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Abstract

This paper develops practical methods for Bayesian inference in the ARFIMA model
using the exact likelihood function, any proper prior distribution, and time series
that may have thousands of observations. These methods utilize sequentially adap-
tive Bayesian learning, a sequential Monte Carlo algorithm that can exploit massively
parallel desktop computing with graphics processing units (GPUs). The paper identifies
and solves several problems in the computation of the likelihood function that appar-
ently have not been addressed in the literature. Four applications illustrate the utility
of the approach. The most ambitious is an ARFIMA(2,d,2) model for the Campito tree
ring time series (length 5,405), for which the methods developed in the paper provide
an essentially uncorrelated sample of size 16,384 from the exact posterior distribution
in under four hours. Less ambitious applications take as little as 4 minutes without
exploiting GPUs.
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1 Introduction

Approaches to inference in long memory models have proliferated since Geweke and Porter-
Hudak (1983) proposed the first simple estimation scheme. These approaches differ in several
dimensions, including their joint specification of long and short memory time series com-
ponents. Augmenting the standard autoregressive moving average (ARMA) model with a
long memory component leads to the autoregressive fractionally integrated moving average
(ARFIMA) model. Using the exact likelihood function is an important consideration for all
likelihood-based methods because it obviates questions about the impact of using likelihood
function approximations. Thus the development of practical methods for exact likelihood
function evaluation with ARFIMA models in Sowell (1992) was an important advance, and
the model has subsequently proved to be one of the most enduring and widely used specifi-
cations. The new methods reported in this paper build on that work.

Bayesian approaches to inference in time series seamlessly integrate data and other infor-
mation to produce predictive distributions. These advantages are particularly attractive in
long memory models where the persistence of shocks impacts both inference for parameters
and the joint predictive distribution in forecasts with long horizons. Pai and Ravishanker
(1996) and Koop et al. (1997) used Markov chain Monte Carlo methods to create samples
from the posterior distribution of parameters based on the exact likelihood function. While
these approaches extend the advantages of Bayesian inference to ARFIMA models, they
require extensive application-specific tuning. Their computational demands preclude appli-
cation with thousands of observations, including time series in finance and geophysics in
which long memory properties are important.

This paper uses sequentially adaptive Bayesian learning (SABL), a generic sequential
Monte Carlo method developed recently in Durham and Geweke (2015) and Geweke and
Durham (2018). In most cases, including ARFIMA models, it entails no application-specific
tuning, making it available to applied statisticians who are not specialists in Bayesian pos-
terior sampling methods. Because the algorithm is pleasingly parallel it is well-suited to
the massively parallel desktop computing environments now available using graphics pro-
cessing units (GPUs). GPU implementation reduces computing time by a factor of roughly
100, making possible application to time series with thousands of observations. Section 2
provides an overview of SABL.

In our implementation of the ARFIMA model in SABL we discovered that consistently
reliable and efficient evaluation of the likelihood function requires close attention to some
numerical issues that arise in the approach of Sowell (1992). To the best of our knowledge
these have not been discussed in the literature. Section 3 outlines and addresses the problems
in the context of a self-contained development of the ARFIMA likelihood function. It is the
core analytical contribution of the paper. Section 3 also discusses and illustrates the factors
that drive required computation time and provides guidance on whether to use a CPU or
GPU platform.

Section 4 illustrates the approach with four classic applications of long memory models:
consumer price inflation (70 observations), growth in per capita GDP (70 observations),
annual Nile River minima (663 observations), and the Campito tree ring data (5, 405 obser-
vations). For each of these applications the implementation of the ARFIMA model in SABL
produces an essentially uncorrelated sample drawn from the exact posterior distribution.
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To the best of our knowledge, this paper is the first report of exact posterior simulation in
ARFIMA models using time series as long as those in our third and fourth applications.
The examples use ARFIMA(p, d, q) models with orders p = 0, 1, 2 and q = 0, 1, 2. CPU im-
plementation suffices for the first two applications; computation time for a posterior sample
of 65,536 particles ranges from 4 to 43 minutes depending on the size of the model. The last
two applications require GPU implementation; computation time for a posterior sample of
16,384 particles ranges from 1 to 8 minutes for the Nile data and from 40 to 210 minutes
for the tree ring data.

2 The SABL algorithm for Bayesian inference

The sequentially adaptive Bayesian learning algorithm is an instance and extension of se-
quential Monte Carlo methods that can be used to simulate from posterior distributions and
solve optimization problems. Relative to other approaches it is particularly advantageous
when the number of parameters (Bayesian inference) or objective function arguments (op-
timization) is relatively small but the posterior density or objective function is analytically
intractable or irregular. Here we are concerned only with Bayesian inference. This section
provides a brief summary of the method and discusses features that are most pertinent in its
application to ARFIMA posterior distributions in this paper. For full details see Durham
and Geweke (2015), Geweke (2016) and especially Geweke and Durham (2018).1

To establish notation let A denote a model with the parameter vector θA ∈ ΘA ⊆ RkA ;
let p(θA | A) denote the proper prior density function of θA; let xt (t = 1, . . . , T ) denote the
time series of outcomes observable in T successive time periods; denote x1:t = (x1, . . . , xt)

′;
and let

p(xt | x1:t−1, θA, A) (t = 1, ..., T )

be the specified conditional probability density functions for observable outcomes.
Denote the observed outcomes xot (t = 1, . . . , T ). Then

L(θA) = p(xo1:T | θA, A) =
T∏
t=1

p(xot | xo1:t−1, θA, A)

is the likelihood function. The marginal likelihood (also known as the marginal data density)
is

k(xo1:T | A) =

∫
ΘA

p(θA | A)p(xo1:T | θA, A) dθA. (1)

The posterior density of the parameter vector θA is

p(θA | xo1:T , A) =
p(θA | A)p(xo1:T | θA, A)

k(xo1:T | A)
.

The notation can be extended in straightforward fashion to J models for x1:T by sub-
stituting Aj for A (j = 1, . . . , J). Given prior model probabilities p(Aj) (j = 1, . . . , J)

1SABL software and an accompanying handbook for users are available at http://depts.washington.
edu/savtech/help/software.
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posterior model probabilities are

p(Aj | xo1:T ) =
p(Aj)k(xo1:T | Aj)∑J
i=1 p(Ai)k(xo1:T | Ai)

(j = 1, ..., J).

The SABL algorithm begins with a random sample θ(0)
A,n (n = 1, . . . , N) from the prior

distribution. For historical reasons the N members of the sample are known as particles.
For short, write θ(0)

A,n ∼ p(θA | A) (n = 1, . . . , N). The algorithm then constructs a sequence
of distributions for θA with probability densities

p(`)(θA | xo1:T , A) ∝ p(θA | A)p(xo1:T | θA, A)r` (2)

in a sequence of cycles ` = 1, . . . , L. In this sequence 0 < r1 < . . . < rL = 1, so the sequence
of distributions with densities (2) becomes increasingly concentrated in successive cycles in
a process known as power tempering.2 At the end of each cycle ` the particles have been
updated to θ(`)

A,n (n = 1, . . . , N), identically distributed with density (2).
Three phases comprise each cycle `.

• Correction phase. Introduce new information by using the increment r` − r`−1 that
achieves a pre-set relative effective sample size (Liu and Chen, 1998). Construct
weights w(`)

n = p(xo1:T | θ
(`−1)
A,n , A)r`−r`−1 (n = 1, . . . , N) such that the set of weighted

particles (θ
(`−1)
A,n , w

(`)
n ) (n = 1, . . . , N) represents the updated density (2).

• Selection phase. Resample with replacement the collection of particles θ(`−1)
A,n (n =

1, . . . , N) with probabilities proportional to their weights w(`)
n , creating a set of iden-

tically distributed particles θ(`,0)
A,n (n = 1, . . . , , N) that represents (2).

• Mutation phase. Execute a series of Gaussian random walk Metropolis steps for the
particles, using the sample variance of the particles θ(`,0)

A,n (n = 1, . . . , , N) to tune

the variance matrix, yielding the sequence θ(`,κ)
A,n (κ = 1, 2, . . .) for each particle n =

1, . . . , N . The sequence in κ terminates at the first Metropolis step κ = K` at which
the particles θ(`,κ)

A,n satisfy a mixing criterion. The particles at the end of cycle ` are

then θ(`)
A,n = θ

(`,K`)
A,n (n = 1, . . . , N). This is the most computationally intensive of the

three phases in each cycle and the execution time for SABL tends to be driven by the
total number of Metropolis steps K =

∑L
`=1K`.

The SABL algorithm has quite a few attractive properties. Several are especially impor-
tant for Bayesian inference in the ARFIMA model.

1. The computations are mainly in the mutation phase and only a trivial portion are in
the selection phase. The correction and mutation phases of the SABL algorithm are
embarrassingly parallel. Consequently the algorithm efficiently exploits the capabilities

2An alternative is data tempering, in which the sequence of kernels is p(θA)p(x1:t` | x1:t`−1 , θA, A) with
0 = t0 < . . . < tL = T . SABL facilitates data tempering as well. We have not investigated the efficiency of
data tempering for posterior inference in the ARFIMA model.
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of massively parallel desktop computing with GPUs. This is important for Bayesian
inference in ARFIMA models for very long time series and essential when there are
hundreds (Section 4.3) or thousands (Section 4.4) of observations.

2. Like a smartphone or digital camera the SABL algorithm can be adjusted manually in
many dimensions, for example the value of the relative effective sample size criterion
used for terminating the correction phase and the criteria for sufficient mixing in the
mutation phase. Like those devices, the SABL algorithm also has default settings that
produce good results in a wide range of situations. Of the 27 settings that can be
adjusted in SABL the examples in Section 4 used default settings for all except for the
choice of number of particles.

3. Using SABL for inference in a particular model requires code for creating an i.i.d.
sample from the prior distribution, for evaluating the prior distribution at specified
parameter values (the particles), and for evaluating the log likelihood function at
specified parameter values. There are no ancillary computations analogous to the
evaluation of derivatives in maximum likelihood (Sowell 1992), creating and sampling
from conditional posterior distribution in Gibbs sampling for Bayesian inference (Chib
and Greenberg 1994), or design of proposal distributions for importance sampling
(Koop et al. 1997) or Metropolis chains (Pai and Ravishanker 1996). Consequently
there is often a great reduction in time devoted to tuning, tinkering, trial and error
compared with alternative approaches.

4. SABL approximates the marginal likelihood (1) as a byproduct, together with a nu-
merical standard error of approximation just as it does for posterior moments. Ap-
proximating the marginal likelihood has been a notoriously difficult computational
problem for Bayesian inference. It is especially useful here in comparing models with
and without long (or short) memory components and in comparing non-nested variants
of the ARFIMA model.

3 The ARFIMA model

Following the notation in Sowell (1992) the autoregressive fractional integrated moving av-
erage model for a univariate time series {xt} is

Φ(L)(1− L)d (xt − µ) = Θ(L)εt (3)

where L is the conventional lag operator,

(1− L)d =

∞∑
j=0

(
d
j

)
(−1)jLj =

∞∑
j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Lj , (4)

Φ(L) = 1−
p∑
j=1

φjL
j , Θ(L) = 1 +

q∑
j=1

θjL
j , (5)

and εt is white noise with variance σ2. Our likelihood function and applications specify
Gaussian white noise. We refer to (4) as the long memory component of the model and
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to (5) as the short memory component. The model has 3 + p + q parameters µ, σ2, d,
φ = (φ1, . . . , φp)

′ and θ = (θ1, . . . , θq)
′. The parameters are restricted to a subset of R3+p+q

such that the following conditions are satisfied.

1. The roots of Φ(L) and Θ(L) are strictly outside the unit circle.

2. |d| < 1/2.

3. Φ(L) has no repeated roots and φp 6= 0.

4. σ2 > 0.

The first condition is standard. Given the first condition, the time series {xt} is stationary
if d < 1/2 and the lag operator (1− L)d is invertible if d > −1/2. The third condition is a
technical one (Section 3.1); it eliminates a subset of Lebesgue measure zero of the parameter
space. These restrictions are imposed by truncating the support of the prior distribution as
detailed in Section 3.3.

Bayesian inference in the ARFIMA model requires specification of the likelihood function
and a prior distribution for the parameters. Using SABL to access the posterior distribution
requires code that reliably and efficiently evaluates the likelihood function, simulates from
the prior distribution and evaluates the prior density. Evaluation of the likelihood function
proceeds in two steps: compute the autocovariance function given the parameters (Section
3.1) and then evaluate the log likelihood function (Section 3.2). Section 3.3 discusses prior
distributions.

3.1 The autocovariance function

Since {xt} is a covariance stationary process, it has an autocovariance function

cov (xt, xt−s) = γ(s;σ2, d, φ, θ).

Sowell (1992) shows that the autocovariance function (ACF) can be expressed

γ(s) = σ2
p∑
j=1

q∑
`=−q

ψ(`)ζjC(d, p+ `− s, ρj)

where

ψ(`) =

min(q,q−`)∑
s=max(0,`)

θsθs−`. (6)

Condition 3 implies that Φ(L) has p distinct roots. We denote their inverses ρj (j = 1, . . . , p).
Then define

ζj =

ρj p∏
i=1

(1− ρiρj)
∏
m 6=j

(ρj − ρm)

−1

(j = 1, . . . , p), (7)

and

C(d, h, ρ) =
Γ(1− 2d)Γ(d+ h)

Γ(1− d+ h)Γ(1− d)Γ(d)

×
[
ρ2pF (d+ h, 1; 1− d+ h, ρ) + F (d− h, 1; 1− d− h, ρ)− 1

]
(8)
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where F is the hypergeometric function.
Several computational challenges become evident when implementing these calculations,

some of which pertain specifically to the GPU implementation.

1. Evaluating (6) is completely straightforward, including GPU implementation.

2. Solving for the roots of Φ(L) is also straightforward using standard math libraries
(e.g., the Matlab roots() function). Floating point arithmetic issues can arise in rare
cases, for example, if p = 2 and |φ2| < 2−m where m is the number of mantissa bits
in floating point representation. In this case, φ2 is for all practical purposes zero. Our
experience has been that floating point arithmetic issues here can be safely ignored.

3. If Φ(L) has repeated roots, (7) is infinite, hence Condition 3. But it is possible for
(7) to evaluate to infinity in floating point arithmetic even if all the Conditions 1 -
4 are satisfied. We remove such points from the support of the prior distribution.
Occurrence of this is unlikely in practice and eliminating these points from the prior
has negligible effect. However, our experience has been that SABL is able to explore
the parameter space very intensively, and it is important to make allowance for such
edge cases.

4. There are several considerations specific to (8).

(a) When d = 0 (8) reduces to

C(0, h, ρ) =

{
ρh, h ≥ 0

ρ2p−h, h < 0
. (9)

(b) Problems can emerge when d is very close to zero since limx→iΓ(x) is undefined
for any negative integer i. We avoid this problem by reverting to (9) if |d| <
1000 · 2−m ≈ 2.2 × 10−13, where m is the number of mantissa bits in floating
point representation.

(c) Efficient and reliable computation of the hypergeometric function is essential to
the efficiency and reliability of the entire algorithm. The standard infinite series
representation of F is

F (a, 1; c, ρ) =

∞∑
i=0

gi(a, c, ρ) =

∞∑
i=0

i−1∏
j=0

(
a+ j

c+ j

) ρi. (10)

As |ρ| approaches one, convergence of this series can be very slow. Care is required
in terminating the summation and all of the off-the-shelf code we were able to
locate failed in doing so, producing inaccurate results for values of ρ very close
to 1.

i. Our algorithm terminates the summation in (10) at the first s such that
gs+1(a, c, ρ) has no significant digits relative to

∑s
i=0 gi(a, c, ρ) at machine

precision. We restrict |ρ| < 0.9999 to ensure that this termination occurs in
reasonable time. For values close to this boundary, accurate evaluation of
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(10) may still require many millions of terms. There are round-off issues that
need to be addressed when summing such long sequences. This is especially
a problem when the terms are decreasing in size, as is the case here. There
are well-known ways to handle such issues and we have taken pains to ensure
that these kinds of round-off errors do not occur.

ii. The GPU evaluates threads in “warps” of 32 threads running in same in-
struction multiple data (SIMD) fashion. Recall that each thread calculates
the likelihood for a single particle. If (10) converges more quickly for some
threads in a warp than others, computational power is wasted doing no work
in the threads for which the series has already converged. To address this
issue, we have found it to be useful to sort the particles based on |ρ| before
evaluating (10).

(d) As pointed out by Sowell (1992), the computation (10) can be streamlined by
exploiting the recursion

F (a, 1; c, ρ) =
c− 1

ρ(a− 1)
[F (a− 1, 1; c− 1, ρ)− 1] . (11)

However, we have found that rounding error accumulates significantly with re-
peated application of this recursion and every so often one must refresh the se-
quence with a new evaluation of (10). Fortunately, it turns out that these errors
emerge more slowly as |ρ| approaches 1, so the values of ρ for which evaluating
(10) is most costly are also the ones where it needs to be evaluated least often.
We have found by trial and error that sufficient accuracy is obtained by stopping
the recursion and executing a new evaluation of (10) every M iterations, where
M = int(4/(1.0005− |ρ|)). In GPU implementation all threads in a warp use the
value of M corresponding to the smallest value of |ρ| among the threads in the
warp.

Evaluation of the autocovariance function becomes simpler in some relevant special cases.
If p = 0 (i.e. the short memory component (5) is MA(q)) then

γ(s) = σ2
q∑

`=−q
ψ(`)

Γ(1− 2d)Γ(d+ s− `)
Γ(d)Γ(1− d)Γ(1− d− s+ `)

if d 6= 0 and

γ(s) =

{
σ2ψ(s), |s| ≤ q
0, |s| > q

if d = 0.

3.2 Evaluating the log likelihood function

Let V (γ, T ) denote the T × T Toeplitz matrix with entries vij(γ, T ) = γ(|i − j|) and let
x = (x1, . . . , xT )′. Since the distribution of x is Gaussian the log likelihood function is

`(γ, µ) = −(T/2)log(2π)− (1/2)log |V (γ, T )| − (1/2)(x− µ)′V (γ, T )−1(x− µ).
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Evaluation of this log likelihood function using a Cholseky decomposition and Gauss-Jordan
elimination entails O(T 3) floating point operations. The Durbin-Levinson algorithm (Levin-
son 1947; Durbin 1960; Golub and van Loan 1996, Section 4.7.2) takes advantage of the
Toeplitz structure of the variance matrix to evaluate the log likelihood function with O(T 2)
floating point operations, but can be numerically unstable. We use the adjusted version of
the algorithm provided in Doornik and Ooms (2003, Appendix A) that amounts to simul-
taneous computation and application of the inverted Cholseky decomposition of V (γ, T ).
The algorithm is embarrassingly parallel across particles, resulting in extremely fast com-
putations in the GPU environment described in Section 2. For the special case of short
memory processes (d = 0) it is competitive with conventional state space approaches to the
evaluation of the log likelihood function of an ARMA model (Durbin and Koopman 2001).

GPU implementation is relatively straightforward with each thread evaluating the like-
lihood corresponding to a single particle, as usual. The only serious issue involves memory
requirements. With N particles and T observations, Durbin-Levinson requires memory pro-
portional to NT for a fully parallel implementation. However, we were able to run the
application in Section 4.4 (N = 214, T = 5405) with no particular difficulty.

3.3 Prior distributions

The SABL algorithm supports very flexible prior distributions relative to some competing
approaches like Gibbs sampling, which places a premium on conditionally conjugate prior
distributions, and Metropolis algorithms which may need to be tuned to specific prior dis-
tributions (Geweke, 2005, Chapter 4).

Some of the work here uses the following benchmark prior distribution, which has four
independent components.

• µ ∼ N(mµ, vµ), where the hyperparameters mµ and vµ are application dependent.

• log σ2 ∼ N(mσ, vσ), where the hyperparameters mσ and vσ are application dependent.

• d ∼ Uniform
(
−1

2 ,
1
2

)
.

• φ ∼ N(mφ, Vφ) subject to all p roots of the lag polynomial Φ(L) outside the unit circle
(Condition 1) and distinct (Condition 3). The prior probability density function is

p(φ | mφ, Vφ) =
pN (φ;mφ, Vφ)

s(mφ, Vφ)

where pN (x;m,V ) is the normal probability density function for N(m,V ) and s(m,V ) =
∫< pN (x;m,V )dx where < is the subset of Rp satisfying the constraints. The value of
s(m,V ) can be approximated by Monte Carlo, and this is practical unless s(mφ, Vφ)
is very close to 0. Given values of p, mφ and Vφ that are likely to be entertained in
practice, prospects for problems on this account are nil. The approximation of s needs
to be computed only once and can be done at essentially no cost when simulating
from the prior at the start of the SABL algorithm. In our implementation we use
straightforward acceptance sampling from the source distribution N(mφ, Vφ) and the
approximation of s(m,V ) is the ratio of the number of particles N to the number of
draws from the source distribution required.
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Table 1: Computing time in seconds, one ARFIMA(1,d,1) likelihood function evaluation
CPU (Matlab )

Autocovariance function Durbin-Levinson algorithm
N = 210 212 214 216 210 212 214 216

T = 100 1.6 6.3 24.8 94.7 0.1 0.4 3.3 11.0
T = 500 5.3 21.3 84.3 324.4 2.4 22.5 68.0 260.0
T = 2500 20.0 91.1 332.5 1236.5 105.6 422.2 1603.7 8147.6

GPU (CUDA)
Autocovariance function Durbin-Levinson algorithm

N = 210 212 214 216 210 212 214 216

T = 100 0.15 0.18 0.28 0.46 0.02 0.03 0.05 0.16
T = 500 0.57 0.40 0.32 0.74 0.24 0.32 0.92 3.689
T = 2500 1.33 0.92 1.08 2.14 5.91 7.67 22.81 173.49

• θ ∼ N(mθ, Vθ) subject to all q roots of the lag polynomial Θ(L) outside the unit circle
(Condition 1). Similar considerations as for φ apply regarding the prior probability
density function and Monte Carlo approximation of the normalizing constant.

For our standard benchmark prior distributions for φ and θ we set

mφ = 0p, Vφ = Ip, mθ = 0q, Vθ = Iq.

All of the applications in Section 4 utilize this prior. But depending on the application,
components of the model may have substantive interpretations for which specific and in-
formative prior distributions are available. Section 4.2 develops and applies such a prior
distribution.

3.4 GPU versus CPU computation

GPU computing using the CUDA computing platform and application programming inter-
face can yield substantial performance improvements, especially with large data sets and
many particles. For small sample sizes T , overall computational cost is dominated by the
cost of evaluating the hypergeometric function. The recursive formula (11) reduces the cost
significantly, but evaluating the series (10) can require summing millions of terms and the
number of function evaluations is proportional to NT . On the other hand, Durbin-Levinson
is not costly to evaluate for small T , but the cost increases in proportion to NT 2.

Care is required in implementing both the ACF and Durbin-Levinson algorithms on the
GPU, as noted in Sections 3.1 and 3.2, but the payoff can be large. Table 1 shows like-
lihood function wall clock computation time for several combinations of N and T , using
artificial data xt

iid∼ N(0, 1), and particles µ = 0, σ2 = 1, φ1
iid∼ Uniform(−0.9999, 0.9999),

θ1
iid∼ Uniform(−0.9999, 0.9999), d iid∼ Uniform(−0.4999, 0.4999). The CPU (Matlab) imple-

mentation uses no parallelization beyond the Matlab default. GPU (CUDA) implements
only the computationally intensive portions of the algorithm and is a direct plug-in replace-
ment for the corresponding Matlab code in the SABL algorithm, the core code for which is
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essentially unchanged whether run on the GPU or CPU. This exercise was performed on a
workstation with two NVIDIA K40 GPUs (2880 processor cores running at 745 MHz and
12 GB onboard memory each), of which only one was used, and dual Intel E5-2620 CPUs
(six cores each, 2.1 GHz).

The cost of evaluating the ACF dominates for small sample sizes, but Durbin-Levinson
dominates for large sample sizes, with the break-even point at about T = 500, depending
on the number of particles N and computing environment.

For code running on the CPU, computing time scales roughly as expected with respect
to N and T . It should be noted that the Matlab code that evaluates the ACF requires
looping over both t = 1, . . . , T and n = 1, . . . , N because the hypergeometric function
is not amenable to Matlab vector operations. Writing C code and mex files to evaluate
the likelihood would improve performance here. On the other hand, the Durbin-Levinson
algorithm uses highly efficient Matlab vector operations across particles.

On the GPU, with small N and T overhead costs related to calling CUDA from Matlab
dominate; the benefits of GPU computing become striking only with larger T and (espe-
cially) N . Recall that the number of threads run in parallel is equal to the number of
particles. Because of the GPU architecture, having more threads available reduces the time
the GPU cores spend idle while waiting on memory transfers, and this is apparent in the
way computing time scales with respect to N . The exception is for N = 216 and T = 2500,
and the longer than expected execution time here is most likely due to issues related to
Matlab’s memory management.

We have found that for well-suited problems, GPU computing is often around 100 times
faster than on the CPU, and this is borne out here. The fact that the SABL algorithm runs
well in a massively parallel environment is one of the features that makes the algorithm so
appealing, and SABL takes full advantage of this with little effort by the user.

For applications where the number of observations is around a hundred or less, as is
typical for annual macroeconomic data like that examined in Sections 4.1 and 4.2, CPU
execution is practical. However, for samples with several hundreds, or thousands, of obser-
vations—such as those examined in Sections 4.3 and 4.4—CPU execution quickly becomes
impractical and GPU implementation is highly desirable.

4 Applications

Four applications of Bayesian inference in the ARFIMA model using SABL in this section
illustrate the capabilities of the approach, provide insight into the likelihood function and
posterior distributions, demonstrate the flexibility of prior distributions accommodated in
SABL, and illustrate the advantages of the algorithm in combination with massively parallel
desktop computing using GPUs. All of the specific applications have precedent in the
literature3.

The first two applications are to economic time series: consumer price inflation (Section
4.1) and US per capita real gross domestic product (Section 4.2). Because each time series
has fewer than 100 observations Bayesian inference using SABL is practical using conven-

3Software for the four applications in this section is available at www.quantosanalytics.org/calpoly/
arfima.zip.
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tional quadcore CPUs. These applications investigate the joint posterior distributions of
parameters, illustrate Bayesian model averaging over different specifications of the short
memory component, and demonstrate the utility of an informative prior distribution for the
short memory component.

The third and fourth applications examine data sets commonly used in previous studies
of long memory. The Nile River data is comprised of annual water level measurements over
the 663 year period 622–1284 AD (Section 4.3). The Campito tree ring data is comprised of
annual observations of tree ring widths over the 5,405 year period 3435 BC–1969 AD (Section
4.4). For both applications, the posterior probabilities strongly favor long memory; in both
cases, the preferred models have no short-memory component. These data sets contain
relatively large numbers of observations and demonstrate the utility of GPU computing with
SABL. Posterior simulation using CPU alone would be tedious for the Nile River data and
essentially intractable for the tree ring data. In Sections 4.3 and 4.4 we provide additional
details on computational aspects of the algorithm, including the number of cycles L and
total Metropolis steps K executed.

4.1 Consumer price index

In the published economics literature long memory models were first applied to time series
of prices (Granger and Joyeux 1980; Geweke and Porter-Hudak 1983). There is an accom-
panying literature on arbitrage opportunities when d is fractional (Rogers 1997). Baillie
et al. (1996), Hwang (2001), Doornik and Ooms (2004), Ling (2003) and Sela and Hurvich
(2009) used maximum likelihood methods of inference in ARFIMA models applied to in-
flation rates. The only instance of Bayesian inference in ARFIMA-like models applied to
inflation of which we are aware is Nonejad (2015), who used particle Gibbs with ancestor
sampling and a stochastic volatility model for the disturbances {εt} in (3).

The data in this example are the inflation rate (Pt − Pt−1)/Pt−1, where Pt denotes the
U.S. consumer price index (CPI) and t indicates the years 1948, . . . , 2017. The source for
annual CPI is the FRED data base maintained by the Federal Reserve Bank of St. Louis.
The SABL algorithm (Section 2) was executed with default settings except that the number
of particles was increased from 214 to 216 = 65, 536. Because T = 70 execution using
conventional quadcore CPUs is practical.

The objectives in this application are to compare alternative ARFIMA model specifi-
cations and learn about the posterior distributions of model parameters in some of these
specifications. The standard benchmark prior distribution applies in all cases; the indepen-
dent distributions µ ∼ N(0, 0.042) and log σ2 ∼ N(−8, 1) complete the prior distribution.

There are 18 alternative ARFIMA (p, d, q) models (3), the Cartesian product of p =
0, 1, 2, q = 0, 1, 2, each with and without the restriction d = 0. Table 2 indicates the log
marginal likelihood value of each model (top panel) and the posterior probability of each
model using a prior probability of 1/18 (bottom panel). The numerical standard error of
the SABL approximation of the log marginal likelihood is typically about 0.01 and never
greater than 0.02.

The posterior odds ratio in favor of long memory models is 4.2:1. The ARFIMA(0, d, 1)
and ARFIMA(1, d, 1) models have the highest posterior probabilities, 0.318 and 0.130 re-
spectively.
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Table 2: Model specifications for CPI inflation using benchmark prior distributions
Log marginal likelihood

Short memory (d = 0) Long memory
q = 0 q = 1 q = 2 q = 0 q = 1 q = 2

p = 0 145.21 167.75 168.46 165.34 172.35 171.38
p = 1 167.25 170.18 171.08 167.56 171.46 171.41
p = 2 166.19 169.52 170.15 168.13 170.68 170.50

Implied posterior probabilities (equal prior probabilities)
Short memory (d = 0) Long memory
q = 0 q = 1 q = 2 Marginal q = 0 q = 1 q = 2 Marginal

p = 0 0.000 0.003 0.006 0.010 0.001 0.318 0.120 0.438
p = 1 0.002 0.036 0.089 0.128 0.003 0.130 0.123 0.256
p = 2 0.001 0.019 0.035 0.054 0.005 0.060 0.050 0.114

Marginal 0.003 0.058 0.131 0.192 0.008 0.507 0.293 0.808

Table 3 provides more detail for these two models, including the first four posterior mo-
ments of each parameter (first four columns for each model). It also provides two statistics
related to the accuracy of the SABL approximation of the posterior mean: the numerical
standard error (NSE) of the first moment approximation; and the relative numerical effi-
ciency (RNE) of this approximation, which is the ratio of the numerical standard error in a
hypothetical random sample from the posterior distribution to the one achieved by SABL.
Geweke and Durham (2018) provide more detail on the construction and interpretation of
NSE and RNE. For our purposes it is sufficient to note that posterior mean approximations
are good to about 3 significant figures.

The last two columns of Table 3 provide maximum likelihood estimates and standard
errors of the parameters, computed using SABL.4 Due to variations in sample period and
frequency and modeling of the term εt in (3) even rough comparisons of the results in Table
3 with other studies, e.g. Baillie et al. (1996), are not possible.

The results in Table 3 are inconsistent with a Gaussian posterior distribution. Somewhat
surprisingly, among the individual parameters this is strongly characteristic of the posterior
distribution of µ. The posterior moments of µ and σ2 are similar in the two models, those of
θ1 are somewhat different, and those of d are strikingly different. In particular conclusions
about d are sensitive to the specification of the short memory component of the model.
Posterior standard deviations are generally higher than maximum likelihood standard errors,
by as much as 58%, and they are never much lower. To understand these outcomes it helps
to move closer to the posterior distribution itself.

Figure 1 plots the marginal posterior distribution of each parameter (panels on the diag-
onal) and the posterior distribution of every pair of parameters (panels off the diagonal) for
the ARFIMA(0, d, 1) model. The panels above the diagonal display the indicated compo-
nents of all 216 = 65, 536 particle vectors at the conclusion of the SABL algorithm, whereas
the panels below the diagonal display a 1 in 64 subsample (components of 210 = 1, 024
particle vectors). Thus the panels above the diagonal provide more detail on the tails of

4For details on optimization with SABL see Geweke and Durham (2018).
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Table 3: Posterior moments and estimates of ARFIMA model parameters, CPI inflation
ARFIMA(0, d, 1)

Posterior distribution Maximum likelihood
Mean St dev Skewness Kurtosis NSE RNE Estimate St err

µ 0.0271 0.0197 -0.8374 5.7510 0.0001 0.8580 0.0344 0.0124
d 0.3185 0.0895 -0.3053 2.6718 0.0004 0.7089 0.2606 0.0980

log σ2 -7.9311 0.1712 0.1570 3.0720 0.0007 0.8714 -7.9833 0.1714
θ1 0.6943 0.1086 -0.8681 4.4595 0.0004 1.4441 0.7517 0.0922

ARFIMA(1, d, 1)
Posterior distribution Maximum likelihood

Mean St dev Skewness Kurtosis NSE RNE Estimate St err
µ 0.0271 0.0202 -0.9001 5.6450 0.0001 1.0122 0.0339 0.0148
d 0.2661 0.2092 -1.8618 6.3571 0.0012 0.4403 0.3179 0.1321

log σ2 -7.9253 0.1727 0.1820 3.0532 0.0006 1.3158 -7.9911 0.1692
θ1 0.7055 0.1462 0.9713 3.7939 0.0005 1.3226 0.7955 0.1139
φ1 0.0173 0.3244 -1.3325 7.1705 0.0016 0.6609 -0.1409 0.2508

the distributions, the panels below the diagonal more detail on the portions of the bivariate
distributions with the greatest mass concentration.

The joint distribution of µ and d is distinctly not elliptical. It reflects the fact that as
the long memory parameter d increases, and especially as it approaches the upper limit of
stationarity d = 1/2, there is less information about the mean, which fails to exist at d = 1/2.
This phenomenon is driven by the likelihood function and has been noted previously, e.g.
Pai and Ravishanker (1996). The posterior correlation between d and µ is −0.29: as d
moves from 0.15 to 0.46, the conditional posterior mean of µ decreases substantially, from
0.033 to 0.012. This phenomenon is driven by the N(0, 0.042) prior distribution of µ: as
d increases the data provide less information about µ, the prior becomes relatively more
influential, and so the conditional posterior mean of µ moves closer to the prior mean of
µ. Because the joint distribution of µ and d is not remotely elliptical, the classic rationale
for maximum likelihood estimates and standard errors does not apply for these parameters.
This is a general feature of ARFIMA models, not specific to this particular application:
given a posterior distribution for d with positive mean and a large standard deviation (say,
exceeding 0.15) conclusions about d and µ will be sensitive to prior information and the
classic theory of maximum likelihood estimation for d and µ will be a poor approximation.

All of the other bivariate posterior distributions are non-Gaussian, due mostly to the
relevance of the stationarity condition d < 1/2 and invertibility condition |θ1| < 1 in this
application. This can be made explicit by overplotting the bivariate maximum likelihood
confidence regions, as in Geweke and Durham (2018). That has not been done here in order
to maintain the legibility of Figure 1.

In the ARFIMA(1, d, 1) model, which has substantial posterior probability (Table 2),
the posterior distribution is highly irregular. The third and fourth posterior moments in
Table 3 suggest this possibility. It is obvious in Figure 2. In the posterior distribution
there is strong negative correlation between the short memory AR coefficient φ1 and the
long memory parameter d, due to the fact that φ1 accounts for persistence that decays
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Figure 1: Aspects of the parameter posterior distribution, CPI ARFIMA(0, d, 1) model.

15



Figure 2: Aspects of the parameter posterior distribution, CPI ARFIMA(1, d, 1) model.

slowly but geometrically, d accounts for persistence that decays slowly but algebraically,
and the greater the degree of persistence the larger the sample required to sort them out.
As a consequence d has non-negligible posterior mass on all of its support as does φ1 on
most of its support. Given the relation between d and the other parameters previously
noted, the lack of information about (d, φ1) complicates the posterior distributions of all
of the parameters indirectly. This leads to the “tornado” joint posterior densities of (d, µ)
and (φ1, µ) in Figure 2, bimodal posterior densities of (φ1, log σ2) and (d, log σ2), and the
distribution of (φ1, θ1) that reflects the constraints of stationarity and invertibility in the
short memory component.

4.2 Per capita real GDP

The data in this example are the first difference of the logarithm of annual real per capita
GDP for the United States, 1947 - 2017. The data were constructed from the real GDP
and US total population time series in the FRED data base maintained by the Federal
Reserve Bank of St. Louis. The SABL algorithm (Section 2) was executed with default
settings except that the number of particles was increased from its default value of 214 to
216 = 65, 536. Because T = 70 execution using conventional quadcore CPUs is practical.
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Table 4: Model specifications for GDP using benchmark prior distributions
Log marginal likelihood

Short memory (d = 0) Long memory
q = 0 q = 1 q = 2 q = 0 q = 1 q = 2

p = 0 162.31 161.08 159.52 161.28 160.27 159.17
p = 1 161.07 160.73 159.28 160.56 160.13 158.92
p = 2 159.54 159.25 158.98 159.06 158.88 158.50

Implied posterior probabilities (equal prior probabilities)
Short memory (d = 0) Long memory
q = 0 q = 1 q = 2 Marginal q = 0 q = 1 q = 2 Marginal

p = 0 0.334 0.098 0.021 0.453 0.120 0.044 0.015 0.178
p = 1 0.097 0.069 0.016 0.182 0.058 0.038 0.011 0.107
p = 2 0.021 0.016 0.012 0.049 0.032 0.028 0.018 0.049

Marginal 0.453 0.182 0.049 0.684 0.191 0.092 0.033 0.316

The objectives in this example are to assess the evidence for long and short memory
models and to compare models with different prior distributions for the short memory com-
ponent.

The first prior distribution is the standard benchmark prior distribution with µ ∼
N(0, 0.042) and log σ2 ∼ N(−8, 1). There are 18 specifications of the model (3): the
Cartesian product of p = 0, 1, 2 with q = 0, 1, 2 with short memory (d = 0) and long
memory (d ∈ (−1/2, 1/2)). Quadcore CPU execution time ranges from about 1 minute for
d = p = q = 0 to about 15 minutes for p = q = 2, d ∈ (−1/2, 1/2). The upper panel
of Table 4 presents the SABL approximations of the log marginal likelihood values for the
different benchmark models; the numerical standard error of approximation is about 0.01
for all values.

A prior distribution that places equal probabilities on each of the 18 models defines a
super-model composed of these 18 models. The posterior distribution of the super-model
includes posterior probabilities for each of the 18 specifications, shown in the lower panel of
Table 4.

From the sample of parameter values provided by SABL it is straightforward to evaluate
the corresponding spectral density at any specified set of ordinates. This calculation exploits
the spectral density function S(ω; d) = [2(1− cos(ω))]−d of a long memory process and the
Fourier transforms of the lag operators in (5); this is much faster than the autocovariance
function computation. The top panel of Figure 3 shows posterior quantiles of the log spectral
density function at each ordinate, given the benchmark prior distribution with equal prior
probabilities for the 18 alternative specifications. The mean width of the interquartile range
is 0.32, corresponding to a ratio 1.38 of spectral density values (1.38 = exp(0.32)).

For the standard benchmark prior the posterior odds ratio in favor of short memory over
long memory is 2.16:1. This is consistent with the posterior probability density function of
d under the benchmark prior distribution, shown in the upper left panel of Figure 4. The
value of the p.d.f at d = 0 is 2.16, which coincides (as it must, because the support of d
has measure 1) with the posterior odds ratio in favor of short memory. These findings are
consistent with those of Koop at al. (1997) and Pai and Ravishanker (1996), which studied
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Table 5: Comparison of models with benchmark and cyclical prior distributions
Log marginal likelihood Odds ratio

Prior → Benchmark Cyclical
Short memory 160.83 162.28 4.29:1
Long memory 160.06 161.18 2.72:1

All 160.51 161.87 3.08:1

similar data.
Alternative prior distributions may resolve some of this uncertainty. Promising priors

would have two properties. First, they would be informative relative to the standard bench-
mark prior distribution, exhibited in posterior distributions that are concentrated relative
to those shown in the upper panel of Figure 3 and the upper left panel of Figure 4. Second,
they would be reasonable, exhibited in marginal likelihoods at least as great as those arising
with the standard benchmark prior. Since the posterior distribution implicitly disentangles
the short and long memory components from the data, more informative prior distributions
for either component are candidates.

There is a ready interpretation of the short memory ARMA component of the model
arising from the multiplier-accelerator model (Samuelson 1939) that has been used for
Bayesian inference in short memory models of GDP growth (Geweke 1988, 2016). In the
multiplier-accelerator model, economic activity is AR(2): the short memory component (5)
is Φ(L) = 1−φ1L−φ2L

2 and Θ(L) = 1. The roots (r1, r2) of Φ(L) are complex conjugates
as well as being outside the unit circle (|r1| > 1, |r2| > 1). Let r1 indicate the root with
positive imaginary component. The second order polynomial Φ(L) is the same as that in
the damped oscillator model with periodicity and amplitude

P = 2π/ arg (r1) and α = |r1|−1 ,

respectively, implying P > 2. The half-life h corresponding to the amplitude α ∈ (0, 1) is
defined by ∫ h

0
αu du/

∫ 1

0
αu du,

implying h = log(1/2)/log(α). It is the time required for half the power of the shock εt to
be dissipated through the short memory component of the model.

The inverse mapping from (P, α) to (φ1, φ2) is

r = exp (2πi/P ) /α, φ1 = 2 · Re(1/r), φ2 = −1/|r|2.

Hence it is practical to replace an explicit prior distribution for φ with one for (P, h).
Motivated by characteristics of the business cycle, P and h are independent in this cyclical
prior distribution with

log(P ) ∼ N
(
log(5), log(1.2)2

)
, (P > 2), log(h) ∼ N

(
0, 0.52

)
.

In the SABL algorithm log(P ) and log(h) replace the elements φ1 and φ2 of the SABL
parameter vector θ. The prior distributions for µ, σ2 and d remain the same as under
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Figure 3: Posterior distributions of log spectral densities.
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Figure 4: Some posterior distributions of parameters, GDP example.

the benchmark prior distribution. Thus the contrast between the two models is between
a relatively uninformative prior distribution for the short memory component (benchmark)
and a relatively informative one (cyclical).

There are just two variants of the GDP model with the cyclical prior: with and without
the long memory component. Table 5 provides the log marginal likelihoods under the cyclical
prior distribution (column 2) and compares them with those under the benchmark prior
distribution (column 1). The first two rows, for the benchmark prior, reflect equal prior
probabilities on all 9 short memory and long memory models, respectively. The last row
reflects equal prior probability on the short memory and long memory model(s) under the
benchmark and cyclical prior distributions. The last column provides the posterior odds
ratio in favor of the cyclical prior model over the benchmark prior model. The results
support the plausibility of the more informative prior distribution.

In Figure 3 the increase in information is manifest in more concentrated quantiles with
the cyclical prior (bottom panel) compared to the benchmark prior (top panel). The mean
interquartile range with the cyclical prior is 0.215, whereas it was 0.320 with the benchmark
prior. With the cyclical prior the spectral density is higher at very low frequencies than it

20



Table 6: Prior and posterior moments with cyclical prior
Prior Posterior

Mean St dev Mean St dev
Half life h 1.133 0.604 0.806 0.414
Period P 5.084 0.935 5.608 1.602

is with the benchmark prior. This is consistent with the greater concentration and modest
upward location shift in the posterior distribution of the long memory parameter d under the
cyclical prior (mean−0.013, standard deviation 0.221) relative to the benchmark prior (mean
0.032, standard deviation 0.144), as shown in the upper right and left panels respectively of
Figure 4.

The bottom panels of Figure 4 show the prior and posterior densities of h and P . The
posterior densities are more concentrated than the prior densities, but not by much. Table 6
compares the prior and posterior means and standard deviations. The information content
of the prior is strong, relative to the data. But that information is consistent with the data,
resulting in odds that favor the strong prior and an increase in the precision of the model.

Two earlier studies undertook Bayesian inference for the logarithm of US real GDP.
These applications differ from the one here in (1) the use of aggregate rather than per
capita GDP, (2) the use of quarterly seasonally adjusted data rather than annual data,5

(3) the specification (or not) of a proper prior distribution and (4) data ending about 1990
rather than 2017.

Pai and Ravishanker (1996) report posterior moments of d in five models with alternative
specifications of the short memory component, but since the priors are improper there are
no marginal likelihoods and hence no posterior distributions of parameters that account for
posterior model uncertainty. Assuming equal marginal likelihoods the posterior mean of d
is 0.074 and the posterior standard deviation is 0.240 (Pai and Ravishanker 1996, Table I).

Koop et al. (1997) adopt a proper prior distribution and report posterior moments and
model probabilities (Koop et al. 1997, Table 1) for 16 alternative short memory component
specifications, the Cartesian product of AR and MA components of orders 0, 1, 2, 3. The
posterior probability of the ARMA(1,0) specification is 0.616 and the posterior probabilities
of all other ARMA specifications are less than 0.07. The posterior mean of the long-memory
d parameter is −0.243 and the standard deviation is 0.259. Since their data are quarterly the
results for the short memory component would not be comparable even if the data pertained
to the same years.

4.3 Nile River data

The Nile River data is comprised of annual minimum river levels in the years 622–1284
based on measurements at the Roda gauge near Cairo. This is a commonly used data set for
studying long-memory, going back to seminal work by Hurst (1951), Mandelbrot and Wallis
(1968) and Beran (1994). The data are available as part of the R package ‘longmemo’ (Beran
et al. 2011).

5To the best of our knowledge the effects of temporal aggregation on ARFIMA models have not been
studied in the published literature.
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Figure 5: Nile River minimum level, 622–1284 AD. Dashed lines in the autocorrelation plot
indicate 95% confidence bands about 0.
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Table 7: SABL results for Nile River data (T = 663, N = 214).

Short memory
Computing

p q Time (sec) Cycles K Log ML NSE
0 0 43.0 6 18 -3,921.40 0.032
1 0 62.1 8 24 -3,791.37 0.045
2 0 117.6 8 28 -3,785.91 0.050
0 1 62.3 8 24 -3,835.07 0.041
1 1 95.0 9 36 -3,777.62 0.073
2 1 250.6 10 69 -3,774.00 0.073
0 2 108.1 9 28 -3,814.70 0.053
1 2 236.0 10 66 -3,773.88 0.105
2 2 499.4 10 107 -3,775.30 0.049

Long memory
Computing

p q Time (sec) Cycles K Log ML NSE
0 0 49.2 6 18 -3,765.12 0.030
1 0 69.7 8 25 -3,767.48 0.038
2 0 194.3 9 39 -3,769.90 0.044
0 1 56.5 8 24 -3,767.46 0.053
1 1 85.6 9 36 -3,768.17 0.045
2 1 295.2 9 66 -3,770.55 0.045
0 2 107.2 9 30 -3,769.87 0.044
1 2 219.5 10 64 -3,770.61 0.038
2 2 488.8 10 84 -3,771.62 0.063

Figure 5 shows a time-series plot of the data and the sample autocorrelation function.
Autocorrelation decays slowly, characteristic of long-memory. We use the standard bench-
mark prior discussed in Section 3.3, with µ ∼ N(1100, 1002) and log σ2 ∼ N(9, 22), all
default settings for SABL, and consider the same 18 models as in the preceding examples
(p = 0, 1, 2, q = 0, 1, 2, with and without long memory).

Marginal likelihoods, numerical standard error, computing time, and the number of
SABL cycles and total Metropolis steps K required for each model are shown in Table 7.
The preferred model is p = q = 0 with long memory. The best short memory model is
ARMA(1,2). The posterior odds ratio in favor of the preferred long-memory model over the
best short-memory model is 637:1.

The posterior mean for d in the long memory model with p = q = 0 is 0.40 with posterior
standard deviation 0.029, which is consistent with other work that has looked at these data
(e.g., Beran 1994). Figure 6 shows the model residuals calculated at the posterior mean
and their ACF. The residuals are suggestive of a possible structural break around year 722
(the early data seem to be more independent and more variable, as pointed out by, e.g.,
Beran and Terrin 1996) and perhaps some outliers, notably at years 646, 809 and perhaps
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Figure 6: Nile River data, residuals of ARFIMA(0,0.40,0). Dashed lines in the autocorrela-
tion plot indicate 95% confidence bands about 0.

24



Figure 7: Nile River data, pairwise scatterplots of posterior sample for ARFIMA(2,d,1).
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878 (Lévy-Leduc et al. 2011).
Especially for some of the more heavily over-parameterized long-memory models, poste-

rior densities are highly nonspherical. For example, Figure 7 shows pairwise scatterplots of
the sample of particles from the posterior for the ARFIMA(2,d,1) model. As in the preceding
applications, for values of d near one-half the posterior density for µ becomes less precise,
resulting in a triangular shaped joint posterior. Note also the high correlation between φ1

and θ1, reflecting over-parameterization. The right tail of φ2 appears to be constrained by
the stationarity constraint (Condition 1). The larger models require more cycles and many
more Metropolis steps to process. Computing time ranges from 49 seconds for the long
memory model with p = q = 0 to 499 seconds for the model with p = q = 2.

4.4 Tree ring data

The Campito tree ring data is another commonly-used data set for studying long memory.
These data comprise 5,405 annual observations of tree ring widths of bristlecone pines on
Campito Mountain, California from 3435 BC to 1969 AD. Empirical studies include Baillie
and Chung (2002), Rea et al. (2011) and Kendal (2017). The data are available as part of
the R package ‘tseries’ (Trapletti and Hornik, 2017).

The data are shown in Figure 8 along with the autocorrelation function. As with the
Nile River data examined in Section 4.3, autocorrelation decays slowly, suggestive of long
memory. We use the standard benchmark prior with µ ∼ N(42, 52) and log σ2 ∼ N(5, 22).
SABL is used with the same settings and the same 18 models are used as before (p = 0, 1, 2,
q = 0, 1, 2, with and without long memory).

Marginal likelihoods, numerical standard error, computing time and total Metropolis
steps K required for each model are shown in Table 8. The preferred model is p = q = 0
with long memory, while the best of the short memory models is ARMA(2,1). The posterior
odds ratio in favor of the preferred long-memory model over the best short-memory model
is (2.25× 108) : 1. Total computing time for all 18 models was about 32 hours. Using CPU
alone would have required several months (although the workload could be easily distributed
across multiple CPU cores, reducing the required computing time substantially).

The posterior mean for d in the preferred long-memory model is 0.45 with a posterior
standard deviation 0.01, consistent with other work that has looked at these data (e.g., Ballie
and Chung, 2002). The model residuals calculated at the posterior mode and their ACF
are shown in Figure 9. Similar comments regarding the nonsphericity of posterior densities
for some of the more heavily over-parameterized long-memory models apply here as for the
Nile River data, although to a somewhat lesser extent, reflecting the larger sample size. As
with the Nile River data, the larger models require more cycles and many more Metroplis
steps to process. Computing time ranges from about an hour for the long memory model
with p = q = 0 model to just under four hours for the model with p = q = 2.

5 Context and conclusion

This work began when the editors invited the authors of Geweke and Porter-Hudak (1983)
to contribute to this issue of Journal of Time Series Analysis marking the 35th anniversary
of the publication of that paper. The ARFIMA model of Sowell (1992) has a handful of

26



−3000 −2000 −1000 0 1000 2000

0
20

40
60

80
10

0

Year

W
id

th

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 8: Campito Mountain tree ring widths measured in 0.01 mm, 3435 BC–1969 AD.
Dashed lines in the autocorrelation plot indicate 95% confidence bands about 0.
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Table 8: SABL results for Campito Mountain tree ring data (T = 5405, N = 214).

Short memory
Computing

p q Time (sec) Cycles K Log ML NSE
0 0 2,361.3 7 21 -20,998.55 0.034
1 0 3,662.5 9 27 -19,229.72 0.037
2 0 4,625.7 11 34 -19,090.86 0.055
0 1 3,728.0 10 30 -19,966.03 0.066
1 1 4,971.8 12 36 -18,983.27 0.061
2 1 9,436.1 13 73 -18,928.03 0.072
0 2 4,449.9 12 36 -19,615.63 0.044
1 2 7,786.7 13 60 -18,936.33 0.071
2 2 12,594.9 14 104 -18,929.70 0.113

Long memory
Computing

p q Time (sec) Cycles K Log ML NSE
0 0 3,576.9 8 24 -18,908.80 0.049
1 0 4,881.2 10 34 -18,912.51 0.050
2 0 6,375.0 12 49 -18,914.38 0.045
0 1 4,463.9 10 31 -18,912.50 0.045
1 1 4,841.9 10 40 -18,912.88 0.048
2 1 8,969.2 12 78 -18,915.42 0.047
0 2 5,498.7 12 40 -18,914.44 0.066
1 2 8,503.1 12 74 -18,915.37 0.114
2 2 14,257.4 12 136 -18,916.40 0.058
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Figure 9: Campito Mountain tree ring data, residuals of ARFIMA(0,0.45,0).
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parameters but an analytically and computationally complex likelihood function, features
that speak to the comparative advantages of the SABL algorithm for Bayesian inference
developed in Durham and Geweke (2015) and Geweke and Durham (2018). SABL is reliable
when the likelihood function can be evaluated accurately, and the successful solution of this
problem became the core analytical contribution of the paper.

Since 1983 the demands for understanding long time series of data related to climate
change, including meteorological, biological and hydrological series, have increased by orders
of magnitude. Recall that the simple approach in Geweke and Porter-Hudak (1983) is
practical for annual time series of this kind regardless of length. The methods developed in
this paper, implemented using GPUs, make ARFIMA models practical for studying these
data. Given the tools available, current approaches are forced to use approximations to
the likelihood function in these applications (Hsu and Breidt 2003; Graves et al. 2015).
As illustrated in Geweke and Porter-Hudak (1983) the approximations typically used in
these studies, including truncation of lag operators and finite Fourier transforms, can be
treacherous precisely because of the long memory inherent in the model. Thus the methods
developed in this paper are timely for these critical applications related to climate change.
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