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Abstract

To keep the electric power system reliable, grid operators procure reserve generation capacity to
protect against generator failures and significant deviation from the load forecast. Current
methods for determining reserve requirements use historical generator availability data (recorded
as failure events) to compute the fraction of the time each unit in the power system was
unavailable unexpectedly. These values are then combined using analytical or simulation
methods to yield a distribution of available capacity. From this distribution, the reserve capacity
needed to maintain a particular reliability target may be determined. Such an approach implicitly
assumes that generator failures occur independently of one another and that generator availability
is not seasonal.

To test these assumptions, we process the more than two million event records reported to the
Generating Availability Data System (GADS) database maintained by the North American
Electric Reliability Corporation (NERC) between January 1, 2012 and December 31, 2015. This
allows us to construct complete availability histories (hourly time series) for each of the
approximately 8,000 generating units reporting to GADS during this period. Using these time
series, we find strong evidence of correlated failures in most regions, even when removing
Hurricane Sandy and the exceptionally cold month of January 2014 from the data. We find that
correlated failures occur in all seasons. We do not find evidence of seasonality but note that
seasonal structure may emerge with more data.

In addition we determine the distribution of unscheduled unavailable capacity, unscheduled
derating magnitudes, event durations, event arrival probabilities, and mean time between failure
(MTBF) and mean time to recovery (MTTR) values. In each case, we report fit parameters to
facilitate use by practitioners. The distributions of unscheduled unavailable capacity in each
region are reasonably well modeled by Weibull and lognormal distributions. We find statistically
significant differences in mean time between failure for small and large units for three unit types
when aggregating over regions. Finally we present time series of unavailable capacity from
unscheduled, maintenance, and scheduled events. These may be used in conjunction with load
data to directly study resource adequacy risks without assuming independent failures or constant
availability. Our findings suggest that power system resource planners should consider correlated
outages as they identify reliability and reserve capacity requirements.
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Highlights
e Correlated failures of NERC electric power generators occurred in 2012-2015
e Correlated failures happen in most NERC regions even when major storms are removed
e Correlated outages should be considered in defining resource adequacy requirements



1. Introduction

Extended low temperatures in much of the United States (U.S.) and Canada in January of 2014
resulted in significant losses of electricity generation capacity. In the control area of PJIM
Interconnection LLC (PJM), a large regional transmission organization (RTO) in the eastern
U.S., more than 20% of total capacity was unavailable during the peak of the polar vortex event
[1].! To avoid blackouts, PJM had to enact emergency measures, including making public
appeals for conservation, calling on demand-response resources, reducing system voltage, and
scheduling shared reserves with neighboring systems.

Resource adequacy modeling (RAM) is the process of determining how much capacity is needed
to achieve a given reliability standard.? Probabilistic methods have been used to determine
required reserve generation from power plant outage data for more than 80 years [2,3].
Significant advances were made in the immediate postwar period and led to the creation of a
joint program of the Edison Electric Institute and the American Institute of Electrical Engineers
on the application of probability methods [4-7].

Current industry practice proceeds as follows. First, historical availability data are used to
calculate an “availability statistic” for each generating unit. The predominant availability statistic
in use in the U.S. is the equivalent forced outage rate of demand (EFORd) which seeks to
estimate the conditional probability of a unit being unavailable when needed by the power
system [8]. Second, the availability statistics for each generating unit in the power system are
used to determine the distribution of available capacity for the system through analytical or
simulation methods. Finally, the resulting distribution is compared to a forecast of system load to
determine capacity requirements [9].>

The availability statistic approach to RAM distills multiple years of availability history for each
generating unit to a single number. Because all temporal information is discarded, it implicitly
assumes failures are independent among generating units [10]. However, failures could be
correlated for a number of reasons, including common weather events, fuel supply disruptions, or
a common vintage of defective mechanical components, leading to biased estimates of the level
of capacity needed to achieve a reliability standard [11]. For lack of a tractable alternative, the
assumption of independent failures is also made by scholars working outside RAM: [12] assume
independence when simulating the marginal cost curve for electricity supply in California to test
for the exercise of market power. Finally, we note that the availability statistic approach to RAM
also implicitly assumes that generator availability is not seasonal.

Here we seek to test the validity of these two assumptions. To do this we devise a novel method
for reconstructing the availability history of a generating unit from event records. We

! The Pennsylvania-New Jersey Interconnection was a power pool formed in 1927. It was renamed the
Pennsylvania-New Jersey-Maryland (PJM) Interconnection in 1956 when Maryland-based utilities joined. Its
current footprint includes all or parts of 13 U.S. states and the District of Columbia.

2 The most common reliability standard in use in North America is the “1-in-10” standard, usually interpreted to
mean that a loss of load event due to insufficient generation capacity will occur on no more than one day in ten years
on average [21,32]. It is also sometimes interpreted to mean no more than 24 hours of loss of load due to supply
shortages will occur in ten years on average [33]; various reliability regions have other interpretations [14].

® Current resource adequacy planning procedures for several control areas in the United States may be found in the
following sources: [34-39].



demonstrate our method using the Generating Availability Data System (GADS), a proprietary
database maintained by the North American Electric Reliability Corporation (NERC) [13].
GADS contains more than two million event records affecting approximately 8,000 generating
units between 2012 and 2015. These units represent approximately 85% of generation capacity in
the conterminous U.S. and Canadian provinces. We use the GADS data to create time series of
unavailable capacity from unscheduled, maintenance, and scheduled events for each unit.

Our primary objective is to use the hourly time series to test both for failure correlation among
generating units and for seasonal availability patterns. While we are not the first to recognize the
potential challenges posed by correlated failures for RAM, previous research has been hampered
by a lack of access to the necessary data [10,14].

In addition, we use the time series to generate inputs for Markov modeling of power systems.
This includes Weibull and lognormal distributions fit to each region’s series of unavailable
capacity, Weibull distributions fit to unscheduled derating magnitudes by unit type, lognormal
distributions fit to unscheduled event durations by event type, and lognormal distributions fit to
hourly unscheduled event arrival probabilities. In each case we report the parameters of our fits.
We also calculate the mean time between failure (MTBF) and mean time to recovery (MTTR)
for every unit in the GADS data and test whether large and small units have different MTBF
values by unit type. Finally, we present hourly time series of unavailable capacity from
unscheduled, maintenance, and scheduled events and publish the data. These may be used in
conjunction with load data to study resource adequacy risks without assuming either independent
failures or constant generator availability, which we believe represents a significant advancement
versus current RAM practice.

The paper is organized as follows. Section 2 introduces the GADS data. Section 3 describes the
steps we take to clean the data and generate time series of unavailable capacity. Section 4
presents our results. Section 5 concludes.

The novel results discussed in Section 4 are summarized here. We present the first evidence that
correlated failures are present in most NERC regions, even when removing Hurricane Sandy and
January 2014 from the data (a map of the NERC regions is Figure S-1 in the supplementary
materials”®). We find that correlated failures can occur in any season. We show distributions of
unscheduled unavailable capacity in each NERC region and find that they are reasonably well
modeled by Weibull and lognormal distributions. The distributions of normalized derating
magnitudes vary by unit type; combined cycle and simple cycle gas units are not well
approximated by common parametric fits. Three out of five unit types that we studied show
statistically significant differences in mean time between failure for small and large units. The
mean time between failure for fossil steam units tends to be shorter for large units, while the
mean time between failure for simple cycle and hydroelectric units tends to be shorter for small
units.

* Tables and Figures presented in the online supplementary materials are denoted with the S- prefix.



2. Data

A working group of the Institute of Electrical and Electronics Engineers (IEEE) Application of
Probability Methods subcommittee began developing generator reliability definitions to support
the use of probability methods in bulk power system planning in 1968. This led to the creation of
IEEE Standard 762, which provides the basis for generator availability data collection today
[15]. NERC, formed in 1968 to develop voluntary standards to support bulk power system
reliability following the Northeast blackout of 1965, assumed responsibility for collecting
generator availability data from the Edison Electric Institute in 1979, renaming the database
GADS [16,17].

In response to rapid changes in the North American resource mix and NERC’s designation as the
electric reliability organization in the U.S. in 2006, NERC phased in mandatory reporting to
GADS [18]. Beginning in January 2012, all units with nameplate capacities greater than 50
megawatts (MW), other than wind and solar generators, were required to report. This threshold
was reduced to 20 MW in January 2013. There are approximately 8,000 units with events logged
in GADS, representing approximately 85% of installed capacity in the conterminous U.S. and the
Canadian provinces. The present analysis spans January 1, 2012 through December 31, 2015, the
full period of mandatory reporting for which complete data were available at the time we began
our work.

The GADS database comprises several tables. We use primarily the Units table, which records
attributes of each generating unit reporting to GADS, and the Events table, which records each
event affecting any generating unit reporting to GADS. Secondarily we use the Performance
table, which records monthly summaries of the hours each generating unit spent in different
operational states, to validate the Events table data.

Units are required to report nearly every event that affects their ability to generate electricity,
even if dispatch requirements can still be met.®> Approximately 500,000 events are logged each
year under mandatory reporting. There are 20 event types in total, including startup failures
(where the affected unit is fully unavailable due to a failure that occurred during its startup
procedure), outages (where the affected unit is fully unavailable), deratings (where the affected
unit is partially unavailable), reserve shutdowns (where the affected unit is offline for economic
reasons but is not experiencing any reduction in its ability to generate power), unit retirements,
and several others [19]. Each event logged in GADS reports the affected unit, the type of event,
the start and end time of the event, and several additional details.

Outages and deratings are further classified as unscheduled, maintenance, or scheduled events
based on how much advance notice the unit operator had before the event went into effect
(ranging from none to several weeks). We focus on the seven unscheduled (forced) event types:
startup failures (the GADS term for these is SF), the three unscheduled outages (U1, U2, and

® Reporting failures that represent less than 2% of a unit’s capacity and last less than 30 minutes is voluntary. Hydro
and pumped storage units without automatic data recording equipment are not required to report reserve shutdown
events, but as noted above these events do not affect a unit’s ability to generate power [19].



U3), and the three unscheduled deratings (D1, D2, and D3).® These are the primary event types
considered in RAM. We next describe our methods for processing the raw GADS events data
into time series of unavailable capacity.

3. Methods

3.1 Preprocessing

Both the Units and Events tables required basic cleaning and preprocessing. Preprocessing of the
Units table included removing any records missing a nameplate capacity value or having a
NERC region code other than the eight corresponding to the conterminous U.S. and Canada.

Derating event do not have their magnitude directly reported. Instead, each derating records the
net available capacity (NAC) remaining for the affected generating unit at the start of that event.
To ensure that all derating magnitudes will be calculated correctly (Section 3.2), we check that
each unit’s nameplate capacity is greater than its largest reported NAC. An example is shown in
Figure 1. Approximately 300 units’ nameplate capacity values were updated by this procedure.
This accounts for unit up-ratings, as GADS nameplate capacity values are not generally kept up
to date by operators.

Scenario requiring update Scenario not requiring update
Original nameplate capacity: 100 MW | Original nameplate capacity: 100 MW

Derating event 1: NAC 70 Derating event 1: NAC 70
Derating event 2: NAC 30 Derating event 2: NAC 30
Derating event 3: NAC 102 Derating event 3: NAC 100

Final nameplate capacity: 103 MW Final nameplate capacity: 100 MW

Figure 1: Hlustration of scenarios for which updating the unit’s nameplate capacity is and is not
necessary. In the example on the left, the unit experiences a derating event with a net available
capacity (NAC) greater than its nameplate capacity so the nameplate is increased in order for all
derating event magnitudes to be positive (see Section 3.2). In the example on the right, the unit’s
current nameplate capacity is sufficient to yield a positive magnitude for each derating event.

We also validate the reported time zone for each unit using ABB Velocity Suite [20]. For units
whose time zone was updated by this process, we adjust the start and end times of its events
accordingly.’

® Among the seven unscheduled event types, there are still temporal gradations: SF, U1, and D1 events take effect
immediately, U2 and D2 events take effect within six hours, and U3 and D3 events can be postponed beyond six
hours but not beyond the end of the upcoming weekend.

" Subsequent conversations with members of the GADS Working Group identified that at least one large utility sets
all of its units to adhere to the time zone of headquarters, even when that conflicts with the time observed in the
state. We do not account for this as it would be extremely difficult to confirm this behavior for the hundreds of
reporting entities, but believe the bias introduced should be small.



In the Events data, we remove any records missing a start or end date, as well as duplicate
derating records. These are derating events that match on start time, end time, event type, and
NAC. When derating events match on start time, event type, and NAC but have different end
times, we keep only the event with the latest end time. These steps are necessary for correctly
calculating the magnitudes of overlapping deratings, as described next.

3.2 Calculating derating magnitudes

Deratings account for 19-35% of all unscheduled unavailable MWh during our study period,
depending on the NERC region. Thus it is important to treat reported deratings rigorously. If
deratings never overlapped, each derating magnitude could be calculated as:

Magnitude of event = Nameplate capacity of unit — NAC of event (1)

However, deratings can overlap and usually the magnitude of the succeeding derating must be
calculated as a function of the derating(s) already underway [19]. For example, if just one
derating was already in progress, the magnitude of the succeeding derating must be calculated
against it rather than against the nameplate capacity of the unit:

Magnitude of event = NAC of previous event — NAC of event @)

Any number of deratings can overlap, which makes determining the correct baseline event
difficult. We develop specialized functions to handle all possible configurations of overlapping
deratings.

3.3 Calculating time series of unscheduled unavailable capacity

With the derating magnitudes calculated, we next build hourly time series of unavailable
capacity for each generating unit.® For outages and startup failures, unavailable capacity is the
unit’s nameplate capacity in every hour where an outage event is in effect. For deratings,
unavailable capacity is the sum of the magnitudes of events in effect in each hour. We sum
outages and deratings for each unit, cap the series at each unit’s nameplate capacity, and
aggregate the unit-level series to the eight NERC regions.® An example time series is shown in
Figure 2.

® Despite event starts and ends reported to the minute, the large plurality of start and end times fall on the hour.
Histograms of start and end minute of each unscheduled event are shown in Figure S-6 and Figure S-7.

® Because the original purpose of the GADS database was to facilitate unit benchmarking, a derating in progress
when an outage occurs is not modified to prevent unavailable capacity from being overstated. Other potential causes
of overestimation include events appearing to overlap at the hourly resolution.
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Figure 2: lllustrative unavailable capacity time series for one generating unit. In hour 1 the unit
experiences an outage and is fully unavailable. In hour 2 the outage has been repaired and the unit
is fully available. In hour 3 the unit experiences a 60-MW derating. In hour 4 the unit experiences a
second derating (10 MW) in addition to the previous derating, so 70 MW is unavailable. In hour 5
both deratings have been repaired and the unit is fully available.

4. Results

We begin by presenting a brief descriptive summary of the GADS data by NERC region (Section
4.1). We then test for correlated failures (Section 4.2) and for seasonal patterns in unscheduled
unavailable capacity (Section 4.3). Finally, we present a set of analyses with direct application
for reliability analysis (Section 4.4). These include parametric fits to each NERC region’s
distribution of unscheduled unavailable capacity; parametric fits to each unit type’s distribution
of normalized derating magnitudes; parametric fits to each region’s distribution of event
durations by event type; parametric fits to the hourly probability of an unscheduled event arrival
by region; parametric fits to the distributions of mean time between failure and mean time to
recovery by unit type and region; statistical tests of whether small and large units have different
mean times between failure; and time series of unavailable capacity from unscheduled,
maintenance, and scheduled events by unit type and region.

4.1 Descriptive analysis of unscheduled unavailable capacity

Installed capacity and unit counts for the eight NERC regions spanning the conterminous U.S.
and the Canadian provinces are listed in Table 1. We show time series of unscheduled
unavailable capacity for each NERC region as a percentage of installed capacity in Figure 3,
using data from ABB Velocity Suite to construct an hourly series of each region’s installed
capacity. Hourly time series of the percent of units (unweighted by capacity) affected by an
unscheduled event are shown in Figure S-2 in the supplementary material.

We report the mean (which may be thought of as the base rate of unscheduled unavailable
capacity), median, maximum, and quartile coefficient of dispersion (QCD) for each region’s time
series in Table S-1. Over the four years we analyzed, the regions’ mean unscheduled unavailable



capacity ranged from 2.8% of installed capacity in FRCC to 6.3% in SPP. We use the QCD as a
measure of the spread of the unscheduled unavailable capacity rather than the standard deviation
because the data are asymmetric. The QCD ranges from 0.13 for SERC to 0.30 for FRCC. The
ratio of the maximum to the mean ranges from 1.8 in WECC to 4.0 in RFC. There is more than a
three-fold difference in the regional maxima, ranging from 7.2% of installed capacity for WECC

to 22.6% for RFC.

Table 1: Description of the eight NERC regions in the conterminous U.S. and Canada.

Acronym | Definition Installed Installed Unit
capacity, capacity, count®
start (MW)' | end (MW)?

FRCC Florida Reliability Coordinating Council 60,100 60,300 328

MRO Midwest Reliability Organization 56,100 56,300 523

NPCC Northeast Power Coordinating Council 149,700 146,900 | 1,142

RFC ReliabilityFirst Corporation 227,800 215,000 | 1,441

SERC Southeast Reliability Corporation 264,400 264,300 | 1,688

SPP Southwest Power Pool 58,100 59,000 423

TRE Texas Reliability Entity 80,400 81,900 428

WECC | Western Electricity Coordinating Council 206,900 209,300 | 1,903

1. Starting installed capacity is the sum of nameplate capacity of active conventional units with nameplate
capacities greater than 20 MW on January 1, 2012; wind and solar units are excluded. Data source: ABB Velocity

Suite.

2. Ending installed capacity is the sum of nameplate capacity of active conventional units with nameplate
capacities greater than 20 MW on June 30, 2015; wind and solar units are excluded. Data source: ABB Velocity

Suite.

3. The number of units experiencing an unscheduled event during the study period.
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Figure 3: Unscheduled unavailable capacity as a percent of installed capacity, by unscheduled event
type. Green: unscheduled outages only; red: unscheduled deratings only; blue: start-up failures
only; black: all unscheduled events (the sum of green, red, and blue curves).

We compute the breakdown of unscheduled unavailable megawatt-hours (MWh), the sum of the
product of each event’s magnitude (MW) and duration (hours), by event type. On average,
startup failures account for 3% (ranging from 2% to 5% for the eight NERC regions), deratings
account for 27% (ranging from 19% to 35%), and outages account for 70% (ranging from 63%
to 77%) of the total. These breakdowns are shown in Figure S-3. We present breakdowns of the
count of unscheduled events by event type in Figure S-4.

4.2 Testing for independence among generators

We wish to test the assumption that generator failures are independent. From Figure 3 it is clear
that several regions show instances of much greater unavailable capacity than their base rate.
These could be due to correlated failures or to random chance.

We test whether the peaks violate the independent failures assumption using two main methods.
We describe each briefly here, then give details and results in the next sections. First we apply
block subsampling to “shuffle” each unit’s observed time series independent of every other unit
(Section 4.2.1). Summing over units to regions yields a simulated time series for each region that
IS representative of each unit’s observed performance, but which breaks any correlation among
generator failures that may have been present. Repeating this process many times allows us to
compare the prevalence and magnitudes of large unavailable capacity instances in the observed
time series to what is possible under the null hypothesis of independent failures. We do this by



creating confidence bands from each region’s subsampled runs and plotting them along with the
empirical series as exceedance curves.

As a second test, we model each unit’s hourly availability as a binomial random variable using
its observed time series to determine the probability of an event arrival in each hour (Section
4.2.2). With these arrival probabilities we then simulate representative time series independently
for each unit. As with block subsampling, we then aggregate the unit series to regions. Repeating
this process many times allows us to compare the prevalence of large unavailable capacity
instances in the observed series to what is possible under the null hypothesis of independent
failures.

With each method, we look for violations of the independent failures assumption both with and
without Hurricane Sandy and the cold weather events of January 2014 in order to test the
possibility that these two well-known events were responsible for all the observed violations
during our study period.*

4.2.1 Test of independent failures method 1: Block subsampling

We first test whether the observed generator failures are independent using block subsampling
with replacement on each unit’s time series. The time series of unavailable capacity for a
generator has significant and important dependence over time. This dependence is preserved by
sampling blocks of hours instead of individual hours. Sampling blocks independently ensures
independence between distinct generators. In essence, block subsampling allows us to “shuffle”
each unit’s series independent of every other series, breaking any dependence across units while
preserving dependence within units. This allows us to generate new (simulated) regional
distributions under the null hypothesis that generator failures are independent. By repeating this
process many times, we can trace out the space of distributions that is consistent with
independent failures (the null hypothesis) for each region.™* We reject the hypothesis that the
generator failures are independent if a region’s empirical distribution exceeds the upper bound of
its 99% confidence band at any point above the 50™ percentile.

We begin by generating 1000 subsampled series for each region using the full study period. This
is consistent with current industry practice: it assumes not only independent failures among units,
but also no seasonality in generator performance.'® We use these series to generate 95% and 99%
confidence bands of the distribution of unscheduled unavailable capacity under the null
hypothesis, which we plot together with the region’s empirical distribution as exceedance curves
(termed survival curves in medical and some reliability literature) in Figure S-11. We summarize
the percentiles at which each region’s empirical distribution exceeds the upper bound of the 99%
confidence band, along with the maximum magnitude of exceedance, in the left-hand side of
Table S-4.

1% We remove all hours from October 29, 2012 through November 30, 2012 for Hurricane Sandy and from January
1, 2014 through January 31, 2014 for the Polar VVortex and the subsequent winter storms of January 2014 to allow
time for some unit repairs to be completed. We do this in all regions for consistency.

! The block length is a function of the autocovariance sequence, the spectral density function, and the length of the
time series [40]. We compute each unit’s block length using the “np” library in R [41,42]. Subsampling is carried
out using the “boot” library in R [43,44].

12 Because there is no requirement that, for example, a winter observation be selected when populating winter hours
in the subsampled series.

10



Six regions (MRO, NPCC, RFC, SERC, SPP, and TRE) show evidence of correlated failures at
the 99% confidence level. FRCC and WECC are the only two regions whose empirical
distributions do not exceed the upper bounds of their 99% confidence bands at any point in their
respective domains. As a measure of whether the exceedances we observe in these regions
represent a resource adequacy risk, we determine the amount of capacity that must be procured
in order to achieve the 1-in-10 loss of load expectation (LOLE) standard under the assumption of
independent failures. The “one day in ten years” interpretation of this rule translates to 2.4 hours
of loss of load expectation per year, denoted 2.4 LOLH [21] as used in the SPP region; other
NERC regions use slightly different interpretations. 2.4 LOLH is indicated via the dashed
horizontal line in Figure S-11; the corresponding amount of capacity required at 95% and 99%
confidence is indicated by the dashed vertical lines, drawn where the dashed horizontal line
intersects the upper bound of each region’s confidence bands. We define a region as having
“managerially significant” correlated failures if its empirical distribution exceeds the amount of
capacity required to meet the 2.4 LOLH criterion at the 99% confidence level, at an incidence
greater than that corresponding to 2.4 LOLH. Using this definition, we conclude that
managerially significant correlated failures are present in NPCC, RFC, SERC and TRE during
the full study period.

Hurricane Sandy in 2012 and the two cold events in January 2014 were responsible for the
largest violations of the independence assumption in our study period. To see if other correlated
failures exist, we remove October 29-November 30, 2012 and January 2014 and repeat our
analysis. As before, we plot exceedance curves (Figure S-12) and summarize the instances where
each region’s empirical distribution exceeds the upper bound of its 99% confidence band, along
with the maximum magnitude of exceedance (right-hand side of Table S-4).

Even without Hurricane Sandy and January 2014, five regions (NPCC, RFC, SERC, SPP, and
TRE) show evidence of correlated failures at the 99% confidence level. When considering the
2.4 LOLH resource adequacy requirement, we conclude that managerially significant correlated
failures were present at the 99% confidence level in only NPCC, RFC, and TRE.

4.2.2 Test of independent failures method 2: Modeling hourly availability as a binomial
random variable

We next test whether the observed peaks in unavailable capacity are due to correlation or to
random chance by modeling each unit’s hourly availability as a binomial random variable. We
estimate the probability of an unscheduled event arrival at each unit in a given hour as:

C (event5D1;D3,SF,U1:U3i)

C(hoursy.r) — C(hourSSF,Ul:U3i)

(3)

P(arrival;) =

where C indicates the count of the elements taken in its argument, i indexes generating units, T
indicates the final hour of the study period, and D1:D3, SF, and U1:U3 refer to the seven
unscheduled event types.™® When calculating this probability, we subtract the number of hours in

3 Assuming constant failure probabilities, as we do here, is again consistent with typical RAM practice in the U.S.
which implicitly assumes no seasonality in generator availability.

11



which the unit is fully unavailable from the total period hours because no additional event
arrivals can occur during these times. We retain only the units that are at least partially available
for at least 1,000 hours (~6 weeks) during the study period; this removes nine units from the
analysis. Histograms of the estimated probabilities are reported in Figure S-14. Parameters from
lognormal fits to the estimated probabilities are reported in Table S-5.

With the event arrival probabilities calculated for each unit, we then draw from each unit’s
parameterized binomial distribution as many times as there are hours in the study period to create
a simulated series of event arrivals for each unit. We populate each event’s magnitude and
duration by sampling uniformly with replacement from the unscheduled events experienced by
that unit. After completing this process, we cap each unit’s series of unavailable capacity at its
nameplate capacity and aggregate the unit-level time series to the regions. We show exceedance

curves in Figure 4.

We again adopt the convention of rejecting the hypothesis of independent failures if a region’s
empirical distribution exceeds the upper bound of its 99% confidence band at any point above
the 50" percentile. We conclude that all regions except FRCC violate the independence
assumption. While this finding for WECC differs from the corresponding block subsampling
result, we note that our definition of statistical significance ignores the magnitude of exceedance
and that the results are qualitatively quite similar. When considering the 2.4 LOLH resource
adequacy requirement, only NPCC, RFC, SERC, and TRE exhibit resource adequacy risk for the

full study period, in agreement with block subsampling.
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Figure 4: 95% and 99% confidence bands from 1000 binomial simulation runs shown in dark and
light gray, respectively; empirical distributions from full study period shown in red. Dashed
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horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate intersection of 2.4

LOLH threshold with the upper bound of each confidence band.

We again remove the hours corresponding to our definition of Hurricane Sandy and January
2014 and repeat our analysis. Now when creating the simulated series, we exclude events that
start inside either deleted period; events that start prior to and continue into or beyond either
period are not removed or altered. Exceedance curves of the results are shown in Figure 5.

Without these two months of data we again conclude that all regions except FRCC exhibit
violations of the independent failures assumption. When considering the 2.4 LOLH resource
adequacy requirement, NPCC, RFC, SERC, and TRE were the only regions to exhibit resource
adequacy risk. While this finding for SERC differs from the corresponding block subsampling
result, we again note that our definition of statistical significance ignores the magnitude of

exceedance and that the results are qualitatively quite similar.
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Figure 5: 95% and 99% confidence bands from 1000 binomial simulation runs shown in dark and
light gray, respectively; empirical distributions from removing Hurricane Sandy and January 2014
shown in red. Dashed horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate

intersection of 2.4 LOLH threshold with the upper bound of each confidence band.

There is reasonable agreement between the block subsampling and the binomial results. In the
full study period we conclude that six and seven regions, respectively, exhibit violations of the
independent failures assumption under our basic definition of correlated failures. When
removing Hurricane Sandy and January 2014 from the study period, five and seven regions,
respectively, exhibit violations under this definition. By either method, NPCC, RFC, SERC,
SPP, and TRE show clear evidence of violating the independent failures assumption, even when
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Hurricane Sandy and January 2014 are removed. We also see reasonable agreement between
block subsampling and binomial results for both study periods when applying our managerially
significant correlated failures definition. We summarize these results in Table 2.

Table 2: Summary of correlated failure test results. “--”” indicates no correlated failures; “*”
indicates correlated failures according to our basic definition (the region’s empirical trace exceeds
the upper bound of its 99% confidence band above the 50" percentile); “**” indicates correlated
failures according to our definition of managerial significance (the region’s empirical trace exceeds
the level of capacity corresponding to the intersection of the upper bound of the 99% confidence
band with the 2.4 LOLH, with greater incidence than allowed under 2.4 LOLH resource adequacy
requirement). The definitions are nested such that a region cannot satisfy the second definition
without also satisfying the first.

Full period Excluding Hurricane Sandy and
January 2014
Region Block Binomial Block Binomial
subsampling subsampling
FRCC -- -- -- --
MRO * * - *
NPCC *x ** *x *x
RFC ** ** ** **
SERC *x *x * *x
SPP * * * *
TRE ** ** ** **
WECC -- * -- *

While FRCC, MRO, and WECC show little to no evidence of violating the independent failures
assumption over the period examined, we caution that four years of data is not sufficient to
conclude that no such violations are possible in these regions. For example, on September 8,
2011 WECC experienced system disturbances that resulted in a loss of 7 GW of capacity,
representing a 4-sigma event for our study period, larger than any event we observed in the
region during the four years we studied [22].

4.3 Seasonality

We next wish to test whether there are intra-annual patterns in unscheduled unavailable capacity.
Our goals are to understand whether violations of the independent failures assumption occur in
only particular seasons and whether particular seasons experience more unscheduled unavailable
capacity on average, more variability in unscheduled unavailable capacity, or a greater number
of large unavailable capacity events than others. Systematic patterns in any of these attributes
would support improved forecasting and could provide insight into whether reserve margins
should be computed seasonally.

4.3.1 When do correlated failures occur?

For this analysis, we adopt NERC’s definition of the seasons: winter is December through
February, spring is March through May, summer is June through September, and fall is October
through November [23]. When considering winter and fall with and without January 2014 and
Hurricane Sandy, respectively, we test six seasons in total.
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We use block subsampling to generate 1000 simulated runs of unscheduled unavailable capacity
for each region in each season.** From this, we compute 95% and 99% confidence bands and
plot them as exceedance curves along with the corresponding empirical distributions (Figure S-
15 through Figure S-20). We find violations of the independent failures assumption in all seasons
using our basic definition of correlated failures: four regions (NPCC, RFC, SERC, and SPP) in
each winter definition, four regions (MRO, RFC, SERC, and TRE) in spring, three regions
(NPCC, RFC, and TRE) in summer, five regions (MRO, NPCC, RFC, SPP, and TRE) in the full
fall definition, and three regions (RFC, SPP, and TRE) in the shortened fall definition. We
conclude that violations of the independent failures assumption can likely occur in any season in
any region.

4.3.2 Seasonality in average unavailable capacity

Since violations of the independent failures assumption are observed in all seasons, we next
examine whether there are recurrent patterns in average unavailable capacity by month. We
compute the average unscheduled unavailable capacity in each month for each region and plot
autocorrelation functions for each region (Figure S-21).

Significant seasonality would manifest as a lag-12 peak (corresponding to a one-year lag) that
exceeds the 95% confidence bands. Except for FRCC, we see that each region’s lag-12 peak is
not significant. However, every region shows a significant 1-month lag, suggesting that
unscheduled unavailable capacity can be thought of as an autoregressive process of order 1
(AR(1) process).” This is intuitive: failures can occur anytime during the year and require time
to repair, so our best prediction of average unavailable capacity next month is the average
unavailable capacity this month. As a robustness check, we repeat this analysis by NERC season;
the results are consistent with the monthly result (Figure S-22). From these results we conclude
that generally we cannot support the hypothesis of seasonality in average unavailable capacity
from unscheduled events.

As a complementary approach, we make exceedance curves for the empirical distribution of
unscheduled unavailable capacity in each of the 17 seasons fully or partially covered by our
study period (Figure S-23).'® We observe significant overlap of the seasonal exceedance curves
in most regions, indicating that periods of low and high unscheduled unavailable capacity can
occur in any season.

4.3.3 Heteroskedasticity

We next study whether certain times of the year have more variability in unscheduled
unavailable capacity. If so, these periods could represent elevated resource adequacy risks. We
test for the presence of heteroskedasticity at the monthly level by fitting AR(1) terms to each
region’s monthly series of average unavailable capacity and plotting the residuals (Figure S-25).
The residuals resemble white noise and appear to be homoskedastic. Autocorrelation functions of
the residuals show no significant remaining structure (Figure S-26). Values and t-statistics for the

4 We use only winter observations for winter, only spring observations for spring, and so on.

15 A weakly stationary AR(1) model can be written x; = 1 + px.; + & where & is an independent and identically
distributed zero mean process with variance o and |p|<1. The temporal dependence in x; is completely summarized
by conditioning on only its previous value.

1¢ The first winter includes only January and February 2012 (i.e. no December 2011); the fifth winter includes only
December 2015 (i.e. no January and February 2016).
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AR(1) parameters are reported in Table S-8. From these results we conclude that we cannot
generally support the hypothesis that certain times of the year systematically have more
variability in unscheduled unavailable capacity than do others.

4.3.4 Would seasonal availability statistics improve RAM?

Current RAM practice in North America calculates a single availability statistic for each
generating unit using five years of historical data. This implicitly assumes that generator
availability is constant throughout the year. If instead generator availability was seasonal,
calculating availability statistics separately for each season could improve the accuracy of each
season’s probability distribution of available capacity. To assess these potential benefits we
combine the seasonal block subsampling results from Section 4.3.1 and plot the results as
exceedance curves for both the full study period (Figure S-28) and when excluding Hurricane
Sandy and the Polar Vortex (Figure S-29). Consistent with the results from our previous tests of
seasonality, we find minimal benefits from calculating availability statistics separately for each
season.

In summary, even with just four years of data we see violations of the independent failures
assumption in all seasons. We do not see recurrent seasonal patterns in unscheduled unavailable
capacity on average or in terms of variance. Finally, we do not find evidence to suggest that
seasonal availability statistics would significantly improve the accuracy of RAM. With a longer
study period it is possible that more intra-annual structure would emerge (for example from
hurricanes), thus we recommend that system planners repeat this analysis to assess implications
of seasonality for RAM in their control areas.

4.4 Reliability applications

We next present a set of results that can be used to populate Markov models of the generating
units in each NERC region. We report: (1) Weibull and lognormal distributions fit to each
region’s series of unscheduled unavailable capacity; (2) Weibull distributions fit to each unit
type’s normalized derating magnitudes; (3) lognormal distributions fit to each region’s event
durations by event type; (4) lognormal fits to the hourly probability of an unscheduled event
arrival by region; (5) mean time between failure and mean time to recovery values for each
region and unit type, with fitted Weibull and gamma distributions; and (6) time series plots of
unavailable capacity from unscheduled, maintenance, and scheduled events.

Markov models of generator availability have long been employed in reliability analyses. In a
standard two-state model, a unit is assumed to be either fully available or fully unavailable, with
failure rate A = 1/MTBF and recovery rate u = 1/MTTR [24].> These values can be used to
define the steady-state availability and unavailability of a generating unit. Unit availability
models are also implicitly employed in current RAM practice in the definition of the availability
statistic computed for each unit [8]. Many extensions have been made to improve the
applicability of these models. For example, additional Markov states have been added to model
partial unit availability, maintenance and planned outages, and whether periods of unit

" For completeness we note that sometimes the term mean time to failure (MTTF) is used to indicate the same
concept as we are terming MTBF [24].

16



unavailability coincide with periods of system need. Models have also been extended to sets of
units, allowing for both independent and common-mode failure states [25,26].

The primary challenge for populating Markov models is data availability. NERC GADS and
Strategic Power Systems’ Operational Reliability Analysis Program (ORAP) are the main
sources for reliability data in the U.S., but neither makes sufficiently disaggregated data publicly
available. Representative examples of reliability metrics published in the literature include
MTBF values for 10 power stations [27], MTTR and MTTF values for a single coal-fired
generating unit modeled with 10 availability states [28], MTBF values for seven gas turbine units
in India [29], MTBF and MTTR values for 11 gas turbine units in Nigeria [30], and MTTF
values for a single combined-cycle unit modeled with 8 availability states in Israel [31].

We are not aware of any published source of MTBF and MTTR data for all of the generating
units in a large power system. We provide below the first such data for the vast majority of
generation capacity in the U.S. and Canada. In conjunction with the fit parameters for time series
of unavailable capacity from unscheduled events, the normalized magnitudes of unscheduled
deratings, unscheduled event durations, and hourly event arrival probabilities, these data can be
used to significantly improve the numeric accuracy of reliability modeling.

4.4.1 Parametric fits to distributions of unscheduled unavailable capacity

We fit Weibull and lognormal distributions to each region’s distribution of unscheduled
unavailable capacity, both for the full study period (Figure S-30) and with January 2014 and
Hurricane Sandy removed (Figure S-31). We report the parameters of each fit in Table S-9.

4.4.2 Parametric fits to distributions of normalized derating magnitudes
We fit Weibull distributions to each unit type’s distribution of normalized derating magnitudes
(Figure S-32). We report the parameters of each fit in Table S-10.

4.4.3 Parametric fits to unscheduled event durations by event type
We present histograms of event durations by event type and overlaid with lognormal fits in
Figure S-6 through S-8. We report the fit parameters in Table S-2.

4.4.4 Parametric fits to hourly probabilities of unscheduled event arrivals

We fit lognormal distributions to each region’s distribution of hourly probabilities of an
unscheduled event arrival, calculated according to Equation 3. We present histograms of the
results in Figure S-14. We report the parameters of each fit in Table S-5.

4.4.5 Mean time between failure and mean time to recovery

We determine the mean time between failure and mean time to recovery for each generating unit
and fit Weibull and gamma distributions to the results. We define the mean time between failure
(MTBF) as the average number of service hours that elapse between unscheduled reductions of
availability of any magnitude.'® To do this, we first process the 1.6 million reserve shutdown
(RS) events reported during our study period into hourly time series for each unit. Any hour
when an RS event is in effect is removed from the unit’s corresponding time series of

18 Restricting our attention to service hours is important since peaking units are likely to be offline for economic
reasons for large portions of the year.
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unscheduled unavailable capacity. We then calculate an MTBF for the unit by averaging the
durations of all instances where it is fully available.

We generate capacity-weighted histograms of these values by associating each unit’s nameplate
capacity (reported in MW) with its MTBF (Figure 6 through Figure 10). In each of these plots
we construct histograms with 50 bins. The heading of each plot reports the number of units for
which an MTBF value can be calculated (numerator) and the number of units reporting at least a
single unscheduled event during our study period (denominator), which serves as a proxy for the
sample size.™® We exclude units with significant discrepancies in RS reporting between the
Events and Performance tables, taking that to indicate that RS hours may be incompletely
reported on those units and thus that our estimate of the MTBF restricted to service hours would
be unreliable. Table S-14 summarizes the proportion of capacity that appears to incompletely
report RS events. We report selected percentiles of MTBF values for each unit type in Table 3 to
facilitate comparison. Larger MTBF values indicate greater reliability.
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Figure 6: Capacity weighted mean time between failure (MTBF) values for combined cycle gas

units. Note the log scale for MTBF. Values are calculated with all reserve shutdown hours removed

S0 as to restrict attention to service hours. Numerator indicates count of units for which an MTBF

could be calculated. Denominator indicates count of units experiencing at least one unscheduled

event during the study period (proxy for total count of active units during the study period). Units

with significant reserve shutdown reporting discrepancies are excluded (see Table S-14).

19 We use this as an estimate of the number of units that were active during the study period as GADS does not
always correctly record commercialization and retirement dates for units that are sold.
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reserve shutdown hours removed so as to restrict attention to service hours. Numerator indicates
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Figure 10: Capacity weighted mean time between failure (MTBF) values for nuclear units. Note the
log scale for MTBF. Values are calculated with all reserve shutdown hours removed so as to restrict
attention to service hours. Numerator indicates count of units for which an MTBF could be
calculated. Denominator indicates count of units experiencing at least one unscheduled event
during the study period (proxy for total count of active units during the study period). No nuclear
units had significant reserve shutdown reporting discrepancies (see Table S-14).

Table 3: Selected percentiles of capacity-weighted mean time between failure values (hours) by unit
type. Values have been calculated with all reserve shutdown hours removed so as to restrict
attention to service hours. Units with significant reserve shutdown reporting discrepancies are
excluded (see Table S-14). Abbreviations: CC combined cycle units, CT simple cycle gas units,
FSFB fossil steam and fluidized bed units, HY hydroelectric, NU nuclear.

107 50" 30" 200 507 60" 707 30" 90"
CC 250 362 464 572 669 808 | 1,002| 1,336 | 1,984
CT 66 102 135 176 220 297 410 589 | 1,076
FSFB 84 119 167 213 263 335 445 576 853
HY 573 | 1,013| 1,328 | 1698 | 2,113 | 2,495| 3,298 | 4,286 | 6,107
NU 702 1097] 1503| 1,839 | 2,032| 2412 | 2,850 | 3,629 | 4,889
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We conclude that nuclear, hydro, and combined cycle units tend to run longer before failing than
simple cycle and fossil steam units.”® We fit Weibull and gamma distributions to the MTBF
values by unit type and report the parameters in Table S-11 and Table S-12.

We note that these results depend to some degree on our definition of a failure. While we have
defined a failure as any reduction from full availability, any desired threshold could be used. We
include a sensitivity analysis over a range of failure definitions (Figure S-38). The MTBF results
are quite insensitive to alternative failure definitions. We present histograms of the number of
between-failure periods used to calculate each unit’s MTBF in Figure S-33 through Figure S-37.
We note that some units’ MTBFs are calculated based on only a single between-failure period.
With a longer time series, the proportion of units with MTBFs based on very few between-failure
periods would decrease, increasing confidence in the robustness of these results. We also note
that metrics such as the equivalent forced outage rate (EFOR) can complement the MTBF by
summarizing the average availability of a unit over a desired study period, rather than just the
frequency of reductions in availability.

We define the mean time to recovery (MTTR) as the average number of hours that elapse while a
unit experiences some reduction in availability—i.e. the average duration of failure periods. In
contrast to MTBF, we do not need to remove RS hours prior to calculating MTTR, so no units
are excluded on the basis of their RS reporting fidelity. We present capacity-weighted histograms
of the MTTR results (Figure S-39 through Figure S-43). The heading of each plot reports the
number of units for which an MTTR value can be calculated (numerator) and the number of units
reporting at least a single unscheduled event during our study period (denominator), which again
serves as a proxy for the sample size. We summarize selected percentiles of MTTR values for
each unit type in Table 4. Smaller MTTR values indicate shorter average repair durations.

Table 4: Selected percentiles of capacity-weighted mean time to recovery values by unit type
(hours). Abbreviations: CC combined cycle units, CT simple cycle gas units, FSFB fossil steam and
fluidized bed units, HY hydroelectric, NU nuclear.

10" 20" 30" 40" 50" 60" 70" 80" 90"
cC 6 10 13 17 21 28 38 60 115
CT 5 9 14 20 31 50 79 161 409
FSFB 15 21 27 34 44 56 74 107 240
HY 4 6 9 14 22 32 57 134 370
NU 49 69 81 97 126 176 332 680 | 1,058

We conclude that combined cycle units typically have among the lowest MTTR values while
nuclear units have among the highest.?* We fit Weibull and gamma distributions to the MTTR
values by unit type and report the parameters in Table S-15 and Table S-16. We present
histograms of the number of failure periods used to calculate each unit’s MTTR in Figure S-44
through Figure S-48. We note that some units” MTTRs are calculated based on only a single

20 \We note that our results do not control for the type of failures, the age of the units, operations and maintenance
expenditures, or other variables that may affect the MTBF.
21 We note that our results do not control for the type of failures, the age of the units, operations and maintenance
expenditures, or other v