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Abstract

Cut-generating functions (CGFs) have been studied since 1970s in the context of Mixed Inte-
ger Linear Programs (MILPs) and more general disjunctive programs and have drawn renewed
attention recently. CGFs are critical in generating valid inequalities separating the origin from
the convex hull descriptions of disjunctive sets. The sufficiency of CGFs to generate all cuts
that separate the origin from the convex hull of disjunctive sets is an indispensable question for
the justification of this research focus on CGFs. While this question has been answered affir-
matively in a number of setups and under a variety of structural assumptions, it still remains
open in the most general case. In this paper, we pursue this question by providing the most
general sufficient conditions for the sufficiency of CGFs and establishing necessary conditions
that demonstrate that our sufficient conditions are almost necessary. In addition, we identify
and address a related sufficiency question: when is it possible to generate all of the necessary
inequalities (not just the ones separating the origin) for the convex hull description of disjunctive
sets by finite-valued functions? Our approach relies on studying the properties of a particular
class of support functions that also was recently studied by Kılınç-Karzan and Steffy.

1 Introduction

In this paper, we study disjunctive sets of form

S(A,Rn+,B) := {x ∈ Rn : Ax ∈ B, x ∈ Rn+},

where A is a linear map from Rn to Rm, and B is a nonempty subset of Rm. Usually, B is taken as
a general nonempty, nonconvex set; thus S(A,Rn+,B) is nonconvex. We are interested in the valid
inequalities describing the structure of conv(S(A,Rn+,B))—the closed convex hull of S(A,Rn+,B).
Since the cases S(A,Rn+,B) = ∅ and conv(S(A,Rn+,B)) = Rn+ are trivial, in this paper, we consider
only the cases where conv(S(A,Rn+,B)) is neither empty, nor is it equal to Rn+.

When B is a finite set, S(A,Rn+,B) is simply a disjunctive set such as those introduced and
studied by Balas [2]. Furthermore, the set S(A,Rn+,B) with a closed set B satisfying 0 /∈ B
∗Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

Email: fkilinc@andrew.cmu.edu
†Department of Mathematical Sciences, Clemson University, Clemson, SC, 29630, USA.

Email: boshiy@clemson.edu

1



naturally arises in the context of separating a fractional solution from the feasible region of a
Mixed Integer Linear Program (MILP) [16, 18]. In this context, Johnson [18] introduced and
characterized minimal valid linear inequalities for S(A,Rn+,B) where B is a finite set; Jeroslow [16]
provided an explicit characterization of minimal inequalities based on the value functions of MILPs
for MILPs with bounded feasible regions; and Blair [6] extended this characterization to MILPs
with rational data. This body of work has strong connections to the subadditive strong duality
theory for MILPs; see [15] for a survey of the earlier literature on the subadditive approach to MILP.
The set S(A,Rn+,B) also arises in Gomory’s corner relaxation after a standard transformation that
embeds the integrality restrictions on the integer variables into the description of the set B, see e.g.,
[8, Example 1.1]. Following up on Johnson’s framework from [18], Kılınç-Karzan [19] introduced
and studied disjunctive conic sets S(A,K,B) where B is an arbitrary nonconvex (possibly infinite)
set and the constraints x ∈ Rn+ in S(A,Rn+,B) is replaced with x ∈ K defined by a general regular
(full-dimensional, closed, convex, and pointed) cone K.

Given B, an important class of papers study an infinite family of sets of the form S(A,Rn+,B)
by varying A and n. This line of research is primarily motivated by the infinite group relaxations
studied in the MILP context. In these infinite relaxations, the family of sets S(A,Rn+,B) are
characterized solely by B and A is assumed to be composed of all possible column vectors from Rm.
The origin of these studies dates back to Gomory’s foundational work on integer programming [13]
where cut-generating functions (CGFs)—finite-valued functions that generate cut coefficients ci for
the cuts of form

∑n
i=1 cixi ≥ 1 based on solely the data Ai associated with a particular variable

xi—are introduced and examined for the first time. This was followed up by Gomory and Johnson
[12] and others [17, 1] for infinite group relaxations associated with MILPs. Recent work along
these lines has studied these infinite relaxations under a variety of structural assumptions on B and
established strong connections between minimal inequalities and CGFs obtained from the gauge
functions of maximal lattice-free sets for example when B is a general lattice [7] and when B is
composed of lattice points contained in a rational polyhedron [11, 3]. We refer the readers to [5, 4]
for recent surveys related to these infinite relaxations.

Motivated by the infinite relaxations used in the MILP context and to eliminate various struc-
tural assumptions imposed on B in the literature, Conforti et al. [8] studied the variant of S(A,Rn+,B)
with varying n and A ∈ Rm×n but a fixed nonempty closed set B ∈ Rm under the assumption that
0 6∈ B. This assumption immediately implies 0 6∈ conv(S(A,Rn+,B)) (see [8, Lemma 2.1]) and
motivates the authors to focus on generating cuts of form

∑n
i=1 cixi ≥ 1 that separate the origin

from conv(S(A,Rn+,B)). Within this context, Conforti et al. [8] extended the concept of CGFs for
these sets parametrized with a general B and studied the structure of CGFs and their desirable
properties, e.g., minimality, and their relation with the gauge functions of B-free neighborhoods of
the origin.

While the definition of CGFs places an emphasis on only the cuts separating the origin from
conv(S(A,Rn+,B)) as opposed to generating all of the inequalities needed for the convex hull descrip-
tion, the sufficiency of CGFs for generating all cuts separating the origin from conv(S(A,Rn+,B))
has been vital to justify the recent research focus on CGFs. In the context of infinite relaxations
associated with S(A,Rn+,B) where m = 1 and B = b + Z for some b /∈ Z, such a sufficiency result
can be traced back to Gomory and Johnson [12]. For the case of m = 2 and B = b + Zm for
some b 6∈ Zm, Cornuéjols and Margot [9, Theorem 3.1] established that every inequality of form∑n

i=1 cixi ≥ 1 valid for S(A,Rn+,B) for all choices of A can be generated by a CGF. For the more
general infinite relaxation where B is assumed to be a lattice of the form B = b + Zm for some
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b /∈ Zm, Zambelli [22, Theorem 1] showed that CGFs are sufficient to generate all cuts separating
the origin. These results were further extended by Dey and Wolsey [11, Proposition 3.7] to the
case where B = P ∩ (b + Zm) such that b 6∈ Zm, a P ⊂ Rm is rational polyhedron and under the
assumption that conv(B) is full dimensional. For general sets S(A,Rn+,B) with a varying matrix A
and an arbitrary closed set 0 /∈ B, the sufficiency of CGFs was shown in [8, Theorem 6.3] under the
assumption that cone(A) = Rm where cone(A) is the convex cone generated by the columns of A.
On the other hand, in the more general setup of Conforti et al. [8] which involves a varying matrix
A and an arbitrary closed set 0 /∈ B that is not necessarily a general lattice, such general sufficiency
results for CGFs are no longer attainable without the assumption that cone(A) = Rm. Specifically,
[8, Example 6.1] demonstrates a particular instance of A and B where not all necessary cuts sepa-
rating the origin from conv(S(A,Rn+,B)) can be generated by CGFs. Later on, in the framework
of [8], Cornuéjols, Wolsey and Yıldız [10, Theorem 1.1] established that CGFs are sufficient to
give all of the cuts separating the origin from conv(S(A,Rn+,B)) under the structural assumption
that B ⊆ cone(A). Nevertheless, to the best of our knowledge, the complete sufficiency status of
CGFs for generating all of the necessary inequalities separating the origin from conv(S(A,Rn+,B)),
with or without varying matrices A, still remains an open question. This is also stated as an open
question recently in Basu et al. [4], and it is one of the main focuses of our paper.

Another focus of our paper is on identifying when finite-valued functions, in a way analo-
gous to CGFs, are sufficient to generate all necessary inequalities for the complete description
of conv(S(A,Rn+,B)). Such a sufficiency question encompasses the sufficiency question for CGFs
to generate all necessary valid inequalities separating the origin from conv(S(A,Rn+,B)). More-
over, both the sufficiency of finite-valued functions for generating all necessary inequalities for
conv(S(A,Rn+,B)) and the sufficiency of CGFs for generating inequalities that separate the origin
are intrinsically related to the subadditive duality theory for MILPs. The feasible region of an MILP
has a natural representation in the form of S(A,Rn+,B) where B possesses a specific structure, see
[19, Example 2]. In addition, according to the subadditive strong duality theorem for MILPs, there
exists a dual problem of the MILP based on functions that generate cut coefficients, and this dual
achieves zero duality gap. In particular, the feasible region of the dual of an MILP is defined by all
finite-valued, subadditive functions that are nondecreasing with respect to Rm+ . In addition, such
functions indeed produce the coefficients µi of any valid inequality µ>x ≥ µ0 by considering only
the data Ai associated with each individual variable xi. Therefore, these functions from MILP duals
are closely related to CGFs whenever the inequality µ>x ≥ µ0 under consideration satisfies µ0 > 0.
As a result, the strong MILP duality theorem implies the sufficiency of CGFs for generating all of
the cuts of form c>x ≥ 1 valid for conv(S(A,Rn+,B)) when 0 /∈ B and B has a specific structure.
Furthermore, Morán et al. [21] has extended the strong duality theory for MILPs to MICPs of a
specific form under a technical condition ([21, Theorem 2.4]). The feasible sets of MICPs studied
in [21] can be represented in disjunctive form S(A,Rn+,B), where the conic structure is embedded
in the definition of the set B (see [19, Example 3]). We refer the readers to [19, Remark 12] and [20,
Remark 2] for additional discussion relating the work of Morán et al. [21] to CGFs. Nevertheless,
the sets S(A,Rn+,B) representing MILPs and these specific MICPs from [21] impose a specific struc-
ture on B and their sufficiency is established under some technical assumptions. Thus, these results
on strong MILP (or MICP) duals do not fully answer the question on the sufficiency of finite-valued
functions for generating all necessary inequalities for conv(S(A,Rn+,B)) or the sufficiency of CGFs
for generating cuts separating the origin in the most general case.

The sufficiency questions on functions generating necessary valid inequalities for conv(S(A,Rn+,B))
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on CGFs for generating cuts separating the origin require an understanding of which inequalities
are necessary in the description of conv(S(A,Rn+,B)). In this respect, for S(A,Rn+,B) with a finite
B Johnson [18] introduces and studies a hierarchy of classes of inequalities: extreme inequalities,
minimal inequalities, and sublinear (subadditive) inequalities. In [19], these concepts are further
generalized for S(A,K,B) by considering arbitrary nonconvex sets B and looking into domination
among inequalities with respect to a regular cone K as opposed to Rn+. In this hierarchy, extreme
inequalities are the strongest possible and are necessary for the description of conv(S(A,Rn+,B))
in addition to the constraint x ∈ Rn+. On the other hand, Rn+-sublinear inequalities are defined
based on some necessary conditions for Rn+-minimality, and thus Rn+-minimal inequalities are Rn+-
sublinear. Rn+-sublinear inequalities have the desirable property that they admit easier algebraic
characterizations. In particular, Kılınç-Karzan and Steffy [20] used these algebraic characterizations
of K-sublinear inequalities for S(A,Rn+,B) in examining the connection between Rn+-sublinear in-
equalities for S(A,Rn+,B) and the CGFs and then introducing the concept of relaxed cut-generating
functions (relaxed CGFs) as the support functions of nonempty sets in the space of B. It was
shown in [20] that without any technical assumptions, the relaxed CGFs are sufficient to generate
all necessary inequalities that separate the origin from conv(S(A,Rn+,B)) even when n and A are
arbitrary and B is a general set. This is in contrast to the fact that establishing the sufficiency of
regular CGFs requires additional structural assumptions. A major differentiating point between
regular CGFs and relaxed CGFs is that regular CGFs are finite-valued everywhere while relaxed
CGFs are not, and the finite-valuedness of CGFs is crucial for producing nontrivial valid inequalities
for all instances of S(A,Rn+,B) with a fixed B but varying A and n.

In this paper, we pursue open questions surrounding the sufficiency of finite-valued sublinear
functions to generate valid inequalities for S(A,Rn+,B) in two different contexts:

(i) First, we examine the question of given a nonconvex set B, whether we can generate all of
the necessary inequalities for conv(S(A,Rn+,B)) by finite-valued sublinear functions.

(ii) Second, we look at the case of a given B satisfying 0 /∈ cl(B) and ask: are all of the neces-
sary valid inequalities of the form c>x ≥ 1 that separate the origin from conv(S(A,Rn+,B))
generated by CGFs?

The main distinction between these two cases is that the first one allows us to study all of the
necessary valid inequalities for conv(S(A,Rn+,B)) (including but not necessarily limited to the
ones separating the origin from conv(S(A,Rn+,B))) while the second one focuses on only the ones
that separate the origin from conv(S(A,Rn+,B)). To the best of our knowledge all of the prior
literature has focused on only CGFs generating cuts that separate the origin. This is despite
the fact that even when 0 /∈ conv(S(A,Rn+,B)) the description of conv(S(A,Rn+,B)) clearly may
involve inequalities with right hand sides normalized to 0 or -1. Therefore, our results associated
with our first question are new contributions. For our second question, we provide the most general
sufficient conditions for CGFs to generate all cuts separating the origin from conv(S(A,Rn+,B))
when 0 /∈ cl(B) (we will see later on that 0 /∈ cl(B) implies 0 /∈ conv(S(A,Rn+,B))). In particular,
our sufficient conditions for CGFs in the context of the second question not only capture the existing
conditions from the literature but also go further beyond. Our approach for both of these questions
relies on constructing a specific class of support functions that are finite-valued everywhere and
showing that under certain conditions, these functions are sufficient to generate all the inequalities
of interest. For the first question, our sufficient conditions for the sufficiency of finite-valued support
functions generating all necessary valid inequalities describing conv(S(A,Rn+,B)) include the case
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where B \ cone(A) is compact and the case where the closure of B \ cone(A) does not contain the
origin and B \ cone(A) itself is contained in a closed cone intersecting cone(A) only at the origin;
see Propositions 3.6 and 3.8. For the second question, our sufficient conditions are slightly more
general than the aforementioned cases; see Corollary 3.12 for a complete description of our sufficient
conditions in the CGF context. To the best of our knowledge, the only sufficient condition studied
in the previous literature in the CGF context was B ⊆ cone(A), see [8, 10]. Such a condition is not
necessarily satisfied in the separation problems arising in the MILP context. On the other hand,
our sufficient conditions for example cover the case of B being a compact set. This is immediately
applicable in the MILP context when the integer variables are bounded as it leads to S(A,Rn+,B)
with a finite set B. Finally, in our developments, we also establish that if an extreme inequality
can be generated by a CGF, then it can as well be generated by the support function of a specific
bounded set; see Proposition 4.1. This observation plays a critical role in establishing our necessary
conditions for the sufficiency of CGFs; see Corollary 4.4. Our sufficient conditions and necessary
conditions for the sufficiency of CGFs are very close (see Corollaries 3.12 and 4.4); yet they do not
match precisely. We conclude our study by providing examples to illustrate the gap between our
sufficient conditions and necessary ones for the sufficiency of CGFs.

The remainder of the paper is organized as follows. Section 2 introduces our notation and
describes previous results as they relate to minimal inequalities, sublinear inequalities, CGFs, and
support function view on generation of valid inequalities. Sections 3 and 4 study respectively the
sufficient conditions for both for the sufficiency of finite-valued sublinear functions and CGFs and
the necessary conditions for the sufficiency of CGFs.

2 Notation and Preliminaries

We start by introducing our notation. For a set S ⊂ Rn, we denote its topological interior, closure,
boundary, convex hull, and closed convex hull by int(S), cl(S), bd(S) := cl(S) \ int(S), conv(S),
and conv(S) respectively. We let cone(S) := {αx + βy : x, y ∈ S, α, β ≥ 0} denote the convex
cone generated by S. We define the positive hull of S to be R++(S) := {ts : s ∈ S, t > 0}. While
cone(S) and R++(S) are closely related, they differ in terms of their convexity properties. Note
that even when S is nonconvex, R++(S) can be nonconvex as well. Besides, 0 is not necessarily in
R++(S), and R++(S) may not be closed. We denote the recession cone of S by Rec(S) := {y ∈
Rn : x+ λy ∈ S for all x ∈ S and λ ≥ 0}. The support function of S is defined as

σS(z) := sup
s∈Rn
{z>s : s ∈ S}.

We define the kernel of a linear map A : Rn → Rm as Ker(A) := {u ∈ Rn : Au = 0} and its
image as Im(A) := {Au : u ∈ Rn}. For convenience, we also treat A as a real matrix and use
cone(A) to represent the convex cone generated by the columns of A. Given a cone K ⊂ Rn, we
use K∗ := {y ∈ Rn : x>y ≥ 0 ∀x ∈ K} for its dual cone.

Throughout the paper, we use Matlab notation to denote vectors and matrices, and all vectors
are to be understood in column form.

2.1 Classes of Valid Linear Inequalities

Given S(A,Rn+,B), we are interested in the valid linear inequalities for conv(S(A,Rn+,B)). Consider
the set of all vectors 0 6= µ ∈ Rn such that ϑ(µ) defined as

ϑ(µ) := inf
x

{
µ>x : x ∈ S(A,Rn+,B)

}
(1)
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is finite. Then any nonzero vector µ ∈ Rn and a number µ0 ≤ ϑ(µ) defines a valid linear inequality
of the form µ>x ≥ µ0 for S(A,Rn+,B). For shorthand notation, we denote the corresponding valid
inequality by (µ;µ0). When ϑ(µ) = −∞, we say that the inequality generated by µ is trivial. We
refer to a valid inequality (µ;µ0) as tight1) if µ0 = ϑ(µ).

Remark 2.1. For any S(A,Rn+,B), it is shown in [19, Proposition 6] that all nontrivial valid
inequalities (µ;µ0) satisfy µ ∈ Rn+ + Im(A>). ♦

We define C(A,Rn+,B) = {(µ;µ0) ∈ Rn × R : µ0 ≤ ϑ(µ)} as the convex cone of all valid linear
inequalities for the set S(A,Rn+,B). Note that any convex cone K can be written as the sum of a
linear subspace L and a pointed cone C. Here L represents the largest linear subspace contained
in the cone K, also referred to as the lineality space of K. A unique representation of K in the
form of K = L+C can be obtained by requiring that C is contained in the orthogonal complement
of L. A generating set (GL, GC) for a cone K is defined to be a minimal set of elements GL ⊆ L,
GC ⊆ C such that

K =

{ ∑
w∈GL

αww +
∑
v∈GC

λvv : λv ≥ 0

}
.

Given A,B, an inequality (µ;µ0) ∈ C(A,Rn+,B) is called an extreme inequality if there exists a gen-
erating set for C(A,Rn+,B) including (µ;µ0) as a generating inequality either in GL or in GC . When
conv(S(A,Rn+,B)) is full dimensional, i.e., GL = {0}, and polyhedral, a valid inequality is extreme
if and only if it is a facet-defining inequality for conv(S(A,Rn+,B)). When conv(S(A,Rn+,B)) is
nonpolyhedral, it may not have any facets. Therefore, in this paper we work with the concept of
extreme inequalities as opposed to facet defining ones in comparing the strength of inequalities.

Understanding the structure of extreme valid linear inequalities is critical in terms of under-
standing the structure of conv(S(A,Rn+,B)). On the other hand, characterizing all extreme inequal-
ities can be quite difficult for an arbitrary set S(A,Rn+,B). A middle ground is obtained by studying
the structure of slightly larger classes of inequalities. In particular, for S(A,Rn+,B), classes of Rn+-
minimal and Rn+-sublinear (Rn+-subadditive) inequalities, where these notions are defined based on
domination relations among inequalities with respect to Rn+, were introduced in [18] and further
generalized to S(A,K,B) with a regular cone K and studied in [19, 20]. A valid inequality (µ;µ0) is
dominated with respect to the cone K by another valid inequality (ρ; ρ0) whenever µ− ρ ∈ K∗ \ {0}
and ρ0 ≥ µ0, i.e., when (µ;µ0) is a consequence of the inequality (ρ; ρ0) and the constraint x ∈ K.
A valid inequality (µ;µ0) is K-minimal if it is not dominated by any other valid inequality in this
sense (see [19] for general regular cones K and [18] for K = Rn+). Based on this domination notion,
in the case of K = Rn+, an inequality (µ;µ0) is Rn+-minimal if reducing any µi for i ∈ {1, . . . , n}
leads to a strict reduction in the right hand side value µ0.2)

It is well-known [19, Proposition 2 and Corollary 2] that whenever K-minimal inequalities
exist, they are sufficient to describe conv(S(A,K,B)) together with the original constraint x ∈ K,
and that K-minimal inequalities exist when conv(S(A,K,B)) is full dimensional. By isolating a
number of algebraic necessary conditions for K-minimality, [19] suggested the class of K-sublinear
inequalities that contain K-minimal inequalities (see [19, Theorem 1]). When K = Rn+, the Rn+-
sublinear inequalities of [19] are indeed equivalent to the subadditive inequalities introduced in [18]

1)We note that our definition of tightness of an inequality does not require the corresponding hyperplane to have
a nonempty intersection with the feasible region, as is sometimes the definition used in the literature.

2)The valid inequalities that are referred as minimal in [1, 6, 16] correspond to tight and Rn+-minimal inequalities
with respect to the definitions in this paper as well as in [18, 19, 20].
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(see e.g., [19, Remark 9]). The existence, sufficiency, and properties of K-sublinear inequalities were
further studied in [20] without making technical assumptions ensuring the existence of K-minimal
inequalities. Moreover, [20] also examined the connection between Rn+-sublinear inequalities and
CGFs.

In this paper, we will focus on the concept of domination induced by the cone K = Rn+. We will
frequently use the notation and results from [19] and [20] related to Rn+-minimal and Rn+-sublinear
inequalities. Because our focus in this paper is on the case of K = Rn+, in order to simplify our
terminology, we will refer to these inequalities simply as minimal and sublinear by dropping the
Rn+- prefix. As far as this paper is concerned, we restate the definition of sublinear inequalities
below and refer the reader to [19, 20] for related definitions and discussions in the case of general
sets S(A,K,B) involving a regular cone K:

Definition 2.1. Given S(A,Rn+,B), a linear inequality (µ;µ0) with µ 6= 0 and µ0 ∈ R is sublinear
if it is valid for S(A,Rn+,B) and for i = 1, . . . , n, µ>u ≥ 0 holds for all u such that Au = 0 and
u+ ei ∈ Rn+ where ei denotes the ith unit vector in Rn.

A number of entities and results from [19, 20] play critical roles in the characterization of
sublinear inequalities and their connection with CGFs. Consider S(A,Rn+,B) and a nontrivial valid
inequality (µ;µ0) for it. By Remark 2.1, we have µ ∈ Rn+ + Im(A>). This allows us to associate
with µ the following nonempty set

Dµ := {λ ∈ Rm : A>λ ≤ µ}, (2)

and its support function σDµ(·). We next summarize a number of results from [19] that are func-
tional in our analysis in the context of K = Rn+.

Theorem 2.2. Consider S(A,Rn+,B). Then any nontrivial valid inequality (µ;µ0) satisfies

(i) µ ∈ Rn+ + Im(A>) (see [19, Proposition 6]),

(ii) ϑ(µ) = infb∈B σDµ(b) (see [19, Proposition 8]), and

(iii) ϑ(µ) ≥ µ0 (immediately follows from the validity of the inequality (µ;µ0)).

Moreover, (µ;µ0) is a sublinear inequality if and only if it is valid (µ0 ≤ ϑ(µ)) and σDµ(Ai) = µi
for all i = 1, . . . , n where Ai denotes the i-th column of the matrix A (see [19, Theorem 4 and
Proposition 10]).

We refer the interested reader to [18, Theorems 9-10] and [19, Remarks 9, 10, and 11] respectively
for prior work and further comments related to the results summarized in Theorem 2.2.

It is shown [20, Proposition 2] that as long as conv(S(A,Rn+,B)) 6= Rn+, sublinear inequalities
must exist. Moreover, one of the main results of [20] establishes that sublinear inequalities are
always sufficient to describe conv(S(A,Rn+,B)). We restate [20, Proposition 3] below.

Proposition 2.3. [20] Any nontrivial valid inequality (µ;µ0) for S(A,Rn+,B) is equivalent to or
dominated by a sublinear inequality given by (η;µ0) where ηi = σDµ(Ai) for all i = 1, . . . , n and the
domination is defined with respect to the cone K = Rn+.

We highlight that unlike the existence and sufficiency of minimal inequalities, Proposition 2.3
does not make any assumptions on S(A,Rn+,B). In addition, Proposition 2.3 establishes that for
any S(A,Rn+,B) defined by a fixed A and B, all of the extreme inequalities are sublinear, and
thus when conv(S(A,Rn+,B)) is polyhedral, all of its facet-defining inequalities are also sublinear
inequalities as well.
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2.2 Support Functions and Cut-Generating Functions

Proposition 2.3 signals the importance of certain support functions in generating valid inequalities.
Note that support functions are sublinear. Next, we recall the following basic fact about sublinear
functions which is also an important component of the subadditive duality theory for MIPs:

Lemma 2.4. Suppose B ⊂ Rm is given. Let σ(·) be any sublinear function. Then, the inequality∑n′

i=1 σ(A′i)xi ≥ infb∈B σ(b) is valid for any x ∈ S(A′,Rn′+ ,B) where the dimension n′ and the matrix

A′ ∈ Rm×n′ are arbitrary, and A′i denotes the i-th column of the matrix A′.

Proof. Consider any x̄ ∈ S(A′,Rn′+ ,B). Then there exists b̄ ∈ B such that A′x̄ = b̄. Then we have
the following relations

n′∑
i=1

σ(A′i)x̄i ≥ σ(A′x̄) = σ(b̄) ≥ inf
b∈B

σ(b),

where the inequality holds because x̄ is nonnegative and σ is sublinear, i.e., subadditive and posi-
tively homogeneous.

Lemma 2.4 establishes that one can use sublinear functions in a structured way to generate
valid linear inequalities for S(A,Rn+,B).

Yet Lemma 2.4 alone does not say anything about the sufficiency of sublinear functions to
generate all necessary valid inequalities for the description of conv(S(A,Rn+,B)). On the other
hand, Proposition 2.3 establishes the sufficiency of sublinear inequalities. Because every sublinear
inequality (µ;µ0) is generated by a particular sublinear function, i.e., the support function of a
nonempty set of form Dµ = {λ ∈ Rm : A>λ ≤ µ} (see Theorem 2.2), these support functions are
sufficient to generate all necessary valid inequalities for conv(S(A,Rn+,B)).

Remark 2.5. We infer from Theorem 2.2, Proposition 2.3 and Lemma 2.4 that the support func-
tions, in particular the ones associated with the sets Dµ with µ ∈ Rn+ + Im(A>), are sufficient to
generate all of the necessary nontrivial valid inequalities for conv(S(A,Rn+,B)) without any struc-
tural or technical assumptions, even when A and n are varying. ♦

In addition to the discussion in Remark 2.5, note that the support functions σDµ may not be
finite-valued everywhere. In order to tackle the finite-valuedness condition on functions designed
to generate valid inequalities for S(A,Rn+,B), in this paper, given a vector µ ∈ Rn+ + Im(A>) and
ρ > 0, we will frequently study the support functions of specific bounded sets of the form Dµ,ρ

where
Dµ,ρ := {λ ∈ Dµ : ‖λ‖∞ ≤ ρ} .

We also note the following useful fact on the support functions of nonempty bounded sets.

Remark 2.6. Let D ⊂ Rm be a nonempty, bounded set. Then, its support function σD is continuous
everywhere. This is because support functions of nonempty sets are convex in general, and the
support functions of nonempty bounded sets are finite-valued everywhere. Thus, the domain of σD
is Rm. Then using the fact that all convex functions are continuous in the interior of their domains
(see for example [14, Lemma B.3.1.1]), we conclude that σD is continuous everywhere. ♦
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Conforti et al. [8] studied a variant of the set S(A,Rn+,B) with a fixed, closed, nonempty set
B ∈ Rm, and varying n and A ∈ Rm×n under the assumption that 0 6∈ B. This assumption
immediately implies 0 6∈ conv(S(A,Rn+,B)) (see [8, Lemma 2.1]) and motivates the authors to
focus on generating cuts that separate the origin from conv(S(A,Rn+,B)). For this particular
setup, Conforti et al. [8] introduced the concept of a cut-generating function as follows:

Definition 2.2. Given a nonempty and closed set B ∈ Rm satisfying 0 6∈ B, a cut-generating
function (CGF) for B is a function f : Rm → R such that for any natural number n ∈ N and any
matrix A ∈ Rm×n, the linear inequality given by

∑n
i=1 f(Ai)xi ≥ 1 is valid for S(A,Rn+,B) where

Ai is the i-th column of the matrix A.

The definition of CGFs immediately leads to the following simple yet useful lemma.

Lemma 2.7. Given a nonempty set B ⊂ Rm, let f(·) be a CGF generating a valid inequality of
the form

∑
i f(Ai)xi ≥ 1, then infb∈B f(b) ≥ 1.

Proof. Because f(·) is a CGF for the given set B, for any dimension n′ and any matrix A′ ∈ Rm×n′ ,
the inequality

∑n′

i=1 f(A′i)x
′
i ≥ 1 generated by f(·) for the set S(A′,Rn′+ ,B) needs to be valid, i.e.,

it is satisfied for all x′ ∈ S(A′,Rn′+ ,B) (see Definition 2.2). For any b ∈ B, we construct an instance

S(A′,Rn′+ ,B) where n′ = 1 and A′ = b. Since x′ = 1 ∈ S(A′,Rn′+ ,B), f(b) =
∑n′

i=1 f(A′i)x
′
i ≥ 1

holds, where the last inequality follows from f(·) being a CGF. Because this is true for all b ∈ B,
we arrive at infb∈B f(b) ≥ 1.

Motivated by the connection between sublinear inequalities and support functions used in gen-
erating such valid inequalities, Kılınç-Karzan and Steffy [20] introduced the following concept of
relaxed CGFs:

Definition 2.3. Given S(A,Rn+,B) and a set ∅ 6= D ⊂ Rm, the support function σD : Rm →
(R ∪+∞) of D is a relaxed cut-generating function for S(A,Rn+,B) when infb∈B σD(b) ≥ 1.

Relaxed CGFs are naturally related to regular CGFs. Along the lines of Remark 2.5, we note
that an immediate corollary of Theorem 2.2, Proposition 2.3 and Lemmas 2.4 and 2.7 stated in the
setup of Conforti et al. [8] is as follows:

Corollary 2.8. [20] Let Ai be the i-th column of the matrix A for all i = 1, . . . , n. Then any valid
inequality c>x ≥ 1 separating the origin from conv(S(A,Rn+,B)) is equivalent to or dominated by
one of the form

∑n
i=1 σDc(Ai)xi ≥ 1, obtained from a relaxed CGF σDc : Rm → (R ∪+∞).

Corollary 2.8 implies that the relaxed CGFs are sufficient to generate all of the cuts separating
the origin from conv(S(A,Rn+,B)) without any structural or technical assumptions, even when
A and n are varying. In contrast to the sufficiency of relaxed CGFs, there are sets of the form
S(A,Rn+,B) such that CGFs are not sufficient to generate all of the cuts separating the origin from
conv(S(A,Rn+,B)) (see [8, Example 6.1]). In the framework of [8], the sufficiency of CGFs for
generating all necessary cuts separating the origin from conv(S(A,Rn+,B)) was established in [10]
under the additional structural assumption that B ⊆ cone(A). This result on sufficiency of CGFs
was also reproven in [20, Proposition 5] by starting from the sufficiency of sublinear inequalities
and their connection with relaxed CGFs and then showing that a specific class of finite-valued
relaxed CGFs are sufficient under the same structural assumption B ⊆ cone(A). In particular,
given an inequality c>x ≥ 1 that is valid for S(A,Rn+,B), [20, Proposition 5] establishes that when

9



B ⊆ cone(A), we can always construct a set Dc,ρ based on the vector c and some ρ > 0 such that the
support function σDc,ρ(·), generates a valid inequality which is equivalent to or dominates c>x ≥ 1.
Because the support functions of form σDc,ρ(·) are finite-valued, they are indeed regular CGFs, and
then this result implies that CGFs are also sufficient to generate all cuts separating the origin from
conv(S(A,Rn+,B)) when B ⊆ cone(A).

There is a contrast between the sufficiency of relaxed CGFs and the insufficiency of regular
CGFs. A major differentiating point between regular CGFs and relaxed CGFs is that regular CGFs
are finite-valued everywhere while relaxed CGFs are not. In fact, in Lemma 2.4 and Corollary 2.8,
the relaxed CGFs are simply support functions of some possibly unbounded sets and thus are not
guaranteed to be finite-valued everywhere. For a specific instance S(A,Rn+,B) with a fixed matrix
A, as long as a relaxed CGF is finite-valued for each column of A, it will generate nontrivial valid
inequalities. As a result, a relaxed CGF being finite-valued is not necessary for this case. However,
given a fixed B, a CGF has to work, i.e., generate nontrivial valid inequalities, for every instance of
S(A,Rn+,B) with varying n and A. Then, in these cases, it is critical to require the function to be
finite-valued everywhere to serve as a regular CGF. This need for finite-valuedness of functions to
be used for all instances of S(A,Rn+,B) with varying A and n naturally brings up the question of
in what circumstances CGFs are sufficient to generate all of the necessary cuts of the form c>x ≥ 1
that separate the origin from conv(S(A,Rn+,B)). In the next section, we explore such conditions.
Furthermore, as a prelude to the preceding question, we also address the more general question
of given B, under what conditions we can generate all of the necessary inequalities needed for
conv(S(A,Rn+,B)) by finite-valued support functions.

3 Sufficient Conditions for the Sufficiency of Support Functions
and CGFs

The sufficiency of finite-valued support functions, as well as the sufficiency of CGFs, is primarily
related to the question of whether every extreme inequality can be generated by such a function.
Thus, we will keep our focus in this section as well as the next one on the extreme inequalities
when needed.

We will first focus on the separation of all necessary valid inequalities defining conv(S(A,Rn+,B)).
Our approach relies on establishing that under certain conditions, a particular class of polyhedral
support functions that are finite-valued everywhere are sufficient to generate all necessary valid in-
equalities for the closed convex hull description. After presenting these general sufficient conditions
for all necessary valid inequalities, we move on to further and more specialized sufficient conditions
related to only the valid inequalities separating the origin. In the previous literature, sufficiency
of CGFs (and also the sufficiency of the subset of relaxed CGFs that are finite-valued) to generate
all valid inequalities separating the origin from conv(S(A,Rn+,B)) is established under a blanket
assumption that B ⊆ cone(A). In this section, we will generalize these previous results to the cases
where B is not contained in cone(A). To this end, we partition the set B into two sets as

B1 := B ∩ cone(A) and B2 := B \ B1. (3)

We start with a lemma that allows us to combine together results established on partitioned sets.

Lemma 3.1. Suppose B =
⋃k
i=1 Bi and for i = 1, . . . , k, we have sets ∅ 6= Di ⊆ D̂ for some D̂.

Then, for any η ∈ R, infb∈Bi σDi(b) ≥ η for i = 1, . . . , k implies infb∈B σD̂(b) ≥ η.
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Proof. For any i ∈ {1, . . . , k} and b ∈ Bi, we have η ≤ σDi(b). Moreover, because Di ⊆ D̂, we
have σDi(z) ≤ σ

D̂
(z) for all z. Thus, η ≤ σDi(b) ≤ σ

D̂
(b) for all b ∈ Bi and for all i. As a result,

η ≤ infb∈B σD̂(b) since for any b ∈ B, b is in Bi for some i.

We will frequently use the following immediate corollary of this lemma stated in terms of sets
of the form Dµ,ρ.

Corollary 3.2. Suppose B =
⋃k
i=1 Bi and infb∈Bi σDµ,ρi (b) ≥ η for i = 1, . . . , k. Let ρ ≥

maxi∈{1,...,k}{ρi}. Then infb∈B σDµ,ρ(b) ≥ η.

For a complete description of the cases where finite-valued support functions are sufficient, we
next restate and reprove part (b) of [20, Proposition 5] which covers the case of B2 = ∅. We present
it in three parts – Lemma 3.3, Proposition 3.4, and Corollary 3.5, which will be convenient for us
in our further developments.

Lemma 3.3. For any µ ∈ Rn+ + Im(A>), we have Dµ 6= ∅, and σDµ(b) is finite if and only if
b ∈ cone(A).

Proof. The nonemptiness of Dµ is an immediate consequence of µ ∈ Rn+ + Im(A>). The second
statement is a direct consequence of Linear Programming strong duality theorem.

Proposition 3.4. Consider a nontrivial valid inequality (µ;µ0) for conv(S(A,Rn+,B)). Let Vµ de-
note the set of extreme points of the polyhedral set Dµ, and ρ0 := max

{
maxv∈Vµ ‖v‖∞, 1 + infλ∈Dµ ‖λ‖∞

}
.

Then for any ρ ≥ ρ0,

(i) Dµ,ρ := {λ ∈ Rm : A>λ ≤ µ, ‖λ‖∞ ≤ ρ} is nonempty. Moreover, σDµ,ρ, the support function
of Dµ,ρ, is finite-valued everywhere and piecewise linear;

(ii) for any z ∈ Rm such that σDµ(z) is finite, we have σDµ,ρ(z) = σDµ(z);

(iii) for all i = 1, . . . , n, σDµ,ρ(Ai) ≤ µi where Ai denote the i-th column of the matrix A, and
σDµ,ρ leads to a valid inequality that is equivalent to or dominates µ>x ≥ µ0 whenever
infb∈B σDµ,ρ(b) ≥ µ0.

Proof. Note that Remark 2.1 and Lemma 3.3 imply Dµ is nonempty and polyhedral. Therefore,
ρ0 ≥ 1 + infλ∈Dµ ‖λ‖∞ = 1 + minλ∈Dµ ‖λ‖∞. Also, if Vµ = ∅, then maxv∈Vµ ‖v‖∞ = −∞, and thus
the definition of ρ0 implies ρ0 = 1 + infλ∈Dµ ‖λ‖∞ = 1 + minλ∈Dµ ‖λ‖∞. Then there exists λ̄ ∈ Dµ

such that ‖λ̄‖∞ ≤ ρ0, and hence Dµ,ρ0 6= ∅. On the other hand, if Vµ 6= ∅, we have ‖v‖∞ ≤ ρ0 for
each v ∈ Vµ by definition. Therefore, v ∈ Dµ,ρ0 for each v ∈ Vµ and Dµ,ρ0 is nonempty. In both
cases, as a super set of Dµ,ρ0 , Dµ,ρ is also nonempty. As Dµ,ρ is a nonempty and bounded set, its
support function is finite-valued everywhere and piecewise linear.

Moreover, Dµ,ρ ⊆ Dµ implies σDµ,ρ(z) ≤ σDµ(z) for every z ∈ Rn. For any z ∈ Rn such that
σDµ(z) is finite, we have

σDµ(z) = max
v∈Vµ
{z>v} ≤ σDµ,ρ0 (z) ≤ σDµ,ρ(z) ≤ σDµ(z),

where the equation follows from the fact that for the given z σDµ(z) is finite and thus its optimal
value is achieved at an extreme point, and the inequalities follow respectively from by the definition
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of ρ0 and the relations ρ0 ≤ ρ and σDµ,ρ(z) ≤ σDµ(z) for any z. Therefore, based on this relation
we deduce σDµ(z) = σDµ,ρ(z) for every z ∈ Rn.

For part (iii), once again, σDµ,ρ(Ai) ≤ σDµ(Ai) ≤ µi for all i = 1, . . . , n where the last in-
equality follows from Proposition 2.3. When infb∈B σDµ(b) ≥ µ0, Lemma 2.4 indicates that the
support function σDµ,ρ(·) leads to the valid inequality

∑n
i=1 σDµ,ρ(Ai)xi ≥ µ0. Taken together with

σDµ,ρ(Ai) ≤ µi for all i, we conclude that σDµ,ρ(·) generates an inequality which is equivalent to or
dominates (µ;µ0).

Proposition 3.4 together with Lemma 3.3 leads to the following corollary which handles the case
of B2 = ∅ when B is partitioned as in (3). Then, this recovers [20, Proposition 5].

Corollary 3.5. Suppose B ⊆ cone(A). Consider a nontrivial inequality (µ;µ0) valid for
conv(S(A,Rn+,B)). Let Vµ denote the set of extreme points of the polyhedral set Dµ, and
ρ0 := max

{
maxv∈Vµ ‖v‖∞, 1 + infλ∈Dµ ‖λ‖∞

}
. Then for any ρ ≥ ρ0, infb∈B σDµ,ρ(b) ≥ µ0 and

σDµ,ρ leads to a valid inequality that is equivalent to or dominates µ>x ≥ µ0.

Proof. Since B ⊆ cone(A), Lemma 3.3 indicates that σDµ(b) is finite for all b ∈ B. Thus, we
have infb∈B σDµ,ρ(b) = infb∈B σDµ(b) = ϑ(µ) ≥ µ0, where the first equality follows from Proposi-
tion 3.4(ii), the second equality follows from Theorem 2.2 and the fact that (µ;µ0) is nontrivial,
and the inequality follows from the validity of the inequality (µ;µ0) for S(A,Rn+,B). The proof
then follows from Proposition 3.4(iii).

From now on, we will consider the cases where B2 may be nonempty. We start from the case
where B2 is a compact set and generalize B2 step by step. In all of the cases we cover next, we will
consider the support functions of bounded, nonempty, polyhedral sets of form Dµ,ρ. Hence, the
resulting support functions will be finite-valued everywhere and piecewise linear. Moreover, when
the underlying inequality (µ;µ0) is such that µ0 > 0, these functions will satisfy the requirements
of being a CGF due to their construction and finite-valuedness. Our most general conclusion for
the sufficiency of CGFs generating all inequalities separating the origin is stated as Corollary 3.12.

Proposition 3.6. Suppose B is partitioned as described in (3) and B2 is a compact set. Consider
a nontrivial valid inequality (µ;µ0) for conv(S(A,Rn+,B)). Then there exists ρ1 ∈ (0,∞) such that
for any ρ ≥ ρ1, infb∈B σDµ,ρ(b) ≥ µ0, and σDµ,ρ leads to a valid inequality that is equivalent to or
dominates µ>x ≥ µ0.

Proof. By Corollary 3.5, without loss of generality we assume B2 6= ∅. Let ρ0 be defined as in
Proposition 3.4. For any ρ ≥ ρ0, Corollary 3.5 indicates that σDµ,ρ(b) ≥ µ0 for all b ∈ B1. Next,
we show that there exists ρ1 ≥ ρ0 such that infb∈B2 σDµ,ρ1 (b) ≥ µ0.

Given the recession cone of Dµ, i.e., Rec(Dµ) = {d ∈ Rm : A>d ≤ 0}, let db := ProjRec(Dµ)(b)
be the projection of b onto Rec(Dµ). Then the definition of db implies 〈b − db, d − db〉 ≤ 0 for all
d ∈ Rec(Dµ) (see [14, Theorem A.3.1.1]). We claim that db 6= 0 for all b ∈ B2. In fact, if db = 0
for some b ∈ B2, then b>d = 〈b − 0, d − 0〉 ≤ 0 for all d ∈ Rec(Dµ). Then, from Farkas’ Lemma,
b ∈ cone(A), which contradicts to the assumption B2 ∩ cone(A) = ∅. Note 0 ∈ Rec(Dµ), and hence

〈b− db, 0− db〉 ≤ 0. Because 〈b− db, 0− db〉 ≤ 0, we have b>db ≥ ‖db‖22 > 0 for all b ∈ B2. Let λ̂ be

a point in Dµ, and let tb := max
{
µ0−b>λ̂
b>db

, 0
}

. Then by definition of tb, we have b>(λ̂+ tbdb) ≥ µ0.

By selecting ρb := ‖λ̂ + tbdb‖∞, we get ρb, which continuously depends on b. Note also that
λ̂+ tbdb ∈ Dµ,ρb , and we have σDµ,ρb (b) ≥ b

>(λ̂+ tbdb) ≥ µ0. As B2 is compact, ρ1 := supb∈B2{ρb}
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is finite and infb∈B2 σDµ,ρ1 (b) ≥ µ0. Then by Corollary 3.2 and Proposition 3.4(iii), the result
follows.

Remark 3.7. In Proposition 3.6, we do not assume that 0 /∈ conv(S(A,Rn+,B)). Moreover, µ0

is not necessarily assumed to be 1 in Proposition 3.6. Thus, the inequalities (µ;µ0) considered
in Proposition 3.6 covers all nontrivial valid inequalities including the ones that may or may not
separate the origin even if 0 /∈ conv(S(A,Rn+,B)). Then, when B2 is a compact set, Proposi-
tion 3.6 establishes that every valid inequality (µ;µ0) which is necessary for the description of
conv(S(A,Rn+,B)) can be generated by the support function of a bounded set of form Dµ,ρ. Hence,
when B2 is a compact set, conv(S(A,Rn+,B)) can in fact be generated by finite-valued support func-
tions. Because valid inequalities with µ0 > 0 are also included in this list, and in the case of µ0 > 0
these functions are simply finite-valued relaxed CGFs which are indeed regular CGFs. Consequently,
when 0 /∈ conv(S(A,Rn+,B)) and B is a compact set, we deduce from Proposition 3.6 the sufficiency
of CGFs for generating every cut separating the origin from conv(S(A,Rn+,B)) as well. ♦

In the following, we let

N (z0; δ) := {z : ‖z − z0‖∞ < δ} (4)

be the δ-neighborhood of x0 under `∞-norm, and also define

CN (z0; δ) := {tz : z ∈ N (z0; δ), t ≥ 1}. (5)

Proposition 3.8. Suppose B is partitioned as described in (3), 0 /∈ cl(B2), and cl(R++(B2)) ∩
cone(A) ⊆ {0}.3) Consider any nontrivial valid inequality (µ;µ0) for S(A,Rn+,B). Then there
exists ρ2 ∈ (0,∞) such that for any ρ ≥ ρ2, infb∈B σDc,ρ(b) ≥ µ0, and σDc,ρ leads to a valid
inequality that is equivalent to or dominates µ>x ≥ µ0.

Proof. By Corollary 3.5, we assume B2 6= ∅ without loss of generality. Since 0 /∈ cl(B2), there exists
δ > 0 such thatN (0; δ)∩B2 = ∅. Consider the compact setG := cl(R++(B2))∩cl(N (0; 2δ)\N (0; δ)).
Note that G 6= ∅ because for any b ∈ B2, by construction, there exists b̂ ∈ G and t > 0 such that
b = tb̂. Furthermore, since N (0; δ)∩B2 = ∅, we indeed have t ≥ 1 in such a representation of b = tb̂
with b̂ ∈ G for any b ∈ B2. Applying Proposition 3.6 to B1 ∪ G, there exists ρ2 > 0 such that for
any ρ ≥ ρ2, we have σDc,ρ(b̂) ≥ µ0 for all b̂ ∈ B1 ∪ G. Also, for any b ∈ B2, using the existence of

b̂ ∈ G and t ≥ 1 such that b = tb̂ and the fact that support functions are positively homogeneous
of degree 1, we arrive at σDc,ρ(b) = tσDc,ρ(b̂) ≥ tµ0 ≥ µ0. This completes the proof.

Note that the conditions of Propositions 3.6 and 3.8, e.g., B2 is a compact set, are independent
of the individual valid inequalities µ>x ≥ µ0 (yet the resulting ρ1 and ρ2 values might depend on µ).
Thus, they apply uniformly to all nontrivial valid inequalities for conv(S(A,Rn+,B)). Then from the
point of view of the sufficiency of CGFs, these propositions indicate that under the corresponding
conditions every valid inequality separating the origin from conv(S(A,Rn+,B)) is equivalent to or
dominated by an inequality generated by a support function of the form σDc,ρ that is finite-valued
everywhere. Recall also that when 0 /∈ cl(B), we have 0 /∈ conv(S(A,Rn+,B)); see [8, Lemma 2.1].
Hence, we arrive at the following corollary:

3)cl(R++(B2)) ∩ cone(A) ( {0} if and only if B2 = ∅.
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Corollary 3.9. Suppose B is partitioned as described in (3). Whenever 0 /∈ cl(B) and cl(R++(B2))∩
cone(A) ⊆ {0}, the CGFs are sufficient to generate all valid inequalities separating the origin from
conv(S(A,Rn+,B)).

In the rest of this section, instead of focusing on generating every necessary valid inequality for
conv(S(A,Rn+,B)), we will keep our focus on the sufficiency of CGFs to generate valid inequalities
of the form c>x ≥ 1 that separate the origin from conv(S(A,Rn+,B)). Therefore, from now on, we
assume 0 6∈ conv(S(A,Rn+,B)). Note that 0 6∈ conv(S(A,Rn+,B)) implies 0 /∈ B as well.

Remark 3.10. [8, Lemma 2.1] states that when 0 /∈ cl(B), we have 0 /∈ conv(S(A,Rn+,B)). The
condition of Proposition 3.6, i.e., B2 is a compact set, together with the definition of B2 in (3)
immediately implies that 0 /∈ B2 = cl(B2).

Nevertheless, it is possible to have 0 /∈ conv(S(A,Rn+,B)) yet 0 ∈ cl(B). This happens when for
example there is a sequence in B converging to 0 but every point in this sequence does not belong
to cone(A), i.e., they are from B2. In this case, either there is no extreme inequality separating the
origin from S(A,Rn+,B) or CGFs cannot be sufficient. In fact, suppose 0 ∈ cl(B2), and let bi ∈ B2

be a nonzero sequence of points converging to 0. Then ‖bi‖2 → 0 as i → ∞. Suppose that there
exists an extreme inequality c>x ≥ 1 separating the origin from the set S(A,Rn+,B). Let σ(·) be
a CGF generating c>x ≥ 1. Without loss of generality, we can assume σ(·) to be sublinear (see
[8, Remark 1.4 and Theorem 2.3]). Also, by Lemma 2.7, we have infb∈B σ(b) ≥ 1, which implies
σ(bi) ≥ 1 for all i. Since CGFs are finite-valued, sublinear and thus convex functions, σ(·) is
a continuous function (see [14, Lemma B.3.1.1]) and thus is bounded on any compact set in its

domain. But then limi→∞ σ( bi

‖bi‖2 ) = limi→∞
σ(bi)
‖bi‖2 = +∞ contradicts the fact that σ(·) is bounded

in the unit disk {b : ‖b‖2 ≤ 1}. ♦

So far in this section, we have studied the cases where B2 is bounded away from cone(A) by
a closed cone, i.e., cl(R++(B2)) ∩ cone(A) ⊆ {0}. In our next proposition, we allow nontrivial
intersection of cl(R++(B2)) and cone(A). Although B2 ∩ cone(A) = ∅ by construction, there are
at least two ways for a ray {td : t ≥ 0} to be contained in cl(R++(B2)) ∩ cone(A). First, there
may exist t̄d ∈ cl(B2) ∩ cone(A) for some t̄ > 0. That is, t̄d is a limit point of a sequence Q1

in B2. Second, when B2 is unbounded, it is possible to have a sequence Q2 in B2 whose closure
does not intersect with cone(A) but cl(R++(Q2)) ∩ cone(A) ) {0}. We demonstrate these cases in
Example 3.1 and Figure 1.

Example 3.1 (Figure 1). Suppose A is the 2× 2 identity matrix and B = {[1; 0], [0; 1]} ∪Q1 ∪Q2,
where Q1 := {[2;−1/n] : n ∈ Z++} and Q2 = {[−1

2 ;n] : n ∈ Z++}. Then conv(S(A,Rn+,B)) =
conv({[1; 0], [0; 1]}), and c>x ≥ 1 is valid for S(A,Rn+,B) if and only if c := [c1; c2] satisfy c1, c2 ≥ 1.
Following the partition of B given in (3), we have B1 = {[1; 0], [0; 1]} and B2 = Q1 ∪Q2.

The sequences Q1 and Q2 have different characteristics. Q1 is not closed, and [2; 0] is its limit
point. On the other hand, Q2 is closed while R++(Q2) is not, and {[b1; b2] : b1 = 0, b2 ≥ 0} is the
limit ray of R++(Q2). See Figure 1 plotted in the B space. ♦

Our next result generalizes Proposition 3.8 in the CGF context. That is, given a valid inequality
of the form c>x ≥ 1, Proposition 3.11 gives a more general sufficient condition for generating a valid
inequality equivalent to or dominating c>x ≥ 1 by a support function of the form σDc,ρ . However,
Proposition 3.11 involves a number of nontrivial conditions, some of which have to be checked for
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Figure 1: N (d; δ) and CN (d; δ) in Example 3.1

each valid inequality (c; 1) separately. After stating the proposition but before giving its proof, we
explain the conditions involved in it and discuss these conditions on an example.

Proposition 3.11. Suppose B is partitioned as described in (3). Let c>x ≥ 1 be a valid inequality
separating the origin from conv(S(A,Rn+,B)). If there exists a set D ⊆ cl(R++(B2))∩ cone(A) such
that:

(i) R++(D) ∪ {0} ⊇ cl(R++(B2)) ∩ cone(A),

(ii) td /∈ cl(B2) ∩ cone(A) for any d ∈ D and 0 ≤ t < 1,

(iii) σDc(d) > 1 for all d ∈ D.

Then there exists ρ3 ∈ (0,∞) such that for any ρ ≥ ρ3, infb∈B σDc,ρ(b) ≥ 1, and σDc,ρ leads to a
valid inequality that is equivalent to or dominates c>x ≥ 1.

The intuition behind the conditions of Proposition 3.11 is roughly as follows. When cl(R++(B2))∩
cone(A) ) {0}, for each ray {td : t ≥ 0} in cl(R++(B2)) ∩ cone(A), a representative t̄d with t̄ > 0
can be chosen to form a basis D, see condition [(i)]. For a relaxed CGF σDc(·) to generate c>x ≥ 1,
it is essential to require σDc(b) ≥ 1 for all b ∈ B. Therefore, if t̄d is a limit point of B2, we care about
the relation between σDc(t̄d) and 1; this amounts to condition [(iii)]. Whenever σDc(d) > 0, if t1d
and t2d are both limit points of B2, from the sublinearity of σDc(·), we have σDc(t1d) > σDc(t2d)
for all t1 > t2. Therefore, when choosing the representatives for D in Proposition 3.11, we pick the
one with the smaller norm in condition [(ii)].

The conditions of Proposition 3.11 admit an interpretation in the space of x variables, i.e., Rn,
as well: Figure 2 depicts two examples where A is a 2 × 2 invertible matrix. In this case, each
point b ∈ B corresponds to a unique point x̄b = A−1b ∈ R2. The shaded area in these pictures
corresponds to all of the points x̄b for some b ∈ B. We denote this set by A−1(B) := {x : Ax ∈ B}.
Note that S(A,Rn+,B) = S(A,Rn+,B1) = A−1(B1) = A−1(B)∩Rn+. In particular, x̄b ≥ 0 if and only
if b ∈ B1. Also, because A is invertible, x̄b is on the boundary of R2

+ if and only if b ∈ bd(cone(A)).
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Therefore, the intersection of R2
+ and the shaded area, i.e., S(A,R2

+,B), corresponds to B1 in the
space of B, and the rest of the shaded area is the counterpart of B2. We will next examine the
point marked as x̄d. Note that x̄d is in the shaded area on the left figure, but it is not in the shaded
area on the right one. Using the fact that A is invertible, we deduce in both pictures that the
nonnegative x1-axis {x : x1 ≥ 0} = cl(R++(x̄d)) corresponds to cl(R++(B2))∩ cone(A) in the space
of B, and the fact that x̄d is a limit point of the lower part of the shaded area represents that d is
a limit point of B2. In addition, in both pictures, D = {d} satisfies Proposition 3.11(ii) because
no point between x̄d and the origin is in the closure of the lower part of the shade area – the part
under x1-axis. Recall that σDc(d) = max{d>λ : A>λ ≤ c} = min{c>x : Ax = d, x ≥ 0} = c>x̄d
since x̄d ∈ cone(A) and A is an invertible matrix. For l0 := {x : c>x = 0} and l1 := {x : c>x = 1},
the left picture shows the case where σDc(d) = c>x̄d > 1 and the right picture shows the case where
σDc(d) = c>x̄d < 1. Then, in the context of these particular examples, we observe that when one of
the conditions of Proposition 3.11, e.g., condition (iii), is violated, the inequality given by c>x ≥ 1
cuts off a part of S(A,Rn+, cl(B)) in the space of x variables.

Figure 2: Interpretation of conditions in Proposition 3.11 in the space of x variables

Proof. Let ρ0 be as defined in Corollary 3.5. Then infb∈B1 σDc,ρ0 (b) ≥ 1.
From Lemma 3.3, we have σDc(d) is finite for all d ∈ cone(A), in particular for all d ∈ D. Then

from Proposition 3.4(ii) and using the premise (iii) of the proposition, we conclude σDc,ρ0 (d) =
σDc(d) > 1 for all d ∈ D. For each d ∈ D ⊆ cone(A), because σDc,ρ0 (·) is a continuous function
(see Remark 2.6), there exists δd > 0 such that σDc,ρ0 (b) ≥ 1 for all b ∈ N (d; δd). Without loss of
generality, we will assume δd ≤ 1 for all d ∈ D. Let

E1 =
⋃
d∈D
CN (d; δd),

where CN (d; δd) is as defined in (5). Since support functions are positively homogeneous of degree
1 and σDc,ρ0 (b) ≥ 1 for all b ∈ N (d; δd) and d ∈ D, we have σDc,ρ0 (b) ≥ 1 for all b ∈ E1, i.e.,
infb∈E1 σDc,ρ0 (b) ≥ 1.

Next, we define

E2 := B2 \ E1 = B2 \

(⋃
d∈D
CN (d; δd)

)
.
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We first show cl(E2) ∩ cone(A) = ∅. If not, there exists d ∈ cone(A) and {bn} ⊆ E2 such
that bn → d as n → ∞. Because R++(d) ⊆ R++(cl(E2)) ⊆ R++(cl(R++(E2))) = cl(R++(E2)) ⊆
cl(R++(B2)) and R++(d) ⊆ cone(A),

R++(d) ⊆ cl(R++(B2)) ∩ cone(A) ⊆ R++(D) ∪ {0},

which implies R++(d) ⊆ R++(D). Therefore, there exists t > 0 such that d̄ = d/t ∈ D. If t ≥ 1,
then d ∈ CN (d̄; δd̄). Then, because CN (d̄; δd̄) is an open set and thus d ∈ int(CN (d̄; δd̄)), this
contradicts to the assumption that {bn} ⊆ E2 = B2 \

(⋃
d∈D CN (d; δd)

)
and bn → d. On the other

hand, if t < 1, then
d = td̄ ∈ cl(E2) ∩ cone(A) ⊆ cl(B2) ∩ cone(A),

which contradicts to the premise (ii).
Now we show cl(R++(E2))∩cone(A) ⊆ {0}. In this case, Proposition 3.8 implies that there exists

ρ2 ∈ (0,∞) such that for any ρ ≥ ρ2, infb∈E2 σDc,ρ(b) ≥ 1. In fact, if cl(R++(E2))∩ cone(A) ) {0},
there exists d ∈ cl(R++(E2)) ∩ cone(A) and {bn} ⊆ E2 such that bn

‖bn‖∞ →
d
‖d‖∞ as n → ∞. Since

R++(d) ⊆ R++(D), we can assume d ∈ D without loss of generality. If {bn} is bounded, then there
exists a subsequence {bnk} of {bn} and K > 0 such that ‖bnk‖∞ → K as k →∞. Therefore,

bnk =
bnk
‖bnk‖∞

· ‖bnk‖∞ →
K

‖d‖∞
d

as k →∞. However, this contradicts with our conclusion in the previous paragraph that cl(E2) ∩
cone(A) = ∅. As a result, we conclude ‖bn‖∞ →∞. For the pre-defined δd > 0, as bn

‖bn‖∞ →
d
‖d‖∞ ,

there exists N > 0 such that ‖bN‖∞ > ‖d‖∞ and
∥∥∥ bN
‖bN‖∞ −

d
‖d‖∞

∥∥∥
∞
< δd
‖d‖∞ . Therefore,∥∥∥∥bN − ‖bN‖∞‖d‖∞

d

∥∥∥∥
∞
<
‖bN‖∞
‖d‖∞

δd (6)

Note that CN (d; δd) =
{
b ∈

⋃
t≥1N (td; tδd)

}
. Moreover, ‖bN‖∞‖d‖∞ > 1. Hence, inequality (6) implies

bN ∈ CN (d; δd). Then this contradicts the assumption bN ∈ E2.
As B = B1∪E1∪E2, Corollary 3.2 implies that infb∈B σDc,ρ(b) ≥ 1 for any ρ ≥ ρ3 := max{ρ0, ρ2}.

It follows from Proposition 3.4(iii) that σDc,ρ leads to a valid inequality that is equivalent to or
dominates c>x ≥ 1.

Note that Proposition 3.11 with D = ∅ recovers the implications of Proposition 3.8 for CGFs
as a trivial case. The condition that σDc(d) > 1 for all d ∈ D in Proposition 3.11 can be further
refined by separating D into two parts. The following corollary slightly generalizes Proposition 3.11
in this sense.

Corollary 3.12. Suppose B is partitioned as described in (3). Let c>x ≥ 1 be a valid inequality
separating the origin from conv(S(A,Rn+,B)). If there exist sets D1 ⊆ cl(B2) ∩ cone(A) and D2 ⊆
(cl(R++(B2)) \ cl(B2)) ∩ cone(A) such that:

(i) R++(D1 ∪ D2) ∪ {0} ⊇ cl(R++(B2)) ∩ cone(A),

(ii) td /∈ cl(B2) ∩ cone(A) for any d ∈ D1 and 0 ≤ t < 1,
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(iii) σDc(d) > 1 for all d ∈ D1 and σDc(d) > 0 for all d ∈ D2.

Then there exists ρ4 ∈ (0,∞) such that for any ρ ≥ ρ4, infb∈B σDc,ρ(b) ≥ 1, and σDc,ρ leads to a
valid inequality that is equivalent to or dominates c>x ≥ 1.

Proof. Let D3 :=
{

d
σDc (d)/2 : d ∈ D2 \ R++(D1)

}
. Then the corollary follows from applying Propo-

sition 3.11 to D1 ∪ D3.

The collection of conditions in Corollary 3.12 is equivalent to the ones in Proposition 3.11. If a
set D satisfying the requirements of Proposition 3.11 exists, one can simply set D1 = D and D2 = ∅,
and the conditions in Corollary 3.12 will be satisfied. On the other hand, as shown in the proof of
Corollary 3.12, D in Proposition 3.11 can be constructed from D1 and D2 in Corollary 3.12.

Similar to Figure 2, Figure 3 shows an interpretation of the conditions in Corollary 3.12 in
the space of x variables. We still assume that A is a 2 × 2 invertible matrix. In both of the
pictures below, we use the shaded area to represent A−1(B) := {x : Ax ∈ B}. In particular,
A−1(B1) = S(A,R2

+,B) is the upper part of the shaded area, and A−1(B2) is the lower part in these
pictures. Moreover, in these pictures, A−1(R++(B2)) is the fourth quadrant and A−1(cl(R++(B2)))
is the fourth quadrant with its boundary. Note that, in both pictures, x̄d is not a limit point of the
lower part of the shaded area, and correspondingly, d is not a limit point of B2. However, R++(x̄d) =
{x : x1 ≥ 0} ⊆ A−1(cl(R++(B2))) ∩ R2

+. Because A is invertible, this relation corresponds to
R++(d) ⊆ cl(R++(B2))∩cone(A) in the space of B. By letting D1 = ∅ and D2 = {d}, conditions (i)
and (ii) in Corollary 3.12 are satisfied. The left picture shows the case where σDc(d) = c>x̄d > 0,
and thus (iii) is also satisfied. The right one shows the case where σDc(d) = c>x̄d < 0, and thus
condition (iii) fails. In the case when Corollary 3.12(iii) fails, we observe that c>x ≥ 0 cuts off
R++(x̄d), which is a part of S(A,R2

+, cl(R++(B))) in the space of x variables. On the other hand,
such a situation cannot be observed for any valid inequality in the left picture because the distance
between R++(x̄d) and S(A,R2

+,B) is zero, and hence these sets cannot be separated by any valid
inequality.

Remark 3.13. We would like to highlight the fact that the conditions in Proposition 3.11 and
Corollary 3.12 do depend on specific valid inequalities c>x ≥ 1 via the support function σDc. In
order to conclude the sufficiency of CGFs with Proposition 3.11 or Corollary 3.12, one needs to
verify that the associated conditions involving the function σDc are satisfied by every extreme valid
inequality. This is in contrast to the earlier results such as Proposition 3.8 and Corollary 3.9.
For example, in the case where B2 = ∅ (resp. cl(R++(B2)) ∩ cone(A) ⊆ {0}), Corollary 3.5 (resp.
Proposition 3.8) can be uniformly applied to every valid inequality. So, in those cases, the sufficiency
of CGFs can be concluded independent of examining each c vector separately. ♦

In general verifying the conditions of Proposition 3.11 and Corollary 3.12 for all extreme valid
inequalities separating the origin can be difficult. Below, we demonstrate how these conditions can
be verified for Example 3.1.

Example 3.1 (Continued). Let D1 = {[2; 0]} and D2 = {[0; 1]}. Then Conditions (i) and (ii) in
Corollary 3.12 are satisfied. Moreover, recall that the validity of any inequality of form c>x ≥ 1 for
S(A,Rn+,B) requires min{c1, c2} ≥ 1. Then it is clear that σDc([2; 0]) = 2c1 > 1 and σDc([0; 1]) =
c2 > 0. Therefore, based on Corollary 3.12, for each valid inequality c>x ≥ 1, there exists ρc > 0
such that infb∈B σDc,ρ(b) ≥ 1 for any ρ ≥ ρc. Thus, in this example, CGFs are sufficient to generate
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Figure 3: Interpretation of conditions in Corollary 3.12 in the space of x variables

all valid inequalities separating the origin from S(A,Rn+,B). In fact, we can get the same conclusion
without using Corollary 3.12: For any valid inequality c>x ≥ 1, by setting ρ ≥ max{c1, c2} ≥
min{c1, c2} ≥ 1, we have for any n ∈ Z++ the following relations:

σDc,ρ

(
[2;− 1

n
]

)
= max

{
2λ1 −

λ2

n
: −ρ ≤ λ1 ≤ c1, −ρ ≤ λ2 ≤ c2

}
= 2c1 +

ρ

n
≥ 1, and

σDc,ρ

(
[−1

2
;n]

)
= max

{
−λ1

2
+ nλ2 : −ρ ≤ λ1 ≤ c1, −ρ ≤ λ2 ≤ c2

}
=
ρ

2
+ c2n ≥ 1.

Thus, infb∈B σDc,ρ(b) ≥ 1 whenever ρ ≥ max{c1, c2} ≥ 1. ♦

4 Necessary Conditions for the Sufficiency of CGFs

In this section, we first show that if an extreme inequality can be generated by a cut-generating
function, then it can as well be generated by the support function of a bounded set of the form Dc,ρ.
Then, inspired by the conditions given in Corollary 3.12, we provide two necessary conditions for
the sufficiency of CGFs that almost match with our sufficient conditions given in Corollary 3.12. We
close by providing examples that highlight the gap between our sufficient conditions from Section 3
for the sufficiency of CGFs for generating all necessary valid inequalities separating the origin and
our necessary conditions from this section.

Proposition 4.1. Consider any extreme inequality c>x ≥ 1 separating the origin from conv(S(A,Rn+,B)).
Assume that there exists a CGF σ(·) generating a valid inequality that is equivalent to c>x ≥ 1.
Then there exists a finite ρ > 0 such that the set Dc,ρ is nonempty, and its support function σDc,ρ(·)
generates a valid inequality that is equivalent to c>x ≥ 1.

Proof. Because c>x ≥ 1 is extreme and all undominated extreme inequalities are tight and sublin-
ear, it is also sublinear and ϑ(c) = 1. Suppose that there exists a CGF σ(·) generating an inequality
equivalent to c>x ≥ 1. Thus, σ(·) is finite-valued and σ(Ai) = ci for all i.

19



Moreover, σ(·) is a CGF generating an extreme inequality, in view of [8, Remark 1.4 and
Theorem 2.3], without loss of generality, we can assume that σ(·) is a sublinear function.

Let Dσ := {λ ∈ Rm : z>λ ≤ σ(z) ∀z ∈ Rm}. Then by [14, Theorem C.3.1.1] (see also [14,
Corollary C.3.1.2]), we have σ(·) is the support function of Dσ. Because σ(·) is a CGF and hence
is finite-valued, by [14, Proposition C.2.1.3] Dσ is a bounded set. Dσ is also nonempty. If Dσ = ∅,
then σ(z) = σDσ(z) = −∞ for all z and it would not be possible to have

∑
i σ(Ai)xi ≥ 1 as a

valid inequality for any nonempty set S(A,Rn+,B). Using the definition of Dσ and the fact that
σ(Ai) = ci, we conclude that the inequalities A>i λ ≤ σ(Ai) ≤ ci are valid for Dσ. Thus, Dσ ⊆ Dc.

Let ρ := 1 + supλ∈Dσ ‖λ‖∞. Because Dσ is nonempty and bounded, ρ ∈ (0,∞). Also, by
construction, Dσ ⊆ Dc,ρ ⊆ Dc implying σDc(z) ≥ σDc,ρ(z) ≥ σDσ(z) for all z. From the definition
of Dc, we immediately have ci ≥ σDc(Ai) for all i. Furthermore, σDσ(Ai) = ci since σ(·) gener-
ates c>x ≥ 1. Therefore, ci ≥ σDc(Ai) ≥ σDc,ρ(Ai) ≥ σDσ(Ai) = ci for all i. In addition, from
Lemma 2.7, we have 1 ≤ infb∈B σ(b), which then implies that 1 ≤ infb∈B σ(b) ≤ infb∈B σDc(b). Fi-
nally, because σDσ(·) = σ(·) and ϑ(c) = 1 ≤ infb∈B σ(b), we have infb∈B σDc,ρ(b) ≥ infb∈B σDσ(b) =
infb∈B σ(b) ≥ ϑ(c). Thus, the function σDc,ρ generates c>x ≥ 1 as well.

In particular, Proposition 4.1 implies the following corollary:

Corollary 4.2. Whenever CGFs are sufficient to generate all valid inequalities that separate the
origin from conv(S(A,Rn+,B)), then the CGFs obtained from the support functions of sets of form
Dc,ρ are also sufficient.

Our necessary conditions given in the following two propositions are inspired by the two sets
D1 and D2 described in Corollary 3.12.

Proposition 4.3. Let B be partitioned as described in (3). Suppose there exists a valid inequality
c>x ≥ 1 separating the origin from conv(S(A,Rn+,B)) and either there exists a nonzero vector
d ∈ cl(B2) ∩ cone(A) satisfying σDc(d) < 1 or there exists a vector d ∈ cl(R++(B2)) ∩ cone(A)
satisfying σDc(d) < 0. Then, for any finite ρ such that the set Dc,ρ is nonempty, the support
function σDc,ρ(·) cannot generate a valid inequality that is equivalent to or dominates c>x ≥ 1.

Proof. Consider any ρ ∈ (0,∞) such that Dc,ρ 6= ∅. Then σDc,ρ(z) ≤ σDc(z) for all z because
Dc,ρ ⊆ Dc.

Suppose there exists a nonzero vector d ∈ cl(B2)∩cone(A) such that σDc(d) < 1, then σDc,ρ(d) ≤
σDc(d) < 1. Moreover, from Remark 2.6, the function σDc,ρ(·) is continuous, and thus there
exists δ > 0 such that for all b ∈ N (d; δ), we have σDc,ρ(b) < 1. Because d ∈ cl(B2), there
exists a sequence {bi} in B2 converging to d. Hence, there exists b̄ ∈ B2 ∩ N (d; δ), implying
infb∈B σDc,ρ(b) ≤ σDc,ρ(b̄) < 1.

On the other hand, if there exists a vector d ∈ cl(R++(B2)) ∩ cone(A) such that σDc(d) < 0,
then d 6= 0 because σDc is the support function of a nonempty set (see [14, Section C.2] and [19,
Section 4]). Moreover, σDc,ρ(d) ≤ σDc(d) < 0 and there exists δ > 0 such that for all b ∈ N (d; δ),
we have σDc,ρ(b) < 0. Because d ∈ cl(R++(B2)), there exist a sequence {bi} in B2 and a sequence
of positive scalars {ti} such that ti bi converges to d. Hence, there exists t̄ > 0 and b̄ ∈ B2 such that
t̄b̄ ∈ N (d; δ), and thus 0 > 1

t̄σDc,ρ(t̄b̄) = σDc,ρ(b̄). This implies infb∈B σDc,ρ(b) ≤ σDc,ρ(b̄) < 0.
Therefore, by Lemma 2.7, we cannot generate an inequality that is equivalent to or dominates

c>x ≥ 1 using the support function of Dc,ρ.

Proposition 4.3 together with Proposition 4.1 lead to the following result.
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Corollary 4.4. Let B be partitioned as described in (3). Suppose there exists an extreme inequality
c>x ≥ 1 separating the origin from conv(S(A,Rn+,B)) and either a nonzero vector d ∈ cl(B2) ∩
cone(A) satisfying σDc(d) < 1 or a vector d ∈ cl(R++(B2)) ∩ cone(A) satisfying σDc(d) < 0. Then
there is no CGF that can generate the inequality c>x ≥ 1, and hence for such sets CGFs are not
sufficient to generate all valid inequalities separating the origin from conv(S(A,Rn+,B)).

Proof. Assume for contradiction that there exists a CGF σ(·) that generates the extreme inequality
c>x ≥ 1. Then by Proposition 4.1, there exists a finite ρ such that the support function of the set
Dc,ρ also generates the inequality c>x ≥ 1. But, this contradicts Proposition 4.3.

Conforti et al. [8] introduced the following example (see [8, Example 6.1]) to show that CGFs
may not always be sufficient to generate all valid inequalities separating the origin from conv(S(A,Rn+,B)).
In the following, we revisit this example and its slight variant studied in [19]; see Section 4.3, Ex-
ample 10 and remarks afterwards in [19].

Example 4.1. Let A be the 2 × 2 identity matrix and B = {[0; 1]} ∪ {[n;−1] : n ∈ Z}. Then
conv(S(A,R2

+,B)) = S(A,R2
+,B) = {[0; 1]}. The valid inequality c>x ≥ 1 with c = [−1; 1] separates

the origin from conv(S(A,R2
+,B)). Let d = [1; 0]. Then d ∈ cl(R++(B2)) ∩ cone(A) = {b : b1 ≥

0, b2 = 0} and σDc(d) = max{λ>d : A>λ ≤ c} = max{λ1 : λ1 ≤ −1} = −1 < 0. By Corollary 4.4,
there is no CGF that can generate this inequality, and thus CGFs are not sufficient to generate all
cuts separating the origin from conv(S(A,R2

+,B)).
On the other hand, [19] has examined the variant of this example by setting B = {[0; 1]} ∪

{[n;−1] : n ∈ Z−}. In this case, cl(R++(B2)) ∩ cone(A) = {0}; and thus by Corollary 3.9, CGFs
are sufficient. ♦

We conclude this section with two pairs of examples. These examples illustrate the gap between
our sufficient conditions for CGFs from Section 3 and our necessary conditions presented in this
section. In particular, Examples 4.2 and 4.4 show that our sufficient condition stated in Corol-
lary 3.12 has room for improvement. That is, it is possible to have a CGF generating an extreme
inequality c>x ≥ 1 even when σDc(d) = 1 for the only point d 6= 0 in cl(B2)∩cone(A) or σDc(d) = 0
for all points in cl(R++(B2)) ∩ cone(A). In contrast to these, Examples 4.3 and 4.5 demonstrate
cases of an extreme inequality of the form c>x ≥ 1 that cannot be generated by any CGF when
there exists a 0 6= d ∈ cl(B2)∩cone(A) such that σDc(d) = 1 or 0 6= d ∈ cl(R++(B2))∩cone(A) such
that σDc(d) = 0. The main difference in these examples is in the way the sequence of points in B2

approach to a point in cone(A) (Examples 4.2 and 4.3) or the way they go to infinity (Examples 4.4
and 4.5).

Example 4.2. Suppose A is the 2 × 2 identity matrix and B = {[1; 0], [0; 1]} ∪ {[1;−1/n] : n ∈
Z++}. Then B1 = {[1; 0], [0; 1]}, B2 = {[1;−1/n] : n ∈ Z++}, cl(B2) ∩ cone(A) = {[1; 0]} and
cl(R++(B2)) ∩ cone(A) = cone([1; 0]). Consider a valid inequality c>x ≥ 1 separating the origin
from conv(S(A,R2

+,B)). Because conv(S(A,R2
+,B)) = conv({[1; 0], [0; 1]}), c>x ≥ 1 is valid if and

only if c := [c1; c2] satisfies c1, c2 ≥ 1. Note that σDc([1; 0]) = max{λ1 : λ ≤ c} = c1. When c1 > 1,
we have σDc([1; 0]) > 1. Then from Corollary 3.12, by taking D1 = {[1; 0]} and D2 = ∅, we obtain
infb∈B σDc,ρ(b) ≥ 1 for some 0 < ρ < +∞. On the other hand, the conditions in Corollary 3.12 are
not satisfied when c1 = 1 because cl(B2) ∩ cone(A) = {[1; 0]} and σDc([1; 0]) = 1. However, in this
case, for any ρ ≥ 1 and n ∈ Z++, we have

σDc,ρ

(
[1;− 1

n
]

)
= max

{
λ1 −

λ2

n
: −ρ ≤ λ1 ≤ 1, −ρ ≤ λ2 ≤ min{ρ, c2}

}
= 1 +

ρ

n
≥ 1.
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Hence, infb∈B σDc,ρ(b) ≥ 1 even when c1 = 1. This establishes the sufficiency of CGFs in this
example even though the conditions in Corollary 3.12 are not satisfied for the extreme inequality
x1 + x2 ≥ 1. ♦

Example 4.3. Suppose A is the 2× 2 identity matrix, B = {[1; 0], [0; 1]}∪ {[1− 1/
√
n;−1/n] : n ∈

Z++}. Then B1 = {[1; 0], [0; 1]}, B2 = {[1 − 1/
√
n;−1/n] : n ∈ Z++}, cl(B2) ∩ cone(A) = {[1; 0]}

and cl(R++(B2)) ∩ cone(A) = cone([1; 0]). Consider the extreme inequality c>x ≥ 1 with c = [1; 1]
separating the origin from conv(S(A,Rn+,B)) = conv({[1; 0], [0; 1]}). Note that the conditions in
Corollary 4.4 are not satisfied because σDc([1; 0]) = c1 = 1 and σDc(b) > 0 for any b ∈ R++([1; 0]).
On the other hand, for any ρ > 0 and n ∈ Z++, we have

σDc,ρ

(
[1− 1√

n
;− 1

n
]

)
= max

{(
1− 1√

n

)
λ1 −

λ2

n
: −ρ ≤ λ1 ≤ min{ρ, 1}, −ρ ≤ λ2 ≤ min{ρ, 1}

}
=

(
1− 1√

n

)
min{ρ, 1}+

ρ

n
= min

{
ρ− ρ√

n
+
ρ

n
, 1− 1√

n
+
ρ

n

}
.

For any fixed ρ > 0, when n > ρ2, we immediately have 1 − 1√
n

+ ρ
n < 1. Hence, σDc,ρ([1 −

1√
n

;− 1
n ]) < 1, which implies infb∈B σDc,ρ(b) < 1. Therefore, for any finite ρ such that the set

Dc,ρ := {λ ∈ Rm : A>λ ≤ c, ‖λ‖∞ ≤ ρ} is nonempty, the support function σDc,ρ(·) cannot generate
a valid inequality that is equivalent to or dominates c>x ≥ 1. Then by Proposition 4.1, there is
no CGF that generates this inequality or another one that dominates it. This demonstrates a case
where even though the conditions in Corollary 4.4 are not satisfied, there is an extreme inequality
which cannot be generated by any CGF. ♦

0.5 1.0 1.5

-−1.0

-−0.5

0.5

1.0

Figure 4: Two ways to approach [1; 0] as in Examples 4.2 and 4.3.

Example 4.4. Suppose A is the 2×2 identity matrix, B = B1∪B2 where B1 = {b : b1 ≥ 1, b2 ≥ 1}
and B2 = {[n;−1] : n ∈ Z++}. Then cl(B2)∩cone(A) = ∅ and cl(R++(B2))∩cone(A) = cone([1; 0]).
Consider a valid inequality c>x ≥ 1 separating the origin from conv(S(A,R2

+,B)). Because the
recession cone of conv(S(A,R2

+,B)) = {x : x1 ≥ 1, x2 ≥ 1} is R2
+, c>x ≥ 1 is valid only if c := [c1; c2]

satisfies c1, c2 ≥ 0. For any d = [d1; d2] ∈ R++([1; 0]), σDc(d) = max{λ1d1 : λ ≤ c} = c1d1. When
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c1 > 0, we have σDc(d) > 0 for any d ∈ R++([1; 0]). By taking D1 = ∅ and D2 = {[1; 0]} in
Corollary 3.12, we obtain that there exists 0 < ρ < +∞ such that infb∈B σDc,ρ(b) ≥ 1. On the other
hand, the conditions in Corollary 3.12 are not satisfied when c1 = 0 because cl(R++(B2))∩cone(A) =
R++([1; 0]) ∪ {0} and σDc(d) = 0 for all d ∈ R++([1; 0]). However, even in this case, for any ρ ≥ 1
and n ∈ Z++, we have

σDc,ρ ([n;−1]) = max {nλ1 − λ2 : −ρ ≤ λ1 ≤ 0, −ρ ≤ λ2 ≤ min{ρ, c2}} = 0 + ρ ≥ 1.

Hence, infb∈B σDc,ρ(b) ≥ 1 even when c1 = 0. This establishes the sufficiency of CGFs in this
example even though the conditions in Corollary 3.12 are not satisfied for the extreme inequality
x2 ≥ 1. ♦

Example 4.5. Suppose A is the 2×2 identity matrix, B = B1∪B2 where B1 = {b : b1 ≥ 1, b2 ≥ 1}
and B2 = {[n;−1/n] : n ∈ Z++}. Then cl(B2) ∩ cone(A) = ∅ and cl(R++(B2)) ∩ cone(A) =
cone([1; 0]). Consider the extreme inequality c>x ≥ 1 where c = [0; 1] that separates the origin
from conv(S(A,Rn+,B)) = {x : x1 ≥ 1, x2 ≥ 1}. Note that the conditions in Corollary 4.4 are not
satisfied because cl(B2) ∩ cone(A) = ∅ and σDc(d) = 0 for any d ∈ cl(R++(B2)) ∩ cone(A). On the
other hand, for any fixed ρ > 0 and n ∈ Z++, we have

σDc,ρ

(
[n;− 1

n
]

)
= max

{
nλ1 −

λ2

n
: −ρ ≤ λ1 ≤ 0, −ρ ≤ λ2 ≤ min{ρ, 1}

}
= 0 +

ρ

n
.

For any fixed ρ > 0, we have σDc,ρ([n;− 1
n ]) < 1 when n > ρ. Thus, infb∈B σDc,ρ(b) < 1 for any

fixed ρ > 0. Therefore, for any finite ρ such that the set Dc,ρ := {λ ∈ Rm : A>λ ≤ c, ‖λ‖∞ ≤ ρ}
is nonempty, the support function σDc,ρ(·) cannot generate a valid inequality that is equivalent
to or dominates c>x ≥ 1, i.e, x2 ≥ 1. Then by Proposition 4.1, there is no CGF that generates
this inequality or another one that dominates it. This demonstrates a case where even though
the conditions in Corollary 4.4 are not satisfied, there is an extreme inequality which cannot be
generated by any CGF. ♦

Figure 5: Two unbounded sequences as in Examples 4.4 and 4.5.
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