }
t=1

—1

T
%ZeT’wt%,kwmwwt(e)'] } (38)
t=1

. . 02 Ms (0 . .. . .
Second derivative 9 g T“} gik’T) . The trace of a derivative is the derivative of the trace because
Ok

both the trace and differentiation operators are linear (e.g., Magnus and Neudecker 1999/1988,
chap. 9 sec. 9). Moreover, if F(.) is a differentiable matrix function s.t., for all = in a neigh-
borhood of &, |F(z)|qet # 0, then D [F(i)™'| = —F(&)"'[DF(&)]F (&)~ (e.g., Magnus and
Neudecker 1999/1988, chap. 8 sec. 4). Now, under Assumption 1(a)-(b)(e)(g)-(h), by Lemma
1liv (p. 32), P-a.s. for T big enough, for all (0,7) € S, %Zg‘ll eVt O)ap, ()0 (0) is invertible.
Thus, under Assumptions 1(a)-(b)(e)(g)(h), by the above equation (38), P-a.s. for T big enough,
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for all (6, 7) in a neighborhood of (g, 79), for all (h, k) € [1,m]?,
82]\131]“(6', T)

aThﬁTk
S e Oy (0)(6)'
t=1

)iy
o7 "\ |T £

T
%2671%(0)%(9)%(9)/

t=1

-1

T
7 ef’wt%,k(ewt(e)w(”’]
t=1

-1

t=1

T
% > ef’wt”)wt,hw)wt(em(e)’] }

-1

T
:1% > e O (0)y(0)
t=1

T
%ZeT,wt(e)lbt,k(@)wt,h(@%(9)@(9)’] } . (39)
t=1

B.2.4. Derivatives of 8 +— Lp(0,7). First derivative. Under Assumption 1(a)-(e) and (g)-(h)
and 2(a), by Lemma 11ii (p. 32), S contains an open neighborhood of (6y,7p), so that the
derivatives derived in S also hold in a neighborhood of (6, 7). Thus, by equations (24), (29)
and (35) on pp. 35-40. Therefore, under Assumptions 1 and 2(a), P-a.s. for 7' big enough, for
all (6,7) in a neighborhood of (g, ),

aLT(67T)
90;
T 2] [
(o my e
2T £ e ()
1 1 0) 0 (6) -
- — T/ (0 t
+Ttr{ T ; 90/ ]

T
1 / 0% (0 O( )fwt( )
T (0) L) T (0)
7. 06,00 Lt Z 96, o9

-1
Ze ’d)t(ﬁ’)w (0 )]

’ T
; > e O 2 oyrin(0) 2 SO 2 )wtw)wt(e)’]}

t=1 J t=1 9

Thus, evaluated at (6o, 7(6o)).

0Ly (0o, 10)
06,

1 ZT: I(6o)

R L SINES O }] } (40)
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because 7(6p) = Opx1 by Lemma 10iv (p. 31).

B.3. Proof of Theorem 1(ii): Asymptotic normality. The proof of Theorem 1(ii) (i.e.,
asymptotic normality) adapts the traditional approach of expanding the FOCs (first order con-
ditions). The two main differences w.r.t. the proofs in the entropy literature are the follow-

ing. Firstly, instead of expanding the FOC W o—dy’ we expand the approximate FOC

OLp(0,7)

P 0.1)=(0r 7 (0r))
control the asymptotic behaviour of the derivatives that come from In [Y7(6)]get-

combined with the FOC (14) for 7 on p. 17. Secondly, we need to

Core of the proof of Theorem 1(ii). We prove asymptotic normality adapting the traditional ap-
proach of expanding the FOCs (first order conditions). Note that our approximate FOCs are
written as a functionof the 2m variables 8 and 7. In other words, instead of using the implicit
function 77(6), 7 is an estimated parameter and hence the ET equation (14) on p. 17 is also
included in the expansion.

Under Assumptions 1 and 2, by Proposition 1 (p. 44), P-a.s. as T' — oo,

(6= 00) ]

71 (07)

E [250)] -

VT

1 T
Nii ; U(6g) 4 op(1)

Ome

Y(X1.00)] "
(%— E[ 089’ ] N(0,E [¢(X1,00)1(X1,600)'])
%(X1,00) | -
D e (o, B0 E [y(X1, 80)(Xa,60)] [E [2230000 )| ™ g, ]

—
=
=

Ome

Dy (0, (Zwﬂ) 0““")) (41)
Ome Ome
( -1 ( -1
where Y(6p) = [EW} E [¢(X1,60)¢(X1,60)'] [EW} . (a) Under Assumption
1(a)-(c) and (g), by the Lindeberg-Lévy CLT theorem,
\/LT Zle Pi(6o) 5 N(0,E [¢(X1,00)¢(X1,00)]), as T — oo. (b) Firstly, the minus sign can be

discarded because of the symmetry of the Gaussian distribution. Secondly, if X is a random
vector and F' is a (deterministic) matrix, then V(FX) = FV(X)F'. O

Proposition 1 (Asymptotic expansion of VT(p — 6p)). Under Assumptions 1 and 2, P-a.s.

as T — oo,

~ —1
VT (97“_90)] __ =[5 \%éwt(eo)m@u)

mr(67)

Ome

Proof. The function Lp(6, 7) is well-defined and twice continuously differentiable in a neighbor-
hood of (6, 7(0y)’) P-a.s. for T big enough by subsection B.2 (p. 32), under Assumptions
1 and 2(a). Similarly, let Sp(6,7) := %22[21 e V04, (0), which is continuously differen-
tiable in a neighborhood of (6 7(6y)") by Assumption 1(a)(b). Now, under Assumption 1,
by Theorem 1i (p. 6), Lemma 2iii (p. 20) and Lemma 10iv (p. 31), P-a.s., 7 — 6y and
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mp(07) — 7(6), where 7(6g) = Opx1, so that P-a.s. for T big enough, (6}, (7)) is in any ar-
bitrary small neighborhood of (6, 7(6y)’). Therefore, under Assumption 1 and 2(a), a stochastic
first-order Taylor-Lagrange expansion (Jennrich 1969, Lemma 3) around (6o, 7(0y)) evaluated
at (07, 7p(0r)) yields, P-a.s. for T big enough

ALy (0,1 (1)) L1 (00,7(00))
o0 20
St(0r, 71 (07))

+

2Ly (0, 71) O?Lp(0p.7 A
) 2130501 (-
981 (Or,7r) IS (07,7r) TT(éT)

00’ or’
where 07 and 7y are between 67 and 0o, and between TT(éT) and 7(fp), respectively. Under

(60, 7(00)) ] )

Assumptions 1 and 2, by Lemma 20 (p. 60) and by definition of 7r(.) (equation 14 on p. 17),
% = O(T™") and Sy(07, 7(07)) = 0, respectively. Moreover, under Assumptions 1

and 2, by Theorem 1i, Lemma 2iii (p. 20) and Lemma 13ii (p. 46), P-a.s. for T' big enough,

2Ly (0p.7r) 9*Lr(0r,7r)
5 ngi;??ﬁ) asfgég?ﬁ) is invertible. Thus, under Assumptions 1 and 2, P-a.s. for T big
enough,
0 —9)
ﬁ[( r b ]
71 (07)
- 5~ 5o~ y7—1
o c’:Lge(%Te,_TT) a;LgT(gegé_TT) o 8LT(907T(90))+O( )
i STE;%T,’TT) STgiT/vTT) St(600,7(00))
r 92 I 2 O 7p) ] _1
W _ [ S o)
oslor) s || yTaST ()
0Y(X1,0 -
= o T
= [aw(ﬁgéﬁo) ] Oposcn VT 7 32y ¢i(6o)
OP(X1,00) |
8BLT ,eg;)m ngT(?ge’_TT) s s |25 o(:/;—%)
Sppt g e B VT3 ELy ta(t0)

© |E dw(X1€o)

O [e[2pe] iiwen (1)
= \/thl 't\vo op

Omxm

-1 -1

where $(f) = []EW%(—;,QO} E [¢(X1, 00)( X1, 00)] [EW} . (a) Firstly, under As-

sumptions 1 and 2, by Lemma 14i (p 47), P-a.s. as T — oo, Mj(%)) = O(T71), so that

VT | 2elier®oll 4 O(11)| = O(T 7). Secondly, note that S7(60, 7(60)) = # 31, ¢1(00)- (b)
—%(6) E [3111(;)(91/,90)

E [awxl,eo)'} -

90 mxm

-1
Add and subtract the matrix } . (c¢) Firstly, the first column

of the first square matrix cancels out because the first element of the vector is zero. Secondly,
under Assumptions 1 and 2, by Lemma 13iii (p. 46) and Theorem 1i (p. 6), P-a.s. as T — oo,
the curly bracket is o(1), and, under Assumption 1(a)-(c) and (g), by the Lindeberg-Lvy CLT,
v S vi(Bo) = Op(1), as T — oc. O
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Remark 2 (Alternative approximate FOC). In the proof of Theorem lii, it is possible to use the

approximate FOC w = O(T~!) instead of the approximate FOC —aLT(ég’gT(éT)) =

O(T~'). Under Assumption 1 and 2 (with ks € [1,3] and j € [0,2] in its part b), by
Lemma 12 (p. 34) and 18v-viixii-xiv (p. 50) and the ULLN & la Wald, w =

oM, (07,77 (0 OMy (07,77 (0 OMs (01,71 (0 OM, (07,77 (6 _ .
1,T(5‘07'T( ) 2,T(g‘07'T( ) 4 3,T(§"67'T( ) _ 1,T(§"9TT( ) O(T—1). The approxi-

mate FOC w = O(T~') would lead to replace expansion (42) on p. 45 with the

following expansion

aMl?T(éT,TT(éT)) 8]\41,7*(9(),7(90)) 62]‘41,’1“(6_T77_'T) 62]\{1,T(§T’7_'T) <é _ 9 )
20 — 90 + 00750 7700 T 0

Sr(0r, 7r(07)) St(0o,7(600)) “Tgf,T,’*T) 9570z r) 7r(67)

2 0 + 2 0. =
where 2 Mla’g,gg 1) and 2 MB;‘;,E%F 1) can easily be controlled by Lemma 18i-iv (p. 50), Lemma

19i-v (p. 56), Lemma 23i-iii (p. 64) and ULLN & la Wald under Assumptions 1 and 2 (with

ko € [1,3] and 7 € [0,2] in its part b). The approximate FOC w = o1 1)
0 o1 (6 —
LT(G%QT(QT)) = O0(T™)

requires less assumptions than the approximate FOC because it does
not require to control the 2nd derivatives of My (0, 7) and M3 (6, 7). However, it would not
save space and it would require to add one more block of assumptions because our proof of

Theorem 2 requires the full Assumption 2. o

Lemma 13. Under Assumptions 1 and 2,

(i) for any sequence (01, 7r)ren converging to (6o, 7(0p)), P-a.s. as T — oo,

—__— . 9 0 !/
iy I I
77— 77— 8 6
| = o E [%} E [1)(X1,00)¢(X1,00)']
[0 E [aw(xl,em}'
. mxm 907 . . ,
(i) 9%(X1.00) | invertible, so that, for any sequence (01, 7r)reN
B[220 B [y(X,, 60)(X1, 6o)
) 9Ly (Or.77) O*Lr(0r.rr)
converging to (0o, 7(0p)), P-a.s., for T' big enough, the matrix asﬁfié??m 8ngég?TT)
/ T/

is invertible; and
(i) for any sequence (07, Tr)ren converging to (0o, 7(6p)), P-a.s. as T — oo,

-62LT(9T,TT) 82LT(9T,TT) -1 _2(0 ) E M !
0000 97790 0 a6' 5
9Sr(6r.rr)  9Sr(Or.Tr) - 9v(x1,00)' ]! , where
00’ or’ E [8—6’7] Omxm
- -1 / -1
~(6y) E [311)((;21/,90)} B Omcom E [aw(gel/,eo)]
1—1 o
| [ 2] Omscm E | 2G3%| B (X1, 60)9(X1, 6o

Proof. (i) Under Assumptions 1 and 2, it follows from Lemma 14ii and iii (p. 47) and Lemma 17
(p. 49), given that 7(6p) = 0y,x1 by Lemma 10ii (p. 31) and Assumption 1(c), under Assumption

1(a)(b)(d)(e)(g) and (h).
(i) Assumption 1(h) implies the invertibility of
E o700 VX0 (X, 00)6(X1, 00)' | = B [6(X1, 00)(X1, 0)'] and E [er(C0) w000 2001 |

E [W} because 7(0g) = Opyx1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e)(g)-(h).
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00’
part of the statement (ii) follows from Lemma 33ii (p. 88) with A = Opyspm, B=E [%@’QO)/],

C=E [W] and D = E[¢)(X1,600)19(X1,60)] . Then, the second part of the statement
follows from a trivial case of the Lemma 30 (p. 87).

(#43) Under under Assumption 1(a)(b)(c)(d)(e)(g)(h), by the statement (ii) of the present lemma,
the limiting matrix is invertible. Thus, by the inverse formula for partitioned matrices (e.g.,
Magnus and Neudecker 1999/1988, Chap. 1 Sec. 11),

Thus, E [W—l%} E [1(X1,00)0(X1,00)] ' E [M] is also invertible, so that the first

/ -1 -1
oY (X1,6
0t B [aw(gel/,eo)] B —¥(6p) E [%}
— ;7 —1
E [2500] B [p(X1, 00)$(X1, 00) B | 2 00) | Ot

because (—M'V M)t = —M~1V(M')~1 :== —%(6). Then, the result follows from the conti-
nuity of the inverse transformation (e.g., Rudin 1953, Theorem 9.8). O

Lemma 14. Under Assumptions 1 and 2,

(i) P-a.s. as T — oo,
-1
T2rlerlo) g { B35 g [—3;},%39)]} — Sod (B (X1, 00)(X1, 00))
y [E [M}(g%’e())zb(Xl, 90)/} ) [¢(X17 60)61/)(52,90)/] ] }7 so that HLT(gcgjjgeo)) _ O(T_l),‘

O*Lr (07, Tr)

(ii) for any sequence (67, Tr)ren converging to (6o, 7(00)), =o0(1), P-a.s. as

0006,
T — oo;
, O?Ly(0p, T oY(Xy,0
(i) for any sequence (O, Tr)reN converging to (0o, 7(0o)), % —-E [%] ‘ =

o(1), P-a.s. as T"— oo.

Proof. (i) By equation (40) on p. 43, under Assumptions 1 and 2(a), for all j € [1,m], P-a.s.
for T' big enough, evaluating aLT—(’T) at (0o, 7(00)) yields

OL7(00,7(60))

a0,
D1 (60)  O4n(6o)
- :rZ o0 T & 89j09’]
—1
1 1 & , - D (80)’
~57T ) | 2 Vellola(tn ;{ S s I

Now, under Assumption 1(a)(b),

e under additional Assumption 1(h), by the LLN and Lemma 30 (p. 87), P-a.s. for 7" big

1 -1
enough, A T 31 4_1/150?0 is invertible, so that [% tT_l —awgé,e(’)] — [E—aw(g(el,’%)} ;

e under additional Assumption 2(b), by the LLN, T tT 1 6621%39) —E {%};
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e under additional Assumption 1(h), by the LLN and Lemma 30 (p. 87), P-a.s. for
-1

T big enough, %Ethl P1(00)(0p)’ is invertible, so that [% Ethl ¢t(60)¢t(eo)'] —
[Eep (X1, 00)9(X1,600)]"; and

e under additional Assumption 1(f)(g), by the Cauchy-Schwarz inequality and the mono-
tonicity of integration,
E [81”(5(0?700)'%/’()(1,90)] S \/E [Supoe@ |_a¢ 2 }E[Supee@ [9(X1,0)%] < oo, so that,
by the LLN,

Y (6o) e (60)’ AY(X1,6 OY(X1,60)’

£ ] 2 O0) it (00) 240 | — B [ PUGBLY(X, o) |4 (X, ) PG |

P-a.s. as T — 0.

Thus, under Assumptions 1 and 2, for all j € [1,m], P-a.s. as T — o0, TW —

tr { B2 g P;g;ggw]} — dtr{ [Ev(X1, 00)0(X1,60)) " [B [ 2500y (X, 60)

+E [zp(Xl,eo)%ey%)’H}, so that 222070) — Lo(1) = (1),
(#3) Under Assumptions 1 and 2, by Lemma 15 (p. 48) and Lemma 12 (p. 34), P-a.s. as
2
T — oo, uniformly over a closed ball around (6o, 7'(00)) with strictly positive radius, 00,00,

ey o0 2] ] oo gl

_W—XLG)FE [ele(Xl’o)T’%%lm] xE {ele(Xl’e)T’%(,;’g)]‘ Now, under Assumption 1(a)(b)(d)
(e)(g) and (h), by Lemma 10ii (p. 31) and Assumption 1(c), put 7(6y) = Oy,x1, so that the result
follows.

(#i) Under Assumptions 1 and 2, by Lemma 16 (p. 49) and Lemma 12 (p. 34), P-a.s. as
92 L7 (0,7)
07:09[7—

T — oo, uniformly over a closed ball around (6y, 7(6p)) with strictly positive radius,

T/ , T/ , 9Y(X1,9) T/ .0) 0%k (X1,0)
m « {E [e w(X 9)]E{e VX0,0) 1 L g (X1, 6) + o7 V(X0 ZLaz D) }

-E [e $(X1,0) ’%&’0)} E [eT/w(Xl’e)wk(Xlﬂ)} } Now, under Assumption 1(a)(b)(d)(e)(g)
and (h), by Lemma 10ii (p. 31) and Assumption 1(c), 7(6g) = Opmx1, so that P-a.s. as T' — oo,

2
% —E [%{;&,6)} . Stack the components together in order to obtain the result.

O

Lemma 15 (Uniform limit of g BLGT(S)‘Z ") in a neighborhood of (6o, 7(60))). Under Assumptions 1

and 2, for all (4,€) € [1,m]?, P-a.s. as T — oo, uniformly over a closed ball around (o, 7(0o))
with strictly positive radius,

o 9°My7(6,7) 1 "h(X1,0 OP(X1,6) M(X1,0) "P(X1,0) [ 1 92%(X1,0)
(i) aaljeTaeg - [Eeffw<x1,e>]E{eT v )[T/ aa; 7! aejl + e Vo) 26, d(;g

L -E [eT’w(Xl,H)T/ awggjlve)} % | [eT"g/J(Xl,H)T/ nggzﬂ)} .

- [Ee/v(X1.0)] ’

(ii) 92 My 1(0,7) . 0;

0,00,
.oy O2Ms (0,7
(iii) _6(;;% — 0.
Proof. (i) Under Assumptions 1 and 2, by Lemma 18i-iv (p. 50), Assumption 1(a) and (b),

2
all the averages in 81\5;;—3%3’7) (equation (25) on p. 36) satisfy the assumptions of the ULLN &

la Wald. Moreover, under Assumption 1(a)-(b) (d)(e)(g) and (h), by Lemma 11i (p. 32) the
averages in the denominators are bounded away from zero. Thus, the result follows from the
ULLN & la Wald. Note that the coefficient 3% vanishes as it goes to zero, as T — oo.
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(71) Under Assumptions 1 and 2, by Lemma 18v-xi (p. 50), Assumption 1(a) and (b), all the
averages in 82]‘;}—5&?’7) (equation (30) on p. 38) satisfy the assumptions of the ULLN & la Wald.
Moreover, underj Assumption 1, by Lemma 11iii (p. 32) the averages in the inverted matrices
are invertible in a neighborhood of (6y, 7(0y)) P-a.s. for T' big enough. Thus, the result follows
from the ULLN a la Wald, the linearity of the trace operator and the scaling by %

(#1i) Under Assumptions 1 and 2, by Lemma 18xii-xix (p. 50), Assumption 1(a) and (b), all
the averages in 82](\9{;’—39"5’7-) (equation (36) on p. 41) satisfy the assumptions of the ULLN a la
Wald. Moreover, under Assumption 1(a)(b)(e)(g) and (h), by Lemma 11iv (p. 32) the averages
in the inverted matrices are invertible in a neighborhood of (0g,7(0y)), P-a.s. for T' big enough.
Thus, the result follows from the ULLN & la Wald, the linearity of the trace operator and the

scaling by % (]
Lemma 16 (Uniform limit of % in a neighborhood of (6, 7(0y))). Under Assumptions 1
and 2, for all (k,0) € [1,m]?, P-a.s. as T — oo, uniformly over a closed ball around (6o, 7(6p))
with strictly positive radius,

. O2My (0, / ' AY(X1,0 Iab O (X1,0
() St [Eeffngl,m]z X{E [eT w(xhe)} E [eT VL0 2Ly, (X ) + 7 (X0 2eLEL0) >]

—B [V OO R [0, (X1.0)]

oy O2Mo o (0,7)
) —Z7as, ~ — 0-
ooy 02M5 1 (0,7)

(lll) W — 0.

Proof. The proof is similar to the one of Lemma 15 (p. 48). (i) Under Assumptions 1 and 2, by
Lemma 19i-v (p. 56), Assumption 1(a) and (b), all the averages in % (equation (26) on
p. 36) satisfy the assumptions of the ULLN & la Wald. Moreover, under Assumption 1(a)-(b)
(d)(e)(g) and (h), by Lemma 11i (p. 32) the averages in the denominators are bounded away
from zero. Thus, the result follows from the ULLN a la Wald. Note that the coefficient
vanishes as it goes to zero, as T" — oo.

(71) Under Assumptions 1 and 2, by Lemma 19vi-xii (p. 56), Assumption 1(a) and (b), all the
averages in % (equation (32) on p. 38) satisfy the assumptions of the ULLN & la Wald.
Moreover, under ASsumption 1, by Lemma 11iii (p. 32) the averages in the inverted matrices
are invertible in a neighborhood of (6y, 7(0y)) P-a.s. for 7" big enough. Thus, the result follows
from the ULLN a la Wald, the linearity of the trace operator and the scaling by %

(#i) Under Assumptions 1 and 2, by Lemma 19xiii-xix (p. 56), Assumption 1(a) and (b), all
the averages in % (equation (34)on p. 42) satisfy the assumptions of the ULLN a la
Wald. Moreover, under Assumption 1(a)(b)(e)(g) and (h), by Lemma 11iv (p. 32) the averages
in the inverted matrices are invertible in a neighborhood of (6y,7(6p)), P-a.s. for T' big enough.
Thus, the result follows from the ULLN a la Wald, the linearity of the trace operator and the

scaling by % . U

Lemma 17. Put Sp(0,7) :== 7 Zthl ™Vt (0). Under Assumptions 1 and 2, there exists a
closed ball centered at (6(,7(00)) with strictly positive radius s.t., P-a.s. as T — oo,

. 0.5 0’7’ /b 6“X79 /b o X76
(i) SUP(9,7)eB,, ((60,70)) ‘ gé/ ) —F [e VX0 wgaefl )] - E [e d(Xl’e)—wgao} )H = o(1);
=o(1).

S| 25500 g o v 0 y(X, )Xo, 0)

(i) SUD(y B (@orm0))
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Proof. (i) By definition of S¢(6,7),
T

85’(9, 7') o l Z eT/¢t(6)wt(9) awt + Z e (0) TN al/}t

o9 T 00 89’

Thus, by the triangle inequality,
sup 95r(0,7) o [eww(xl )1 O (X1, )] _E [eT'w(xl,e) a’ll)(Xh(?')] ‘

(0B ooy | O o0/ 50

T

< sup : Z ewt(ewt(@)f—agg,a) —-E [eT’w(Xl’e)T’—aw(ggj’ 9)] ‘
(0,7)€Br ((60,70)) t=1
T
+ sup l /'ll)t(e azgt;/ ) -E |:eT/1/1(X1,9) 877/)(5211> 9):| ‘
(0,7)€Br ((60,70)) t=1

= o(1) P-as. as T — o0

where the last equality follows from the ULLN & la Wald by Assumption 1(a)(b) and Lemma
18iv-v (p. 50), under Assumptions 1 and 2.

(#1) By definition of St(0, 1), aSg—T =7 Zt €7 V04,(0)9(0). Now, under Assumption
1(a)-(b)(e) and (g), by Lemma 8i (p. 28) and Assumption 1(a)(b), the assumptions of the ULLN
a la Wald are satisfied, so that the result follows from the latter. O

Lemma 18 (Finiteness of the expectations of the supremum of the terms from aaLT—ée)) Under

Assumptions 1 and 2, there exists a closed ball By, C S centered at (0o, 7(00)) with strictly positive
radius s.t., for all (£,7) € [1,m]?,

(i) E _Sup(e,r)eE ele(lee)} < 005
i) E :sup(g,T)eBT o™ (X1.0) T,aw(a)g;,e) T,awge(;,e)q < 00;
(iii) E :sup((9 B |eT’¢(X1,6)T/%|} < 00;
(iv) E :SUP(er 5y le7v0 /Mﬂ < 005
(v) E :sup(gT cB; &7 (X, )Mq < 005
(vi) E :sup(ejT)erL o™ V(X210 %H] < 00;
(vid) E [supyy 5 7 ¥ 07/ DKL 00| o,
(viii) E :SUP(Q,T)GE o™ V(X1 )LXBQM] < 00;
(ix) E :SUP(O,T)GE o ¥(X1.0) 7/ 20660.0) 628026%;6” < oo;
() B [sup(p ey le7 ¥ 7 SN 2CHN | < o,
(5 E s o000 2 st o] <,
(xii) E :sup(evT)er le™ V(X104 (X, )¢(X1,9)'|] < 00;
(xiii) E :sup(o NeBy le™ T'1p(X1,0) 90 Xl’e)zp(X 0) |] < 005
(xv) E [supyg 1y 67 VOO 2D (X, 0)(X1, 0] < oo
() E [supgg e 67V 0 ZEE00 x5, gy|] < oo;
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(xvi) E :sup( \BL |e”/’ (X1, )8¢(X21,9) 812}59)51,9)’} < 00;

(xvii) E :sup( )eBL |67 V(X1.0) (7 ’a¢()§j’ ))aw(Xl ,‘]

(svi) B [y 67500 255500, )m(xl, 0] < sc: and
(i) B [sup (g py 5, |67 V00 (7 UL (77 2UTAL (X, )35 (X0, 0)'| | < ov.

Proof. (i) Under Assumption 1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an open
ball centered at (6, 7(6p)), so that, by the Cauchy-Schwarz inequality, for By, of sufficiently small

radius, E [SUP(Q,T)G?L eTI‘D(lee)} < \/]E [(SUP(H,T)EE e‘r’w(Xlﬂ))Q} = \/E [sup(gﬁ)es e2mP(X1,0) |

oc where the equality follows from the fact that supremum of the square of a positive function

is the square of the supremum of the function, and the last inequality from Assumption 1(e).

(#) The norm of a product of matrices is smaller than the product of the norms (e.g., Rudin
1953, Theorem 9.7 and note that all norms are equivalent on finite dimensional spaces). Thus,
for By, of sufficiently small radius, for all (¢, j) € [1,m]?,

E sup ’eT’z/J(Xlﬂ)T/aw(Xl’Q)T/aq/}(Xhe)’
(0.1)e B 0% 99,
< ( sup |T|2>E[ sup _er'veon 0 200810, 9910, 0 r]
(0,7)eBrL (0,r)eBL 00 9

(@ 2 T(X1,0) 2| ©
< ( sup |7|*)E [sup sup e L9h(X1)7| < oo.

(6,7 €BL 0EN €T ()
(a) Firstly, under Assumption 1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an
open ball centered at (fg,7(6p)) Thus, under Assumption 1(a)-(e) and (g)-(h), for By, of suf-
ficiently small radius, by definition of S, By, C {(0,7) : 0 € N AT € T(6)} C S, because

N C © by Assumption 2(a). Secondly, by Assumption 2(b), supgeN|6¢ggz’9)| b(X) and

SUDge N |6¢(X1’0)| b(X). (b) Firstly, SUD (g e By |7|? < oo because By is bounded. Secondly,

by Assumption 2(b), E |:Sup9€N SUP-e(g) ele(Xl’e)b(Xl)Q] < 00.
(i4) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By, of suf-
ficiently small radius, for all (¢,5) € [1,m]? E [sup((,yT)erL |eT"¢(X1’9)T’M\] < (Sup (g ey I71)

/4 0°p(X1,0 T
E [S“p(e,T)eBTe v ”%'} < (supg 1ye; ITDE {SHPGEN SUPrem(g) © w(Xl’e)b(Xl)] < %0,

where the two last inequalities follow from Assumption 2(b) and the boundedness of Br.
(iv) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By, of

T'w(XLG)T/alP(B);;ﬁ) q < (

sufficiently small radius, for all £ € [1,m], E [sup(e NeBy e < (sup (g ryemy I71)

’ o 0 ’
E [sup(o ey < PN ZGLA] < (sup(y ey [T)E [supgensupren) & HHIH(X)] < o

where the two last inequalities follow from Assumption 2(b) and the boundedness of Br.
(v) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By, of

T 2 J ™
Y(X010) 28 )l] <E [SUPQEN SUPreT(g) © w(Xl’g)b(Xl)] <

sufficiently small radius, E [sup(g )eBL e
oo, where the last inequality follows from Abbumptlon 2(b).
(vi) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By,

of sufficiently small radius, for all £ € [1,m], E [sup((”) By ™'V (le(’)%gé—@]
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<E [supgE AN SUPreT(9) eT VXL p( X 1)] < o0, where the last inequality follows from Assumption

(b).
(vit) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for
By, of sufficiently small radius, for all £ € [1,m], E [sup(e NeBL |eT/1/’(X1*9)T’awg(§;’6) awgg}ﬂ” <

(X1, 9)|31/)(X1 0) ||31/)(X1 .0)

[\~

(51D (g7 [7)E [supp )7 @ | < (s ez I7D)
E [supge AN SUPreT(0) eT VXL (X ) ] < oo where the two last inequalities follow from Assump-

tion 2(b) and the boundedness of By.
(viii) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for

By, of sufficiently small radius, for all (¢,5) € [1,m]?, E [sup((9 NeBL e ¥(X1,0 )%q <

E [supee N SUD-eT(g) ele(Xl’e)b(Xl)] < 00, where the last inequality follows from Assumption
2(b).
(iz) Similarly to the proof of statement (i), under Assumption 1(a)-(e) and (g)-(h), for By, of

(X s /8¢(X ’9) /3211’(X 76)
|7 V(X1.0) 7 90, T 90,00 |} <

sufficiently small radius, for all (¢,7) € [1,m]? E [sup( \eBr

(sup(g 1) e [T1*)E |supgg 1) €7 PO 250 2155 )55/6) |} < (sup(g ey I71)?
E [sup(,e N SUPreT () €7 DXL p(X)? ] < oo where the two last inequalities follow from Assump-
tion 2(b) and the boundedness of By.

(z) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By, of

sufficiently small radius, for all (¢,5) € [1,m]? E [sup(e,T)eE|eT W(X1,0) ,8%/;()(;;9) 31/)59);1 9)| <
T %y X 9) 1) 9P (X1,0
(5P gy 1TV [s0pyg i €7 #0000 | S0 2400 |

< (sup(p g ITHE [supgej\/ Suprcr(g) € w(Xi’ Ib(X1)? ] < oo where the two last inequalities
follow from Assumption 2(b) and the boundedness of Br.

(i) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By, of
19%(X1,0) 1 0%(X1,0) 9% (X1,0) |
o6, 0, o7

sufficiently small radius, for all (¢, j) € [1,m]?, E [sup((9 1eBL e ¥(X1.0) 7

/ (X 1,0) ) 0v(X1,0) || OY(X1,0
(51D g,y 37 [TIE [supyg ey 7 VX1 | 22500 2000  SEEI | < (supy )7 I712)

E [supee N SUD-eT(g) eTll/’(Xl’e)b(Xl)?’] < 0o where the two last inequalities follow from Assump-
tion 2(b) and the boundedness of By.

(zit) Under Assumption 1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball
centered at (Ao, 7(6p)), so that, for By, of sufficiently small radius,
E [sub g,y |7 P D0(X1,0)%(X1,0)1| < B [supp.ryes o7 ¥CHO00(X0,0)6(X1, 0Y || < o0
where the last inequality follows from Lemma 8i (p. 28) under Assumption 1(a)-(b)(e)(g).

(ziii) The supremum of the absolute value of the product is smaller than the product of the
suprema of the absolute values. Thus, under Assumption 1(a)(b), for By, of sufficiently small
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radius, for all ¢ € [1,m],

o7 V(X1.0) IP(X1,0)

E
00,

sup
(0,7)eBL

d)(Xl: 9)/|]

< E| sup |e7lw(X1’0)w| sup |'¢)(X1:9)/|]

(0.7)eByL e (9reBL

(a) [ WX
< L|E| sup |eT'w(X179)M|2] ]E[ sup |7/’(X1’9)'|2]
\  Lones 9 (0.1)eBr

(2 E |sup sup eQT'w(leg)b(Xl)Ql \/IE {sup |¢(X1,9)’|2] (<C) 0.
\ | 0EN T€T(0) SOk
(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a positive
function is the square of the supremum of the function. (b) Firstly, under Assumption 1(a)-(e)
and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6p, 7(6p)), so that, for
By, of sufficiently small radius, By, C {(6,7): 0 € N AT € T(#)} C S C S¢ because N' C ©
and S = {(0,7) : 0 € ® A7 € T(0)}. Secondly, as the second supremum does not depend on T,
Sup g gy [V (X1, 0)'|? < suppeee |(X1,0)'|? because By, C S, for By, of radius small enough.
(c) By Assumption 2(b), the first expectation is bounded. Under Assumption 1(a)(b)(g), by
Lemma 9i (p. 30), the second expectation is also bounded.

(ziv) Proof similar to the one of statement (xiii). The supremum of the absolute value of
the product is smaller than the product of the suprema of the absolute values. Thus, under
Assumption 1(a)(b), for By, of sufficiently small radius, for all £ € [1,m],

E[ sup |eT'w(X1,e)T/W¢(X17a)w(Xl,H)'\]
(0 ¢

,T)EBL,

sup |eT’¢(X1’9)M| sup |z/)(X1,9)1/)(X1,9)'|]

< ( sup [T]E
(0,7)eBL a0, (6,7)eBL

(0,7)eBL

(a) ‘
< (sup | [E| sup reT'WL@WP} B| sp \wxl,e)w(xl,eﬂz]
L

(6,7)eBL L(6;7)eBL (6,7)eBL

(b) [ ©

< ( sup |7])4|E |sup sup e2™¥Xu.0p(X1)2[,|E | sup |[1(X71,0)1(X1,0)]?| < oo.
omeBr \  [0eN reT0) peor

(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a
positive function is the square of the supremum of the function. (b) Firstly, under Assumption
1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6o, 7(6p)),
so that, for By, of sufficiently small radius, B, C {(0,7) : 8 € N AT € T(#)} C S C S~
Secondly, as the second supremum does not depend on T, sup(eﬂ_)erL|1/)(X1,9)d)(X1,0)’|2 <
supgee: [¥(X1,0)1(X1,0)')? because B, C S, for By, of radius small enough. (c) Firstly, because
By, is bounded, (sup g 1)y I71) < oo. Secondly, by Assumption 2(b), the first expectation is
bounded. Thirdly, by Assumption 1(g), the second expectation is also bounded.
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2 . /
%&z@ instead of %0;’@ The

(zv) The proof is the same as for statement (xiii) with
supremum of the absolute value of the product is smaller than the product of the suprema of
the absolute values. Thus, under Assumption 1(a)(b), for By, of sufficiently small radius, for all

(4, 5) €1, m]]Qv

/ 62¢1(X1 9)
E| sup |7V 2y Xy, )]
2
< E| sup |eT,¢(X1’e)w| sup  |1h(X1,0)']
(0,7)eBL 901095~ (9r)eB;

(@) [ 2
< E| sup |eT/¢(X1,9)M|2 E| sup [¥(X1,0)|?

| (6,1 eBL 96,00, (0,7)€BL,

E [sup sup e2m¥(X1.0)p(X;)2
_0eNTeT(9)

NS

\/IE [sup |2/J(X1,9)’|2] (2 00.
0cO¢

(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a positive
function is the square of the supremum of the function. (b) Firstly, under Assumption 1(a)-(e)
and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6o, 7(y)), so that,
for By, of sufficiently small radius, By C {(6,7) : § € N A7 € T(0)} C S C S°. Secondly,
as the second supremum does not depend on 7, sup, g, [¢(X1, 0)' > < supgee- [¥(X1,0)|?
because By, C S, for By, of radius small enough. (¢) By Assumption 2(b), the first expectation
is bounded. Under Assumption 1(a)(b)(g), by Lemma 9i (p. 30), the second expectation is also
bounded.

(zvi) Similarly to the proof of statement (ii), under Assumption 1(a)-(e) and (g)-(h), for By,
of sufficiently small radius, for all (¢,5) € [1,m]? E [sup(eﬁ)erL o™ ¥ (X1.0) 9(X1.6) 99(X1.6) |} <

o0, 0,

/4 OP(X1,0) || 0Y(X1,0 )
E [S“p(e,T)eBT o 0| 2T | ST )!} <E [SUPQGNSUPTET(O) eT”(Xl’e)b(Xl)Q] < 00 where
the last inequality follows from Assumption 2(b).

(zvii) Proof similar to the one of statement (xiii). The norm of a product of matrices is
smaller than the product of the norms (e.g., Rudin 1953, Theorem 9.7 and note that all norms
are equivalent on finite dimensional spaces). Moreover, the supremum of the absolute value of
the product is smaller than the product of the suprema of the absolute values. Thus, under
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Assumption 1(a)(b), for By, of sufficiently small radius, for all (¢, j) € [1,m]?,

E| sup |erfw(X1,6)(7_/ (X1, 9))677[)()(17 9)
(0,7)eBL 00, 99,

¢(X179)'|] <

<67/¢<X1,e>|3¢(X179>||8¢(X1’9)|) sup |«¢<X1,e>|]

< ( sup [DE| sup
(G,T)EE (9,7)637L 895 89J (G,T)EE

(a) [ X X 2

(ap PE| suw (eT,le,e)law( 1.6)), 0 “’N) E| suwp |¢<X1,e>|2]
(0,7)€BL, \ | (0.7)€BL, 9 09 (0.,7)eBL

®) [ , ©
< ( sup |7))4|E [sup sup e27¢(Xn0)p(X )4, |E {sup |¢(X1,9)|2} < .
(0.7)€BL \ [0EN 7T (0) 0ed¢

(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a positive
function is the square of the supremum of the function. (b) Firstly, under Assumption 1(a)-(e)
and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6o, 7(6p)), so that, for By,
of sufficiently small radius, By, C {(#,7):0 € N A7 € T(0)} C S C S¢. Secondly, as the second
supremum does not depend on 7, sup, 5, [¢(X1, 0)'|? < supgpee- | (X1,0)'|* because By, C S,
for By, of radius small enough. (c) Firstly, because By, is bounded, (sup . cp; |T]) < oo.
Secondly, by Assumption 2(b), the first expectation is bounded. Thirdly, under Assumption
1(a)(b)(g), by Lemma 9 (p. 30), the second expectation is also bounded.

(zviii) Proof similar to the one of statement (xiii). The supremum of the absolute value of
the product is smaller than the product of the suprema of the absolute values. Thus, under
Assumption 1(a)(b), for By, of sufficiently small radius, for all (4,€) € [1,m]?,

Iazw(Xla 6)
90,00,

0) °Y(X1,0) |
00,00,

E| sup |eTl¢(X1’9) (r

(0,7)eBL

)d)(Xl’ 9)1/)(X1, 9),|]

< (sup |[TDE| sup [e7 VX0

sup |?/}(X179)¢(X1,9)/|]

(0,7)€By, (0,7)eBy, (0,7)eBy,

(a) [ / 92)(X1, 0

E(sup iy |E| sup fervenoPUXLD o g G sy, 0y
(6,r)eBL 0.1z 96,00; (0,7)€BL

(b)
< ( sup |7])4|E |[sup sup e2m¥(X1.0)p(X;)2
(0,7)€BL _9€N T€T(0)

\/E |:Sup |¢(X139)77Z}(X1»9),|2:| (2) oQ.

USON

(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a positive
function is the square of the supremum of the function. (b) Firstly, under Assumption 1(a)-(e)
and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6o, 7(6p)), so that, for By,
of sufficiently small radius, By, C {(#,7):0 € N A7 € T(0)} C S C S¢. Secondly, as the second
supremum does not depend on 7, sup, 5, [¥(X1, 0)'1? < supgpeee | (X1,0)'|2 because By, C S,
for By, of radius small enough. (c) Firstly, because By, is bounded, (sup(, o5, |7]) < oo.
Secondly, by Assumption 2(b), the first expectation is bounded. Thirdly, by Assumption 1(g),

the second expectation is also bounded.
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(ziz) Proof similar to the one of statement (xiii). The supremum of the absolute value of
the product is smaller than the product of the suprema of the absolute values. Thus, under
Assumption 1(a)(b), for By, of sufficiently small radius, for all (j,€) € [1,m]?,

, (X1, 0) . 0b(X1,0
E[ sup _Jorv0619) (s 22L 00, (00 )>w<xl,e>w<xl,e>’|]
(G,T)EBL 14 Vi
/ (X1, 0) 9(X,,0
< ( sup |[7P)E| sup <eT¢(X1’9)| 7/)(661 )H 1/1(691' )’> sup |¢(X179)¢(X1,9)/‘]
(0.1)eBL (0.1)B1 ¢ j (0.1)B1
(a) [ 2
<o )5 | s (ervonn 2RO LD a | s |¢<X1,e>w<xl,6>'\2]
(0,7)€BL. | (6,1)eBL 90, 90, (0,7)eBy,
(®) ) [ , ()
< (sup  |7])\|E [sup sup e27VX1O0p(X )4 [E | sup [¢p(X1,0)(X1,0) 2| < oo.
(0,1)€BL _96./\/ T€T(0) 0cO¢

(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a
positive function is the square of the supremum of the function. (b) Firstly, under Assumption
1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6o, 7(6p)),
so that, for By, of sufficiently small radius, B, C {(f,7) : 8 € N AT € T(#)} C S C S~
Secondly, as the second supremum does not depend on T, sup(97T)€E|1ZJ(X1,€)'¢)(X1,9)'|2 <
supgee: |[V(X1,0)9(X1,0)'|? because By, C S, for By, of radius small enough. (c) Firstly, because
By, is bounded, (sup(aT)erL |7|?) < 0o. Secondly, by Assumption 2(b), the first expectation is
bounded. Thirdly, by Assumption 1(g), the second expectation is also bounded. O

92
Lemma 19 (Finiteness of the expectations of the supremum of the terms from %LTZ—(S)ZJJ)). Under

Assumptions 1 and 2, there exists a closed ball By, centered at (0o, 7(6p)) with strictly positive
radius s.t., for all (k,j) € [1,m]?,

(i) E sup(ejT)erLeT/w(Xl»g)} < 00;

(i) E [supyy oz lo P07 2610 (X, )] < oo;
(i) B [sup )y [o7 P00 2500 < o

(iv) E :sup(ejT)erL |eT/¢(X1’9)T’%92m|} < 00

(v) E [sup(y ez 7“1 00(X1,0)]| < o0

D E :sup(g,T)eBT o™ ¥(X1.0) Bw(a)g},e)q < 00;

(vii) E :SUP(G,T)GE |eT/w(X1’9)¢k(X1,9)Wl] < 00
(viii) E :Sup(e,T)eBi o7V (X1.0) 280X.0) T,awg;jhe) |] < 00;
(ix) E :SUP(G,T)GE |eT/w(X1’9)%Z|] < 00;

o E :sup(g,T)eBT e U (X10) (X7, 0) awgg},a) T,awggjl,e)q < 00;
o 6 :sup(g,T)eBi |eT/¢(x1,e)¢k(X1,9)%|} < 00;
(xii) E :SUP(e,T)eBi o7V (X1.0) 22LX1.0) awkégil,e) q < oo
(xiil) E [supg,)c5; 70Xy, 0)(X1, 0) | < oo
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(xiv) E [sup( 0y [0 (X, ) (X1,0)9(X1,0)]] < o0;

(xv) E [supg ey €7 V0107 2y (X, )up( X, >'|}

(xvi) E :sup( VeBr o™ V(X1 )aw Xl’ P(X1,0) ]

(xvil) B [supyg ) 7 [e7 VX0 (X1, )7/ 20500 wxl, 0)b(X1.0)|] < oo;
(xviii) E :sup( g eV wk(xl,a)%%w(xl,e)ﬂ < c0; and
(xix) E :sup(eﬂ_)eBL e (X >%§?m¢(xl,9)¢(xhe)ﬂ < 0.

Proof. The proofs are similar to the ones of Lemma 18 (p. 50): We only use more often the
inequality that states that the norm of a component of a vector is smaller than the norm of
the vector (e.g., |[Yr(X1,0)] < /Doy ¥i(X1,60)% = [¢(X4,0)]). Thus, we only provide proof
sketches.

(i) See Lemma 18i p. 50.

(ii) For By, of sufficiently small radius, for all (k, j) € [1,m]?,

(X1, 0
E| sup [e7 V%) ’%wxl,@ﬂ]
(Q,T)EBL ]
) O (X1,

< (s frhE | sup [0 PELD Gy, >|]

(G,T)EBL (97T)EBL J (QT)GBL
< ( sup |7]),|E| sup IeT’w(XI’Q)MIQI E[ sup Iwk(Xl,H)’P]
(0,7)€BL | (6,7)eBL 90 (60,1)€BL

< ( sup |7])\|E [sup sup e27¥(X1.0)p(X )2
(0,7)€BL _06/\/ T€T(9)

\/E [sup |¢(X1,8)’|2] < 00,
HcOc

where the last inequality follows from Assumption 2(b), and Lemma 9i (p. 30), under Assump-

tion 1(a)(b)(g)-
(i4i) For By, of sufficiently small radius, for all (k, ) € [1,m]?, E [sup(e NeBr le”’

P(X1,0) 0V (X1,0) |] <
6.7

E [sup(aT)erLeT w(X1’9)|W|} <E [SquEN SUP,e(g) € w(Xl’e)b(Xl)} < 00, where the last
inequality follows from Assumption 2(b).

(iv) See Lemma 18iv p. 50.

(v) For By, of sufficiently small radius, for all k € [1,m], E [sup(ej)erL e V(X1 (X, 9)@ <

E [sup(gyT)erL le™ X0 (X 9)|} <E [sup(gﬂ.)ese |eT/1/’(X179)@ZJ(X1,9)|] < 0o where the last in-
equality follows from Lemma 9ii (p. 30) under Assumption 1(a)(b)(e)(g).
(vi) See Lemma 18v p. 50.
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(vii) For By of sufficiently small radius, for all k € [1,m],

, X
- l sup |e7 w(Xl’G)%ﬁk(Xla@)—aw( }’9') |]
(0,7)eBL 90

< ]E’ [ sup |eT’w(X17e)w| sup |f(’[)k(X179)|]
(0.1)€BL 9" (o.r)eBr
[ X
< ,|E| sup |e‘f'7v/’(X179)W|2 E| sup |1/1k(X1»9)|2]
\ | (0,7)eBL 0 (0,7)€BL,

E [sup sup e27¥(X1.0)p(X)2
\ | 0EN T€T(0)

\/E s o602 < x,

0c®¢

where the last inequality follows from Assumption 2(b) and Lemma 9i (p. 30) under Assumption

1(a)(b)(g)-

(viii) For all j € [1,m], E [sup(eyT)erL o™ ¥ (X1.0) ngg}ﬂ) T'ad)g@(;’e) |] < (sup(g yepy 7))
E [supyg ey oV PR [P | < (s [TDE |supgen sup o) €7V Ob(X0)?) <
oo where the two last inequalities follow from Assumption 2(b) and the boundedness of By

(iz) See Lemma 18vi p. 50.

(x) Under Assumption 1(a)(b), for By, of sufficiently small radius, for all (j, k) € [1,m]?,

OW(X1,0) ,Ou(X1,0) |] o

E | sup |7 Y00y (X,,0)

-
(0,r)€BL 00’ a0,
, 0 / 6

< ( sup |7‘|)]E sup (e’?' w(X1,9)|87/)(X}7 )||a7v/)(X17 )|> sup W}k(Xl»H)l

(0,7)€BL, (0,m)eBL 90 99 (0,7)eBL,

[ X X 2

< ( sup 7)) |E| sup <e7’¢(X1»9)|6w( }’9)”87’[]( 1’9)|> E| sup |¢Yw(X1,0)?

(0.r)B1 (0,m)eBr 96 99, (0.1)BL

< ( sup |7)\|E |sup sup e2m¥(X1.0)p(X )4
(6,7)€BL _6‘€N T€T(0)

\/E s (06,02 < x,

USION

where the last inequality follows from the boundedness of By, Assumption 2(b) and Lemma 9i
(p. 30) under Assumption 1(a)(b)(g) and (e).
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(zi) Under Assumption 1(a)(b), for By, of sufficiently small radius, for all (j, k) € [1,m]?,

/ *h(X1,0)
E| sup |70y (X, 0)——"—|
(0.1)By, 00;00'
, 0%*(X1.,6
<E sup|eTw(X17e)%| sup|«¢k<xl,e>’|]
(Q,T)EBL J (evT)EBL
- (X
<L E sup|eT'1Z’(X179)%|2 \IE SUP|¢I<:(X1»9)'|2]
_(Q,T)GBL J (0,7)eBL,

< 4| E |[sup sup e2m¥(X1.0)p(X)2
| 0EN T€T(0)

\/E s (0600 < x,

(UdSCH

where the last inequality follows from Assumption 2(b) and Lemma 9 (p. 30), under Assumption
1(2)(b)(8) and (c). B
(zit) Under Assumption 1(a)-(e) and (g)-(h), for By, of sufficiently small radius, for all (j,k) €
o OB(X1,0) Oy (X 1,0 (X 1,0) 1 O(X1.0
[[Lm]]z, E [Sup(e,T)eE e »(X1,0) wg%ul ) ¢k(§9j1 )q <E [ 6)| wge} )|| wgejl )|] <

/ X ,
SUD (g, ey © LN

E [supee N SUD-eT(g) T VX0 (X 1)2] < 0o where the two last inequalities follow from Assump-
tion 2(b).

(ziti) See Lemma 18xii p. 50.

(ziv) Under Assumption 1(a)-(¢) and (g)-(h), for By, of sufficiently small radius, for all k €
[1,m],

E

sup |eT,w(X1’6)'¢Jk(X1, (X1, 0)(X, 9),|]
(6,7)€BL

< ( sup |7]P)E
(6,7)eBL

sup (VX D) (x4, 0)]) sup\wxl,e)w(Xl,e)w]
(CRISIZT (6,7)€B],

JE

\/E s 101,003, 0)2| < .

cO*

< ( sup |T|2>\E sup (o7 V(X00[gy (X5, 0)])?

(,7)EBL | (0,7)€BL (,7)€BL

sup |¢(X1,9)¢(X1>9)/|2]

< ( sup |7)?),|E [sup sup e2m¥(X1.0)p(X)2
(0,7)€BL \ <N €T (0)

where the last inequality follows from the boundedness of By, Assumptions 1(g) and 2(b).
(zv) See Lemma 18xiv p. 50.
(zvi) See Lemma 18xiii p. 50.
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(zvii) Under Assumption 1(a)(b), for Bj, of sufficiently small radius, for all (k,j) € [1,m]?,

sup [0 (x,, 07 210D

E
(,7)EB], 89]

(X1, 0)9(X, 9)/|]

<( sup |T|)E[ sup (ele(Xlﬂ)ld)k(Xl,9)”81/}()(179)|>
(0

sup WJ(le 9)¢(le ‘9),|]

(6,7)€BL, (6,7)€BL 89] ,T)EBL
, op(X1,0) \?
< ( sup_r) E[ sup (efw<X179>|¢k<X1,e>n%|)] E[ sup |¢<X1,e>¢<xl,e>'|2]
(6,7)€Br, (0,7)€BrL J (0,1)€Br,

<(sup TI)JE Lsup sup e?f'wxlwb(X)NE! sup w(xl,e)wxl,eﬂ?]

(0,7)€BL, EN T€T(0) 0,71)€BL,
< 00,

where the last inequality follows from the boundedness of By, Assumption 2(b) and Assumption

1(g)-
(xviii) Under Assumption 1(a)(b), for By, of sufficiently small radius, for all (k,j) € [1,m]?,

, (X4, 0
sup__[e Oy (X, e)%
(GVT)GBL J

o (X1, 0
sup_ o7V (x,,0) 241D supw(Xl,e)’l]
(0,7)eBy, J (0,7)eBy,

JE

\/E s 060 <,

USION

E

¢(X179)/|]

<E

E| sup |em?X10)q(X1,0)
_(G,T)GFL

(X4, 0)
90

N

‘ 2

sup__ |¢(Xa, 9)|2]

(6,7)€BL

< 4 |E [sup sup e2m¥(X1.0)p(X;)1
| 0EN T€T(6)

where the last inequality follows from Assumption 2(b), and Lemma 9i (p. 30), under Assump-

tion 1(a)(b)(g).
(ziz) Under Assumption 1(a)(b), for By of sufficiently small radius, for all (k,j) € [1,m]?,

sup  |e7 ¥(X1.0) (X4, 0)
(6.7)€BL, BQJ

’eT’z/)(Xlﬂ) a¢k(X1> 9) |
00,

E

w(Xl,(?)lﬁ(Xh@)'I]

<E| sup

(9, 7)EB],

sup  |[9(X1, 0)y(Xa, 9)/’]

(6,1)eBL,

N

E| sup eT'w(Xlﬂ)%‘;(he)P]JE[ sup |7/’(X1>9)1/)(X179)/’2]
A 0

\ | (0,7)€BL J ,T)EBL

< 4|E [sup sup eQT'WL@)b(Xl)Q] \/E sup rw(Xl,mw(Xl,e)’l"’] < 00,
\ | 0EN T€T(0) HcO¢

where the last inequality follows from Assumption 2(b) and Assumption 1(g). O
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Lemma 20. Under Assumptions 1 and 2, P-a.s. as T — oo, w =0O(T ).

Proof. Unlike in most of the rest of the paper, for clarity, in this proof we do not use the

potentially ambiguous notation that denotes aL%—(f’T) . . with W.M
(0,7)=(07,7r(01))

Under Assumptions 1 and 2(a), by subsection B.2 (p. 32), the function Ly (6, 7) is well-defined
and twice continuously differentiable in a neighborhood of (0] 7(6y)’) P-a.s. for T' big enough.
Moreover, under Assumption 1(a)(b) and (d)-(h), by Lemma 21i (p. 61), 7p(.) is continuously
differentiable in ®. Now, under Assumption 1, by Theorem 1i (p. 6) and Lemma 2iii (p. 20),
P-a.s., Op — 6y and 7p(67) — 7(6p), so that P-a.s. for T big enough, (8, 7 (7)) is in any
arbitrary small neighborhood of (6 7(6p)"). Therefore, under Assumption 1 and 2(a), by the
chain rule theorem (e.g., Magnus and Neudecker 1999/1988, Chap. 5 sec. 11), P-a.s. for T big
enough, 0 — Ly (0, 770(0)) is continuously differentiable in a neighborhood of f7, and, for all
j€[1,m],

o~ 9Lr(0,7r(6))
89.] 9=éT
g - OL7(6,7) N OL7(0,7) or(0)
5 Nor=racry O Nom=0rmrr) Vi lo=b,
OLr(6,7) _ 9Lg(0,7) o7(6)
D5 N 0m)=(0r 720r) o' Nomn=@rr@ry i lo-i,
g 8.[/]5(99,7’) _ O(T—l)o(l) _ O(T—l)
J (0.7)=(b7,77(f1))

(a) It is an immediate and standard implication of the chain rule (e.g., Magnus and Neudecker

1999/1988, chap. 5, sec. 12, exercise 3). (b) Firstly, under Assumptions 1 and 2, by Lemma 22iv
oLy (6.m) = O(T 1) because (67, 71 (61)) — (6o, 7(6

ory—rmrry ~ O ) (01, 70 (01)) — (6o, 7(60)),

(p- 63), P-as. as T' — 00, —57
P-a.s. as T' — oo, by Theorem 1i (p. 6) and Lemma 2iii (p. 20). Secondly, under Assumptions 1

and 2, by Theorem 1i (p. 6) and Lemma 21iii (p. 61), P-a.s. as T" — oo, 85(5,?) o , =
O(l) J (077)_(9T7TT(0T))

Lemma 21 (First Derivative of the implicit function 77(.)). Under Assumption 1(a)(b) and
(@)-(h),
(i) P-a.s. for T big enough, the function 7p : @ — R™ is continuously differentiable in ©
and its first derivative is

-
0r1(60) _ [ L= rorwory, gy oy | | LS errorvo (2608) OGO |
00 T;e $ulf)be(6) T;e g OO =55 )1

(ii) for any sequence (O1)ren € ON converging to 6y, P-a.s. for T big enough, there exists
O between Op and 6y s.t. \/T[TT(HT) —7r(00)] = %ﬁ(GT —6o);

ALy (01,7 (07))
00

“This is a potentially ambiguous notation in the sense that could also denote

W‘ . Except when indicated otherwise, such an ambiguity cannot occur because we never
0=01 )
use derivatives of 8 — L (0, 7p(6)).
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(iii) under additional Assumptions 1(c) and 2(b), for any sequence (07)ren € ON converging
to Oy, P-a.s. as T — oo, 200 . _E[y(Xy, 00)0(X1,00)) 'E [W} ; and
(iv) under additional Assumptions 1(c) and 2(b), for any sequence (01)ren € ON con-
verging to by s.t., as T — oo, VT (fp — 0y) = Op(1) P-a.s. as T — oo, mp(fy) —
m1(00) = =V M (07 — 0) + op(T~1/2), where V := E[tp)(X1, 00)¢(X1,600)] and M =
E [8w§xl,0o>]
00 ’

Proof. (i) Under Assumption 1(a)(b) and (d)-(h), by Lemma 1ii (p. 19) and its proof, P-a.s.
for T big enough, the assumptions of the standard implicit function theorem hold and 7p(.)
is continuously differentiable. Thus, under Assumption 1(a)(b) and (d)-(h), P-a.s. for 7" big
enough, application of the implicit function theorem yields

orr(6)
00’
r ’ -1 ’
o [F Sl Q)] [0 |3 Lo @)

T or’ 06!

- T=717(0)

-1 < 7/ (6) /_ 1 d 7' (0) (9’@[11/(9) /8¢t(9)
= = Tze Ve(0) ¢ (0) TZG <W + ()T W)

- = r=rr(0)
| L5 o, 0V (6 iy rr(y (o) O0el0) L g gy O%e(0)
=- ?;e e (0) 1 (0) T;e (W-Hbt( )77 ( )W) :

(i1) Again, under Assumption 1(a)(b) and (d)-(h), by Lemma 1ii (p. 19), P-a.s. for 17" big
enough, 77(.) is continuously differentiable, so that the result follows from a first-order stochastic
Taylor-Lagrange expansion (Jennrich 1969, Lemma 3).

(#11) Firstly, under Assumption 1(a)(b)(d)(e)(g)(h), by Lemma 2iii (p. 20), P-a.s. as T — oo,
supgee |7r(8) — 7(8)| = o(1), so that 7 (67) — 7(6p). Secondly, under Assumptions 1 and 2,
by Lemma 23iv, vii and x (p. 64), for By, a ball around (6, 7(6)) of sufficiently small radius,
E [sup g ey 17 PO 200 < oo [supy, ) o7 (X, 6)6(X5,0)]] < oo, and

a0’
ULLN (uniform law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp. 24-25,

Theorem 1.3.3), implies that, for all k € [1,m], P-a.s. as T" — oo,
GTT(GT)

o6’
N —E[GT(QO),"Z’(Xl’GO)’l/J(Xl, HO)QZ)(Xl 90)1]—1 {E |:eT(6'0)/¢(X1,90) aw()a(ela 90)

/6¢(X17 60)
00
81/)(X17 90)
00
because 7(6p) = Opmx1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e) and (g)-(h).

E [sup(a?T)erL |eT/w(X1’a)w(X1,6)T’M\] < oo. Thus, by Assumptions 1(a)(b) and (d), the

+E [e7 000000y, (X 0)r(6o)

= —E[{(X1,00)¢(X1,00)] 'E [
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(i) Under Assumption 1 and 2(b), by the statement (ii) of the present lemma, P-a.s. as
T — 0, there exists O between 67 and 6 s.t.

TT(QT) — TT(90) == &—g—i;fﬂ(eT - 90)

—VIM(0r — 60) + [—aTT(éT)

2+ V‘lM] (61 — 60)

—V_lM(QT — 90) + OP(T_l/z)
(a) Add and subtract V1M (6 —6p). (b) Under Assumption 1 and 2(b), by the statement (ii)

of the present lemma, P-a.s. as T — oo, 875(0?_7’) + V=M = o(1). Moreover, by assumption, as
T — 00, 0p — 0y = O]}D(T_l/z), so that 6TT(6T) +VIM (9T - 90) = OP(T 1/2) O
orr(.)

Remark 3. As notation indicates, =55~ corresponds to a partial derivative as 7r(.) is also a
function of the data. o

Lemma 22 (Asymptotic limit of W). Under Assumptions 1 and 2, for any sequence
(O7)ren € ON converging to 0y, for all k € [1,m], P-a.s. as T — oo,

(i) LerOrmon) _,

(i) aMzT(eT,TT(ﬁT)) o(TY;

(iii) 61\13T(9£1:T(9T =O0(T"); and
(iv) aLT(HT,TT or)) _ O(T—1).

Proof. (i) Under Assumption 1(a)(b) and (d)-(h), by Lemma 2ii (p. 20), P-a.s. for 7' big enough,
7r(07) exists, so that, by equation (27) on p. 36, P-a.s. for T big enough, for all k¥ € [1,m],

oM, T(9T,7'T (07)) ( _) TT(QT)I%WT)?/% k(07)
T Z . err (07) v (07)

=0

because, by definition of 77(0) in equation (14) on p. 17, % Zle eTT(eT)/wt(QT)gZ)tyk(HT) =0
(#3) Similarly, under Assumption 1, by equation (33) on p. 39, P-a.s. for T" big enough, for
all k € [1,m],

T

Z O 00r)y (0) 2T

8M27T(9T, TT(HT)) _ 1
0Tk

T
1 ZBTT o) (07) Ot (01)
t=1 o0’

where P-a.s. as T — oo, (0%, 7r(07)") — (0 7(00)’) by the lemma’s assumption and Lemma
2iii (p. 20). Now, under Assumptions 1 and 2, by Lemma 23iv and v (p. 64), for By a ball

20"

around (0, 7(6p)) of sufficiently small radius, E [SUP(HT By |7 ¥(X1,0) < oo, and, for

all k€ [1,m], E [sup(eﬁ)erL |eT/¢(X1*9)¢k(X1, 0) 8?/)(8)6(,176‘) |] < 00. Thus, by Assumptions 1(a)(b)
and (d), the ULLN (uniform law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi

|
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2003, pp. 24-25, Theorem 1.3.3), implies that, for all k& € [1,m], P-a.s. as T' — oo,
T&'MQ,T(HT, TT(HT))

ot
-1
— tr{ E |e7(00)¥(X1,00) W(_Xl,’ 0N eT(00>’¢<X1ﬂo>¢k(X1,90)—’%(}(1,’ o)
a6 a0
(X1,00)] " A (X1, 0o)
e tI‘ {]E [T] E @/)k(Xl,eo)T 5

because 7(0y) = O,x1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e) and (g)-(h). Therefore,
P-as. as T — oo, 22220rmr00) — (1),

(#i) Under Assumption 1, by equation (38) (p. 42), for all k € [1,m],

8-]\13,T(6T; TT(QT))
oty

-1
1 L

= Z eTT(HT)th(e)d}t”g(HT)Qj}t(eT)wt(eT),

t=1

1
= ——tr

N

T

1 /.

T E ™ O OT) (07 )ipy (O7)'
=1

where P-a.s. as T' — oo, (0, 71r(0r)") — (0, 7(60)’") by Theorem 1i (p. 6). Now, under
Assumptions 1 and 2, by Lemma 23vii and viii (p. 64), there exists a closed ball B, C S
centered at (6o, 7(6p)) with strictly positive radius s.t., for all k& € [1, m],

E [Sup(G,T)E?L |eT,¢(X1,9)¢(X179)¢(X1’ 9),|:| < oo and

E [sup(eyT)erL|ele(X179)¢k(X1,9)2/1(X1,9)1/J(X1,9)’|] < oo. Thus, under Assumptions 1 and 2,

by ULLN (uniform law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp.
24-25, Theorem 1.3.3), for all k£ € [1,m], P-a.s. as T — o0,

OM3 (07, 7r(07))
o1k

1 / ~1 ,
— —5tr {IE [eT(QO) V(X0.00) 45X, 0o) (X1, 90)’] E [67(9(’) YIX000) 4 (X1, 00)3b(Xa, o) (X1, 90)’] }

T

= —%tf {E [(X1,00)0(X1,00) ] E [0n(X1, 00)1b( X1, 00) (X1, 90)/}} ,

because 7(0y) = Opmx1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e) and (g)-(h). Therefore,
P-a.s. as T — oo, %ﬂ;ﬁw =0(T™Y).

(iv) Under Assumption 1(a)-(b) and (d)-(h), by Lemma 12 (p. 34), Ly (6, 7) = M, 1 (6, 7) +
My 7(0,7) + M37(0,7), so that the result follows from the statement (i)-(iii) of the present

lemma. O

Remark 4. In the case in which 0p = éT, there exist at least one other way to prove Lemma 22
that do not require Assumption 2. This way follows an approach a la Newey and Smith (2004),
which relies on ULLN with T7(0) = {r € R™ : |7| < T7¢} and ¢ > 0. We do not follow this
ways because (i) Other parts of the proof of Theorem 1ii (p. 6) require the asymptotic normality
of A7 and thus Assumption 2; (ii) It would lengthen the proofs and complicate their logic; (iii)
We later use Lemma 22 with 6, = 9T, where 7 is a constrained estimator. o
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Ly(07) g PLr@a)y.

Lemma 23 (Finiteness of the expectations of supremum of the terms from 2 .

Under Assumptions 1 and 2, there exists a closed ball By C S centered at (90, (90)) with stmctly
positive radius s.t., for all (h, k) € [1,m]?,

(i) E -sup((9 e © o VX, 9)} < 00y
(i) E iSUp(e,T)eBL e XLy (X1, 0)¢bn (X1, )q < 00;
(i) [supyg,0ycy [e™ X100 (X1,0)]] < o0
(iv) E [sup(g )7 o7V 0>ﬂxl—”r}
(v) E iSUP(e NeBL |eT v(Xa,0 (X1, )d (a)é} 9)‘] < 005
(vi) B [supg, 0y le” P00 (X1, 0)un (X1, 0) 225302 | < oo
(vii) E :sup(eT B o™ ¥ (X0, )¢(X1.9)¢(X1,9)/|} < 005
(viti)  [sup(g )7 7 P10 (X1, 0)(X1, 0)6(X1, 0| < oo;
() B [sup(q )7 le7 VX000 (X0, 0)6m (X1, 0)(X1, 0)(X1, 0| < o0; and
(x) E :sup( VeBr e v(X1, )w(Xl,H)T’%ﬂ < 0.

Proof. (i) Apply Lemma 18i (p. 50) under Assumptions 1 and 2. Note that it does not im-
mediately follow from Assumption 1(e) and the Cauchy-Schwarz inequality because we need
additional assumptions to ensures that there exists By C S: See Lemma 11(ii) on p. 32.

(ii) For all (h, k) € [1,m]?, for all (8, 7) € Br, e *(X1.0) |y (X1, 0)4hp (X1, )] = e™ ¥(X1.0)
VIoE(X1,0)dn (X1, 0)]2 < &7 v (X00) \/Z(ij)e[h 2 [0i(X1,0)05(X1,0)]2 = ™ VL0 |4 ( X, 0)¢ (X1, 0),

so that E [SUP(QT gy e VRO (X, 0)un (X, )|} <E [Sup(g,T)eE ™ VX0 (X, 9)¢(X1»9)|] <
oo, where the last inequality follows from Lemma 18xii (p. 50) under Assumptions 1 and 2.

(i4i) Apply Lemma 19v (p. 56) under Assumptions 1 and 2.

(iv) Apply Lemma 18v (p. 50) under Assumptions 1 and 2.

(v) Apply Lemma 19vii (p. 56) under Assumptions 1 and 2.

(vi) Proof similar to the one of Lemma 18xiii (p. 50). The supremum of the absolute value
of the product is smaller than the product of the suprema of the absolute values. Thus, under
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Assumption 1(a)(b), for B}, of sufficiently small radius, for all (h,k) € [1,m]?,

i , Ou(X1,0
E| sup |e" YDy (X1, 0)en (X, 9)% |]

| (0,7)€BL

<E| sup lerennXL0) |«¢k<xl,e>wh<xhe>|]

L (0,7)eBL 90’ (0,7)€By
@ [ , ‘ :
< E| sup |[ef w(Xl’G)M\ sup |¢(X179)¢(X1»9),‘]
| (0,7)€BL, 96 (0,7)eBy,
(b) [
< L|E| sup |e7'/w (X1,0) %| \IE sup [(X1, 0)( X, 9)/|2]
| (0,7)eBL (6,7)eBL

NS

E |sup sup eQT'w(le")b(Xl)Q] \/E {sup |1/)(X1,9)1/)(X1,9)’]2] (i) 0.
0N 7eT(0) 9cOs
(a) As in the proof of statement (ii), for all (h, k) € [1,m]?, for all

(0,7) € Br, |n(X1,0)0n(X1,0)| < [(X1,0)9%(X1,0)'|. (b) Apply the Cauchy-Schwarz in-
equality, and note that the supremum of the square of a positive function is the square of the
supremum of the function. (¢) Firstly, under Assumption 1(a)-(e) and (g)-(h), by Lemma 11ii
(p. 32), S contains an open ball centered at (Ao, 7(p)), so that, for By, of sufficiently small
radius, By, C {(0,7):0 e NAT € T(0)} CS C S°. Secondly, as the second supremum does not
depend on 7, sup, ) 5, [(X1,0)(X1,0) 1> < suppee: [¥(X1,0)1(X1,0)|? because By, C S,
for By, of radius small enough. (d) Firstly, by Assumption 2(b), the first expectation is bounded.
Secondly, by Assumption 1(g), the second expectation is also bounded.

(vii) Apply Lemma 18xii (p. 50) under Assumptions 1 and 2.

(viti) Proof similar to the one of Lemma 18xiii (p. 50) and to the statement (vi) of the present
lemma. The supremum of the absolute value of the product is smaller than the product of the
suprema of the absolute values. Thus, under Assumption 1(a)(b), for By of sufficiently small
radius, for all (h, k) € [1,m]?,

E| sup |eT’¢<X1’9>«¢)k<X1,9)w<X1,e)z/)(Xl,en]
(0,7)€BL
S E| sup [e"VX1Dy(X1,0)] sup |¢(X1,9>w<X1,9>’r]
(0,71)€BL, (0,7)€By,
() [
<\ |E sup |eT/w(X1’9)T/)k(X170)|2] E[ sup Iw(Xl,H)dJ(Xl,@)’I?]
\ L(0,7)€BL (6,1)eBL
0) [ , ‘ ©)
< A |E |sup sup > VX00p(X1)2 [ [E | sup [¢(X1,0)¢(X1,0) | < oc.
_OEN T€T(0) 0cOs

(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a
positive function is the square of the supremum of the function. (b) Firstly, under Assumption
1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6y, 7(6p)),
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so that, for By, of sufficiently small radius, B, C {(6,7) : § € N A7 € T(#)} € S C S-.
Moreover, for all k € [1,m], for all § € O, |Vp(X1,0)] < [(X1,0)] < b(X), where the last
inequality follows from Assumption 2(b). Secondly, as the second supremum does not depend
on 7, sup(y gy [¥(X1, 0)1(X1,0)|? < supgee: [V (X1, 0)¥(X1,0)|? because By, C S, for By, of
radius small enough. (¢) Firstly, by Assumption 2(b), the first expectation is bounded. Secondly,
by Assumption 1(g), the second expectation is also bounded.

(iz) Proof similar to the one of Lemma 18xiii (p. 50) and to the statement (vi) of the present
lemma. The supremum of the absolute value of the product is smaller than the product of the
suprema of the absolute values. Thus, under Assumption 1(a)(b), for By, of sufficiently small
radius, for all (h, k) € [1,m]?,

E| sup |ef’¢<X1»9>wk<X1,em(xl,ewxl,@n]
(0,7)eBL
SE| sup |e" KDy (X, 0)pn(X1,0)| sup |¢(X1,9)¢(X1,9)’|]
(6,1)eBL (0.7)€B;,

E| sup [em 0y (X, 0)dn (X1, 0)2

(a)
<
\ _(G,T)EFL

E

sup ’¢(X170)¢(X170)/|2]

(0,71)eBL,

(2 E |sup sup eQT"/’(lee)b(Xl)‘*] \/IE [sup |1/1(X1,6’)1/1(X1,9)’|2] (2) 0.
\ | 0EN T€T(6) <O
(a) Apply the Cauchy-Schwarz inequality, and note that the supremum of the square of a
positive function is the square of the supremum of the function. (b) Firstly, under Assumption
1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an open ball centered at (6p, 7(6p)),
so that, for By, of sufficiently small radius, By, C {(6,7) : 8 € N A7 € T(#)} c S C S-.
Moreover, for all & € [1,m], for all € O, |Yp(X1,0)| < [(X1,0)] < b(X) where the last
inequality follows from Assumption 2(b). Secondly, as the second supremum does not depend
ON T, SUD(p By (X1, 0)1(X1,0)|> < supgeee [¢(X1,0)1%(X1,0)|? because By, C S, for By, of
radius small enough. (¢) Firstly, by Assumption 2(b), the first expectation is bounded. Secondly,
by Assumption 1(g), the second expectation is also bounded.

(z) The norm of a product of matrices is smaller than the product of the norms (e.g., Rudin
1953, Theorem 9.7 and note that all norms are equivalent on finite dimensional spaces). Thus,
for By, of sufficiently small radius, for all (¢, ) € [1,m]?,

E[ iy IeT'“’(X1’9)¢(X1,9)T'w|]
(0,7)€B1, 04

< ( sup [T])E [ sup eT'w(Xl’e)h/)(Xl,9)||—a¢(X/1’9) |]
(6,r)eBL (6,7)€BL 00

() ) 5

< ( sup |7)E [sup sup e VXOp(X,)? (<) 0.
(0,1)eBL 0eN T€T(0)
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(a) Firstly, under Assumption 1(a)-(e) and (g)-(h), by Lemma 11ii (p. 32), S contains an
open ball centered at (6, 7(6p)) Thus, under Assumption 1(a)-(e) and (g)-(h), for By, of suf-
ficiently small radius, by definition of S, By C {(8,7) : § € N A7 € T(0)} C S, because
N C © by Assumption 2(a). Secondly, by Assumption 2(b), supgep [1(X71,0)] < b(X) and

SUPgen |W| < b(X). (b) Firstly, supy 5, |7|? < oo because B, is bounded. Secondly,

by Assumption 2(b), E |:Sup9€N SUP, () eT/”’(Xl’e)b(Xl)Q] < o0. O

B.4. Proof of Theorem 2: Trinity+1. The proof of Theorem 2 adapts the traditional way
of deriving the trinity along the lines of Smith (2011). As in the proof of Theorem 1, the main
difference comes from the complexity of the variance term |[37(0)|qet-

Core of the proof of Theorem 2. Asymptotic distribution of Waldr. By Assumption 3(a), r :
® — RY is continuously differentiable. Thus, under Assumptions 1 and 2, if the test hypothesis
(9) on p. 6 holds, a first-order Taylor-Lagrange expansion at 0y evaluated at éT, w by w, yields,
P-a.s. as T — o0,

r(6r) = r(60) + R(Or) (61 — 0p) , where Gy is between 07 and 6p;

@ R(0r) (07 — 6o)

= R(60)V (0, 3(00)

—
=

2 N (0, R(60)S(60) R(00)')

(a) By definition, if the test hypothesis (9) on p. 6 holds, r(6p) = Ogx1. (b) Under Assumptions
1 and 2, by Theorem 1ii (p. 6), P-a.s. as T — oo, VT(67 — 6p) L N(0,%(6p)), which also
implies that 67 — 6. Thus, under Assumptions 1, 2 and 3(a), by continuity of R(.), P-a.s. as
T — oo, R() — R(f)), so that the result follows by the Slutsky’s theorem.

Now, under Assumptions 1, 2 and 3(a), by Lemma 28i (p. 82), P-a.s. as T — oo, O — 0, so
that R(07) — R(fy) by Assumption 3(a). Moreover, by the theorem’s assumption, as T — oo,
Z/(_@ LA ¥(0p). In addition, by Assumption 1(h) and 3(b), ¥(6y) and R(6y) are full rank, so
that % and R(fr) are full rank w.p.a.l as T — oo (Lemma 30 p. 87). Then, the result
follows from the Cochran’s theorem.

Asymptotic distribution of LMp. Under Assumptions 1, 2 and 3, by Proposition 2iii (p. 75), if
the test hypothesis (9) on p. 6 holds, as T" — oo, Jr 2 N(0, (R(00)X(00)R(Ap)")~1). Now, under
Assumptions 1, 2 and 3(a), by Lemma 28i (p. 82), P-a.s. as T — oo, O — 6y, so that R(fy) —
R(6p) by Assumption 3(a). Moreover, by the theorem’s assumption, as 7" — oo, 2/(6?) 18 Y (0o).
In addition, by Assumption 1(h) and 3(b), ¥(6y) and R(fy) are full rank, so that 2/(90\) and R(f7)
are full rank w.p.a.1 as 7' — oo (Lemma 30 p. 87). Then, by the Cochran’s theorem, as 7' — oo,
T3 [R(éT)Z/(Q\())R(éT)’ 13r L xﬁ- Finally, under Assumptions 1, 2 and 3, by Lemma 28iii (p. 82),
R(OrY5r = — 2GR so T, [R(O)E(00) ROr) Fyr = TIR(rY 37! S(00)[R(0r) 3] =

N 7R o[ fyx (01)] <= 0n[fps (67)] .
T w ‘ezéTE(go) w ‘9=9:T ;g, d (o) ZE ~~ where the last equality fol-

lows from the definition of the LogESP in Lemma 12 (p. 34), i.e.,
Le(0,70(0)) = [ S, @O | = ot [Sr(0)]aw = FMn(fay.(0) — B (L)
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Asymptotic distribution of ALRp. Under Assumptions 1,2 and 3, if the test hypothesis (9)

on p. 6 holds, by Lemma 24 (p
— In[fg: (67)]}

2{In[fy: (07)]

r ~ - !

= —[VT(or i) s

w _|

() [ 1 T

= — | == wilbo)
L Tt:l

@ [ 1 &

C

DS y60)
L Tt:1

@ _ V_l/zi -
L ﬁt:l

© _ V—l/QL -
. VTI

D

Y

()

/!

VT (0r - 00)] + 0n(1)

T
1
ER’(RZR’)’IRM’lﬁ > hi(Bo)+o=(1)
(M) 'R (RER)'RESISR(RER)'RM !

(M

) P21/2R’

-/

-/

v L

) 'R/(RZR)"*RM™!
VI/Q/(M/)—lRI(RZR/)—lRM—lvl/Z V-

Z (o)

. 70), P-a.s. as T' — oo,

/

T
> SR(RSR)'RM~ TZ Ui (00)+op(1) |+ op(1)
=
Z + op(1)
1 « _
ﬁziﬂt(%) + op(1)
Ve L S0 |+ oe)
\/Tt:1 t{bo op

T
+ op(1)

(a) Under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds, by Lemma 24ii

(p. 70), P-as. as T — oo, /T (07 — 07) = SR(RER)'RM 'L zt LUe(00) + op(1).

(b)

Transpose the content of the first square bracket, and then note that Y =Y/ by symmetry. (¢)

Note that REX 'SR/ (RYR')

~1 = I. (d) Use that VY/2V~1/2 = . (e) Note that Pgij2p =

VY2 (M) 'R(R'ER)"'R'M~'V'/2. (f) Under Assumption 1(a)-(c) and (g), by the Lindeberg-
Lévy CLT theorem, as T — 00, == 1 ¢(0)) B N(0,V) where V := E[p)(X1, 00)1(X1, 0)'].
Moreover, the orthogonal projection matrix Psyi/2p5 has rank g because R is of rank ¢ and ¥

has full rank by Assumptions 3(b) and 1(h), respectively. Thus, the result follows from the

Cochran’s theorem.

Asymptotic distribution of ET7. Under Assumptions 1, 2 and 3, if the test hypothesis (9) on

p. 6 holds, by Proposition 2ii (p

\/_TT(QT

. 75), P-as. as T

— 00,

T

(M) 'S Y2 Py 2V M 1\/1_2%5 (6o) + or(1)

(i) (M’)_l[Vl/Q(M’)_l]_lpzl/zR,[.M_lVl/Z']_lM_ \/_Zwt 9() +OIF’( )

(0)

T

T

/ 1
(M) M'V=Y2 Py oy V12 MM‘lﬁ > 4e(B0) + 0=(1)

t=1

_ 1
1% 1/2PEI/2R'V 1/2 Zd)t 00 +O]P( )
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(a) By definition, M~V (M')~! =: % = V%2 5o that £1/2 .= (V/2)~! = [V/2(M") ]
and X1/ = (21/2/)_ [M~ 1V1/2/] 1. (b) By standard property of inverses, [V'Y/2(M’)~1]~!
and [M VY21 =12,

Thus, under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds, by Proposition
2, P-a.s. as T — o0,

TTT(éT),‘?TT(éT)

_ 1/2 12 L
— V PEI/ZR/V

/

(00) + 0x(1) | Vir

T
_ 1y 1
V 1/2P21/2R/V 1/2 Zwt 90 + OP( )]

/

> V*l/2P21/2RIV71/2’

e
Ly

9() VT

T
r 1
V- 1/2 P21/2H/V e — Z’l/)t 90 ]
t=1
T
r 1
V- 1/2 le/zR/V 12— Zd}t 60

/!

Vi [oz(1)] + [op(1)]' V [02(1)]

i T 7/ T

b _ ;1 _ , A~ _ ;1

(:) PEI/2RIV 1/2 ﬁ Z th(e()) V 1/2 VTV 1/2 PEI/2RIV 1/2 Z 'djt 90 + O]P( )
: o :

—
o
N

o1
PEI/QRIV 1/2 Zd}t 90

T
1
P21/2R/V 1/2 Zd}t 90 ]
-/

T
1 .
Pijo V12— § De(0o) <V‘1/2 Vpy 12 I)

T
PEWR,V—W’%;W&O) + 03(1)
@ |p v-“?’iiw(e )d I iwe) + op(1)
_ $1/2R ﬁt:l t 0_ 1/2 R \/— +(0o P
@ N

(a) Use the bilinearity and symmetry of the quadratic form defined by the matrix ‘7T, which is
symmetric by the theorem’s assumption. (b) Firstly, by theorem’s assumption, as 7' — oo, ‘A/T ER
V, so that Vp = Op(1). Secondly, under Assumption 1(a)-(c) and (g), by the Lindeberg-Lévy
CLT theorem, as T — oo, \/LT S bi(60) 2 N(0,V) where V := E[¢)(X1,60)1(X1,00)'], so
that, as T — oo, \/LT Z’,tF:1 ¥1(0p) = Op(1). Thus, the second and third terms are op(1). (¢) Add

’ ! / .
and subtract [le/zR,V_l/Z \/LT Zthl ¢t(90)] [le/zR,V_l/z \/LT Zthl wt(ﬁo)] . (d) Denoting the

convergence in probability with ﬂ, by the present theorem assumption, as T" — oo, YA/T ER v,
where V is a positive definite symmetric matrix by Assumption 1(h). Thus, by Lemma 31 (p. 87)
w.p.a.l as T — oo, Vi is p-d.m, so that it has a square root s.t. Vi = V:,E/z,VTl/z, where Vl/2

V1/2.(d) Under Assumption 1(a)-(c) and (g), by the Lindeberg-Lévy CLT theorem, as 1T —
0, \/LT Zthl ¥(6o) 2 N(0,V) where V := E[¢)(X1,600)1(X1,00)]. Moreover, the orthogonal
projection matrix Ps1/25, has rank ¢ because R is of rank ¢ and ¥ has full rank by Assumptions
3(b) and 1(h), respectively. Thus, the result follows from the Cochran’s theorem. O

Lemma 24 (Asymptotic expansions for ALRy). Under Assumptions 1,2 and 3, if the test
hypothesis (9) on p. 6 holds, P-a.s. as T — oo,
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(i) Q{IH[fe;(éT)] —In(fo: (67)]} = T(0r — 67)S™ (0 — Or) + 0p(1);
(i) VT(0r - 0r) = SR(RER) ' RM 2= 37/ 4 (f0) + op(1)

where $ = B(0) = M~ WM, M = E [%gg—ew] V = E[(X1,00)¢(X1,00)], and
. 9r(0o)

R .= &),

Proof. (i) Under Assumption 1, by Lemma 12 (p. 34), P-a.s. for T" big enough, for all (0, 7)

in a neighborhood of (6o, 7(6p)), L7 (0, 7) exists. Moreover, under Assumptions 1, 2 and 3(a), if

the test hypothesis (9) on p. 6 holds, by Theorem 1i (p. 6), Lemma 28i (p. 82) and Lemma 2iii

(p. 20), O — 0o, O — 0o, 7r(07) — 7(00) and 7p(07) — 7(0p), P-a.s. as T — co. Thus, noting

that ln[fg; (0)] = Ly (0, 7r(0)),under Assumptions 1, 2 and 3(a), if the test hypothesis (9) on p.

6 holds, P-a.s. for T" big enough,

2{In[fyr (07)] — [ fos (O7)]} = —2T(Lr(Or, 7r(0r)) — Lr(Or, 7r(07))]-

Now, under Assumptions 1 and 2(a), by subsection B.2 (p. 32), Ly(.,.) is twice continuously
differentiable in a neighborhood of (6f, 7(6y)’) P-a.s. for T big enough, so that a stochastic
second-order Taylor-Lagrange expansion (e.g., Aliprantis and Border 2006/1999, Theorem 18.18)
around (A7, 77 (7)) and evaluated (07, 7p(f7)) yields, P-a.s. for T’ big enough,

or éT) — TT(éT)

L[ o o) — moioy] | ot ST [ Gy — by
+2 | (67 — br) (77 (6r) — 7r(67))’ oo j j
5 [( 7 —0r)" (tr(0r) — 71 ( T))} a2LgT(f)§éTT) a2LgT(,eaTT,TT) o(6r) — 70(61)

where (67, 7r) is between (67, 7 (07)) and (67, 7(07)) ;

= Ly (0r,70(0r)) — Ly (0, 70(07))

3 : A . 5 o 07 — 0
Ly (07, 7r(0r)) = Lr(0r, 70(07)) + [BLT(QE’JT(QT» aLT(eT’T,T(eT))} [T ( L ]
T

_ 8LT(97(;(97/'T(9T)) (éT _ éT) i aLT(ag;jT(QT)) (TT(éT) _ TT(éT))
by = by ZEONTO Gy L0 — 20y EEE T () — )
+(0r — éT)'w(TT(éT) —7r(0r))

oT'00 ’

where

e Under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds, by Theorem 1ii
(p. 6) and Proposition 2iii (p. 75), P-a.s. as T — oo, Op — 07 = (0p — 0y) — (Or — 60) =
Ow(T2) + O:(T2) = Op(T"2); -

e Under Assumptions 1 and 2, by Lemma 20 (p. 60), P-a.s. as 1" — oo, w =
O(T~1), so that W(érp —0r) = O]p(T_%) by the first bullet point;

e Under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds, by Lemma
21liv (p. 61) and Theorem 1i (p. 6) and Lemma 28i (p. 82), P-as. as T — o0,
there exists 07 between 07 and 6y s.t. VT[rp(07) — 70(07)] = VT [rp(6r) — 70(60)] —
ﬁ[TT(éT) — TT(Q())] = —V‘lM(éT — 90) + 0]}»(1) — [—V_lM(éT — 90) + OP(T_l/Q)} =
—VIM (67 — 00) + VM (O — 60) + op(1) = =V M (0 — 07) 4 0p(1);
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e Under Assumptions 1 and 2, by Lemma 22iv (p. 63), P-a.s. as T' — oo, w =

O(T~1), so that, by the first and third bullet point, W(TT(GVT) — 7p(07)) =
Op(T73/?), under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds;

e Under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds, by Lemma
21iv (p. 61) and Theorem 1i (p. 6) and Lemma 28 (p. 82), P-as. as T — o0,
there exists 07 between 07 and 6y s.t. VT[rr(07) — m0(07)] = VT |rr(67) — 70(60)] —
VT (07) — 71(80)] = —V M (67 — 0o) + op(1) — [—V*M((QT — ) + OP(T*W)} -
—V I M (67 — 00) + VM (O — 60) + op(1) = =V M (67 — 07) + 0x(1); and

azLT(HT,ﬁr)

) 00,00, |

o(1), so that, by Theorem lii (p. 6), (fp — QAT)’%@T — 07) = op(T™1) by the

first bullet point.

e under Assumptions 1 and 2, by Lemma 14ii (p. 47), P-a.s. as 1" — oo

Therefore, Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds,
2{Info; (0r)] = Wlfo; (Or)]} = =2 | Lr(Br,70(0r)) = Lr(Or, 70(61))]
1 9*Lp(0 . .
- [ VLMVT (07 )} &Ly (Br.7r) [v—lMﬁ(eT - eT)}

oT'or

% [V—IM\/T(HO - éT)} + op(1)

O?Ly (07, 7r) 0?Ly(0r, 7r)
19" Lo (O, 7r) 01y 707, Tr
or'or VoM =2 o100

= VT (07 — 67)S(00) " "WT (67 — b7) + op(1),

+2VT (0 — r)

= VT (67 — b7 [M’V‘ V‘lM] VT (0 — 07) + op(1)

where the explanations for the convergence are as follow. Firstly, under Assumptions 1 and 2,

by Lemma 14ii (p. 47), for any sequence (07, 77 )ren converging to (6o, 7(6p)), P-a.s. as 7' — oo,

0Ly (6r,77) 9Y(X1,00)
—avor — — B | =g

73), P-a.s. as T — oo, OLr(Or.rr) _, E[¢(X1,00)1(X1,6p)] =: V. Therefore, P-a.s. as T — oo,

oToT’
0> Ly (07, 7r) 0?Lr (07, 7r)
1 T\, 7T -1 T\VT, 7T
e A M-t 1)
or'or v or’'o0
— M'(VYWWVTIM —2M'VTiMm

= -M'VIM = -%(6)7"

=: M. Secondly, under Assumptions 1 and 2, by Lemma 25iv (p.

M'(V')~ VM

(#i) Under Assumptions 1, 2 and 3, if the test hypothesis (9) on p. 6 holds, P-a.s. as 1" — oo,
addition and subtraction of \/THO yield
VT (07 — 07) = VT (0 — 80) — VT (67 — 60)
T T
1
=-M"'— 0o) + op(l) — |[M ™' = SR(RER)'RM~'— (6o) + 0
T Z:Q/}t( o) + or(1) ( Z 0) + op(

= YR(RER)) 'RM

T
Z 90 -I-O[p

where the explanations for the second equality are the following. Firstly, under Assumptions 1
and 2, by Proposition 1 (p. 44), P-a.s. as T — oo, VT (07 — ) = _M\/LT Zthl P(6o) + op(1).

3\
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Secondly, under Assumptions 1, 2 and 3, by Proposition 2i (p. 75), if the test hypothesis (9) on p.
6 holds, P-a.s. as T — oo, VT (6r—6)) = M‘l—ER’(RZR’)—lRM—lx/LT S be(80)+op(1). O

Lemma 25 (Asymptotic limit of w . Under Assumptions 1 and 2, for any sequence
ymp oT'oT

(O, 7r)ren converging to (0o,7(0p)), P-a.s. as T — oo, for all (h,k) € [1,m]?, P-a.s. as
T — oo,

() Z2rlrmr) Bl (X1, 60)n (X1, 60));
82 My 1 (07,7
(i) =g = 0
O* M3 (01,
(iii) % O(T71); and
(iv) ZELOLmr) By (X4, 60)¢(X1, 00)')-

Proof. (i) By equation (28) on p. 37, for all (h, k) € [1,m]?,

O*My (07, Tr)
01O
T

T
) 1 1 , /
_ (1 — %) ) { T Z emr¥il0r) % Z eTth(eT)wt,h(GT)wmk(eT)]
[% . eT’Twz-(eﬂ} =1 =1
ZGTT% e (0r) ] ZGTT% T4 1 (Or) }

where, as T — oo, (07 7r) — (0o 7(6p)) by assumption. Now, under Assumptions 1 and
2, by Lemma 23i-iii (p. 64), for By a ball around (6o, 7(fo)) of sufficiently small radius,
E [sup(g,,)cB7 eT’WW] < 00, B [sup( ;|67 X100(X1, 009 (X1, 0)]] < o0, and

E [sup(a?T)eBL e (X0, (X, )|} Thus, by Assumption 1(a)(b) and (d), the ULLN (uniform
law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp. 24-25, Theorem 1.3.3),
implies that, for all (h, k) € [1,m]?, P-a.s. as T' — oo,
O*My (07, Tr)
o110
1
E[e7(00)$(X1,00)]2

{E[QT(QO)/W(XLQO)]E[eT(QO)Iw(Xl790)¢k(Xl’ 00)tbn (X1, 00)]

_ E[eT(GU)/w(XlﬂO)@[;h(Xl, 90)]E[e7—(60),w(xl’60)¢k3 (le 90)]}
= E[yx(X1,600)0n(X1,60)]

because E[)(X1,600)] = Omx1 by Assumption 1(c), and 7(6p) = Omx1 by Lemma 10iv (p. 31)
under Assumption 1(a)-(e) and (g)-(h).
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(ii) Under Assumptions 1, by equation (34) on p. 39, P-a.s. for 7' big enough, for all
(h, k) € [1,m]?,

O* My (0, 1)
aThaTk

i

T
1 0¢t(€T)
§ : Ty (0
X [ ( T)

orie(07) O (01)
TZ Tt T 89/

T
1 ’ 8@/&(970
§ : 770t (0

T
1 Z / Oby(Or)
T ’l,[)t %

— 06’
T -1 T
1 12 (o) O (07) 1 S e I (0r)
Tt { T t=1 A o0’ T t=1 k(B (Or) ¢’ ‘

where, as T — oo, (07 77r) — (o 7(6p)) by assumption. Now, under Assumptions 1 and
2, by Lemma 23iv-vi (p. 64), for By a ball around (6p,7(p)) of sufficiently small radius,
E [SUP(QT By lem VX Q)Mﬂ E [Sup(ef yemy |67 Dy (X, 0) 20 |}» and

E [sup(eyT)erJeTw XL (X1, 0)hn (X1, )%0}7”]. Thus, by Assumptions 1(a)(b) and (d),
the ULLN (uniform law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp.
24-25, Theorem 1.3.3), implies that, for all (h,k) € [1,m]?, P-a.s. as T — oo,

T62M2,T(9T7 Tr)

6Th87k
— tr {E [67(90)/7’0()(1»90)%] - E [67'(6’0)'10()(1,90)wk(){17 6o) adj(g(ella 90)]
-1
<K |:eT(90)"¢(X1,90) W] E |:efr(¢90)/¢(X1’60)7/]}1()(—17 9()) 077&(2(61, 80):| }
+tr { |: 7(00)"1(X1,60) %] |:eT(90)/w(X1700)¢k(X1, 90)1/)’71()(17 90)81/1(2(91/, 90):| }
O(X1,00)] " (X1, 0
= tr {]E [%] E |:Q;/}/<:(X1790) d)(ael,? 0):|
OY(X1,00) |~ o(X1,0
[P s ocn s 25
X1,00)] 7" X1.0
For {E 2] [ s, 00 2 }

because 7(0y) = Opmx1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e) and (g)-(h). Therefore,
Mo (07,17) _ o(T™).

P-a.s. as T — o0, D OE
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(iii) Under Assumptions 1(a)(b)(e)(g)(h), by equation (39) (p. 43), for all (h, k) € [1,m]?,

O*Ms (07, 1)
aThaTk

1t

= —tr

2T
X

1‘0
——tr

2T

where, as T — oo, (07 77) — (o 7(6p)) by assumption. Now, under Assumptions 1 and
2, by Lemma 23vii-ix (p. 64), there exists a closed ball By, C S centered at (6, 7(6p)) with
strictly positive radius s.t., for all k£ € [1,m], E [SUP((&T)GE e VXL (X, 0)ep (X, 9)’|] < 00,
E [Sup(gyr)eBiL |eT,w(X1’0)¢k(X17 Q)QJJ(XM Q)Q[J(Xl» 9)/|] < 00, and ]E’[Sup(@?q—)eBiL |eT,w(X1’9)wh(X17 6)
(X1, 0)Y(X1,0)9(X1,0)|] < co. Thus, by Assumptions 1(a)(b) and (d), the ULLN (uniform
law of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp. 24-25, Theorem 1.3.3),
implies that, for all (h, k) € [1,m]?, P-a.s. as T' — oo,

O*Ms (07, r)

OTROTk

T -1 T
T ewt”ﬂwt(eth(eT)'] l% D e%(@%k(%)@(%)W@ﬂ’]
t=1 t=1

-1

T

1 /

7 > e (0r)y(07)'
t=1

T
% Z eT/det(eT)wt,h(QT)wt(eT)wt(GT)/] }
t=1

T -1 T
% > ef’TW"th(eT)wt(eT)’] l% > eT’TW@T)wt,k(eT)wt,h(9@@(%)%(%)’] }
t=1 t=1

T
]. ! -1 /
- tr {E [T O VXD (X By (X1, Bo)' | E |7 OB (X, B0) (X1, B0) (X1, 60 |

’ -1 ,
<& [67(90) w(XL@O)d)(XL 90)111(X1, 00)/] E [GT(GO) w(Xlﬂo)d)h(Xl, 90)’@[)(X1, eo)d)(Xl, 00)/] }

’ -1
—%tr {E[ef(%) ¢(X1,Go)w(X17 00)p(X1, 90)'}

xE [67(90),7’0(X1’90)¢k(X17 00)Yn(X1,00)9(X1,00)1h (X1, 90)'] }
1

— Str {E [¥(X1,00)1(X1,00)] " E [t (X1, 00)9 (X1, 00)tb (X1, 6]

XE [(X1, 60)(X1,60)'] ™" E [ (X1, 60)(X1, o) (X1, 60)'] |

—%tr {E [¥(X1,00)0(X1,00)'] " E [r(X1, 00) (X1, 00)( X1, 00)3 (X1, 90)']}

because 7(6p) = Opx1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e) and (g)-(h). Therefore,
P-a.s. as T — oo, %ﬂfﬂeﬂ) =0(T™Y).

(iv) Under Assumption 1(a)-(b) and (d)-(h), by Lemma 12 (p. 34), for all (0, 7) in a neigh-
borhood of (6o, 7(600)), L1(0,7) = My 7(8,7)+ Mo (0, 7)+ Ms r(6,7), so that the result follows

from the statement (i)-(iii) of the present lemma. O

Proposition 2 (Asymptotic normality of 7, 70(67) and 57). Under Assumptions 1, 2 and 3,
if the test hypothesis (9) on p. 6 holds, P-a.s. as T — oo,
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(6, —0y] | M'—SR(RSR)'RM~* T
(i) VT | 7r(6r) | = | (M)"'R(RSR)"'RM~! LZfL/Jt 00) + op(1); and
R —(RXR)"'RM™! =
(0 —00] [ SV¥PL,,nVY M L
(i) VT | 7p(f7) | = [(M) 182 Py o 2 1/2 M1 ﬁzz/}t(eo)mpu)
e || —(RER)*RM™! t=1
[0 — 6o ] (SV2YPL,, 512 O Omxq
(iit) VT | 7r(67) | 2N |0, O (VY2)1Pyy o (VIZ) "1 —(M')"'R/(RSR/) ™
ir | Ogxm —(RER)"'RM™! (RER) ™!

where 3 = $(6) = M~ 'WV(M)™', M = E [%] V = E[p(X1,00)0(X1,60)], and

. or(0)
R:= 2],

Proof. (i)-(ii) The function Ly (6, 7) is well-defined and twice continuously differentiable in a
neighborhood of (6f, 7(6y)") P-a.s. for T big enough by subsection B.2 (p. 32), under Assump-
tions 1 and 2(a). Similarly, the function Sp(6,7) = %Z?zl e”t04,(0) and 0 — r(0) are
continuously differentiable in a neighborhood of (6 7(6y)’) by Assumption 1(a)(b) and 3(a).
Now, under Assumptions 1, 2, and 3(a), by Lemma 281 (p. 82), Lemma 2iii (p. 20), P-a.s.,
07 — 0y and 77(07) — 7(0o), so that P-a.s. for T big enough, (65 77(fr)’) is in any arbitrary
small neighborhood of (6} 7(6y)"). Therefore, under Assumptions 1, 2 and 3 (a), stochastic
first-order Taylor-Lagrange expansions (Jennrich 1969, Lemma 3) around (6, 7(6p)) evaluated
at (Gp, 7p(07)) yield, P-a.s. for T big enough

OLr(fr, rr(0r))  OL7(6o,7(60))  0*Lr(fr,7r) PLrr )
j j dSr(0r,7r) ,; Sy (0p, 7 )
Sr(0r,mr(0r) = Sr(0o, 7(00)) + ZLELT (g gg) + LT gy
5 or(0r) ,»
r(fr) = r(fo) + 7;97) (61 — 6o)

because 7(fy) = Omx1 by Lemma 10iv (p. 31), and where 7 and 71 are between 67 and 6y,
and between 77(07) and 7(f), respectively. Now, under Assumptions 1 and 2, by definition
of 67 and by definition of 77(.) (equation 14 on p. 17), r(éT) = 04x1 and ST(éT,TT(éT)) =0,
respectively. Moreover, under Assumptions 1, 2 and 3, by Lemma 28iv (p. 82), P-a.s. as

T — oo, aLT(é%’gT(éT)) = ar(eT) 1+ O(T~1). Therefore, under Assumptions 1, 2 and 3, P-a.s.
as T' — oo,
2 a0 = - 02 N = -~ .00 /
O(T_l) ()LT(egﬁT(@o)) + 13] Lg;leéfe.TT) (9T _ 90) + J Lgf?(?éTT) TT(GT) + ()7590;“) i/T

Omx1 = S7(0, (o)) + ZXErTr) (G — gy) 4 252070 () :
Oq><1 = 7"(90) + 8T(9(967) (éT — 90)

which in matrix form is

; 92 O 7 92 O T (D) -
O] [ 2lgrlol ] [2bgfm) PLyGum Sl [, — g,
Omx1 | = |Sr(6o,7(00)) | + | Lrptn) 2500rirl 7r(07)
Ogx1 7(6o) or(0r) 0 0 Yr

00’
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Now, under Assumptions 1, 2 and 3, by Lemma 26ii (p. 79), P-a.s. for 7" big enough, the matrix
9Ly (0r,7r) 8*Lr(0r,7r) Or(0r)

0 57700 50’
aSTgeeT,’fT) BSTE;?TT,’%T) 0 is invertible. Then, under Assumptions 1, 2 and 3, solving for
ar(6r)
3 00
the parameters and multiplying by /T yield, P-a.s. as T" — oo,
O1 — o
VT 77 (67)
Jr
F92Ly(0p,7r) 92Ly(Bp.7r) Or(fr) 7 " AL (00,7 (0 N
b g Gl +or )
= - 8STE9%_T,’TT) aSchfTT,’TT) 0 VT St(60,7(00))
| 2ler) 0 0 | 7(6o)
92 Ly (Bp 7r) 9Ly (O 7r) Or(fr) 7 ! 1
(a) aqg(%é%—ﬂ asgéga—ﬂ T(MT) 10(1; )
Y|l el 0| VTS v
T
L R 0 0 | 0
\ ~Y 4+ LR(RXR)"'R% M~'-XR(RER)"'RM~! YR (RER)™!
O (M) (M) LR(RSR) RS (M')LR/(RSR)IRM~1 —(M')"'R/(RSR)~!
(RSR')"'RY —(RXR)"'RM™! (RER')!
O(T2)
X | 2 Ziea (o)
0
Y+ XR/(RYR)"'RY M~'-SR/(REXR)"'RM™! YR(RYR)!
+9 | (M) ~(M") 'R(RSR) 'R (M') 'R(RSR) 'RM ' —(M') 'R/(RTR)"
(RSR')~'RY. —(RXR)"'RM™! (RER/)~!
2Ly (Gp,7r) 0Ly (Bp.7r) Or(fp) 7 L 1
b g O(T~2)
85;59(9%?7;” Prfral o 77 2= (o)
T
T/T 0 0 0
M~' —SR(RSR)'RMY|
W\ (M) R(RSR)\RM ! ﬁZ@/}t(eo)—FOP(l)
~(RSR)"'RM~! =1
1/2' pL —1/2" ar—1
(d) 2 P M 1
S )T PP s BTN | 2 aulB0) + 02 (1)
~(RSR) 'RM =1

(a) Firstly, under Assumptions 1 and 2, by Lemma 14i (p. 47), P-a.s. as T' — oo, %ﬁ =

J
O(T~1), so that VT [%&f(%)) +O(T_1)] = O(T_%). Secondly, note that Sp (6o, 7(6p)) =
- Zle Yi(6p) because 7(6p) = Omx1 by Lemma 10iv (p. 31) under Assumption 1(a)-(e) and (g)-
(h). Finally, if the test hypothesis (9) on p. 6 holds, then 7(6y) = Oyx1. (b) Add and subtract the
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~Y +YR/(REXR)"'RY M~ '-SR(RER)'RM~!  SR(RTR)™!
matrix | (M) '—(M)'R(RER)"'RY (M) 'R/(RSR)'RM~' —(M")"'R'(RXR)"']|.
(RER)"'RY —(RER))"'RM ™! (RXR)~!

(c) Firstly, the first and third column of the first square matrix cancel out because the first el-
ement and third element of the vector are zeros. Secondly, under Assumptions 1, 2 and 3, by
Lemma 26iii (p. 79) and Theorem 1i (p. 6), P-a.s. as T' — oo, the curly bracket is o(1), and,
under Assumption 1(a)-(c) and (g), by the Lindeberg-Lévy CLT, \/LT Zle P (6g) = Op(1), as
T — oo. (d) By definition ¥ = X1/2¥1/2 and %-1/? = [£/?]~1. Thus,

e M~' —YR(RER)'RM~' = 2V [I - £'2R/(RER) 'RV |-V M1
= 21/2/P§1/2R/E_1/2/M_1 where PS_WR/

orthogonal of the space spanned by the columns of X1/2R’.

° (M’)_lR/(RER/)_lRM_l — (M/)—lz—l/z[El/zR/(RZR/)—1R21/2’]Z—1/2’M—1
= (M) IS Y2Pg oy STV M = (M) IS 7Y 2P 0 BTV SR TV B2 M
== (M,)_12_1/2P21/ZR/le/QR/Z_l/Q/M_l = (M,)_12_1/2P21/2R/2_1/2/M_1
= (M) VYA(M) ) Py p [M VY2 M = (VY7L PGy (V)7 because
M7V (M)~ = £ = SVZ8Y2) 50 that £7Y2 = (ZV2)71 = [VV2(M)7YL =
M'VY2 and 2712 = (22 = MV L= VU2

denotes the orthogonal projection on the

(i4i) Under Assumptions 1, 2 and 3, by the statement (ii) of the present proposition, P-a.s.

as ' — oo,

éT — 6’0
ﬁ TT(éT)
1
El/z,PXJ}_l/ZR/Z_l/Q/M_l T
= |(M) 'S 2P S M —= > u(6o) + o(1)
—(RSR)'RM!
21/2/P§1/2R/Z_1/2’M_1
(M) 'S 2P V2 M | N(0,V)
—(RESR)'RM!
Zl/Q’PXJ]_l/ZRlz—l/TM—,l
N O, (M) 'SPy 2=V 20 |V
—(RYR)'RM !

gle

cllis

X (M) Is—2Ps

e S (M) TSR ST MY (M) RI(RSR)

D (21/2)/]3;1/2}3/21/2 Omxm Omxq
(f) N 0, Omxm (Vl/Q)—lpzl/zR/(Vl/Q’)—l _(Ml)—lR/(RER/)_l
Ogxm —(RER)"'RM~! (RXR)!

(a) Under Assumption 1(a)-(c) and (g), by the Lindeberg-Lévy CLT theorem, as 17" — oo,
\/LT S (bo) 2 N(0,V) where V := E[¢p(X1, 00)(X1,60)']. (b) Firstly, the minus sign can
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be discarded because of the symmetry of the Gaussian distribution. Secondly, if X is a random
vector and F' is a matrix, then V(FX) = FV(X)F’. (c) Denote the final asymptotic variance
matrix with I', and its (7, j) block components with I'; ;. Then,

° Fl,l — ,21/2/PZJ:_1/2R/2/—1/2’M—1V(M/)—lz—l/QPzJ:_l/ZR/21/2
= SV2PL TSP, L 2 = (B2 P, 82 because M7V (M) T =
N o= xR w2 = ()7 V2= (V)T and PR, Pl g = Pliag

by idempotence of projections on linear spaces;

F272 _ (M/)—1E—l/QPEI/zRIE—l/Q’M—lV(M/)—lE—l/QPEUzRIZ—l/Q’M—l —

(M) TIS7Y2Pg ) STV SN2 Py m7 Y2 MY

_ (M/)_12_1/2P21/ZR/PZI/ZR'Z_l/Q/M_I _ (M/)_12_1/2P21/2R/2_1/2/M_1

_ (M/)—l[V1/2(M/)—1]—1P21/2R, [M—lvl/Q’]—ljw—l

= (VY2 Py (V)7 because M~V (M) ™! = © = 912 91/2 5171/2 = (21/2)71 =
V2~ = MV-Y2, 82 = (21/2’)—1 = MWVl = V=12 M, and

P21/2R1P21/2R/ = P;:]/QR, by idempotence;
Ty = (RSR) U RM-1V (M) R(RSR) ! = (RSR) " RSR/(ROR) ™ = (ROR)

because M~V (M)~ =: %;
1‘\172 — El/Q’PJ_ E—I/Q’M—lV(M/)—12—1/2P21/2R,E—1/2’M—1 —

»i/2Rr
SYE P, STV ESS 2Py STV M = SYE P, P STVP M = 0 be-

»1/2R!
cause M~'V(M')~! = ¥ = 222 512 = (n1/2)-1 »-1/2 .= (2V/?)~1 and

€L — .
PEI/ZR/PEUZR/ - Omxm;

Iy3=-%Y2PL, S~V M-'V(M)"'R(RER)™!
= —xV¥pL , STVYSR(RSR) Y = —2Y¥PL ,  SV2R/(RER) ! = 0 because
MW (M) =8 = SHYES2 w72 = (SYE) T and P, BY2 R = O

F273 — _(M/)—12—1/2P21/2R/E—l/z’M—lV(M/)—lR/(RZR/)—l

= —(M")'S7 V2P ), STV S R(RER!) !

— —(]\/f/)_lz_l/z[EI/QR/(RER/)_1R21/2/]E_I/Q/ER/(RER/)_l

= —(]\4’)_1[R’(RER’)_IR]Z]R’(RZ]R’)_1 = —(]\4[’)_1]%’(R2R’)_1
because M~ 'V(M')™! = ¥ and Pyijap = [El/QR’(RER’)_lREl/Ql].

O
Lemma 26. Using the notation of Proposition 2 (p. 75), under Assumptions 1, 2 and 3,
(i) for any sequence (O, Tr)ren converging to (6o, 7(6p)), P-a.s. as T — oo,
_ A = o = 2 N/ = ! !
fjg(a(;é%,_ﬁ)) a;;;ggé_ri) argag) O E [aw(gg/,eo)} ar(6o)
Lt St 0| = B [RGB (X, 0)p(X,60)] 0 |
L ra(efT ) 0 0] % 0 0
- 1/ ’
men B[GA] ol
(i) |E [W} E [4(X1,00)0(X1,60)] 0 is invertible, so that, for any sequence
ar(60)
L 0 0

(07, Tr)Ten converging to (6o, 7(6p)), P-a.s., for T big enough, the matriz
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r8°Ly(Ar,7r) 9Ly (0r.7r) Or(fr) 1

. 8(901 a0 ) s 82-6189 ) a0

(01, Tr (01,1 fo . .

a(@/ ) 5o7 0 is invertible; and
ar b‘T

| 0 0

(iii) for any sequence (07, Tr)ren converging to (0o, 7(6p)), P-a.s. as T — oo,
r9?Lr(0r,7r) 0*Ly(0r.7r) 8r(6r)' ]~

00’90 a7’ 90 a0
OSt (01, 71) 8ST(6T,fT) 0
a0’ or’
| 2 0 0 |
—% +XR/(RZR)"'RY M~'-YR'(RER')"'RM~'  ZR(RZR)"!
— | (M")"'=(M")"'R'(RZR')"'RY.  (M')'R'(RER')"'RM~' —(M")"'R'(RER')"'|.
(RER)™'R% —(RXR)"'RM ™! (RER)™

Proof. (i) Under Assumptions 1, 2 and 3(a), it follows from the continuity of %, which is

implied by Assumption 3(a), and Lemma 14ii and iii (p. 47) and Lemma 17 (p. 49), given that

7(0p) = Omx1 by Lemma 10ii (p. 31) and Assumption 1(c), under Assumption 1(a)(b)(d)(e)(g)

and (h).

Omscrn M
MV

(i) It is sufficient to check the assumptions of Corollary 2i (p. 88) with A = and

/

B =

] in order to establish the first part of the statement. Firstly, under Assumptions

mxgq

Omscn M | . . . :
MOV is invertible. Secondly, by Assumptions

1(h) and 3(b), (B’A™'B) = —(RXR) is also invertible. Then, the second part of the statement

follows from a trivial case of the Lemma 30 (p. 87).

(i11) Under Assumption 1(a)(b)(c)(d)(e)(g)(h), by the statement (ii) of the present lemma, the

limiting matrix is invertible. Thus, using the notation of Proposition 2 (p. 75),

1 and 2, by Lemma 13iii (p. 46), A =

Orvxm B[ 200" oo
B [ 2500 B [(X, 60)(X1,60)] 0
o : :
O M R ]
= | M V Onxg
| R Ogxm Ogxq
—¥ 4+ 2R/(RER')"'RY M~' —$R(RER)"'RM~! SR(RER)™
= (M) 1= (M) 'R(RER)IRY. (M) 'R'(RXR)"'RM™! —(M"'R(RER)™!
] (RSR')™'R% —(RZR)"'RM~! (RZR!)1
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where the explanation for the last equality is as follows. Apply Corollary 2ii (p. 88) with
Omxm M’ '
M

A= and B =

] , and note that, by Lemma 27iii, iv and vi (p. 81),

mxq

A A B(BAB)BA = —% + LR/(RSR)'RE M~' - SR/(RSR)"'RM™!
(M) = (M)T'R(RER)T'RY (M)T'R(RER)T'RM !
SR/(RYR)™!
_(M/)—IRI(RZR/)—I

(BA™'B)™' = —(RZR)".

AT'B(B'AT'B)! =

Then, the result follows from the continuity of the inverse transformation (e.g., Rudin 1953,
Theorem 9.8). O

/

!
O ]\4] and B =
M V
M =E [W}, V = E[¢(X1,00)¢(X1,00)], and R = ag(;o). Then, under Assumption
1(a)(b)(h) and 3(b), the following equalities hold

Lemma 27. Let A =

] where ¥ = X(6p) := M~1V(M')7L,

mXq

-y M!
. A_l _ :
K [(M')—l omm]
YR
(ii) A™'B = (M’)ER’ , 50 that B'A™! = [—RZ RM_l] ;

(iii) (BPA'B)"' = —(RZR')!;

SR(RYR)™!
_(M/)—lR/(RZR/)—l
~YR'(RER)'RY YRI(RER)'RM™!
(M 'R(RSR)"'RY  —(M")'R/(RER)'RM™!

(vi) A7t — A7IB(B'A™'B)B' A
B ~Y +YR/(RXR)"'RY M~!' - YR(RYSR)'RM~!
(MYt (M) T'R(RER)'RY (M) 'R/(RXR)) 'RM !

(iv) A7'B(B'A™'B)™! =

)

(v) AT'B(B'AT'B)B'A™! = ; and

Proof. (i) It corresponds to a part of Lemma 13iii (p. 46) under Assumptions 1 and 2.
(i)
¥R

( M/)—l R/

R/

Oqu

= =A_IB

) M1
(M,)_l Omxm

(iii)
—SFR/

arir| —RyR| =BAB

7 O
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(iv)
-XR
(M/)—IRI

YR'(RYR)~!

SESR) T = | ey | = AT BEATE)

(v)
SR(RYR)™!

~RY M1
—(M")"'R(RTR)™! [R R ]

~YR/(RYXR)"'RY SR(RER)"'RM™!

= A"'B(BA'B)B'A!
(M) 'R(RXR')"'RY  —(M')"'R'(RER') 'RM ! ( )

O

Lemma 28 (Constrained estimator and its Lagrangian). Under Assumptions 1, 2 and 3(a), if
the test hypothesis (9) on p. 6 holds, P-a.s. for T big enough,

(i) the constrained estimator Or exists, and Op — Ao, as T — oo;
(ii) @ — Lp(0,77(0)) is continuously differentiable in a neighborhood of Orp;
(iii) wnder additional Assumption 3(b), there exists a unique vector, yr, called the Lagrangian
0 or(r) -
—LT(%’?(Q)) ‘9=éT + —T(aegT) 1 = Omx1;
(iv) under additional Assumption 3(b), aLT(eIE}’aTT(eT)) + argeT)/’yT = O(T™Y), as T — oo,

ALy (Op,rr(07)) . OLp(0,7)
00 T 00

multiplier, s.t.

where

0,7)=(0r,7r(07))

Proof. (i) The constrained set © := {# € © : r(f) = 0} is bounded as a subset of the compact
(and thus bounded) set ©. The constrained set © is also closed: For all (0,)nen € ON s.t.
lim,_, 0, = 0, § € © because (i) by compactness of ©, § € @; and (ii) by the continuity
of 7 : ® — RY (i.e., Assumption 3(a)), 7(0) = limy, oo 7(0n) = limy, 0o 0 = 0. Therefore, the
constrained set @ is itself compact. Moreover, under Assumption 1(a)(b) and (d)-(h), by Lemma
is measurable. Thus, the existence and the measurability of the constrained estimator 67 follows
from the Schmetterer-Jennrich lemma (Schmetterer 1966 Chap. 5 Lemma 3.3; Jennrich 1969
Lemma 2).

In order to establish the consistency of 0, it remains to check the other assumptions of the
standard consistency theorem (e.g. Newey and McFadden 1994, pp. 2121-2122 Theorem 2.1,
which is also valid in an almost-sure sense), where the constrained set © := {# € @ : r(6) = 0}

is the parameter space. Because Oc O, P-a.s. as T — oo,

T
sup |In % ZeTT(e)/wt(‘g) L In |3X7(0)|det — In E[eT(Q)lw(Xlﬂ)]
L™ =1

0c© i 2T
- -
1 / 1 /
< sup |In | = mr(0)Ye(0) | _ _—_ 15 150(0 _pE[eT () ¥(X1,0) 0
sup (In T;e 57 10 27(60) e — In Efe J| =

where the convergence to zero follows from equation (17) on p. 19, under Assumption 1. In
addition, under Assumption 1 (a)-(e) and (g)-(h), by Lemma 10iv (p. 31), 8 — InE[e7(®)'¥(X1.0)]
is uniquely maximized at 6y, i.e., for all § € @\ {#p}, In E[e™®)¢(X1.0)] < In E[e™(00)¥(X1.00)] —
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and, under Assumptions 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22), § — InE[e7(?)'¥(X1.0)]
is continuous in @ C O.

(7i) Under Assumptions 1 and 2(a), by subsection B.2 (p. 32), the function Lp(6,7) is well-
defined and twice continuously differentiable in a neighborhood of (6f, 7(6y)’) P-a.s. for T big
enough. Moreover, under Assumption 1(a)(b) and (d)-(h), by Lemma 21i (p. 61), 7r(.) is
continuously differentiable in ®. Now, under Assumption 1, by the statement (i) of the present
lemma and Lemma 2iii (p. 20), P-a.s., 07 — 0y and 7r(07) — 7(0p), so that P-a.s. for T big
enough, (0% 7r(f7)") is in any arbitrary small neighborhood of (6} 7(6p)"). Therefore, under
Assumption 1 and 2(a), by the chain rule theorem (e.g., Magnus and Neudecker 1999/1988,
Chap. 5 sec. 11), P-a.s. for T big enough, 6 — Ly (6, 7(6)) is continuously differentiable at ;.

(iii) Tt is a consequence of the Lagrange theorem (e.g., Magnus and Neudecker 1999/1988,
Chap. 7 sec. 12). Check its assumptions. Firstly, under Assumptions 1 and 2, P-a.s. by
the statement (i) of the present lemma, P-a.s. for T big enough, the constrained estimator O
exists and that it is in the interior of ® by consistency and Assumption 1(c). Then, we should
check the other assumptions of the Lagrange theorem w by w on the subset of © where 07
exists. Firstly, by Assumption 3(a), r : @ — RY is continuously differentiable. Secondly, under
Assumptions 1,2 and 3(a), if the test hypothesis (9) on p. 6 holds, P-a.s. as T' — oo, O — o,

and, by Assumption 3(b), 81;9(30) is full rank, Thus, P-a.s. for T' big enough, ar(a(g,T) is full rank

by continuity of the determinant function. Finally, by the statement (iv) of the present lemma
0 — Lp(0,7r(0)) is differentiable at fr.
(iv) First of all, note that it does not immediately follow from the statement (iii) because

OLy (07,77 (07)) OLy(0,7) ¢ OLr(0.7r(0))
0 20

denotes 50 instead o (see footnote 14 on

(0,7)=(07,7r(07)) 0=0r
p. 61). Under Assumption 1(a)(b) and (d)-(h), by Lemma 21i (p. 61), 7r(.) is continuously

differentiable in ®. Morcover, under Assumptions 1, 2 and 3(a), if by the statement (ii) of the
present lemma, P-a.s. for T' big enough, 0§ — Lp(0,70(0)) is continuously differentiable in a
neighborhood of 7. Thus, by an immediate and standard implication of the chain rule (e.g.,
Magnus and Neudecker 1999/1988, chap. 5, sec. 12, exercise 3), P-a.s. for T' big enough, for all
j€l,m],

OLy(0,7r(0)) _ OLy(0,1) L OLy(0,7) or(6)
90; 9=07 99 0,7)=r,77(01)) or’ (0,7)=(07,7r(07)) 90; 0=0r
OL7(0
_ OLr(6,7) gé”) +0(T7h) (44)
J (0,7)=(07,7r(07))

where the explanations for the last equality are as follow. Firstly, under Assumptions 1, 2 and
3(a), by Lemma 22iv (p. 63), P-a.s. as T — oo, % = O(T™!) because

_ (6,7)=(07,70(61))
O — 6y, P-a.s. as T — oo, by the second part of the statement (i) of the present lemma.

Secondly, under Assumptions 1, 2 and 3(a), by the second part of the statement (i) of the
present lemma and Lemma 21iii (p. 61), P-a.s. as T — oo, age(f) i = O(1).

=vr
Now the results follows by plugging the above equation (44) into the Lagrangian FOC of the

statement (iii) of the present lemma. O

APPENDIX C. ON THE ASSUMPTIONS
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C.1. Discussion. Assumptions 1 and 2 are mainly adapted from the entropy literature. As-
sumption 1(a) ensures the basic requirement for inference, that is, data contain different pieces
of information (independence) about the same phenomenon (identically distributed). The con-
ditions “independence and identically distributed” are much stronger than needed, and can be
relaxed to allow for time dependence along the lines of Kitamura and Stutzer (1997). We restrain
ourself to the i.i.d. case for brevity and clarity. Assumption 1(a) also requires completeness of
the probability space so that we can define functions only a probability-one subset of €2 without
generating potential measurability complications. The completeness of the probability space
is without significant loss of generality (e.g., Kallenberg 2002 (1997, p. 13), and it is often
implicitly or explicitly required in the literature.

Assumption 1(b) mainly requires standard regularity conditions for the moment function
¥(.,.). Asusual in nonlinear econometrics, the existence of the estimator relies on such regularity
conditions. An alternative would be to rely on empirical process theory, but it seems here
inappropriate as the implicit nature of the definition of the ESP approximation requires smooth
functions. We require Assumption 1(b), as well as some of the following assumptions, to hold
in an e-neighborhood of the parameter space ©, so that we can deal with its boundary 90 in
the same way as with its interior. In particular, it ensures that »(0) is invertible for 0 € 0©
under probability measures equivalent to [P (Corollary 1lii on p. 86), and it allows to apply an
implicit function theorem to 7(#), also for # € 00 (Lemma 10 on p. 31). For the latter reason,
the entropy literature often appears to also (implicitly) assume that assumptions hold in an
e-neighborhood of the parameter space. In applications, this is often innocuous as the boundary
of the parameter space is often loosely specified. However, in some specific situations, which we
rule out, this may be problematic (e.g., Andrews 1999, and references therein).

Assumption 1(c) requires global identification, which is a necessary condition to prove the
consistency of an estimator. If we were interested in the ESP approximation instead of its
maximizer (i.e., the ESP estimator), global identification could be relaxed as Holcblat (2012) and
a companion paper show. Assumption 1(c) also requires equality between the dimension of the
parameter space and the number of moment conditions, i.e., just-identified moment conditions.
We impose the latter for mainly three reasons. Firstly, it appears reasonable to investigate the
ESP estimator in the just-identified case before moving to the over-identified case, which requires
to generalize the ESP approximation. Secondly, the just-identified case makes clear the difference
between the ESP estimator and the existing alternatives, which are all equal in this case (see
section 2.2). Thirdly, this is a standard assumption in the saddlepoint literature. However, note
that (i) this assumption is less restrictive than it seems at first sight because, in the linear case,
over-identified moment conditions correspond to just-identified moment conditions through the
FOCs, and, in the nonlinear case, we can transform over-identified estimating equations into
just-identified estimating equations through an extension of the parameter space (e.g., Newey
and McFadden 1994, p. 2232); (ii) ongoing work show how to generalize the ESP approximation
to over-identified moment conditions.

Assumption 1(d) requires the compactness of the parameter space ®, and the existence of a
solution 7(0) € R™ that solves the equation E [eT/”’(Xl’e)z/)(Xl, 0)| =0, for all # € ©. Schennach
(2005) also makes this assumption. Compactness of the parameter space is a convenient standard
mathematical assumption that is often relevant in practice. A computer can only handle a
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bounded parameter space —finite memory of a computer. Regarding the existence of 7(6), it
is necessary to ensure the asymptotic existence of the ESP approximation. From a theoretical
point of view, the existence of 7(6) looks like a reasonable assumption: If, for some 0 € O,
Omx1 is outside the convex hull of the support of ¥ (X7, 6), there is not such a solution 7(0),
which also means that 6 cannot be 6y, so that it should be excluded from the parameter space.
However, the existence of 7(6) might be difficult to check in practice. A way to get around this
assumption is to (i) assume the existence of 7() only in a neighbohood of 6y; and (ii) to set
the ESP approximation to zero for the 6 values that do not have a solution to the finite-sample
moment conditions (14). Holcblat (2012) follows such an approach. We do not follow such an
approach because it significantly complicates the proofs and the presentation.

Assumptions 1(e) and 2(b) rule out fat-tailed distributions. More precisely, they require the
existence of exponential moments. They are necessary to apply the the ULLN (uniform law
of large numbers) a la Wald (e.g., Ghosh and Ramamoorthi 2003, pp. 24-25, Theorem 1.3.3)
to components of the ESP approximation. Assumptions 1(e) and 2(b) are stronger than the
moment existence assumption in Hansen (1982), but they are a common type of assumptions in
the entropy literature (e.g., Haberman 1984, Kitamura and Stutzer 1997, Schennach 2007), the
saddlepoint literature (e.g., Almudevar et al. 2000) and the literature on exponential models (e.g.,
Berk 1972). In particular, Assumptions 1(d) and 2(b) are a convenient variant of Assumptions
3.4 and 3.5 in Schennach (2007). Both in Schennach (2007) and in the present paper, the
successful estimation of the Hall and Horowitz model, which does not satisfy Assumptions 1(e)
and 2(b), suggests that the latter can be relaxed. In practice, Assumptions 1(e) and 2(b) are
not as strong as it may appear because observable quantities have finite support (finite memory
of computers), which, in turn, implies that they have all finite moments. Moreover, in the
case in which unboundedness is a concern (e.g., moment conditions derived from a likelihood),
Ronchetti and Trojani (2001) provide a way to bound moment functions.

Assumptions 1(f) and (g) play the same role as Assumptions 1(e) and 2(b), although they are
less stringent. Assumption 1(h) requires the invertibility of the asymptotic variance of standard
estimators (scaled by v/T') of any solution to the tilted moment condition. In the present paper,
this assumption has two main roles. Firstly, it ensures that the determinant term |ZT(9)|;§ in
the ESP approximation (11) does not explode, asymptotically. Secondly, it ensures the positive
definiteness of the symmetric matrix E [eT/w(Xl’e)w(Xl,9)1/}(X1,9)’] for all (6,7) € S, so that
the min cgm ]E[ele(Xl’e)] is a strictly convex problem, which, in turn, implies the unicity of its
solution 7(6). In the setup of the present paper, Assumption 1(g) is equivalent to the invertibility
of E [eT((")/w(Xl’e)%gg}—’e) and E [(X1,0)y(X1,0)], for all § € ® (Lemma 29 on p. 86 with
P =P and % = m) In this way, it is stronger than the Assumption 4 in Kitamura and
Stutzer (1997), but it is close to Stock and Wright (2000, Assumption C). Note that Schennach
(2007) also implicitly assumes that E [ele(Xl’e)w(Xl, ) (X, 9)’} is full rank for all (0, 7) € S,
because Schennach (2007, p. 649) regards 7(6) as a solution to a strictly convex problem (e.g.,
Hiriart-Urruty and Lemaréchal 1993/1996, chap. 4, Theorem 4.3.1). Assumption 1(g) should
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often be reasonable because the set of singular matrices has zero Lebesgue measure in the space

of square matrices.'®

C.2. Implications of Assumption 1(h).

Lemma 29. Let (Q4, A) be a measurable space, Z : @ — RF be a k-dimensional random vectors
with k € [1,00] and P and Q two probability measures on (Q4,.A). Denote the expectation and
the variance under P with Ep and Vp, respectively.

(i) For all T € R¥, Ep <eT/ZZZ’) > 0, it is a positive semi-definite symmetric matric.

i) If P~ Q (i.e., they are equivalent), Ep(|ZZ']) < co and Eq(|ZZ'|) < oo, then
Q
Ep(ZZ') invertible < Eq(ZZ'") invertible

Proof. (i) Symmetry follows from the invariance under transposition of Ep (ZZ’eT/Z ) It re-
mains to show positive semi-definiteness. For all y € R¥,
Vwe, yeTlzZ'y= eT,Z[y/Z]2 >0
= ¢/'Ep [eT’Z ZZ’] y = Ep [y/eT,Z ZZ’y] > 0.
where the implication follows from the monotonicity of the Lebesgue integral (e.g., Monfort
1997, p. 47).

(ii) By contraposition, it is equivalent to prove that Ep(ZZ’) noninvertible iff Eq(ZZ’) non-
invertible. By statement (i),

Ep(ZZ'") noninvertible
& Jy e RF\ {0px1}: yEp(Z22)y =0
9 3y € R\ {01} : Ep[(y'2)%] = 0
& Jy € R\ {01} : (¥'Z2)? = 0 P-as.
“ Jy € R¥\ {04x1} : (¥ Z2)? =0 Q-as.
@ 3y € R¥\ {01} : Eql(y'2)2] = 0
£ 3y € R\ {0} s yEq(22')y = 0
< Eq(ZZ') noninvertible

(a) YEp(ZZ')y = Ep[y'Z(y'Z)'] = Ep|(y'Z)?] (b) The integral of a positive function w.r.t a
measure is null iff the function is null almost-surely (e.g., Kallenberg 2002 (1997, Lemma 1.24).
(c¢) By assumption, P ~ Q.(d) Same as (b). (a) Same as (a) with Q instead of P.

O

Corollary 1 (Implication of Assumption 1(h)). Under Assumptions 1(a)-(b), (e) and (g), As-
sumption 1(h) implies that, for all (0,7) € S, E [eT/¢(X1’9)w(X1, 0)(Xq, 9)’} is a positive definite
symmetric matriz.

5The set of singular matrices corresponds to the set of zeros of the determinant, which is nonzero

polynomial in several variables. Moreover, by induction over the number of variables with the fundamental
theorem of algebra for the base step, a nonzero polynomials has a finite number of zeros.
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Proof. By Lemma 29i (p. 86) with Z = 9¢(X1,0), it is a positive semi-definite matrix. Thus, it
remains to show that it is invertible, i.e., definite instead of only semi-definite.

Under Assumption 1 (a)(b)(d)(e)(g) and (h), by Lemma 3 (p. 22) and Assumption 1(d)(e),
for all # € O, 0 < ]E[eT(e),d’(Xl’e)] < o0. Moreover, by Assumption 1(h), for all § € O,
E [eT(")'“’(Xlﬂ)l/J(Xl, ) (X, 9)'] is invertible, so that sk E |7V X104 (0, 6)¢(X 1., 0)'

is also invertible. For every (6,7) € S, check the assumptions of Lemma 29ii (p. 86) with Z =

dPy om0 (X1,0) dQue,ry o ¥X1LOR[eT(O) ¥(X1,0) dQo,ry o7 ¥(X1,0)
w(Xh@), T]p? - ]ETef(e)/w(xl,e)] and dlfg - ?E[erw(xl,e)fer(e)'w(xl,9)7 d]; - Ee[}er’zb(xl,e)]'
Firstly, for all (w,7,0) € 2 x T x 0, 0 < % and 0 < %, so that Q) ~ Po ~ P.
Secondly, by monotonicity of integration and the Cauchy-Schwarz inequality, for all 6 e O,
E[ly(X1,0)¢(X1,0)'] < Elsupgee [¢(X1,0)9(X1,0)|] < Elsuppee [¢(X1,0)0(X1,0)7] <
oo, where the last inequality follows from Assumption 1(g). Thirdly, under Assumption 1
(a)(b)(d)(e)(g) awnd (h), by Lemma 3 (p. 22) and Assumption 1(d)(e), for all (0,7) € S,
0 < E[e™?(X1:9)] < o0. Moreover, under Assumptions 1(a)-(b), (e) and (g), by Lemma 8i (p.
28), E [Sup(gﬂ.)es ™ Y0 X, 0) (X, 9)'@ < 0, so that, for all (8,7) € S,

E [ﬂ%\w(Xl,G)w(Xl,H)ﬂ < 00. Thus, for each (6, 7) € S, apply Lemma 29ii (p. 86) to

show the result. O

so that

APPENDIX D. REMAINING TECHNICAL RESULTS

Lemma 30 (Asymptotic invertibility of sequence of matrix functions). Let A(vy) be a family of
invertible matrices indexed by v € T' s.t. ~ — A(y) is continuous, and where T' is a compact
subset of a Buclidean space. Let (Ar(7))re[i,00] be @ sequence of square matrices. If, as T — oo,
sup,cr [Ar(v) — A(y)| — 0, then there exist a constant e4 > 0 and Ta € N s.t. for all
T € [Ta, 00, for all v € T, ||A7(7)ldct| = €a.

Proof. The function A — ||A|get| is a continuous function. Moreover, by assumption, for all
v € T, ||A(7)|get| > 0. Thus, by continuity of v — A(v) and compactness of I, there exists
ea s.t. minyer ||A(7Y)|det| > 2e4. Now continuity of A — ||Alqget| on the compact set I' implies
uniform continuity (e.g., Rudin 1953, Theorem 4.19), so that there exists 7., € N s.t., for
all T € [T ,,00[, sup,er |[|A7(7)ldet] — [[A(7)]det|]] < €a. Then, for all v € T, the triangle
inequality |[A(y)det| < [[[A(7)]aet] = [[A7(¥)laet || + [[A7(7)[aet| implies that e4 = 264 —ea <
1A el = 1A el = 1A el | < NAT() et O

Lemma 31 (Asymptotic positivity and definiteness of matrices). Let (Ar)r>1 a sequence of
square matrices converging to A as T — 00.'% Then, if (Ar)r>1 is a sequence of symmetric
matrices and A is a positive-definite matriz (p-d.m), then there exists T €N such that T > T
implies Ap is p-d.m.

Proof. On one hand, A7 is a p-d.m. if and only if all its eigenvalues are strictly positive (e.g.,
Magnus and Neudecker 1999/1988, Ch. 1 Sec. 13 Theorem 8). On the other hand, minsp Ay =
min,. ;=1 2’ A7z, where spAr denotes the set of eigenvalues of A (e.g., Magnus and Neudecker
1999/1988, Ch. 11 Sec. 5). Thus, it is sufficient to prove that limp o min,, =1 2'Arz =

6Note that we do not need to specify the norm as all norms are equivalent in finite-dimensional spaces.
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min,. = 2’ A2, which in turn implies that it is sufficient to prove that sup,., - ['Arz —
Z/Az] — 0, as T — co. Prove this last result by contradiction.

Assume that sup,.|.|=; |2’ Apz — 2’ Az| does not converge to 0 as T' — oo. Then, there exists
€ > 0 and an increasing function «; : N — N defining a subsequence of vectors of norm 1,

(zal(T)) T and a subsequence of matrices, (Aa1(T))T>1> such that

e <

zél(T)Aal(T)zal(T) B z(/Dzl(T)AzOél(T)‘
(k,b) kD] LB O
faar) Aann) = A )| < 30 [[alllhy =] 282l
(k,1)e[1,m]?

(k,0) k,l
ag i — ok

< m? x max
(k,l)e[1,m]?

where m is the size of the matrix A and a*! denotes the component of the matrix A in the kth

(k1) k,l
Yay(T) alh!)

row and /th column. Now, by assumption, using the max norm, max g ;)c[1,m]? —

0 as T — oo. Thus, there is a contradiction.

Lemma 32 (Differential of a log of a squared determinant). Let G be an open set of R? with
q € [L,00[, and F : G — R™ ™ q differentiable function on G. Then |F|qet : G — R is also
differentiable on G. Moreover, if |F(x)|qet # 0 where x € G, then

(i) DIF(2)lder = [F(2)]aestr[F(z) "' DF(2)];

(i) DInf|F(2)[3,] = 2[F(2) " DF ()],

Proof. (i) Tt is a consequence of the so-called Jacobi’s formula (e.g., Magnus and Neudecker
1999/1988, chap. 8 sec. 3).

(i) First of all, note that the logarithm is well-defined as its argument is strictly positive by
assumption. Then, by the statement (i) of the present lemma and the chain rule,
1

Dnl|F ()] = T

2|F (2)]des | F () |aet tr[F(x) "' DF (x))].

Lemma 33 (Inverse of a 2 x 2 partitioned matrix). Let F' be a square matriz s.t.

A B
C D

F =

where A and D are square matrices. Then, the following statements hold.
(i) If A is invertible, then F invertible < (D — CA~'B) invertible. Moreover,

A"V 4+ A"'B(D - CA™'B)"'CA™! —A"'B(D-CA-'B)"!

F!=
—(D—-CA™'B)"lcA! (D-CA™'B)~!

(ii) If D is invertible, then F invertible < (A — BD~1C)~! invertible. Moreover,

(A— BD10)"! —(A— BD"'C)"'BD!

Fl=
-D7'C(A-BD™'C)™' D'+ D7'C(A-BD7'C)T'BD™!

Proof. This is a standard result (e.g., Magnus and Neudecker 1999/1988, Chap. 1 sec. 11). O
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Corollary 2 (Inverse of a 2 x 2 partitioned matrix in a special case). Let E be a square matriz
s.t.

A B

E=
B0

Then,
(i) If A and B'A='B are invertible, then E in invertible; and

1

i |4 B A1~ AT'B(B'AT'B) ' B'A™ A7'B(B'A'B)”
ii = _ _
B 0 (B'A-'B) ' BA™! —(B'A—'B)™"
Proof. Apply the above Lemma 33i with F'=FE, C = B’ and D = 0. O

APPENDIX E. MORE ON THE NUMERICAL EXAMPLE

The simulations were performed in R. Each model parameterization is simulated 10,000 times.
The robustness of the simulation results was checked with different optimization algoritheorems,
starting values and tolerance parameter values. The estimation for a single sample is typically
performed in less than a few seconds. The calculations were done on a 24 CPU cores of a Dell
server with 4 AMD Opteron 8425 HE processors running at 2.1 GHz. We numerically checked
that the reported statistics have a converging behaviour as we increase the number of simulated
samples to 10,000.

APPENDIX F. MORE ON THE EMPIRICAL EXAMPLE

In empirical consumption-based asset pricing, the literature has found little common ground
about the value of the relative risk aversion (RRA) of the representative agent: In most stud-
ies, point estimates from economically similar moment conditions are generally outside of each
other’s confidence intervals. Section 4.2 (p. 9) and the present appendix revisit the estimation
of the RRA. The popularity of moment-based estimation in consumption-based asset pricing,
and more generally in economics is due to the fact that moment-based estimation does not
necessarily require the specification of a family of distributions for the data (e.g. Hansen 2013,
sec. 3). Typically, an economic model does not imply such family of distributions, except for
tractability reasons. Imposing a family of distributions makes it difficult to disentangle the part
of the inference results due to the empirical relevance of the economic model from the part due to
these additional restrictions. Under regularity conditions, assuming a distribution corresponds
to imposing an infinite number of extra moment restrictions (e.g., Feller 1971 (1966, 1971 /1966,
chap. VII, sec. 3).

In Section 4.2 (p. 9) and the present appendix, we rely on the moment condition (10) on p.
9. This moment condition has several advantages. Firstly, it is as consistent with Lucas (1978)
as with more recent consumption-based asset-pricing models, such as Barro (2006) or Gabaix
(2012). In other words, despite its simplicity it also correspond to sophisticated models, and it
allows us to obtain estimates that are robust to different variations of consumption-based asset
pricing theory. Secondly, without loss of generality, it does not require to estimate the time
discount rate, about which there is little debate: The time discount rate of the representative

agent is consistently found to be between .9 and 1. Note also that it has been common to use
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moment conditions with a separate parameter for the so-called intertemporal elasticity of sub-
stitution, i.e., use Epstein-Zin-Weil preferences (e.g. Epstein and Zin 1991). However, Bommier
et al. (2017) show that such a specification makes the economic interpretation of the parameters
difficult. In particular, they show that an increase of the so-called RRA (relative risk-aversion)
parameter does not yield a behaviour that would be considered more risk averse. E.g., All other
things being equal, savings can be a decreasing function of the so-called RRA parameter for an
agent with Epstein-Zin-Weil preferences (e.g., Bommier et al. 2017, sec. 6). This difficulty of
interpretation comes from a violation of the monotonicity axiom according to which an agent
does not choose an action if another available action is preferable in every state of the world.

F.1. Additional empirical evidence.

Table 3 (p. 92) is the same as Table 2 (p. 10) with the additional Table 3 Figures (A). The
latter clearly shows that the normalized ESP is relatively sharp around the ESP estimator.
Table 4 (p. 93) is the counterpart of Table 3 (p. 92) for the 1930-2009 data set. The 95% ET ALR
confidence region is based on the inversion of the ALR ET statistic 27 [LogET(éT) — LogET(QO)]
= 2TLogET(6p) — x? (Kitamura and Stutzer 1997, Theorem 4 with K = 0 and Hy : 6 = 6y),
where LogET(6) :=In [% E,f:l (@0 ] and LogET(07) = In [% Zthl eTT(éT)/wt(éT)] = 0 be-
cause, in the just-identified case, %Zthl ¢t(éT) = 0 so that TT(éT) = 0,ux1. The ET and ESP
support correspond to the parameter values 6 € © for which there exists a solution 77(6) to the
equation (14) on p. 17. Table 4 confirms the findings of Table 3 (p. 92) in Section 4.2: The ESP
is sharper than the ET around its maximum, so that the ESP confidence region is also shorter.
Note also that the ESP estimate is almost the same as for the data set 1890-2009. These results
are in line with the ESP shrinkage-like behaviour documented in the Monte-Carlo simulations
of the section 4.1.

Tables 5 (p. 94) and 7 (p. 95) report the MM estimates and the confidence regions based on the
inversion of the MM ALR test statistic T’ [QMM,T(HO) — QMM’T(HAMMT)} = TQmm,1(6o) A X3,

/
as T — o0, (e.g., Newey and McFadden 1994, Theorem 9.2), where Qum, 7(0) := [% Zle %(9)}

X [% S wt(éMM,T)th(éMM,T)/} - [% S wt(e)] and Qyivr(fainv,r) = 0 because

%E;‘/le T/Jt(éT) = 0 in the just-identified case. The MM objective function is sharper around
its minimum for the 1930-2009 data set than for the 1890-2009. However, the former sharpness
appears misleading as it yields a confidence region that does not include the MM estimate of
the 1890-2009 data set.

Tables 6 (p. 94) and 8 (p. 95) report the CU (continuously updating) MM estimates and the

confidence regions based on the inversion of the CU ALR test statistic

T [QCU,T(HO) - QCU,T(éMM,T)] =TQcu.r(0o) — X3, as T — oo, where
-1

!/ A~
Qou(0) == [+ X1y (@) [+ Ly wu@we6)] [+ X0 6(0)] and Qeur(Bour) = 0 be-
cause % Z;le Y(07) = 0 in the just-identified case. In the just-identified case, which is the
case addressed in the present paper, such confidence regions correspond to the S-sets, which
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were proposed by Stock and Wright (2000) —following Hansen et al. (1996, (c¢) Constrained-
Minimized)— as a solution to the flatness of GMM objective functions. As previously docu-
mented in the literature (e.g., Hansen et al. 1996), CU GMM objective functions tend to be flat
and low in the tails. Thus, the CU ALR confidence regions (and S-sets in the just-identified
case) are huge, and hardly informative.

F.2. Data description. As in Julliard and Ghosh (2012), our data are standard. For the 1890-
2009 data set, our source is the Robert Shiller’s web site. The prime commercial paper and the
S&P stock price index play the role of proxies for the risk-less asset and the market return.

For the 1930-2009 data set, the proxies for the risk-less asset and the market return are
the one month Treasury-bill and the Center for Research in Security Prices (CRSP) value-
weighted index of all stocks on the NYSE, AMEX, and NASDAQ. The computation of the
growth consumption is based per capita real personal consumption expenditures on nondurable
goods from the National Income and Product Accounts (NIPA). Quantities are deflated from
the inflation.

Tables 9 and 10 indicate that there is no significant autocorrelation for the excess returns,
and only a mild clustering effect (Figures (E) and (F) in Table 10 on p. 96). Thus, the i.i.d.
assumption (Assumption 1(a)) appears to be a good approximation for the excess returns for
both data set. For the growth consumption, the i.i.d. assumption may appear less appropriate.
Table 11 indicates a mild autocorrelation for the growth consumption, and, more strikingly, a
change of variance at the end of WWII. However, in the moment function, the growth consump-
tion is multiplied by the excess returns, whose variance is several orders of magnitude higher

(Table 9 on p. 96), so that the change of variance is dampened.
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TABLE 3. ET vs. ESP inference (1890-2009)

—6
. e 1 2009 C _ _
Empirical moment condition: 55557555 211800 K—L@_l) (Rt Rf,t)| =0, where
Ry, = gross market return, Ry, :=risk-free asset gross return, C; := consumption,

and @ :=relative risk aversion;

Normalized ET::exp{T In [% Ele eTT(‘)/q/’t(‘)] }/f@ exp{Tln [% Zthl eTT(G)/wt(G)] } de;
Normalized ESP:= fg;(.) /s fg% (0)do;

Oprr = O r = 50.3 (bullet) and fgsp 7 = 32.21 (bullet);

ET and ESP support = [—218.2,289.0]; 95% ET ALR conf. region=[18.3,289.0] (stripe);
95% ESP ALR conf. region=[15.0, 112.7] (stripe).
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(A) Normalized ET (light green) vs. normalized ESP (dark blue).
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(A) ET est. and ALR conf. region. (B) ESP est. and ALR conf. region.
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TABLE 4. ET vs. ESP inference (1930-2009)

—0
. e 1 2009 C _ _
Empirical moment condition: 5557555 211800 M—Ctl) (Rt Rﬂt)J = 0, where
Ry, = gross market return, Ry, :=risk-free asset gross return, C; := consumption,

and # :=relative risk aversion;

Normalized ET::eXp{T In [% S eTT(')lwt(')] }/f@ eXp{Tln [% ST eTT(e)/wt(G)] } de;
Normalized ESPZ:fg;(.)/f@ fg; (0)do;

Oprr = 35.0 (bullet) and fpspr = 32.5 (bullet); ET and ESP support= [—202.8, 813.3]

95% ET ALR conf. region=[—202.8, —76.0] U [17.7,197.8] (stripe);
95% ESP ALR conf. region=[17.7,58.7] (stripe).
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(A) Normalized ET (light green) vs. normalized ESP (dark blue).
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(B) ET est. and ALR conf. region. (C) ESP est. and ALR conf. region.
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TABLE 5. MM inference (1890-2009)

—6
. e 1 2009 C B _
Empirical moment condition: 55557555 211800 K—L@_l) (Rt Rf,t)| =0, where
R+ = gross market return, Rj, :=risk-free asset gross return, C; := consumption, and

0 :=relative risk aversion.
Ocvm,r = 50.3 (bullet); 95% ALR confidence region= [—41.7,71.5] (stripe).
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(A) MM objective function and point estimate. (A zoom) MM obj. function ALR conf. region.

TABLE 6. Continuously updated (CU) GMM inference (1890—2009)

—0
. o 1 2009 oA _
Empirical moment condition: 55557555 21800 \‘(Ct—l) (Rt — Rf’t)J = 0, where

R, = gross market return, R;, :=risk-free asset gross return, C; := consumption, and
0 :=relative risk aversion.

0SV=50.3 (bullet): 95% ALR confidence region (and S-set)=]..., —59.1]J[18.2,...[ (stripe).
Rk: We constrain the numerical search for point estimate to discard large values of 6.
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(A) Objective function and point estimate. (B) Truncated ALR conf. region (and S-set).
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TABLE 7. MM inference (1930-2009)

—6
. e 1 2009 C B _
Empirical moment condition: 55557535 2 i—1930 K—L@_l) (Rt Rf,t)| =0, where
Ry, = gross market return, Ry, :=risk-free asset gross return, C; := consumption,

0 :=relative risk aversion.
O = 35.0 (bullet), ALR confidence region= [—10.4, 46.5] (stripe)
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(A) MM objective function and point estimate. (A zoom) Objective function and point estimate.

TABLE 8. Continuously updated (CU) GMM inference (1930—2009)

—0
Empirical moment condition: m 322%90 K%) (R — Rf’t)J = 0, where
R, := gross market return, Rj, :=risk-free asset gross return, C; := consumption,
0 :=relative risk aversion.
05V = 50.3 (bullet); ALR confidence region (and S-set) =]..., —35.8] U [17.9,...[ (stripe).

Rk: We constrain the numerical search for point estimate to discard large values of 6.
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(A) Objective function and point estimate. (B) Truncated ALR conf. region (and S-set).
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TABLE 9. Descriptive statistics.

Mean (Variance)
Variable 1890-2009 1930-2009

C./Ci 1.0182 1.014
(.0009)  (.0007)
Rpy— Ry 0630 074

(.0367)  (.0424)

TABLE 10. Excess returns: R,,; — Ry,
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TABLE 11. Growth consumption: C;/C; ;.

1890-2009 1930-2009
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