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We study disjunctive conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such
as the nonnegative orthant, the Lorentz cone, or the positive semidefinite cone. In a unified framework, we introduce
K-minimal inequalities and show that, under mild assumptions, these inequalities together with the trivial cone-implied
inequalities are sufficient to describe the convex hull. We focus on the properties ofK-minimal inequalities by establishing
algebraic necessary conditions for an inequality to be K-minimal. This characterization leads to a broader algebraically
defined class of K-sublinear inequalities. We demonstrate a close connection between K-sublinear inequalities and the
support functions of convex sets with a particular structure. This connection results in practical ways of verifying K-
sublinearity and/or K-minimality of inequalities.

Our study generalizes some of the results from the mixed integer linear case. It is well known that the minimal
inequalities for mixed integer linear programs are generated by sublinear (positively homogeneous, subadditive, and
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data associated with each individual variable independently is far from sufficient.

Key words: Minimal Inequalities; Mixed Integer Conic Programming; Disjunctive Programming; Cutting Planes
MSC2000 subject classification: Primary: 90C11; secondary: 90C30, 90C26
OR/MS subject classification: Primary: Integer programming-cutting planes; secondary: Convex optimization-conic

programming
History: Submitted on June 27, 2013; Revised on August 24, 2014 and April 01, 2015; Accepted April 04, 2015.

1. Introduction A Mixed Integer Conic Program (MICP) is an optimization program of the form

Opt = inf
x∈E
{〈c,x〉 :Ax= b, x∈K, x∈Z} (MICP )

where K is a regular (full-dimensional, closed, convex and pointed) cone in a finite dimensional Euclidean
space E with an inner product 〈·, ·〉, c ∈ E is the objective vector, b ∈ Rm is the right hand side vector,
A : E → Rm is a linear map, and Z is a set imposing certain structural restrictions on the variables x.
Examples of regular cones include the nonnegative orthant Rn+ := {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}, the
Lorentz cone Ln := {x ∈ Rn : xn ≥

√
x2

1 + . . .+x2
n−1 }, and the positive semidefinite cone Sn+ := {x ∈

Rn×n : aTx a ≥ 0 ∀a ∈ Rn, x = xT} and their direct products. When E = Rn, the most common form
of structural restrictions is integrality xi ∈ Z for all i ∈ I , where I ⊂ {1, . . . , n} is the index set of integer
variables. We assume that all of the data involved with MICP, i.e., c, b,A are rational.

Mixed Integer Linear Programs (MILPs) arise as a special case of MICPs where K is the nonnega-
tive orthant. Conic constraints include various specific convex constraints such as linear, convex quadratic,
eigenvalue, etc., and hence offer significant representation power over linear constraints (see [18] for a
detailed introduction to conic programming and its applications in various domains). Allowing discrete
decisions in addition to the conic constraints further enhances the representation power of MICPs. This
modeling flexibility of MICPs is essential for a broad range of optimization problems in the decision mak-
ing under uncertainty domain. For example, robust counterparts of MILPs with ellipsoidal uncertainty sets
result in MICPs with Lorentz cone [16]. Likewise, robust counterparts of MICPs with Lorentz cone under
ellipsoidal uncertainty lead to MICPs with semidefinite cone. Some application areas in this context include
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portfolio optimization [36, 55], stochastic joint facility location-inventory models [6], and unit commitment
[37]. MICPs are also encountered in statistics [60, 65] and optimal control [38]. Moreover, the most power-
ful relaxations to many combinatorial optimization problems are based on conic (in particular semidefinite)
relaxations (see [39] for a survey of this topic). Reintroducing the integer variables into these relaxations
yields exact MICP formulations of these problems with tighter continuous relaxations. Besides, MILPs
have been heavily exploited for approximating a vast array of non-convex nonlinear optimization problems
across many diverse fields [15]. For a wide range of these problems, MICPs offer tighter relaxations and
thus potentially a better overall algorithmic performance.

Because of the increasing considerable interest in MICPs, the theoretical and practical research on MICPs
is growing rapidly. This growing demand for solving MICPs has recently led many commercial soft-
ware packages such as CPLEX [2], Gurobi [1], and MOSEK [3] to expand their features and include the
technology to solve MICPs. Nevertheless, the theory and algorithms for solving MICPs are still in their
infancy [7]. On one hand, any method for general nonlinear integer programming applies to MICPs as
well. A significant body of work has extended known techniques dealing with MILPs to nonlinear inte-
ger programs (see [15] for a recent survey). Currently, the most promising approaches to solve MICPs
are based on the extension of cutting plane techniques in combination with branch-and-bound based algo-
rithms [7, 8, 19, 20, 21, 22, 24, 26, 27, 35, 51, 61, 63, 66, 67, 68]. Exploiting the conic structure when
present, as opposed to general convexity, paves the way for developing algorithms with much better per-
formance. Particularly in the case of MILPs, this has led to very successful results. In addition, efficient
interior point methods exist for solving conic optimization problems with K = Ln or K = Sn+ [18]. As
a result, supplying the branch-and-bound tree with the natural continuous conic relaxation at the nodes
and deriving cutting planes (or surfaces) to strengthen these relaxations have recently gained considerable
interest. In this vein, Çezik and Iyengar [27] extended Chvatal-Gomory integer rounding cuts (valid inequal-
ities) [58] to MICPs with general regular cones. In a recent and fast growing literature, several authors
[4, 7, 8, 14, 19, 25, 34, 35, 36, 53, 54, 56, 69, 71] study MICPs involving Lorentz cones, K = Ln, and
suggest cutting planes or surfaces.

While the numerical performance of these techniques is still under investigation, evidence from MILPs
indicates that adding a small yet strong set of valid inequalities is the key to the success of such proce-
dures. Selection of effective valid inequalities is particularly important to avoid numerical instability issues.
Nevertheless, for MICPs, except very specific and simple cases, there is no formal framework studying the
strength (redundancy, domination, etc.) of valid inequalities. This is in sharp contrast to the MILP case,
where the related questions have been studied extensively. In particular, the feasible region of an MILP
with rational data is a polyhedron and the facial structure of a polyhedron (its faces and facets) is very well
understood. Besides, various ways of proving whether or not a given linear inequality is a facet, that is, it is
necessary in the closed convex hull description of the feasible set associated with an MILP, are well estab-
lished [58]. In addition, a new framework to demonstrate minimality and extremality of valid inequalities
for certain generic infinite relaxations of MILPs [30] as well as their relations to facets in certain simplified
settings [32] are developing rapidly. Thus far, results in this vein are lacking in the MICP context. Conse-
quently, establishing a theoretical framework to measure the necessity and strength of valid inequalities in
the MICP context remains a natural and important question. We pursue this question in this paper.

In this paper, given a disjunctive conic set –the union of finitely or infinitely many conic sets involv-
ing a common cone K– we study the linear inequality description of its closed convex hull in the original
space of variables. We are mainly motivated by the facts that general disjunctive conic programming frame-
work encompasses MICPs (cf. section 1.2) and most cutting planes used in MILP can be viewed in this
framework. The disjunctive conic sets, specifically, the cone K plays a central role in our developments.
In particular, we use K to identify an appropriate dominance relation among valid linear inequalities and
define our K-minimality notion. In the context of MILPs [47, 49] and the associated infinite dimensional
relaxations [30], minimality of a valid inequality has traditionally been defined with respect to the nonneg-
ative orthant Rn+. Our notion of conic minimality not only significantly extends this notion to disjunctive



Kılınç-Karzan: On Minimal Valid Inequalities for MICPs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 3

conic sets but also allows us to encode information from a convex relaxation of the problem. Indeed, we
show in section 2.2 that even in the context of MILPs defining minimality with respect to a regular polyhe-
dral cone can be valuable. Despite the extensive literature for K = Rn+, to the best of our knowledge there
is no literature on this topic in the general conic case with an arbitrary regular cone K. In this regard, we
contribute to the literature by introducing K-minimal inequalities for disjunctive conic sets and performing
a systemic study of their properties for all regular cones K in a unified manner. In particular, we establish
the sufficiency of K-minimal inequalities for describing the closed convex hulls of disjunctive conic sets.
Moreover, we provide necessary conditions, sufficient conditions, and practical tools for testing whether or
not a given inequality is K-minimal.

When K is taken as the nonnegative orthant, our approach relates back to the beautiful works of Jeroslow
[47] and Johnson [49] as well as the recent work of Conforti et al. [28]. In this particular case of K= Rn+,
we show that every Rn+-minimal inequality (its coefficient vector, and the corresponding best possible right
hand side value) is generated by the support function of a specific closed convex set. This connection in
the case of K= Rn+, taken together with the sufficiency of Rn+-minimal inequalities, highlights the roots of
functional strong duality results for MILPs. While we capture some of the earlier results from the MILP
literature and demonstrate that they naturally extend to MICPs, our study also exposes some challenges
associated with MICPs. Specifically, for general regular cones, we show that not all extreme inequalities
can be generated by cut-generating functions1) when we straightforwardly extend the definition of cut-
generating functions from MILP context to MICPs.

Finally, we note that our derivations are based on finite dimensional problems. This is in contrast to much
of the literature on minimal inequalities in the MILP context that relies on infinite relaxations initiated
by [41, 42, 48]. Therefore, our study does not rely on and differs substantially from the majority of this
literature. In a practical cutting plane procedure for solving MILPs and/or MICPs, one is indeed faced with
a problem in a finite dimensional space. Thus, we believe that our finite dimensional focus is not a limitation
but rather a contribution to the corresponding MILP literature. Besides, to the best of our knowledge, the
extensions of other well-known regular cones such as Ln and Sn+ to the infinite dimensional spaces are
either not well defined or quite nontrivial. Hence, an infinite relaxation seems to be more meaningful when
the associated cone is the nonnegative orthant. Nevertheless, we discuss some connections of our work with
cut-generating functions and infinite relaxations in section 4.3.

1.1. Preliminaries and Notation In this paper, given a linear map A from a finite dimensional
Euclidean space E to Rm, i.e., A :E→ Rm, a convex cone K ⊂E, and a nonempty set of right hand side
vectors B ⊂Rm, we study the disjunctive conic set defined by A, K, and B:

S(A,K,B) := {x∈K : Ax∈B}.

We are mainly interested in determining the properties of linear valid inequalities that are necessary and
sufficient for describing the closed convex hull of S(A,K,B) denoted by conv(S(A,K,B)) in the original
space of variables.

When B is a convex set given by finitely many conic inequalities, S(A,K,B) is convex and is also defined
by conic inequalities. That said, our focus is on the general case of S(A,K,B) with a non-convex setB. Then
the linear inequality description is the most general and flexible form of representation for conv(S(A,K,B))
because when S(A,K,B) is non-convex the algebraic representation of conv(S(A,K,B)) is not necessarily
given by finitely many conic inequalities.

We impose no other structural assumptions on A and B. In particular, A is an arbitrary linear map from
E to Rm and B is an arbitrary non-convex set of vectors in Rm that can be finite or infinite, structured such
as lattice points, or completely unstructured. On the other hand, in order to identify dominance relations

1 )Informally, a cut-generating function generates the coefficient of a variable in a cut using only information of the instance
pertaining to this variable. See [28] and section 4.3 for an extended discussion.
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among valid linear inequalities we assume that the cone K is regular (full-dimensional, closed, convex, and
pointed). Given a set of regular cones Ki ⊂ Ei for i = 1, . . . , k, their direct product K̃ = K1 × ...×Kk is
also a regular cone in the Euclidean space Ẽ =E1× ...×Ek with inner product 〈·, ·〉Ẽ , which is the sum of
the inner products 〈·, ·〉Ei . Therefore, our focus on a single regular cone K is without loss of generality.

To avoid trial cases, we assume that S(A,K,B) 6= K, in particular K 6⊆ {x ∈ E : Ax ∈ B}, and
S(A,K,B) 6= ∅, i.e., there exists b∈B and xb ∈K satisfying Axb = b.

For a given set S, we denote its topological interior with int(S), its closure with S, and its boundary with
∂S = S \ int(S). We use conv(S) to denote the convex hull of S, conv(S) for its closed convex hull, and
cone(S) to denote the cone generated by the set S. We denote the kernel of a linear map A : E→ Rm by
Ker(A) = {u∈E : Au= 0}, and its image by Im(A) = {Au : u∈E}. We use A∗ to denote the conjugate
linear map 2) given by the identity

yTAx= 〈A∗y,x〉 ∀(x∈E,y ∈Rm).

We use 〈·, ·〉 notation for the inner product in Euclidean space E, and proceed with usual dot product
notation with transpose for the inner product in Rm. We assume all vectors in Rm are given in column form.

For a given cone K⊂E, we let Ext(K) denote the set of its extreme rays, and use K∗ to denote its dual
cone given by

K∗ := {y ∈E : 〈x, y〉 ≥ 0 ∀x∈K} .

Whenever the cone K is regular, so is K∗.
Given a regular cone K, a relation a− b∈K (also denoted by a�K b) is called conic inequality between

a and b. Such a relation indeed preserves the major properties of the usual coordinate-wise vector inequality
≥. We denote the strict conic inequality by a�K b to indicate that a− b∈ int(K). In the sequel, we refer to
a constraint of the form Ax− b∈K as a conic inequality constraint or simply conic constraint and also use
Ax�K b interchangeably in the same sense.

There are three important regular cones common to most MICPs, namely the nonnegative orthant Rn+, the
Lorentz cone Ln, and the positive semidefinite cone Sn+. In the first two cases, the corresponding Euclidean
space E is just Rn with dot product as the corresponding inner product. In the last case, E becomes the
space of symmetric n × n matrices with Frobenius inner product 〈x, y〉 = Tr(xyT ). These three regular
cones are also self-dual, that is, K∗ =K.

Notation ei is used for the ith unit vector of Rn, and Id for the identity map in E. When E = Rn, Id is
just the n×n identity matrix In.

1.2. Motivation and Connections to MICPs While the disjunctive conic set S(A,K,B) can be of
interest by itself, here we provide a few examples to expose our naming choice and the significance of this
framework. In particular, we show that these sets naturally represent the feasible regions of MICPs as well
as some natural relaxations for them.

We start with the following example transformation that generalizes the usual disjunctive programming
from the polyhedral (linear) case [9, 10, 11, 12, 64] to the one with conic constraints.

2) When we consider the standard Euclidean space E = Rn, a linear map A : Rn→ Rm is just an m× n real-valued matrix, and
its conjugate is given by its transpose, A∗ =AT .

The space of symmetric n×n matrices E = Sn is also of interest. We use Tr(·) to denote the trace of a matrix, i.e., the sum of
its diagonal entries. When E = Sn, it is natural to specify a linear map A : Sn→Rm as a collection {A1, . . . ,Am} of m matrices
from Sn such that

AZ = (Tr(ZA1); . . . ;Tr(ZAm)) : Sn→Rm.

In this case, the conjugate linear map A∗ :Rm→Sn is given by

A∗y=

m∑
j=1

yjA
j , y= (y1; . . . ;ym)∈Rm.
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EXAMPLE 1. Suppose that we are given a finite collection of convex sets of the form Ci = {x ∈ K :
Aix �Ki bi} for i ∈ {1, . . . , `}, where K ⊂ Rn is a regular cone and Ki ⊂ Rmi are cones, Ai are mi × n
matrices, and bi ∈Rmi . Then

⋃
i∈{1,...,`}Ci can be represented in the form of S(A,K,B) as follows:

x∈Rn :


(A1)T

(A2)T

...
(A`)T

x

︸ ︷︷ ︸
:=Ax

∈



{b1}+K1

Rm2

...
Rm`

⋃


Rm1

{b2}+K2

...
Rm`

⋃


Rm1

Rm2

...
{bm}+Km


︸ ︷︷ ︸

:=B

, x∈K


.

When K = Rn+ and Ki = Rmi+ for all i = 1, . . . , `, then
⋃
i∈{1,...,`}Ci is the well-known disjunctive set

representing the union of polyhedra.
Moreover, when K is a general regular cone but Ki = R+ for all i = 1, . . . , `, then the set S(A,K,B)

models multi-term disjunctions on the cone K. ♦

In fact, the structure of Example 1 amenable to multi-term disjunctions allows us to model the removal
of any polyhedral lattice-free set such as triangle, quadrilateral, or cross disjunction from a regular cone
(or its cross-section) by appropriately selecting the cones Ki, the matrices Ai, and the vectors bi. Besides,
every convex set Q ∈ E can be regarded as the cross-section of a convex cone in E ×R given by KQ :=
cone({(x,1)∈E×R : x∈Q}) and the hyperplane H = {(x,λ)∈E×R : λ= 1}. Yet, the resulting cone
K may not be regular in general.

Our next set of examples highlights the connection of disjunctive conic sets S(A,K,B) with the feasible
sets of MICPs and their relaxations.

EXAMPLE 2. Suppose that we are given the following MICP

Opt = inf
x∈Rn

{
cTx : Ãx= b, x∈K, xi ∈Z for all i= 1, . . . , `

}
. (1)

Let

A=

[
Ã
In

]
, and B=


 b

Z`
Rn−`

 ,

where In is the n×n identity matrix. Then, Opt = infx∈Rn {cTx : Ax∈B, x∈K}, that is, we optimize the
same linear function cTx over S(A,K,B). ♦

EXAMPLE 3. Let us also consider another MICP of the form

Opt := inf
y∈Rn

{
c̃Ty : Ãy− b∈ K̃, yi ∈Z for all i= 1, . . . , `

}
, (2)

where K̃ is a regular cone in the Euclidean space E. Then, by introducing new variables y+, y−, and setting

x=

(
y+

y−

)
, K=Rn+×Rn+, c=

(
c̃
−c̃

)
, A=

[
Ã − Ã
In − In

]
, and B=


 b+ K̃

Z`
Rn−`

 ,

we can once again precisely represent this problem in disjunctive conic form. ♦

There is an important structural difference between the disjunctive conic representations given in Exam-
ples 2 and 3: The cone K of S(A,K,B) in Example 2 is rather general; in particular, it can be any regular
cone. On the other hand, the resulting cone used in Example 3 after the transformation is very specific:
it is the nonnegative orthant. There are two important distinctions between a general regular cone and the
specific case of nonnegative orthant that will appear in our discussion later on in section 3. First, the non-
negative orthant is decomposable, i.e., it does not introduce correlations among variables; and second, all
of its extreme rays are orthogonal to each other.
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EXAMPLE 4. Let us revisit Example 3 and investigate the following alternative disjunctive conic form
given in a lifted space by a single additional variable t∈R. We define

x=

(
y
t

)
, K=

{
(y; t)∈Rn×R+ : Ãy− bt∈ K̃

}
,

together with

c=

(
c̃
0

)
, A=

[
I` 0
0 1

]
, and B=

{(
Z`
1

)}
,

where I` is the `× ` identity matrix. The resulting optimization problem over this disjunctive conic set is
also exactly equivalent to (2).

Analogous transformations are possible for Examples 1 and 2 as well. ♦

REMARK 1. The transformation given in Example 3 may seem more attractive in comparison to that
of Example 4 because the final disjunctive conic form S(A,K,B) in Example 3 possesses the very simple
conic structure K=R2n

+ . On the other hand, not only does the transformation used in Example 4 get us to a
disjunctive conic form with fewer additional variables, but also the new coneK encodes important structural
information about the problem such as the linear map Ã and the vector b.

As we detail in section 2, the cone K plays a critical role in identifying dominance relations among valid
inequalities for S(A,K,B). In particular, our minimality notion is based explicitly on the ordering defined
by the dual cone K∗. As a result, any structural information encoded in K is quite useful in identifying the
properties of extremal inequalities. In fact, this opens up new possibilities even for the well-studied case of
MILPs, which we discuss further in Remark 7. ♦

In Examples 2-4, we provide disjunctive conic sets S(A,K,B) that represent the corresponding feasible
sets of MICPs exactly. This indicates that the explicit description of the resulting conv(S(A,K,B)) is often
not easy to characterize. An alternative use of our disjunctive conic framework in the context of MICPs
is to obtain and study disjunctive conic form relaxations that are practical, yet still nontrivial and useful.
One possibility for obtaining such relaxations in the form of S(A,K,B) is to iteratively add the integrality
requirements by changing R to Z in the description of the set B corresponding to a variable xi.

Another option for developing relaxations in disjunctive conic form is based on a more practical sep-
aration problem. Suppose that in Example 2 we have obtained a feasible solution x̂ to the continuous
relaxation of the MICP, yet x̂ /∈ conv(S(A,K,B)). We can then exploit the following disjunctive conic
set S(A,K,B) to identify valid inequalities that cut off x̂. Consider d ∈ Zn and r0 ∈ Z such that di = 0
for all i = `+ 1, . . . , n and r0 <

∑`

i=1 dix̂i < r0 + 1. Then the split disjunction induced by
∑`

i=1 dixi ≤
r0 ∨

∑`

i=1 dixi ≥ r0 + 1 is valid for the feasible set of the optimization problem (1), whereas the current
solution x̂ violates it. Given such a split disjunction, the question of obtaining cuts separating x̂ is equivalent
to studying conv(S(A,K,B)) where

A=

[
Ã
dT

]
, and B=

{(
b

r0−R+

)⋃(
b

r0 + 1 +R+

)}
.

In particular, the inequality description of this conv(S(A,K,B)) will contain cuts for the original MICP
separating x̂. The same reasoning also applies in the case of Example 3: such a split disjunction in this case
can be represented by defining S(A,K,B) with

x=

(
y+

y−

)
, K=Rn+×Rn+, A=

[
Ã − Ã
dT − dT

]
, and B=

{(
b+ K̃
r0−R+

)⋃(
b+ K̃

r0 + 1 +R+

)}
.

We stress that in our discussion above x̂ is not restricted to an extreme point solution. The solution x̂
will be obtained by solving a continuous relaxation of MICP usually via interior point methods. Therefore,
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it will not necessarily be an extreme point solution. Nevertheless, our framework is flexible enough as it
allows us to study the separation of an arbitrary point x̂ /∈ conv(S(A,K,B)). In contrast, most of the MILP
literature, and almost all of the so-called cut-generating function literature, focuses on separating extreme
point solutions. The reason for this main focus on the separation of extreme point solutions in theory and
practice of MILPs is that the overwhelming choice for solving the linear programming relaxations is the
simplex algorithm, which leads to extreme point solutions x̂. In the MILP literature, by translation of the
associated point x̂ and the feasible set, this separation problem is often cast as separating the origin from
the convex hull of a set of points.

Nonetheless, the theoretical framework of disjunctive programming in MILP does provide general tech-
niques to separate non-extreme-point solutions in the manner discussed above. Thus, exact representations
and relaxations of the above forms have been studied in a number of other contexts in the specific case
of K = Rn+. In particular, when we additionally assume that B is finite, we immediately arrive at the dis-
junctive programming framework of Balas [11]. Furthermore, Johnson [49] has studied the set S(A,Rn+,B)
when B is a finite list under the name of linear programs with multiple right hand side choice. In another
closely related recent work, Conforti et al. [28] study S(A,K,B) with K= Rn+ and possibly an infinite set
B such that B 6= ∅, is closed, and 0 /∈ B, and demonstrate that Gomory’s corner polyhedron [40] as well as
some other problems such as linear programs with complementarity restrictions [50, 59] can be viewed in
this framework. In contrast to [11], Johnson [49] studies the characterizations of minimal inequalities, and
Conforti et al. [28] study minimal cut-generating functions. We discuss the connections between these and
our study in section 4.3.

As opposed to [11, 28, 49], we study general regular cones K, and we are not making any partic-
ular assumption on A and B beyond the basic ones to avoid trivial cases such as S(A,K,B) = ∅ or
conv(S(A,K,B)) = K. Because B can be completely arbitrary, the set S(A,K,B) offers great flexibility,
which can go far beyond the relaxations/representations related to MICPs. Specifically, a solid understand-
ing of disjunctive conic sets will be particularly relevant to conic complementarity problems.

1.3. Classes of Valid Inequalities and Our Goal We are interested in the closed convex hull charac-
terization of the disjunctive conic set

S(A,K,B) = {x∈K : Ax∈B}

via linear valid inequalities. Without loss of generality, we assume that all of the linear valid inequalities
for S(A,K,B) are of the form

〈µ,x〉 ≥ η0,

where µ ∈ E and η0 ∈ R. We denote the resulting inequality with (µ;η0) for shorthand notation. For any
µ∈E, we define

ϑ(µ) := inf
x
{〈µ,x〉 : x∈ S(A,K,B)} (3)

as the best possible right hand side value η0 for an inequality (µ;η0) defined by µ to be valid for S(A,K,B).
We say that a valid inequality (µ;η0) is tight if η0 = ϑ(µ). If both (µ;η0) and (−µ;−η0) are valid inequal-
ities, then 〈µ,x〉= η0 holds for all x ∈ S(A,K,B), and in this case, we refer to (µ;η0) as a valid equation
for S(A,K,B). We let Π(A,K,B)⊂ E be the set of all nonzero vectors µ ∈ E leading to nontrivial valid
inequalities for S(A,K,B). That is, Π(A,K,B) = {µ∈E : µ 6= 0, ϑ(µ)∈R}. We denote the convex cone
of all valid inequalities given by (µ;η0) byC(A,K,B)⊂E×R. Identifying linear valid inequalities that are
necessary in the description of conv(S(A,K,B)) is equivalent to studying C(A,K,B) and its generators.

Note that any convex cone K can be written as the sum of a linear subspace L of E ×R and a pointed
cone C, i.e., K = L+C. Let L denote the largest linear subspace contained in K; and define L⊥ as the
orthogonal complement of L. Then a unique representation for the pointed cone C in K = L+C is given
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by C =K ∩L⊥. A generating set (GL,GC) for a cone K is a minimal set of elements from K such that
GL ⊆L, GC ⊆C, and

K =

{∑
w∈GL

αww+
∑
v∈GC

λvv : λv ≥ 0

}
.

REMARK 2. Based on the definition of a generating set, we can always select a generating set (GL,GC)
of any convex cone K, where each vector from GC is orthogonal to every vector in GL, and all vectors in
GL are orthogonal to each other. Also, because L is a linear subspace, for any 0 6= w ∈ L, we can always
find a generating set (GL,GC) where w ∈GL holds by appropriately selecting the other vectors in GL. ♦

Given C(A,K,B) is a convex cone inE×R, our study of C(A,K,B) will be based on characterizing the
properties of the elements (µ;η0) of its generating sets (GL,GC). We will refer to the vectors in GL as gen-
erating equalities and the vectors in GC as generating inequalities of C(A,K,B). An inequality (µ;η0) ∈
C(A,K,B) is called an extreme inequality of C(A,K,B) if there exists a generating set for C(A,K,B)
including (µ;η0) as a generating inequality either in GL or in GC . When the cone C(A,K,B) is pointed,
GL is trivial and GC is uniquely defined up to positive scalings. Then, our definition of extreme inequalities
based on generating inequalities matches precisely with the usual definition of extreme inequalities stated
as “an inequality is extreme if it cannot be written as the average of two other distinct valid inequalities.”
Note also that any nontight valid inequality (µ;η0) with η0 < ϑ(µ) does not belong to a generating set of
C(A,K,B).

Clearly, the inequalities in a generating set (GL,GC) of the cone C(A,K,B) are of great importance;
they are necessary and sufficient for the description of conv(S(A,K,B)). In such a represetationGL is finite
because a basis of the subspace L can be taken as GL. For nonpolyhedral (nonlinear) cones such as K=Ln
with n≥ 3, GC need not be finite.

1.4. Outline The main body of this paper is organized as follows. In section 2, we introduce the class
of K-minimal inequalities and show that under a mild assumption, this class of inequalities together with
the constraint x∈K is sufficient to describe conv(S(A,K,B)). We follow this by discussing the importance
of the cone K for defining minimality and establishing a number of necessary conditions for K-minimality.
In particular, we show that K-minimal inequalities are tight in many cases. Nonetheless, we highlight that
depending on the structure of S(A,K,B),K-minimality does not necessarily imply tightness of the inequal-
ity. We provide algebraic necessary conditions for K-minimality, one of which leads us to our next class
of valid inequalities, K-sublinear inequalities. We study K-sublinear inequalities in section 3 and establish
a precise relation between K-sublinearity and K-minimality: the set of extreme inequalities in the cone of
K-sublinear inequalities contains all of the extreme inequalities from the cone ofK-minimal inequalities. In
section 4, we show that every K-sublinear inequality is associated with a convex set of particular structure,
which we refer to as a cut-generating set. Through this connection with cut-generating sets, we provide nec-
essary conditions for K-sublinearity, as well as sufficient conditions for a valid inequality to be K-sublinear
and K-minimal. In the case of K= Rn+, our necessary condition and sufficient condition for K-sublinearity
match precisely and thus results in a strong relation between K-sublinear inequalities and the support func-
tions of cut-generating sets. In particular, we show that for every Rn+-sublinear inequality, the cut coefficient
of any variable and the cut right hand side value are generated by the support function of the associated
cut-generating set. This relation provides nice connections with the existing literature, which we highlight
in section 4.3. We close section 4 by examining the conic mixed integer rounding inequality from [7] in our
framework. We provide some characterizations of the lineality space of C(A,K,B) in section 5, and finish
by stating a few further research questions in section 6.

2. K-Minimal Inequalities In this section, based on the ordering induced by the regular cone K∗, we
first state a domination relation among valid linear inequalities for S(A,K,B). This domination concept
immediately leads to a relatively small class of valid linear inequalities, namely K-minimal inequalities.



Kılınç-Karzan: On Minimal Valid Inequalities for MICPs
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

We show that the class of K-minimal inequalities is nonempty under a mild technical assumption, which
is satisfied, for example, when conv(S(A,K,B)) is full dimensional. Under this assumption, we establish
thatK-minimal inequalities along with the constraint x∈K are sufficient to describe conv(S(A,K,B)). We
then study the properties of inequalities from this class.

We start by pointing out a trivial class of valid linear inequalities for S(A,K,B), which stem from the
observation that S(A,K,B)⊆K. The definition of dual cone immediately implies that for any δ ∈K∗, the
inequality 〈δ,x〉 ≥ 0 is valid for K, and thus, it is also valid for S(A,K,B). Therefore, (δ; 0) ∈C(A,K,B)
for any δ ∈ K∗. We refer to these inequalities as cone-implied inequalities. Note that all cone-implied
inequalities are readily captured by the constraint x ∈ K. Hence, they are not of great interest. In particu-
lar, unless conv(S(A,K,B)) =K, the family of cone-implied inequalities is not sufficient to fully describe
conv(S(A,K,B)). Given our assumption conv(S(A,K,B)) 6=K, from now on, we focus on the characteri-
zation of valid linear inequalities that are non-cone-implied and are needed to obtain a complete description
of conv(S(A,K,B)). This leads us to our definition of K-minimal inequalities.

DEFINITION 1. A valid linear inequality (µ;η0) with µ 6= 0 and η0 ∈R is K-minimal (for S(A,K,B))
if for all valid inequalities (ρ;ρ0) for S(A,K,B) satisfying ρ 6= µ, and ρ�K∗ µ, we have ρ0 < η0.

REMARK 3. In the case of MILP, K= Rn+, a minimal inequality is defined as a valid linear inequality
(µ;η0) such that if ρ≤ µ (where the ≤ is interpreted in the component-wise sense) and ρ 6= µ, then (ρ;η0)
is not valid, i.e., reducing any µi for i∈ {1, . . . , n} will lead to a strict reduction in the right hand side value
of the inequality (cf. [47, 49]). Because Rn+ is a regular and also self-dual cone, K-minimality definition is
indeed a natural extension of the minimality definition of valid inequalities studied in the context of MILPs
to more general disjunctive conic sets with regular cones K. ♦

We next observe that the cone K indeed induces a natural dominance relation among the valid linear
inequalities, and the K-minimality definition is a result of this dominance relation. Let us consider a valid
inequality (µ;η0) that is not K-minimal. Thus, there exists another valid inequality (ρ;ρ0) such that ρ 6= µ,
ρ�K∗ µ, and ρ0 ≥ η0. But, then

〈µ,x〉= 〈ρ+ (µ− ρ), x〉= 〈ρ,x〉︸ ︷︷ ︸
≥ρ0

+ 〈µ− ρ,x〉︸ ︷︷ ︸
≥0

≥ ρ0 ≥ η0,

where the first inequality follows from x ∈ K and µ − ρ ∈ K∗. Thus, the inequality (ρ;ρ0) together
with the constraint x ∈ K implies the inequality (µ;η0). Then, when the constraint x ∈ K and the linear
inequality (ρ;ρ0) are included, the non-K-minimal inequality (µ;η0) is not necessary in the description of
conv(S(A,K,B)). The definition of K-minimality simply requires an inequality not to be dominated in this
fashion: a K-minimal inequality (µ;η0) cannot be dominated by another inequality, which is the sum of a
cone-implied inequality and another valid inequality for S(A,K,B).

REMARK 4. None of the cone-implied inequalities (µ;η0) = (δ; 0) with δ ∈ K∗ \ {0} is K-minimal
because we can always write them as the sum of a valid inequality (ρ;ρ0) = (1

2
δ; 0) with ρ0 = 0 = η0

and a cone-implied inequality ( 1
2
δ; 0). Nevertheless, a cone-implied inequality can be extreme,3) and thus

necessary in the description of conv(S(A,K,B)). ♦

REMARK 5. Whether a valid inequality is necessary for the description of conv(S(A,K,B)) depends
on S(A,K,B), and it can very well be independent of the choice of A,B, and K. In particular, if there exist
A′,B′, and K′ such that conv(S(A′,K′,B′)) = conv(S(A,K,B)), then the extreme inequalities for these
will be the same. Additionally, as long as the set S(A,K,B) remains the same, theK-minimality definition is
independent ofA and B but depends onK explicitly. That is, theK-minimal inequalities for both S(A,K,B)
and S(A′,K,B′) are the same as long as conv(S(A′,K,B′)) = conv(S(A,K,B)). However, when K′ 6=K,
the K-minimal inequalities for S(A,K,B) might differ from the K′-minimal inequalities for S(A′,K′,B′)

3)See section 1.3 and the definition of extreme inequalities based on generating inequalities.
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even when conv(S(A′,K′,B′)) = conv(S(A,K,B)). We comment more on the choice of the cone K and
its impact on identifying dominance relations and our K-minimality definition in Remark 7. ♦

In the light of this remark, from now on we will emphasize the classification of valid inequalities based
explicitly on the cone K.

We letCm(A,K,B) denote the set ofK-minimal valid inequalities for S(A,K,B). Note thatCm(A,K,B)
is closed under positive scalar multiplication and is thus a cone (but it is not necessarily a convex cone).

In general, there are K-minimal inequalities that are not extreme. In particular, the definition of K-
minimality allows for a K-minimal inequality to be implied by the sum of two other non-cone-implied
valid inequalities. That said, under a technical assumption, we will show that all non-cone-implied extreme
inequalities are K-minimal. Because characterization of extreme inequalities in general is known to be a
much more difficult task, in this paper, we limit our focus to the characterization of K-minimal inequalities.

2.1. Existence and Sufficiency of K-Minimal Inequalities We start with the following simple exam-
ple demonstrating a set S(A,K,B) where the K-minimal inequalities along with the original conic con-
straint x∈K are sufficient to describe conv(S(A,K,B)).

EXAMPLE 5. Consider the disjunctive conic set S(A,K,B) defined by K=L3 =K∗, A= [−1,0,1] 4)

and B= {0,2}. That is,

S(A,K,B) = {x∈K : −x1 +x3 = 0}
⋃
{x∈K : −x1 +x3 = 2}.

Then, we easily see that

conv(S(A,K,B)) = {x∈R3 : x∈K, 0≤−x1 +x3 ≤ 2}
= {x∈R3 : 〈x, δ〉 ≥ 0 ∀δ ∈ Ext(K∗), x1−x3 ≥−2},

and conv(S(A,K,B)) is closed. Thus, the cone of valid inequalities is given by

C(A,K,B) = cone (K∗×{0}, ([1; 0;−1];−2)) .

The only non-cone-implied extreme inequality in this description is given by µ = [1; 0;−1] with η0 =
−2 = ϑ(µ). It is easy to see that this inequality is valid and also necessary for the description of the convex
hull. To verify that it is in fact K-minimal, consider any δ ∈ K∗ \ {0}, and set ρ = µ− δ. Then the best
possible right hand side value ρ0 for which 〈ρ,x〉 ≥ ρ0 is valid is given by

ρ0 := inf
x
{〈ρ,x〉 : x∈ S(A,K,B)}

≤ inf
x
{〈ρ,x〉 : x∈K, −x1 +x3 = 2}

= inf
x
{x1−x3−〈δ,x〉 : x∈K, −x1 +x3 = 2}

= inf
x
{−2−〈δ,x〉 : x∈K, −x1 +x3 = 2}

= −2− sup
x
{〈δ,x〉 : x∈K, −x1 +x3 = 2}

< −2 = ϑ(µ),

where the strict inequality follows from the fact that u= [0; 1; 2] is in the interior of K and satisfies −u1 +
u3 = 2 (and thus is feasible to the last optimization problem in the above chain), and also for any δ ∈K∗ \
{0}, 〈δ,u〉> 0. Thus, (µ;η0) is K-minimal. Finally, all of the other inequalities involved in the description
of conv(S(A,K,B)) are of the form 〈δ,x〉 ≥ 0 with δ ∈ Ext(K∗), and hence, are not K-minimal. ♦

4)Throughout this paper, we use Matlab notation with brackets [·] to denote explicit vectors and matrices.
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Our goal is to generalize Example 5 and establish that K-minimal inequalities along with the constraint
x∈K are sufficient to describe conv(S(A,K,B)). However, we need a structural assumption for this result.
This assumption is a result of the important fact that there can be situations where none of the inequalities
describing conv(S(A,K,B)) is K-minimal even when conv(S(A,K,B)) (K. To emphasize this technical
difficulty and motivate our assumption, let us consider a slightly modified version of Example 5 with a
different set B:

EXAMPLE 6. Let S(A,K,B) be defined with K=L3, A= [−1,0,1] and B= {0}. Then

conv(S(A,K,B)) = {x∈R3 : x∈K, −x1 +x3 = 0}= {x∈R3 : x1 = x3, x2 = 0, x1, x3 ≥ 0}.

For this example, we prove that none of the inequalities in the description of conv(S(A,K,B)) is K-
minimal. To observe this, let us fix a particular generating set (GL,GC) for the cone C(A,K,B). Based on
the above representation of conv(S(A,K,B)), we can take for example GC = L3 × {0} and GL = (µ; 0)
where µ= [−1; 0; 1] with η0 = 0 = ϑ(µ). Note that all of the inequalities in GC as well as one side of the
valid equation given by (µ; 0) are cone-implied (because µ ∈ L3), and thus are not K-minimal. Moreover,
the inequality given by (−µ; 0), e.g., the other side of the valid equation also cannot be K-minimal because
ρ= [1.5; 0;−1.5] satisfies δ =−µ− ρ= [−0.5; 0; 0.5] ∈ Ext(K∗) and (ρ;η0) is also valid. In fact, for any
valid inequality (µ;η0) that is in the description of conv(S(A,K,B)), there exists τ > 0 such that we can
subtract the vector δ = τ [−1; 0; 1] ∈ Ext(K∗) from µ, and still obtain (µ− δ;η0) as a valid inequality. Note
that the generators of C(A,K,B) are uniquely defined up to shifts by the vector (µ; 0) defining the valid
equation; and these shifts do not change the K-minimality properties of the inequalities. ♦

The peculiar situation of Example 6 is a result of the fact that S(A,K,B) ⊂ {x ∈ K : −x1 + x3 = 0},
i.e., S(A,K,B) is contained in a subspace defined by a cone-implied valid equation. The next proposition
formally states that this is precisely the situation in which none of the valid linear inequalities, including the
extreme ones, is K-minimal.

PROPOSITION 1. Suppose that there exists δ ∈K∗ \{0} such that 〈δ,x〉= 0 for all x∈ S(A,K,B), i.e.,
(δ; 0) is a valid equation. Then Cm(A,K,B) = ∅.

Proof. Let δ ∈ K∗ \ {0} be such that (δ; 0) is a valid equation. Consider any valid inequality (µ;η0).
Because (−δ; 0) is also valid, the inequality (µ− δ;η0) is valid as well. But then (µ;η0) is not K-minimal
because δ ∈K∗ \{0}. Given that (µ;η0) was arbitrary, this implies that there is noK-minimal valid inequal-
ity under the hypothesis of the proposition. �

Based on Proposition 1, we make the following assumption when working with K-minimal inequalities
in the remainder of this paper:

Assumption 1: For each δ ∈K∗ \ {0}, there exists some xδ ∈ S(A,K,B) such that 〈δ,xδ〉> 0.
Assumption 1 is indeed not very restrictive and is trivially satisfied, for example, when conv(S(A,K,B)) 6=
K and is full dimensional, e.g., when Ker(A)∩ int(K) 6= ∅ (see Proposition 4).

Our main result in this section shows that under Assumption 1, K-minimal inequalities, along with the
constraint x ∈ K, are sufficient to describe conv(S(A,K,B)). In particular, we prove that under Assump-
tion 1, all extreme inequalities are K-minimal. Given the previous discussion on the dominance relation
among linear inequalities and K-minimality, this result is expected. However, to formalize this, we need the
following definition: Given two vectors, u, v ∈ C where C is a cone with lineality space L, u is said to be
an L-multiple of v if u= τv + ` for some τ > 0, and ` ∈ L. From this definition, it is clear that if u is an
L-multiple of v, then v is also an L-multiple of u. Also, we need the following lemma from [49]:

LEMMA 1. Suppose v is in a generating set for cone C and there exist v1, v2 ∈C such that v= v1 +v2,
then v1, v2 are L-multiples of v.
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Let (GL,GC) be a generating set for the cone C(A,K,B). Recall that whenever the lineality space L of
the cone C(A,K,B) is nontrivial, the generating valid inequalities are defined uniquely only up to the L-
multiples. We define G+

C to be the vectors from GC that are not L-multiples of any cone-implied inequality
(δ; 0) with δ ∈K∗ \ {0}. Then G+

C is again uniquely defined only up to L-multiples.
The following result is a straightforward extension of the associated result from [49] given in the linear

case to our conic case.

PROPOSITION 2. Let (GL,GC) be a generating set for the cone C(A,K,B). Under Assumption 1,
every valid equation in GL and every generating valid inequality in G+

C is K-minimal.

Proof. Suppose (µ;η0) ∈ GL ∪ G+
C is not K-minimal. Then there exists a nonzero δ ∈ K∗ such that

(µ−δ;η0)∈C(A,K,B). Because (δ; 0)∈C(A,K,B) and C(A,K,B) is a convex cone, (µ+δ;η0) is valid
as well. Then Lemma 1 implies that (δ; 0) is an L-multiple of (µ;η0). Using the definition of G+

C , we get
(µ;η0)∈GL. Given that (δ; 0) is an L-multiple of (µ;η0) and GL is uniquely defined up to L-multiples, we
get that (δ; 0)∈GL. Hence, 〈δ,x〉= 0 is a valid equation, which contradicts to Assumption 1. �

Based on Proposition 2, Assumption 1 ensures that Cm(A,K,B) 6= ∅. Moreover, Proposition 2 along
with Remark 2 immediately implies the following results.

COROLLARY 1. Suppose that Assumption 1 holds. Then, any valid equation (µ;ϑ(µ)) is K-minimal.

COROLLARY 2. Suppose that Assumption 1 holds. Then, for any generating set (GL,GC) of
C(A,K,B), (GL,G

+
C) generates Cm(A,K,B). In particular, all non-cone-implied extreme inequalities are

K-minimal. Thus, theK-minimal inequalities from (GL,G
+
C) along with the original conic constraint x∈K

are sufficient to describe conv(S(A,K,B)).

Under Assumption 1, in the light of Proposition 2 and Corollary 2, we arrive at

conv(S(A,K,B)) = {x∈E : x∈K, 〈µ,x〉= η0 ∀(µ;η0)∈GL, 〈µ,x〉 ≥ η0 ∀(µ;η0)∈G+
C}

= {x∈E : x∈K, 〈µ,x〉 ≥ η0 ∀(µ;η0)∈Cm(A,K,B)}.

REMARK 6. As a result of Corollary 2, under Assumption 1, any valid inequality (µ;η0) for
S(A,K,B) is dominated by a set of K-minimal inequalities (µi;ηi0) where i ∈ I is a set of indices and a
cone-implied inequality (δ; 0) with δ ∈K∗ (note that the cone of cone-implied inequalities is convex). That
is, µ=

∑
i∈I µ

i + δ and η0 ≤
∑

i∈I η
i
0. When Cm(A,K,B) is convex, the set of indices I can be taken as a

singleton. ♦

2.2. On the Choice of the Cone K in Identifying Dominance Relations Next, we scrutinize the
importance of the cone K in establishing dominance relations and in our K-minimality definition.

REMARK 7. Based on Remark 5 and our K-minimality definition, the structural information encoded
in the cone K is rather important in giving a more refined characterization of extreme inequalities, i.e.,
identifying smaller classes of valid inequalities that are sufficient to describe the closed convex hulls of
disjunctive conic sets.

To demonstrate this, let us consider a situation where we are given two disjunctive conic representa-
tions of the same set S(A1,K1,B1) = S(A2,K2,B2) = S(A,K,B) such that K1 ⊂K2. Then C(A,K,B) =
C(A1,K1,B1) =C(A2,K2,B2). From Remark 5, we observe that as long as S(A,K,B) remains the same
the choice of A,B in our representation does not affect K-minimality definition. In such a case, we argue
that the smaller cone K1 encodes the structural information of the disjunctive conic set S(A,K,B) better
thanK2. To avoid technical difficulties, let us assume S(A,K,B) satisfies Assumption 1 with respect toK1

and conv(S(A,K,B)) 6= K1. Thus Cm(A1,K1,B1) is nonempty. The definition of K-minimality together
with the relation K∗1 ⊃ K∗2 automatically implies that K1-minimal inequalities are also K2-minimal. But
the reverse does not necessarily hold because K∗1 6=K∗2. Therefore, Cm(A1,K1,B1) (Cm(A2,K2,B2). Let
(GL,GC) be a generating set for C(A,K,B). Let us define G1,+

C to be the vectors from GC that are not
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L-multiples of any cone-implied inequality (δ; 0) with δ ∈K∗1 \ {0}, and G2,+
C analogously with respect to

K∗2. Then Corollary 2 states

conv(S(A,K,B)) = {x∈E : x∈K1, 〈µ,x〉= η0 ∀(µ;η0)∈GL, 〈µ,x〉 ≥ η0 ∀(µ;η0)∈G1,+
C }

= {x∈E : x∈K2, 〈µ,x〉= η0 ∀(µ;η0)∈GL, 〈µ,x〉 ≥ η0 ∀(µ;η0)∈G2,+
C }.

Moreover, (GL,G
1,+
C ) generates Cm(A1,K1,B1) and (GL,G

2,+
C ) generates Cm(A2,K2,B2) by Corollary 2.

Because G1,+
C ⊂GC , G2,+

C ⊂GC and Cm(A1,K1,B1) ( Cm(A2,K2,B2), we have G1,+
C (G2,+

C . Thus, all
extreme K2-minimal inequalities are also K1-minimal, but some K2-minimal inequalities, namely G2,+

C \
G1,+
C , are not extreme. Hence, we conclude that whenever we have a choice between two different cones
K1 ⊂ K2 representing the same disjunctive conic set, minimality defined with respect to the smaller cone
K1 results in a stronger dominance relation among valid linear inequalities defining conv(S(A,K,B)). ♦

We illustrate the importance of encoding structural information in K as much as possible, e.g., Remark 7
via the following example: Consider the mixed integer conic set given by

{x∈Rn+ : Ax− b∈K, xi ∈Z ∀i= 1, . . . , `}.

For this set, from the transformations presented in Examples 4 and 3, we obtain two different disjunctive
conic representations respectively:

S(A1,K1,B1) = {z = [t;x]∈Rn+1 : A1z ∈B1, z ∈K1}
with A1 = I`+1, B1 =

{(
1
Z`
)}

, and K1 =
{

[t;x]∈Rn+1
+ : Ax− b t∈K

}
,

and S(A2,K2,B2) = {z = [t;x]∈Rn+1 : A2z ∈B2, z ∈K2}

with A2 =

 0 A
1 0T

0 I`

 , B2 =


b+K

1
Z`

 , and K2 =Rn+1
+ .

Clearly, S(A1,K1,B1) = S(A2,K2,B2). Moreover, using Remark 5 we note that A1,B1 and A2,B2 do not
affect our definition for K1-minimality and K2-minimality respectively.5) Because K1 ⊂K2, by Remark 7,
we conclude thatK1-minimality leads to a stronger dominance relation among valid inequalities and results
in a more refined characterization of extreme inequalities. Thus we conclude that among these two different
choices of disjunctive conic representations of the same set, S(A1,K1,B1) is superior. This is so even
when the cone K is as simple as Rm+ . The following simple numerical example is instrumental to illustrate
the shortcoming of defining minimality with respect to Rn+. In the preceding setup, let us select A = I2,
b= [1.5; 1], K = R2

+, and `= n= 2. Then conv(S(A,K,B)) = {[t;x1;x2] ∈ R3 : t= 1, x1 ≥ 2, x2 ≥ 1}.
Therefore, we can take GL = {([1; 0; 0]; 1)} and GC = {([0; 1; 0]; 2), ([0; 0; 1]; 1)} as a generating set for
C(A,K,B). Note thatK1 = {[t;x1;x2]∈R3

+ : −1.5t+x1 ≥ 0, −t+x2 ≥ 0} is a regular cone andK2 =R3
+.

By Corollary 1, all of the vectors from GL define valid equations that are both K1- and R3
+-minimal. Let

us examine the extreme valid inequality given by x2 ≥ 1, i.e., (µ;η0) = ([0; 0; 1]; 1) from GC . Note that
x2 ≥ 1 is already included in the description of a natural continuous relaxation of S(A,K,B), therefore
when our domination concept is strong, we would expect it not to be identified as a minimal inequality.
In fact, because δ = [−1; 0; 1] ∈ K∗1 and (µ;η0)− (δ; 0) = ([1; 0; 0]; 1) is a valid inequality for S(A,K,B)
we conclude that (µ;η0) = ([0; 0; 1]; 1) /∈ Cm(A,K1,B), that is, x2 ≥ 1 is not K1-minimal. On the other
hand, x2 ≥ 1 is a R3

+-minimal inequality because it is in GC and it is not an L-multiple of any (δ; 0) with
δ ∈R3

+ \ {0}.
Therefore, even in the case of MILPs, whenever such structural information, e.g., a polyhedral relaxation,

is present, there is a benefit in defining the minimality of an inequality based on a cone K given in a lifted

5)For simplicity, we assume here that K1 is a regular cone.
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space as described above (or in Example 4) as opposed to the usual choice of the nonnegative orthant from
the MILP literature. We note that a weaker notion of minimality that only incorporates information from the
set B is also recently studied in Yıldız and Cornuéjols [70] albeit in the context of cut-generating functions
for an infinite relaxation.

Our results on K-minimal inequalities, in particular, their importance in identifying dominance relations
and their sufficiency motivate us to further study the properties ofK-minimal inequalities in the next section.

2.3. Necessary Conditions for K-Minimality Our first proposition states that certain K-minimal
inequalities are always tight. This also gives us our first necessary condition for K-minimality.

PROPOSITION 3. Suppose Assumption 1 holds; and consider a K-minimal inequality (µ;η0) with
either µ∈K∗ or µ∈−K∗. Then, (µ;η0) is tight, i.e., η0 = ϑ(µ) (cf. (3)); and furthermore, µ∈K∗ (respec-
tively µ∈−K∗) implies ϑ(µ)> 0 (respectively ϑ(µ)< 0).

Proof. Consider (µ;η0) ∈ Cm(A,K,B). Then µ 6= 0, because µ = 0 leads to trivial or cone-implied
valid inequalities. The validity of (µ;η0) immediately implies η0 ≤ ϑ(µ). Assume for contradiction that
η0 <ϑ(µ). We will consider two cases of µ∈K∗ \ {0} and µ∈−K∗ \ {0} separately:

(i) µ ∈ K∗ \ {0}: Then ϑ(µ)≥ η0 > 0, because otherwise (µ;η0) is either a cone-implied inequality or
is dominated by a cone-implied inequality, neither of which is possible. Let β := η0

ϑ(µ)
∈ (0,1], and consider

ρ= β ·µ. Then (ρ;η0) is a valid inequality because 0<β, (µ;ϑ(µ))∈C(A,K,B) andC(A,K,B) is a cone.
Also, since µ 6= 0, µ− ρ = (1− β)µ ∈ K∗ \ {0} holds for all β < 1. Therefore, (µ;η0) is not K-minimal
unless β = 1, and thus η0 = ϑ(µ)> 0.

(ii) −µ ∈ K∗ \ {0}: Then (−µ; 0) is a cone-implied inequality. Because S(A,K,B) 6= ∅, we cannot
satisfy both (−µ; 0) and (µ;ϑ(µ)) when ϑ(µ) > 0. Thus, ϑ(µ) ≤ 0. Moreover, because ϑ(µ) = 0 implies
S(A,K,B) ⊂ {x ∈ K : 〈µ,x〉 = 0} contradicting Assumption 1, we have η0 ≤ ϑ(µ) < 0. Once again let
β := η0

ϑ(µ)
∈ [1,∞), and consider ρ = β · µ. Then (ρ;η0) is a valid inequality since β ≥ 1, (µ;ϑ(µ)) ∈

C(A,K,B) and C(A,K,B) is a cone. Given µ ∈ −K∗ \ {0}, µ− ρ= (1− β)µ ∈ K∗ \ {0} for all β > 1.
Thus, the K-minimality of (µ;η0) implies β = 1 and hence η0 = ϑ(µ)< 0. �

Clearly, Proposition 3 does not cover all possible cases for µ. As a matter of fact, it is possible for
µ 6∈ ±K∗ to lead to a K-minimal inequality. While one is naturally inclined to believe that a K-minimal
inequality (µ;η0) is always tight, i.e., η0 = ϑ(µ), we have the following counterexample.

EXAMPLE 7. Consider the disjunctive conic set S(A,K,B) defined with A= [−1,1], B= {−2,1} and
K=R2

+. First, note that Assumption 1 holds because {[0; 1], [2; 0]} ∈ S(A,K,B), and conv(S(A,K,B)) =
conv(S(A,K,B)) 6= R2

+. Thus, K-minimal inequalities exist, and together with nonnegativity restrictions
they are sufficient to describe conv(S(A,K,B)). In fact,

conv(S(A,K,B)) = {x∈R2 : −x1 +x2 ≥−2, x1−x2 ≥−1, x1 + 2x2 ≥ 2, x1, x2 ≥ 0},

and one can easily show that each of the non-cone-implied inequalities in this description is in fact K-
minimal. Note that, in this example, K-minimality is the same as the minimality definition used in the usual
MILP literature.

Now, let us consider the valid inequality given by (µ;η0) = ([1;−1];−2). Then ϑ(µ) = −1; therefore,
(µ;η0) is not tight and is dominated by the valid inequality x1 − x2 ≥ −1. We will show that (µ;η0) is
K-minimal regardless of the fact that it is not tight.

Suppose that (µ;η0) is not K-minimal. Then there exists ρ = µ − δ with 0 6= δ ∈ K∗ = R2
+ such that

(ρ;η0) is a valid inequality. This implies

−2 = η0 ≤ inf
x
{〈ρ,x〉 : x∈ S(A,K,B)}= min

x
{〈ρ,x〉 : x∈ conv(S(A,K,B))}

= min
x
{〈ρ,x〉 : −x1 +x2 ≥−2, x1−x2 ≥−1, x1 + 2x2 ≥ 2, x1, x2 ≥ 0}

= max
λ
{−2λ1−λ2 + 2λ3 : −λ1 +λ2 +λ3 ≤ ρ1, λ1−λ2 + 2λ3 ≤ ρ2, λ∈R3

+}
= max

λ
{−2λ1−λ2 + 2λ3 : −λ1 +λ2 +λ3 ≤ 1− δ1, λ1−λ2 + 2λ3 ≤−1− δ2, λ∈R3

+},
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FIGURE 1. Convex hull of S(A,K,B) for Example 7

where the third equation follows from strong duality because the primal problem is feasible, and the last
equation follows from the definition of ρ= µ− δ. On the other hand, the following system

λ ≥ 0
λ1−λ2−λ3 ≥ δ1− 1

−λ1 +λ2− 2λ3 ≥ 1 + δ2,

implies that 0 ≥ −3λ3 ≥ δ1 + δ2. Considering that δ ∈ R2
+, this leads to δ1 = δ2 = 0, which contradicts

δ 6= 0. Therefore, (µ;η0) = ([1;−1];−2)∈Cm(A,K,B) yet η0 <ϑ(µ). ♦

REMARK 8. This issue of the nontightness of some K-minimal inequalities is independent of whether
the K-minimal inequality separates the origin. When we consider a variation of Example 7 given by A=
[−1,1], B= {−2,−1} and K=R2

+, the inequality given by (µ;η0) = ([1;−1]; 1
2
) is valid and separates the

origin from the closed convex hull. Moreover, following the same reasoning of Example 7, we can show
that this inequality (µ;η0) is K-minimal, whereas it has ϑ(µ) = 1 and hence it is not tight. ♦

The pathology illustrated by Example 7 is because of the facts that Ker(A)∩ int(K) 6= ∅ and µ∈ Im(A∗).
We have the following proposition handling such cases in general.

PROPOSITION 4. Suppose Ker(A)∩ int(K) 6= ∅. Then, for any µ ∈ Im(A∗) and any −∞< η0 ≤ ϑ(µ),
we have (µ;η0)∈Cm(A,K,B).

Proof. Consider d∈Ker(A)∩ int(K) 6= ∅; then d 6= 0. For any b∈B, define the set Sb := {x∈E : Ax=
b, x ∈ K}, and let B̂ := {b ∈ B : Sb 6= ∅}. Because S(A,K,B) 6= ∅, we have B̂ 6= ∅. For any b ∈ B̂, let
xb ∈ Sb. Then, for any b ∈ B̂, Pb := {xb + τd : τ ≥ 0} ⊆ Sb and Pb ∩ int(K) 6= ∅. Thus, Assumption 1
holds.

Assume for contradiction that there exists µ ∈ Im(A∗) together with η0 ≤ ϑ(µ) such that (µ;η0) 6∈
Cm(A,K,B). Then there exists δ ∈K∗ \ {0} such that (µ− δ;η0)∈C(A,K,B), which implies

−∞< η0 ≤ inf
x
{〈µ− δ,x〉 : x∈ S(A,K,B)}

≤ inf
b∈B

inf
x
{〈µ− δ,x〉 : Ax= b, x∈K}

≤ inf
b∈B̂

inf
x
{〈µ− δ,x〉 : x∈ Pb}

= inf
b∈B̂

〈µ− δ,xb〉︸ ︷︷ ︸
∈R

+inf
τ
{〈µ− δ, d〉τ : τ ≥ 0}

 .
When 〈µ − δ, d〉 < 0, we have infτ{〈µ − δ, d〉τ : τ ≥ 0} = −∞ implying −∞ < η0 ≤ −∞, which is
impossible. Therefore, 〈µ− δ, d〉 ≥ 0.
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Moreover, because µ∈ Im(A∗), there exists λ such that µ=A∗λ. This together with d∈Ker(A) implies

0≤ 〈µ− δ, d〉= 〈A∗λ,d〉− 〈δ, d〉= λT (Ad)︸︷︷︸
=0

−〈δ, d〉=−〈δ, d〉.

But, this contradicts 〈δ, d〉> 0, which holds since d∈ int(K) and δ ∈K∗ \ {0}. �

Proposition 4 as well as its demonstration in Example 7 indicate a weakness in the K-minimality defini-
tion. To address this, we should focus on only tight K-minimal inequalities, that is, (µ;η0) ∈Cm(A,K,B)
where η0 = ϑ(µ) (η0 cannot be increased without making the current inequality invalid). While we can
include a tightness requirement in our K-minimality definition, we note that tightness has a direct charac-
terization through ϑ(µ). Also, to remain consistent with the original minimality definition for K= Rn+, we
opt to work with our original K-minimality definition. As will be clear from the rest of the paper, tightness
considerations require minimal change in our analysis.

We next state a proposition that identifies a key necessary condition for K-minimality via a certain non-
expansiveness property. The following set of linear maps will be of importance for this result.

FK := {(Z :E→E) : Z is a linear map, and Z∗v ∈K ∀v ∈K},

where Z∗ denotes the conjugate linear map of Z.6)

PROPOSITION 5. Let (µ;η0)∈C(A,K,B) and suppose that there exists a linear map Z ∈FK such that
AZ∗ =A, and µ−Zµ∈K∗ \ {0}. Then (µ;η0) 6∈Cm(A,K,B).

Proof. Let (µ;η0)∈C(A,K,B) and Z be a linear map as described in the proposition. Since Z ∈FK, for
any x ∈ K, we have Z∗x ∈ K. Moreover, AZ∗x=Ax due to AZ∗ =A, and thus for any x ∈ S(A,K,B),
AZ∗x=Ax∈B. Therefore, we have Z∗x∈ S(A,K,B) for any x∈ S(A,K,B). Now, let δ= µ−Zµ, then
δ ∈K∗ \ {0} by the premise of the proposition. Define ρ := µ− δ, then for any x∈ S(A,K,B) we have

〈ρ,x〉= 〈µ− δ,x〉= 〈Zµ,x〉= 〈µ,Z∗x〉 ≥ η0,

where the last inequality follows from the fact that Z∗x∈ S(A,K,B) and (µ;η0)∈C(A,K,B). Hence, we
get

inf
x
{〈ρ,x〉 : Ax∈B, x∈K}≥ η0,

which implies that (µ;η0) 6∈ Cm(A,K,B) because (µ;η0) = (ρ;η0) + (δ; 0) with (ρ;η0) ∈ C(A,K,B) and
0 6= δ ∈K∗. �

Proposition 5 states an involved necessary condition for a valid inequality to be K-minimal. It states that
(µ;η0) is a K-minimal inequality only if the following holds:

(Id−Z)µ 6∈ K∗ \ {0} ∀Z ∈FK such that AZ∗ =A.

Based on this result, the set FK has certain importance. In fact FK is the cone of K∗−K∗ positive maps,
which also appear in applications of robust optimization and quantum physics (cf. [17]). When K = Rn+,
FK = {Z ∈ Rn×n : Zij ≥ 0 ∀i, j}. However, in general, the description of FK can be rather nontrivial for
different conesK. In fact, Ben-Tal and Nemirovski [17] has shown that deciding whether a given linear map
takes Sn+ to itself is an NP-Hard optimization problem. In another case of interest, when K = Ln, a quite
nontrivial explicit description of FK via linear matrix inequalities is given by Hildebrand in [44, 45]. Given
the general difficulty of characterizing FK, and thus, testing the necessary condition of K-minimality given
in Proposition 5, in the next section, we study a relaxed version of the condition from Proposition 5. This
leads to a larger class of valid inequalities, namely K-sublinear inequalities, which subsumes the class of
K-minimal inequalities.

6) Given a linear map Z :E→E, we use Z∗ to denote its conjugate map given by the identity

〈x,Zv〉= 〈Z∗x, v〉 ∀(x∈E,v ∈E).
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3. K-Sublinear Inequalities
DEFINITION 2. An inequality (µ;η0) with µ 6= 0 and η0 ∈R is K-sublinear (for S(A,K,B)) if it satis-

fies the conditions (A.1(α)) for all α∈ Ext(K∗) and (A.2) where

(A.1(α)) 0≤ 〈µ,u〉 for all u∈E s.t. Au= 0 and 〈α,v〉u+ v ∈K ∀v ∈ Ext(K),
(A.2) µ0 ≤ 〈µ,x〉 for all x∈ S(A,K,B).

When an inequality satisfies (A.1(α)) for all α∈ Ext(K∗) we say that it satisfies condition (A.1).
It can be easily verified that the set of inequalities (µ;η0) satisfying conditions (A.1)-(A.2) leads to a

convex cone in the space E×R. We denote this cone of K-sublinear inequalities with Cs(A,K,B).
Condition (A.2) simply ensures the validity of a given inequality, and thus, it is satisfied by every valid

inequality. On the other hand, condition (A.1) is not very intuitive. The main role of condition (A.1) is to
ensure the necessary non-expansivity condition for K-minimality established in Proposition 5.

A particular and simple case of (A.1) is of interest and deserves a separate treatment:
Let (µ;η0) satisfy (A.1). Then (µ;η0) also satisfies the following condition:

(A.0) 0≤ 〈µ,u〉 for all u∈K∩Ker(A).

To see that (A.0) is in fact a special case of (A.1), consider any u∈K∩Ker(A). Also, for any α∈ Ext(K∗),
we have 〈α,v〉 ≥ 0 for all v ∈ Ext(K). Then, because u ∈K and K is a cone, the requirement of condition
(A.1) on u, is automatically satisfied for any u∈K∩Ker(A).

Besides, condition (A.0) is precisely equivalent to

(A.0) µ∈ (K∩Ker(A))∗ =K∗+ (Ker(A))∗ =K∗+ Im(A∗),

where the last equation follows from the facts that Ker(A)∗ = Ker(A)⊥ = Im(A∗) and K∗ + Im(A∗) is
closed whenever K is closed [62, Corollary 16.4.2].

While condition (A.1) immediately implies (A.0), treating (A.0) separately seems to be handy as some of
our results depend solely on conditions (A.0) and (A.2). We next show that condition (A.0) is necessary for
any nontrivial valid inequality. Recall that we denote the set of nontrivial valid inequalities by Π(A,K,B) =
{µ∈E : µ 6= 0, ϑ(µ)∈R}.

PROPOSITION 6. Suppose µ∈Π(A,K,B). Then µ satisfies condition (A.0).

Proof. Suppose condition (A.0) is violated by some µ∈Π(A,K,B). That is, there exists u∈K∩Ker(A)
such that 〈µ,u〉< 0. Then, for any β > 0 and x∈ S(A,K,B), x+βu∈K andA(x+βu) =Ax∈B. Hence
x+βu∈ S(A,K,B) for all β > 0. On the other hand, the term,

〈µ,x+βu〉= 〈µ,x〉+β〈µ,u〉,

can be made arbitrarily small by increasing β, which implies ϑ(µ) =−∞ where ϑ(µ) is as defined in (3),
contradicting µ∈Π(A,K,B). �

As a consequence of Proposition 6, we conclude that to obtain conv(S(A,K,B)) one is required to add
only an appropriate subset of valid inequalities (µ;ϑ(µ)) with µ∈K∗+ Im(A∗).

Our next theorem states that every K-minimal inequality is also K-sublinear.

THEOREM 1. If (µ;η0)∈Cm(A,K,B), then (µ;η0)∈Cs(A,K,B).

Proof. Consider any K-minimal inequality (µ;η0). Because (µ;η0) ∈ Cm(A,K,B), (µ;η0) is valid for
S(A,K,B), and hence, condition (A.2) is automatically satisfied.

Assume for contradiction that (µ;η0) violates condition (A.1(α)) for some α ∈ Ext(K∗). That is, there
exists u such that 〈µ,u〉< 0, Au= 0, and 〈α,v〉u+ v ∈K ∀v ∈ Ext(K). Based on u and α, let us define a
linear map Z :E→E as

Zx= 〈x,u〉α+x for any x∈E.
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Note that A :E→Rm and thus its conjugate A∗ :Rm→E. We let A∗ei =:Ai ∈E for i= 1, . . . ,m, where
ei is the ith unit vector in Rm. This way, we have ZA∗ei = 〈Ai, u〉α+Ai =Ai for all i= 1, . . . ,m because
u ∈Ker(A) implies 〈Ai, u〉= 0. Therefore, ZA∗ =A∗. Also, since A :E→Rm and Z :E→E are linear
maps, ZA∗ is a linear map and its conjugate is given by AZ∗ =A as desired.

Moreover, for all w ∈K∗ and v ∈ Ext(K),

〈Zw,v〉= 〈(〈w,u〉α+w), v〉= 〈w,u〉〈α,v〉+ 〈w,v〉= 〈w, 〈α,v〉u+ v︸ ︷︷ ︸
∈K

〉 ≥ 0.

Because any v ∈K can be written as a convex combination of points from Ext(K), we conclude thatZ ∈FK.
Finally, by recalling that α∈K∗ and α 6= 0, we get

µ−Zµ=−〈µ,u〉︸ ︷︷ ︸
<0

α∈K∗ \ {0},

which is a contradiction with the necessary condition for K-minimality given in Proposition 5. �

The proof of Theorem 1 reveals the importance of condition (A.1) and its implications in terms of K-
minimality. Next, we show that condition (A.1) further simplifies in the case of K = Rn+, and conditions
(A.0)-(A.2) underlie the subadditive inequalities defined for MILPs in [49].

REMARK 9. When the cone K has a simple structure, in particular, when it has finitely many extreme
rays that are orthogonal to each other, the interesting cases of condition (A.1) that are not covered by
condition (A.0) can be simplified. When in addition the cone K is assumed to be regular, without loss of
generality, we can assume that K=Rn+.

Suppose K= Rn+. Then the extreme rays of K as well as K∗ are just the unit vectors, ei. Let us consider
(A.1(α)) for the case of α = ei. Then the vectors u considered in the condition (A.1(ei)) are required to
satisfy

viu+ v ∈K ∀v ∈ Ext(K) = {e1, . . . , en}.
Because all of the extreme rays of K are unit vectors, this requirement affects only the extreme rays v with
a nonzero vi value, which is just the case of v = ei. Hence, for i = 1, . . . , n, we can equivalently rewrite
condition (A.1(ei)) as follows:

(A.1i) 0≤ 〈µ,u〉 for all u such that Au= 0 and u+ ei ∈Rn+.

Let ai denote the ith column of the matrix A. By a change of variables, this requirement is equivalent to the
following relation:

(A.1i) µi ≤ 〈µ,w〉 for all w ∈Rn+ such that Aw= ai.

When K = Rn+ and B is a finite set, Johnson [49] has defined the class of so-called subadditive valid
inequalities precisely as those inequalities that satisfy the collection of conditions (A.1i) for i = 1, . . . , n,
along with the conditions (A.0) and (A.2). In this specific setup, Johnson [49] has further shown that Rn+-
sublinearity of an inequality can be verified by checking requirements (A.0), (A.1i) for i = 1, . . . , n, and
(A.2) on only a finite set of vectors (those satisfying a minimal linear dependence condition).

Moreover, let us for a moment assume that there exists a function σ(·) underlying theK-sublinear inequal-
ity (µ;η0). That is, for all i= 1, . . . , n, given the data associated with variable xi, namely ai, σ(·) generates
the corresponding coefficient in the valid inequality σ(ai) = µi. Then, condition (A.1i) above precisely
represents the subadditivity property of the function σ(·) over the columns of A. In fact, in section 4 for
general disjunctive conic sets S(A,K,B) with K = Rn+ without making any assumptions on A or B, we
show that for every K-sublinear inequality (µ;η0), such a function σ(·) generating µ always exists. In the
specific case of K = Rn+ and a finite set B, this connection was previously established in [49]. Thus, our
result generalizes Johnson’s work [49] by removing his assumption that B is a finite set. We discuss the
implications of these with regard to existing MILP literature in detail in section 4.3. ♦
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Under Assumption 1, there is a precise relation between the generators of the cones of K-sublinear
inequalities and K-minimal inequalities. We state this below in Theorem 2, which is a generalization of the
corresponding result from [49] to the conic case. For completeness, we include the following proof, which
simultaneously simplifies and generalizes the approach of [49].

THEOREM 2. Suppose that Assumption 1 holds. Then, any generating set of Cs(A,K,B) is of the form
(GL,Gs) where Gs ⊇G+

C and (GL,GC) is a generating set of C(A,K,B). Moreover, if (µ;η0)∈Gs \G+
C ,

then (µ;η0) is not K-minimal.

Proof. Based on Remark 2, let (GL,GC) be a generating set of C(A,K,B) such that each vector in GC

is orthogonal to every vector in GL, and all vectors in GL are orthogonal to each other. Let (G`,Gs) be a
generating set of Cs(A,K,B) in which each vector in Gs is orthogonal to every vector in G`. Note that by
Theorem 1, we have Cm(A,K,B)⊆Cs(A,K,B)⊆C(A,K,B).

Under Assumption 1, using Corollary 2, Cm(A,K,B) has a generating set of the form (GL,G
+
C). Hence,

the subspace spanned by G` both simultaneously contains, and is contained in, the subspace generated by
GL. Therefore, G` =GL.

Let Q be the orthogonal complement to the subspace generated by GL and define C ′ =C(A,K,B)∩Q,
C ′m =Cm(A,K,B)∩Q and C ′s =Cs(A,K,B)∩Q. Then C ′ = cone(GC), and under Assumption 1, C ′m =
cone(G+

C). Also, C ′,C ′m, and C ′s are pointed cones and satisfy C ′m ⊆ C ′s ⊆ C ′. Given that the elements of
G+
C are extreme in both C ′ and C ′m, they remain extreme in C ′s as well. Therefore, G+

C ⊆Gs.
Finally, consider any (µ;η0)∈Gs \G+

C . We need to show that (µ;η0) 6∈Cm(A,K,B). Suppose not; then
(µ;η0) ∈ Cm(A,K,B) but not in G+

C , which implies that (µ;η0) is not extreme in Cm(A,K,B). Noting
Cm(A,K,B)⊆Cs(A,K,B), we conclude that (µ;η0) is not extreme in Cs(A,K,B) as well. But this con-
tradicts the facts that (µ;η0) ∈ Gs and (GL,Gs) is a generating set for Cs(A,K,B). Therefore, for any
(µ;η0)∈Gs \G+

C , (µ;η0) 6∈Cm(A,K,B). �

Theorem 2 implicitly describes a way of obtaining all of the nontrivial extreme valid inequalities of
C(A,K,B): first identify a generating set (GL,Gs) for Cs(A,K,B) and then test its elements for K-
minimality to identify G+

C . On one hand, this is good news, as we seem to have a better algebraic handle on
Cs(A,K,B) via the conditions given by (A.0)-(A.2). On the other hand, testing these conditions as stated
in (A.0)-(A.2) is quite nontrivial. Therefore, simpler conditions for the verification of K-sublinearity and
K-minimality are desirable. This task is tackled in the next section.

4. Relations to Support Functions and Cut-Generating Sets In this section, we first relate K-
sublinear inequalities to the support functions of sets with certain structure. Recall that a support function
of a nonempty set D⊆Rm is defined as

σD(z) := sup
λ

{zTλ : λ∈D} for any z ∈Rm.

For any nonempty setD, it is well known that its support function σD(·) satisfies the following properties:
(S.1) σD(0) = 0,
(S.2) σD(z1 + z2)≤ σD(z1) +σD(z2) (subadditive),
(S.3) σD(βz) = βσD(z) ∀β > 0 and for all z ∈Rm (positively homogeneous).

In particular, support functions are positively homogeneous and subadditive, and thus sublinear and convex.
We refer the reader to [46, 62] for an extended discussion of the topic.

Given Proposition 6, every nontrivial valid linear inequality (µ;η0)∈Π(A,K,B) satisfies µ∈ Im(A∗) +
K∗. Thus, any µ such that µ 6∈ Im(A∗) + K∗ is redundant in the description of conv(S(A,K,B)). As a
result of this, nontrivial valid inequalities are closely related to support functions of convex sets with a
certain structure. This connection leads to a number of insights into the right hand side values of the valid
inequalities as well as necessary conditions forK-sublinearity. We state this connection in a series of results
as follows:
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THEOREM 3. Consider any µ∈E satisfying condition (A.0), and define

Dµ = {λ∈Rm : A∗λ�K∗ µ}. (4)

Then, Dµ 6= ∅, σDµ(0) = 0 and σDµ(Az)≤ 〈µ, z〉 for all z ∈K.

Proof. Since µ satisfies condition (A.0), µ ∈ K∗ + Im(A∗), which trivially implies the nonemptiness of
Dµ. Also, σDµ(0) = 0 because σDµ(·) is the support function of Dµ and Dµ 6= ∅. Furthermore, for any
z ∈K, we have

σDµ(Az) = sup
λ

{λTAz : λ∈Dµ}= sup
λ

{〈z,A∗λ〉 : A∗λ�K∗ µ}
≤ sup

λ

{〈z,µ〉 : A∗λ�K∗ µ}= 〈z,µ〉,

where the last inequality follows from the fact that z ∈ K and for any λ ∈ Dµ, we have µ − A∗λ ∈ K∗,
implying 〈µ−A∗λ, z〉 ≥ 0. Therefore, σDµ(Az)≤ 〈µ, z〉. �

Based on Theorem 3, given a vector µ∈ Im(A∗)+K∗, we can use the support function of the correspond-
ing set Dµ and easily establish a condition on the right hand side value, η0, that will ensure the validity of
the inequality (µ;η0).

PROPOSITION 7. Suppose µ ∈E satisfies condition (A.0). Then, infb∈B σDµ(b)≤ ϑ(µ), and thus, any
inequality given by (µ;η0) with η0 ≤ infb∈B σDµ(b) is valid for S(A,K,B).

Proof. Given µ satisfying condition (A.0), Theorem 3 implies Dµ 6= ∅ and σDµ(Az)≤ 〈µ, z〉. Let B̂ :=
{b∈B : ∃x s.t. Ax= b, x∈K}. Then

η0 ≤ inf
b∈B

σDµ(b)≤ inf
b∈B̂

σDµ(b) = inf
b∈Rm,x∈E

{
σDµ(Ax) : Ax= b, b∈ B̂

}
≤ inf

x

{
σDµ(Ax) : x∈K, Ax∈ B̂

}
≤ inf

x

{
〈µ,x〉 : x∈K, Ax∈ B̂

}
= inf

x
{〈µ,x〉 : x∈K, Ax∈B}= ϑ(µ),

where the last inequality follows from the fact that for all z ∈ K, we have σDµ(Az)≤ 〈µ, z〉, and the last
two equations follow from B̂ ⊆ B and the definition of ϑ(µ) (cf. (3)). Then the validity of the inequality
(µ;η0) with η0 ≤ infb∈B σDµ(b) follows immediately because infb∈B σDµ(b)≤ ϑ(µ). �

Proposition 7 indicates that infb∈B σDµ(b) ≤ ϑ(µ) when µ satisfies condition (A.0). In certain cases, a
much more precise relation between ϑ(µ) and infb∈B σDµ(b) exists as described next.

PROPOSITION 8. Consider µ ∈ E satisfying condition (A.0). Suppose at least one of the following
conditions holds
• K is polyhedral,
• Ker(A)∩ int(K) 6= ∅,
• µ∈ int(K∗) + Im(A∗).
Then, we have ϑ(µ) = infb∈B σDµ(b).

Proof. By Proposition 7, we already have infb∈B σDµ(b)≤ ϑ(µ). Moreover,

inf
b∈B

σDµ(b) = inf
b∈B

sup
λ∈Rm

{bTλ : A∗λ�K∗ µ}

= inf
b∈B

inf
x
{〈µ,x〉 : x∈K, Ax= b}︸ ︷︷ ︸

≥ϑ(µ)

≥ ϑ(µ),
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where the last equation follows from the feasibility of the primal problem and linear programming duality
whenever K is polyhedral and from strong conic duality whenever Ker(A)∩ int(K) 6= ∅ or µ ∈ int(K∗) +
Im(A∗) holds, and the last inequality follows from b∈B, and the definition of ϑ(µ) in (3). Thus, we obtain
infb∈B σDµ(b) = ϑ(µ). �

Given µ satisfying condition (A.0), there is a unique set Dµ associated with it. Propositions 7 and 8
highlight that one can use the support functions σDµ(·) of these sets Dµ to obtain a right hand side value η0

ensuring the validity of the inequality (µ;η0). These sets Dµ have a particular importance in our discussion
in section 4.3. Because of their common structure, we refer to the sets of this form as cut-generating sets.
We point out that it is possible to have two distinct vectors µ′ 6= µ such that Dµ =Dµ′ (cf. Example 8).

4.1. Necessary Conditions for K-Sublinearity We next establish a number of necessary conditions
for K-sublinearity via cut-generating sets and their support functions.

LEMMA 2. For any given z ∈K, define

⊥z:= {γ ∈K∗ : 〈γ, z〉= 0}. (5)

Suppose µ ∈ E satisfies condition (A.0). Then, for all z ∈ K such that ⊥z ∩(µ− Im(A∗)) 6= ∅, we have
σDµ(Az) = 〈µ, z〉 where Dµ is defined by (4).

Proof. Consider any z ∈K satisfying the premise of the lemma. Then

σDµ(Az) = sup
λ∈Rm

{λTAz : λ∈Dµ}
= sup

γ∈E, λ∈Rm
{〈z,A∗λ〉 : A∗λ= µ− γ, γ ∈K∗}

= 〈z,µ〉− inf
γ∈E
{〈z, γ〉 : γ ∈ µ− Im(A∗), γ ∈K∗}= 〈z,µ〉,

where the last equation follows because 〈z, γ〉 ≥ 0 for all z ∈ K and γ ∈ K∗, and from the premise of the
lemma, there exists γ̄ ∈⊥z ∩(µ− Im(A∗)), that is, γ̄ ∈K∗ ∩ (µ− Im(A∗)) and 〈µ, γ̄〉= 0. �

Whenever µ ∈ ∂K∗ + Im(A∗), we immediately have ∂K∗ ∩ (µ − Im(A∗)) 6= ∅; and thus, there exists
z ∈ ∂K such that ⊥z ∩(µ− Im(A∗)) 6= ∅. In particular, for µ∈ Im(A∗), 0∈K∗ ∩ (µ− Im(A∗)). Therefore,
taking into account condition (A.0) and Theorem 3, we have the following corollary:

COROLLARY 3. For any µ ∈ ∂K∗ + Im(A∗), Dµ 6= ∅ and σDµ(Az) = 〈µ, z〉 holds for at least one
z ∈ Ext(K) where Dµ is defined as in (4). Moreover, for any µ∈ Im(A∗), σDµ(Az) = 〈µ, z〉 for all z ∈K.

In the case ofK=Rn+, using Remark 9, the relationship betweenK-sublinearity and the support functions
of cut-generating sets can be further enhanced.

THEOREM 4. Consider a disjunctive conic set S(A,K,B) with K= Rn+, and a K-sublinear inequality
(µ;η0) for it. Then, ⊥ei ∩(µ− Im(A∗)) 6= ∅, and thus, σDµ(ai) = µi for all i= 1, . . . , n where ai is the ith

column of the matrix A. Moreover, infb∈B σDµ(b) = ϑ(µ).

Proof. Because (µ;η0) is K-sublinear where K = Rn+, µ ∈ E = Rn satisfies conditions (A.0)-(A.1i) for
all i = 1, . . . , n, and η0 ≤ ϑ(µ). Assume for contradiction that the statement is not true. Then there exists
i such that ⊥ei ∩(µ− Im(A∗)) = ∅. Note that ⊥ei= {γ ∈Rn+ : γi = 0}= cone{e1, . . . , ei−1, ei+1, . . . , en}.
Therefore, we arrive at the following system of linear inequalities in γ,λ being infeasible:

γ+A∗λ= µ,
γj ≥ 0 ∀j 6= i,
γi = 0.

Using Farkas’ Lemma, we conclude that ∃u, v such that u + v = 0, vj ≥ 0 for all j 6= i, Au = 0 and
〈u,µ〉 ≥ 1. By eliminating u, this implies that ∃v such that vj ≥ 0 for all j 6= i, Av = 0 and 〈v,µ〉 ≤ −1.
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Hence, if vi <−1, we can scale v so that vi ≥−1, and arrive at the conclusion that there exists v such that
v+ ei ∈Rn+ =K, Av= 0 and 〈v,µ〉< 0, which contradicts the condition (A.1i).

Because the conditions (A.0)-(A.1i) are necessary for the K-sublinearity of (µ;η0), we conclude that
⊥ei ∩(µ− Im(A∗)) 6= ∅ for all i= 1, . . . , n. Then Lemma 2 implies σDµ(ai) = µi for all i= 1, . . . , n.

Finally, note that K=Rn+ is a polyhedral cone, and thus Proposition 8 implies infb∈B σDµ(b) = ϑ(µ). �

Theorem 4 has an important consequence, which we point out next.
REMARK 10. Let (µ;η0) be a Rn+-sublinear inequality for S(A,Rn+,B). Given a linear mapA∈Rm×n,

let ai denote the ith column ofA. Then Theorem 4 guarantees that for all i= 1, . . . , n the value of the support
function σDµ(·) evaluated at the vector ai, namely the data corresponding to the variable xi, precisely
matches with the corresponding coefficient of xi in the inequality (µ;η0), i.e., µi = σDµ(ai). Besides, σDµ(·)
generates the tightest possible right hand side value for any valid inequality (µ;η0) defined by the vector µ
because infb∈B σDµ(b) = ϑ(µ) ≥ η0. Another way to state this is that every tight Rn+-sublinear inequality
(its coefficient vector, and the corresponding best possible right hand side value) is generated by the support
function σDµ(·), a very specific sublinear function. Moreover, when K = Rn+, the cut-generating sets Dµ

defined in (4) are polyhedral. Precisely, they are of the form

Dµ = {λ∈Rm : A∗λ≤ µ}.
Thus, the support functions of these sets are automatically sublinear (subadditive and positively homoge-
neous), and in fact piecewise linear and convex. This relates nicely with the literature on lattice-free sets
and cut-generating functions. We discuss these in detail in section 4.3.

Furthermore, given any valid inequality (µ;η0) for S(A,Rn+,B), if it is not Rn+-sublinear, using the
support function σDµ(·), one can immediately obtain an Rn+-sublinear inequality dominating it (cf. [52,
Proposition 3]. ♦

Motivated by the positive result of Theorem 4 given in the specific case ofK=Rn+, one wonders whether
a similar result holds for general regular cones K. We address this question in Proposition 9, and prove
that in the case of general regular cones K, for any K-sublinear inequality (µ;η0), there exists at least one
z ∈ Ext(K) such that σDµ(Az) = 〈µ, z〉. Unfortunately, in the case of general regular cones K, the result of
Proposition 9 is not as strong as that of Theorem 4. Before we proceed with Proposition 9, we need a few
technical lemmas.

LEMMA 3. For any two sets U and V that are independent of each other, we have

inf
u∈U

inf
v∈V
〈u, v〉= inf

v∈V
inf
u∈U
〈u, v〉.

Proof. Let us consider a given ū ∈U . Then for any v ∈ V , we have infu∈U〈u, v〉 ≤ 〈ū, v〉, and by taking
the infimum of both sides of this last inequality over v ∈ V , we obtain infv∈V infu∈U〈u, v〉 ≤ infv∈V 〈ū, v〉
holds for any ū∈U . Now, by taking the infimum of this inequality over ū∈U , and noting that the left hand
side is simply a constant, we arrive at infv∈V infu∈U〈u, v〉 ≤ inf ū∈U infv∈V 〈ū, v〉= infu∈U infv∈V 〈u, v〉. To
see that the reverse inequality also holds, we can start by considering a given v̄ ∈ V , and repeat the same
reasoning by interchanging the roles of u and v. �

LEMMA 4. Suppose that µ ∈ E satisfies condition (A.0), and ⊥z ∩(µ − Im(A∗)) = ∅ holds for all
z ∈ Ext(K) where ⊥z is as defined by (5). Then, µ∈ int(K∗) + Im(A∗) and infb∈B σDµ(b) = ϑ(µ).

Proof. First, note that because µ satisfies condition (A.0), by Theorem 3, Dµ 6= ∅; and hence {γ ∈
E : ∃λ∈Rm s.t. γ+A∗λ= µ, γ ∈K∗} 6= ∅.

In addition, because 0 ∈
⋂
z∈Ext(K) ⊥z, using the premise of the lemma that ⊥z ∩(µ− Im(A∗)) = ∅, we

conclude 0 6∈ µ− Im(A∗). Moreover, by rephrasing the premise of the lemma and the definition of ⊥z, we
get

0 < inf
z∈Ext(K)

inf
γ∈E, λ∈Rm

{〈γ, z〉 : γ+A∗λ= µ, γ ∈K∗}

= inf
γ∈E, λ∈Rm

{
inf
z
{〈γ, z〉 : z ∈ Ext(K)} : γ+A∗λ= µ, γ ∈K∗

}
,
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where in the last equation we have used Lemma 3 with U = Ext(K)× 0 ⊆ E × Rm and V = {(γ,λ) ∈
E×Rm : γ+A∗λ= µ, γ ∈K∗}.

Now assume for contradiction that the set {γ : ∃λ∈Rm s.t. γ+A∗λ= µ, γ ∈K∗} ⊆ ∂K∗. This together
with the above inequality implies that there exists γ̄ ∈ ∂K∗ such that 〈γ̄, z〉> 0 for all z ∈ Ext(K). Hence,
〈γ̄, z〉 > 0 for all z ∈ K \ {0}. Since K∗ is a closed convex cone, 〈γ̄, z〉 > 0 for all z ∈ K \ {0} only if
γ̄ ∈ int(K∗), which is a contradiction. Thus, there exists γ̄ 6= 0 such that γ̄ ∈ int(K∗) ∩ (µ− Im(A∗)). To
finish the proof, note that γ̄ ∈ int(K∗)∩(µ−Im(A∗)) implies µ∈ int(K∗)+Im(A∗). Then using Proposition
8, we arrive at ϑ(µ) = infb∈B σDµ(b). �

We are now ready to state and prove Proposition 9.

PROPOSITION 9. Suppose that µ∈E satisfies condition (A.0), and⊥z ∩(µ− Im(A∗)) = ∅ holds for all
z ∈ Ext(K) where ⊥z is as defined by (5). Then, there exists at least one z ∈ Ext(K) such that σDµ(Az) =
〈µ, z〉.

Proof. Assume for contradiction that σDµ(Az) < 〈µ, z〉 for all z ∈ Ext(K). Then by Lemma 4, µ ∈
int(K∗)+ Im(A∗) and infb∈B σDµ(b) = ϑ(µ). Because of weak conic duality and µ∈ int(K∗)+ Im(A∗), we
have for all b

inf
x
{〈µ,x〉 : Ax= b, x∈K}≥ σDµ(b) = sup

λ∈Rm
{bTλ : A∗λ�K∗ µ}>−∞.

For any b ∈ B, define Sb := {x ∈ K : Ax= b}, and let B̂ := {b ∈ B : Sb 6= ∅}. Because S(A,K,B) 6= ∅,
B̂ 6= ∅. Then for any b ∈ B̂, xb ∈ Sb leads to an upper bound on σDµ(b), i.e., σDµ(b)≤ 〈µ,xb〉. Therefore,
for any b∈ B̂, the conic optimization problem defining σDµ(b) is bounded above and is strictly feasible, and
so strong conic duality holds and the dual problem given by the infx above is solvable. Consider any b∈ B̂,
and let x̄b be the corresponding optimal solution, i.e., x̄b ∈ Sb and 〈µ, x̄b〉= σDµ(b). Because x̄b ∈K, there
exists z1, . . . , z` ∈ Ext(K) with `≤ n such that x̄b =

∑`

i=1 z
i, which leads to

〈µ, x̄b〉= σDµ(b) = σDµ(Ax̄b) ≤︸︷︷︸
(∗)

∑̀
i=1

σDµ(Azi) <︸︷︷︸
(∗∗)

∑̀
i=1

〈µ, zi〉= 〈µ, x̄b〉,

where the inequality (∗) follows because σDµ(·) is a support function, and thus is subadditive, and (∗∗)
follows from the assumption that σDµ(Az) < 〈µ, z〉 for all z ∈ Ext(K). But this is a contradiction. Thus,
there exists z ∈ Ext(K) such that σDµ(Az) = 〈µ, z〉. �

To summarize whenever µ ∈ Π(A,K,B), Corollary 3, Lemma 4, and Proposition 9 together cover all
possible cases and indicate that for a K-sublinear inequality, there exists at least one z ∈ Ext(K) such that
σDµ(Az) = 〈µ, z〉.

We illustrate the necessary conditions for K-sublinearity established so far via the following example.
EXAMPLE 8. Consider the set S(A,K,B) with K = L3, A = [1,0,0] and B = {−1,1} . In this case,

conv(S(A,K,B)) = {x∈R3 : x∈K, x3 ≥
√

1 +x2
2, − 1≤ x1 ≤ 1} (see Figure 2).

Note that this description of conv(S(A,K,B)) involves the following non-cone-implied inequalities:
(a) µ(+) = [1; 0; 0] with η(+)

0 =−1 and µ(−) = [−1; 0; 0] with η(−)
0 =−1;

(b) µ(t) = [0; t;
√
t2 + 1] with η(t)

0 = 1 for all t∈R.
Here, we show that these inequalities satisfy the necessary conditions for K-sublinearity; later on we will
show that all of these inequalities are in fact K-minimal.

In case (a), it is easy to see that the corresponding sets associated with these inequalities µ(+), µ(−) are
given by

Dµ(+) = {λ : ∃γ ∈K∗ s.t. λ+ γ1 = 1; γ2 = 0; γ3 = 0}= {λ : λ= 1},
Dµ(−) = {λ : λ=−1}.
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x1

(0,0)

x2

x3

FIGURE 2. Convex hull of S(A,K,B) corresponding to Example 8

Also, both µ(+), µ(−) ∈ Im(A∗), and thus, by Corollary 3 σD
µ(i)

(Az) = σD
µ(i)

(z1) = 〈µ(i), z〉 for all z ∈K
for i∈ {+,−}. In addition to this, infb∈B σD

µ(i)
(b) =−1 = η

(i)
0 for i∈ {+,−}.

In case (b), for any given t∈R, we have the associated sets Dµ(t) given by

Dµ(t) = {λ : ∃γ ∈K∗ s.t. λ+ γ1 = 0; γ2 = t; γ3 =
√
t2 + 1}= {λ : − 1≤ λ≤ 1}.

Moreover, for all t, by considering z(t) ∈ {[1;−t;
√
t2 + 1], [−1;−t;

√
t2 + 1]} ⊂ Ext(K), we have

〈µ(t), z(t)〉= 1 and σD
µ(t)

(Az(t)) = σD
µ(t)

(z
(t)
1 ) = σD

µ(t)
(1) = 1, proving 〈µ(t), z(t)〉= σD

µ(t)
(Az(t)). Addi-

tionally, σD
µ(t)

(1) = 1 = σD
µ(t)

(−1) implying infb∈B σD
µ(t)

(b) = 1 = η
(t)
0 for all t.

We highlight that Dµ(t) is common for all distinct vectors µ(t) corresponding to the valid inequal-
ities (µ(t); 1). Nevertheless, each of these inequalities (µ(t); 1) is required for the description of
conv(S(A,K,B)). This highlights a situation where several vectors µ lead to the same cut-generating set
D = Dµ; and we need to consider not only one but a significant number of (in this case infinitely many)
such vectors µ associated with a unique cut-generating set to generate valid linear inequalities completely
describing conv(S(A,K,B)).

Let us also consider another valid inequality (ν;ν0) given by ν = [0; 1; 2] and ν0 = 1. Then the associated
set Dν is given by

Dν =
{
λ : −

√
3≤ λ≤

√
3
}
.

Furthermore, for any zν ∈
{

[ 1√
3
;− 1

3
; 2

3
], [− 1√

3
;− 1

3
; 2

3
]
}
⊂ Ext(K) we have σDν (Azν) = σDν (± 1√

3
) = 1 =

〈ν, zν〉. Also, infb∈B σDν (b) =
√

3 > 1 = ν0. Therefore, in terms of the necessary conditions established
so far for K-sublinearity, there seems to be no difference between (ν;ν0) and the inequalities (µ(t);η

(t)
0 ).

When we revisit this example in the next section, we will show that (ν;ν0) is K-sublinear. But, (ν;ν0) is
not K-minimal because it is dominated by µ(1) = [0; 1;

√
2] (note δ = ν −µ(1) = [0; 0; 2−

√
2] ∈K∗ \ {0})

and η(1) = 1. ♦

4.2. Sufficient Conditions for K-Sublinearity and K-Minimality Given any valid inequality (µ;η0)
satisfying condition (A.0), we can easily test (µ;η0) for K-sublinearity via the following proposition.

PROPOSITION 10. Let (µ;η0) be such that µ satisfies condition (A.0) and η0 ≤ infb∈B σDµ(b) (or it is
known that (µ;η0) ∈ C(A,K,B)). Then, whenever there exists a collection i ∈ I of vectors xi ∈ Ext(K)
such that σDµ(Axi) = 〈µ,xi〉 for all i∈ I and

∑
i∈I x

i ∈ int(K), the inequality (µ;η0) is K-sublinear.

Proof. When η0 ≤ infb∈B σDµ(b) holds, using Proposition 7, we have (µ;η0) ∈C(A,K,B), which auto-
matically implies that condition (A.2) is satisfied.
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Next, given any α ∈ Ext(K∗), we verify condition (A.1(α)). Consider any u such that Au = 0 and
〈α,v〉u+v ∈K ∀v ∈ Ext(K). Let Vα = {v ∈ Ext(K) : 〈α,v〉= 1}. Then 〈u+v, γ〉 ≥ 0 holds for all v ∈ Vα
and γ ∈ K∗. Also, there exists λ̄ and γ̄ ∈ K∗ satisfying A∗λ̄+ γ̄ = µ because µ satisfies condition (A.0);
that is, µ∈K∗+ Im(A∗). In fact, for any such λ̄, γ̄, we have

〈µ,u〉 = 〈A∗λ̄+ γ̄, u〉= 〈λ̄, Au︸︷︷︸
=0

〉+ 〈γ̄, u〉 ≥ 〈γ̄,−v〉 ∀v ∈ Vα.

Note that 〈γ,−v〉 ≤ 0 for all γ ∈K∗ and v ∈ Vα ⊂K. To finish the proof, all we need to show is that there
exists v̄ ∈ Vα such that 〈γ̄, v̄〉 = 0. Clearly, when µ ∈ Im(A∗), we can take γ̄ = 0, and thus conclude that
〈µ,u〉 ≥−〈γ̄, v̄〉= 0 holds for all such u. In general, we have

inf
γ,λ

{
inf
v
{〈γ, v〉 : v ∈ Vα} : A∗λ+ γ = µ, γ ∈K∗

}
= inf

v

{
inf
γ,λ
{〈µ−A∗λ, v〉 : A∗λ+ γ = µ, γ ∈K∗} : v ∈ Vα

}

= inf
v

〈µ,v〉− sup
γ,λ

{λT (Av) : A∗λ+ γ = µ, γ ∈K∗}︸ ︷︷ ︸
=σDµ (Av)

: v ∈ Vα


Because there exists xi ∈ Ext(K) such that σDµ(Axi) = 〈µ,xi〉 for all i ∈ I and

∑
i∈I x

i ∈ int(K), for any
α ∈ Ext(K∗), at least one of these xi’s will be in Vα. Otherwise, we have 〈α,xi〉= 0 for all i ∈ I , and thus
〈α,
∑

i∈I x
i〉 = 0, which is not possible because

∑
i∈I x

i ∈ int(K) and α ∈ Ext(K∗). Thus, we conclude
that the above infimum is zero. This gives us the desired conclusion that 〈µ,u〉 ≥ 0, and hence condition
(A.1(α)) is satisfied for all α∈ Ext(K∗). �

REMARK 11. WhenK=Rn+, Theorem 4 together with Proposition 10 implies that the conditions stated
in Proposition 10 are necessary and sufficient for K-sublinearity. ♦

For general regular cones K, based on the results from Corollary 3, Lemma 4, and Proposition 9, we
conclude that the conditions stated in Proposition 10 are almost necessary. This is up to the fact that for any
K-sublinear inequality (µ;η0), we can prove the existence of at least one x∈ Ext(K) satisfying σDµ(Ax) =
〈µ,x〉 (cf. Proposition 9), yet the sufficient condition in Proposition 10 requires a number of such extreme
rays summing up to an interior point ofK. We next provide an example highlighting that for general regular
cones K other than the nonnegative orthant, we cannot close this gap between the sufficient condition and
the necessary conditions, i.e., there exists K-sublinear inequalities that satisfy only the necessary condition
from Proposition 9 but not the sufficient condition of Proposition 10.

EXAMPLE 9. Consider the disjunctive conic set S(A,K,B) with K = L3, A = [0,1,1] and B =
{−1,1} . Then conv(S(A,K,B)) = {x ∈ L3 : x2 + x3 = 1}. Let us examine the valid inequality (µ;η0)
given by µ= [0; 0; 1] and η0 = ϑ(µ) = 1

2
. We will show that there is precisely a single ray z ∈ Ext(K) such

that σDµ(Az) = 〈µ, z〉; yet the inequality (µ;η0) is a K-sublinear inequality.
The cut-generating set associated with µ is Dµ = {λ ∈ R : |λ|+ λ ≤ 1}. Consider any z ∈ Ext(K) =

Ext(L3), and without loss of generality let us assume that z is normalized to have z3 = 1. Then

〈µ, z〉= σDµ(Az) ⇔ z3 = sup
λ∈R
{ (z2 + z3)︸ ︷︷ ︸
≥0 since z∈L3

λ : |λ|+λ≤ 1} ⇔ z3 =
1

2
(z2 + z3).

Therefore, z2 = z3 = 1. Because z ∈ Ext(L3), we also have z1 = 0. Thus, there is a unique extreme ray of
L3, in particular z = [0; 1; 1] that satisfies 〈µ, z〉= σDµ(Az).
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Let us now prove that (µ;η0) is indeed K-sublinear. The conditions (A.0) and (A.2) are easily verified.
We need to verify condition (A.1(α)) for all α ∈ Ext(K∗). Let α ∈ Ext(K∗) be given. For any v ∈ Ext(K),
if 〈α,v〉= 0, we automatically have 〈α,v〉u+ v ∈K. And if 〈α,v〉 ≥ 0, we can normalize v to assume that
〈α,v〉= 1. So, by defining Vα := {v ∈ Ext(K) : 〈α,v〉= 1}, we can state condition (A.1(α)) as

0≤ 〈µ,u〉 for all u∈E such that Au= 0 and u+ v ∈K ∀v ∈ Vα,

which, in our particular case, becomes

0≤ u3 for all u∈R3 such that u3 =−u2 and u+ v ∈L3 ∀v ∈ Vα.

Because u3 = −u2, u + v ∈ L3 and v ∈ Ext(L3), we have u3 + v3 ≥ 0 and u2
3 + (v2

1 + v2
2) + 2u3v3 ≥

u2
3 + v2

2 − 2u3v2 + u2
1 + v2

1 + 2u1v1, which is equivalent to 2u3(v2 + v3)≥ u2
1 + 2u1v1. Now suppose that

α1 = 0, then v̄ = [ 1
α3

; 0; 1
α3

] ∈ Vα and ṽ = [−1
α3

; 0; 1
α3

] ∈ Vα. In this case, using these particular v̄ and ṽ, we

conclude u3 ≥max
{
u21+2u1v̄1
2(v̄2+v̄3)

,
u21+2u1ṽ1
2(ṽ2+ṽ3)

}
=

u21+2|u1v̄1|
2v̄3

≥ 0. Moreover, when α1 6= 0, we have α2 +α3 > 0

because α ∈ Ext(L3). Then by considering v̂ =
[
0; 1

2(α2+α3)
; 1

2(α2+α3)

]
∈ Vα, we once again conclude that

u3 ≥ 0. Note that this is precisely what was needed to prove that (µ;η0) is K-sublinear. ♦

An immediate implication of Proposition 10 and Corollary 3 is as follows:

COROLLARY 4. For any µ∈ Im(A∗) and η0 ≤ ϑ(µ), the inequality (µ;η0) is K-sublinear.

We have already seen in Proposition 4 that when Ker(A) ∩ int(K) 6= ∅, then any µ ∈ Im(A∗) and any
−∞ < η0 ≤ ϑ(µ) leads to a K-minimal inequality (µ;η0). Corollary 4 complements this result by show-
ing that valid inequalities (µ;η0) with µ ∈ Im(A∗) are always K-sublinear regardless of the requirement
Ker(A)∩ int(K) 6= ∅.

In addition to Proposition 10, under Assumption 1, we can state a sufficient condition for K-minimality
as follows:

PROPOSITION 11. Suppose that Assumption 1 holds and we are given a valid inequality (µ;η0). Then,
if there exists bi ∈B and xi ∈K for i∈ I such that

∑
i∈I x

i ∈ int(K),Axi = bi and 〈µ,xi〉= η0, then (µ;η0)
is K-minimal.

Proof. Consider any (µ;η0) ∈ C(A,K,B). Assume for contradiction that (µ;η0) 6∈ Cm(A,K,B), i.e.,
∃δ ∈K∗ \ {0} such that (µ− δ;η0)∈C(A,K,B).

Suppose the premise of the proposition holds for some bi ∈ B and xi ∈ K such that
∑

i∈I x
i ∈ int(K),

Axi = bi and 〈µ,xi〉 = η0. Note that for βi > 0 with
∑

i∈I βi = 1, we have x̄ :=
∑

i∈I βix
i ∈ int(K).

Moreover, the definition of x̄ implies x̄ ∈ conv(S(A,K,B)) and 〈µ, x̄〉= η0. Because any valid inequality
for S(A,K,B), in particular (µ− δ;η0), is valid for conv(S(A,K,B)) and thus x̄ as well, we arrive at the
contradiction

η0 ≤ 〈µ− δ, x̄〉< η0,

where the last inequality follows from 〈µ, x̄〉= η0, x̄∈ int(K) and δ ∈K∗ \ {0} implying 〈δ, x̄〉> 0. �

Proposition 11, in particular, states that a valid inequality isK-minimal whenever the inequality is tight at
a point at the intersection of int(K) and conv(S(A,K,B)). In the MILP case, this resembles a sufficient con-
dition for an inequality to be facet defining. Nonetheless, our minimality notion in general is much weaker.
In the MILP case, all of the facets are necessary and sufficient for the description of conv(S(A,K,B)). How-
ever, in general, one does not need all of the K-minimal inequalities; only a generating set for Cm(A,K,B)
along with the constraint x∈K is needed.

PROPOSITION 12. Let (µ;η0) be a K-minimal inequality such that µ ∈ int(K∗). Then η0 = ϑ(µ) =
infb∈B σDµ(b).
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Proof. Because (µ;η0)∈Cm(A,K,B) and µ∈K∗, by Proposition 3, we have

η0 = ϑ(µ) = inf
x
{〈µ,x〉 : x∈ S(A,K,B)}.

Moreover, because (µ;η0) is K-minimal, it is also K-sublinear. Then µ ∈ int(K∗) implies infb∈B σDµ(b) =
ϑ(µ) by Proposition 8. �

Let us demonstrate the uses of Propositions 10, 11 and 12 on Example 8.

Example 8 (cont.) First note that the convex hull of S(A,K,B) is full dimensional. To see this, one can
demonstrate the existence of n+ 1 affinely independent points from S(A,K,B)⊆Rn where n= 3. Thus,
there is no valid equation for S(A,K,B) implying that the lineality space of C(A,K,B) is just the zero
vector. Moreover, ẑ = [1; 0; 2]∈ int(K)∩S(A,K,B) and hence Assumption 1 is satisfied.

We claim that
(a) µ(+) = [1; 0; 0] with η(+)

0 =−1 and µ(−) = [−1; 0; 0] with η(−)
0 =−1;

(b) µ(t) = [0; t;
√
t2 + 1] with η(t)

0 = 1 for all t∈R.
are all K-minimal inequalities. For i ∈ {+,−}∪R, we have already seen that the associated sets Dµ(i) are
nonempty, infb∈B σD

µ(i)
(b) = η

(i)
0 holds, and for these inequalities, there are vectors z(i) ∈ Ext(K) satisfying

the premise of Proposition 10. Hence, by Proposition 10 all of these inequalities areK-sublinear. Moreover,
in case (a), by considering the points z(+) = [1; 0; 2]∈ int(K)∩S(A,K,B) and z(−) = [−1; 0; 2]∈ int(K)∩
S(A,K,B), we get 〈µ(i), z(i)〉= η

(i)
0 holds for all i∈ {+,−}. Therefore, using Proposition 11, we conclude

that these inequalities are also K-minimal. In case (b), for any t ∈ R, consider z(t)
+ = [1;−t;

√
t2 + 1] ∈

K ∩ S(A,K,B) and z(t)
− = [−1;−t;

√
t2 + 1] ∈ K ∩ S(A,K,B). Note that 〈µ(t), z

(t)
+ 〉 = η

(t)
0 = 〈µ(t), z

(t)
− 〉

for all t ∈ R, and hence z(t) := 1
2
(z

(t)
+ + z

(t)
− ) = [0;−t;

√
t2 + 1] ∈ int(K) ∩ conv(S(A,K,B)). Thus, by

Proposition 11, we conclude that (µ(t);η
(t)
0 )∈Cm(A,K,B) for all t∈R.

We proceed by showing that the system of infinitely many linear inequalities corresponding to
(µ(t);η

(t)
0 ) = ([0; t;

√
t2 + 1]; 1) for all t∈R, which leads to the same cut-generating set, indeed has a com-

pact conic representation. Because all of these inequalities are valid for all x∈ S(A,K,B), we have

1≤ 0x1 + tx2 +
√
t2 + 1x3 ∀t∈R

⇐⇒ 1≤ inf
t
{0x1 + tx2 +

√
t2 + 1x3 : t∈R}

⇐⇒ 1≤ inf
t,τ
{tx2 + τx3 : t∈R, τ ≥

√
t2 + 1}

⇐⇒ 1≤ inf
t,τ
{tx2 + τx3 : t∈R, (1; t; τ)∈L3}

⇐⇒ 1≤ sup
α
{−α1 : α2 = x2, α3 = x3, [α1;α2;α3]∈L3} due to (∗)

⇐⇒ [−1;x2;x3]∈L3,

where (∗) follows from the fact that the primal conic optimization problem is strictly feasible, and hence,
strong duality applies here. Note that the constraint x3 ≥

√
1 +x2

2 is a cylinder in R3 and it is the same
as the conic quadratic inequality [1;x2;x3] ∈ L3. The validity of x3 ≥

√
1 +x2

2 for all x ∈ S(A,K,B)
follows from its derivation. Moreover, this conic quadratic inequality exactly implies all of the K-minimal
inequalities (µ(t);η

(t)
0 ) for all t ∈ R. Thus, in this example, the conic constraint x3 ≥

√
1 +x2

2 along with
the constraints −1≤ x1 ≤ 1 and x∈L3, completely describes conv(S(A,K,B)).

Finally, recall that the valid inequality (ν;ν0) given by ν = [0; 1; 2] and ν0 = 1 has an asso-
ciated cut-generating set Dν 6= ∅ and infb∈B σDν (b) =

√
3 > 1 = ν0. Also, there are points zν ∈{

[ 1√
3
;− 1

3
; 2

3
], [− 1√

3
;− 1

3
; 2

3
]
}
⊂ Ext(K) satisfying the requirement of Proposition 10 for (ν;ν0). Hence, by

Proposition 10 (ν;ν0) is K-sublinear. While σDν (Azν) = 〈ν, zν〉 = ν0 = 1 holds for any (and only) zν ⊂
Ext(K), none of these points from zν satisfy Az ∈ B. Thus, the sufficiency condition for K-minimality
stated in Proposition 11 fails. In fact, ν ∈ int(K∗) and (ν;ν0) fails the necessary condition for K-minimality
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given in Proposition 12, that is, infb∈B σDν (b) = σDν (1) = σDν (−1) =
√

3> 1 = ν0. Hence, we conclude
that (ν;ν0) is not K-minimal. ♦

Example 8 also suggests a technique to derive closed form expressions for convex valid inequalities by
grouping all of the tight K-minimal inequalities associated with the same cut-generating set. This approach
is further exploited in [53, 54] in analyzing specific disjunctive conic sets obtained from a two-term disjunc-
tion on a regular cone K. In particular, a characterization of tight K-minimal inequalities for this specific
disjunctive conic set is given in [53, 54]. Additionally, in the case ofK=Ln, using conic duality, it is shown
in [53, 54] that these tight K-minimal inequalities can be grouped appropriately leading to a class of convex
inequalities.

4.3. Connections to Lattice-free Sets and Cut-Generating Functions In this section, we relate our
results to the literature on lattice-free sets and cut-generating functions studied extensively for K=Rn+ and
associated infinite relaxations and discuss some implications of our results for general cones K.

In the case of K=Rn+, Theorem 4 and Remark 10 together with the basic facts on support functions con-
join nicely and connect to the views based on cut-generating functions and lattice-free sets. To summarize,
we have shown that for disjunctive conic sets S(A,Rn+,B), all tight Rn+-sublinear inequalities (µ;ϑ(µ)) are
generated by the support functions σDµ(·) of cut-generating setsDµ = {λ∈Rm : A∗λ≤ µ}. That is, σDµ(·)
take as input ai, the ith column of the linear map A, compute the corresponding cut coefficient of the vari-
able xi, µi = σDµ(ai) for all i= 1, . . . , n, and the best possible right hand side value ϑ(µ) = infb∈B σDµ(b).
Note that these support functions are automatically sublinear (subadditive and positively homogeneous),
and in fact convex and piecewise linear because Dµ is polyhedral. Moreover, under Assumption 1, using
the sufficiency of K-minimal inequalities (Proposition 2) and Theorem 1, we conclude that all non-cone-
implied inequalities for disjunctive conic sets S(A,Rn+,B) are generated by piecewise-linear, subadditive,
positively homogeneous and convex functions. In addition to this, it is recently shown in [52, Proposition
3] that without making any assumptions such as Assumption 1, Rn+-sublinear inequalities always exist, and
along with the nonnegativity restrictions x ∈Rn+, they are always sufficient to describe conv(S(A,Rn+,B))
for arbitrary A and B.

These observations on the structure and sufficiency of Rn+-sublinear inequalities for S(A,Rn+,B) provide
a simple and intuitive explanation of the well-known strong functional dual for MILPs, e.g., all cutting
planes for MILPs are generated by subadditive functions (cf. [58]).

The literature on cutting plane theory for MILP is extensive; we refer the reader to the recent survey [31].
A particular stream of research in this literature initiated by Gomory and Johnson [41, 42] and followed up
by Johnson [48], studies an infinite relaxation of an MILP obtained from a simplex tableau corresponding to
a fractional solution. The interest in these infinite models originates from deriving cuts from multiple rows
of a simplex tableau [5]. Such infinite relaxations have been investigated extensively; we refer the reader to
the survey [30] and references therein for further details. A general form of the infinite model is given by:∑

a∈Rm
axa ∈−f +S with f /∈ S,

xa ∈R+, ∀a∈Rm,
xa have finite support,

where an infinite dimensional vector is said to have finite support if it has a finite number of nonzero entries.
Our disjunctive conic set S(A,K,B) is a finite form of this model with data A, the cone K= Rn+, and the
set B=−f +S. On the other hand, the infinite model is specified entirely by the given set S and the vector
f /∈ S and is completely independent of the data A (defining constraint coefficients in the simplex tableau)
of the actual problem. Variants of this infinite model are obtained by imposing further structural restrictions
on the set S. Gomory and Johnson [41, 42] studied the case with S = Zm and introduced the concept of
cut-generating functions, that is, functions ψ :Rm→R such that the linear inequality∑

a∈Rm
ψ(a)xa ≥ 1
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holds for all feasible solutions x of the infinite model specified by f and S. In this framework, extreme
functions and minimal functions are used as convenient ways to create a hierarchy of cut-generating func-
tions. A valid function ψ is said to be extreme if there are no two distinct valid functions ψ1, ψ2 such that
ψ = 1

2
ψ1 + 1

2
ψ2. A valid function ψ is minimal if there is no valid function ψ′ distinct from ψ such that

ψ′ ≤ψ (the inequality relation between functions is stated as a pointwise relation).
This literature is closely connected to the S-free (lattice-free) cutting plane theory for MILPs. An S-free

convex set is a convex set that does not contain any point from the given set S in its interior. When S =Zm
an S-free set is called a lattice-free set. Usually, one is interested in finding an S-free set to generate a
valid inequality that cuts off a given point f 6∈ S. Thus, one seeks an S-free convex set that contains f
in its interior. It is well known that extreme functions are sufficient to generate all valid inequalities that
separate f from S under further structural assumptions, e.g., when S =Zm and f /∈ S, and all such extreme
functions are minimal. Several papers in this literature [5, 23, 29, 30] establish an intimate connection
between minimal functions and maximal (with respect to inclusion) S-free convex sets for different models
of S. In many cases, e.g., when the nonnegative cut-generating functions are sufficient, for every minimal
cut-generating function ψ(·), the corresponding set {r ∈ Rm : ψ(r) ≤ 1} is a maximal lattice-free set,
and vice-versa. For example, Borozan and Cornuéjols [23] show that minimal functions for the infinite
relaxation with S = Zm with f /∈Zm are precisely the gauge functions of maximal lattice-free convex sets,
and thus, they are nonnegative, piecewise linear, positively homogeneous, and convex functions. We refer
the interested reader to [28, 29, 30] for further details and recent results.

In the finite dimensional setup, these results are particularly related to the intersection cuts of Balas
[9, 10]. In his seminal work [9, 10], Balas initiated the use of gauge functions of lattice-free sets to generate
cuts. This view continues to attract a lot of attention in the MILP context because the gauge functions have
the advantage that they can be evaluated using simpler formulas in comparison to the generic cut-generating
functions from Gomory-Johnson’s infinite relaxation.

For finite dimensional problem instances S(A,Rn+,B), our study provides an alternative view on the
same topic based on support functions. Before we discuss this connection, we underline that, for MILPs, the
finite dimensional setup is indeed more relevant in obtaining strong cuts from the simplex tableau because
it does not further relax the problem to an infinite model. Besides, it is well known that not all extreme
inequalities in an infinite model remain extreme in the underlying finite dimensional model (cf. [32]). That
said, whenever the support functions we study here are finite valued, they can be used as cut-generating
functions for instances with arbitrary problem data A and dimension n but for the given set B =−f + S.
Besides, in contrast to much of the literature on variants of infinite models, our results and also the ones
from [52] do not require structural assumptions on B such as B=−f+Zm with f /∈Zm or B is a nonempty
closed set with 0 /∈B.

We first identify a B-free set based on the support functions σDµ(·). Consider a given Rn+-sublinear
inequality (µ;η0) for S(A,Rn+,B). Without loss of generality, we can scale µ and assume that η0 ∈ {0,±1}.
Based on the given Rn+-sublinear inequality (µ;η0), we define the set

Vµ := {r ∈Rm : σDµ(r)≤ η0}.

Because σDµ(·) is a sublinear function, Vµ is a closed convex set. Also, Theorem 4 together with K= Rn+
implies ϑ(µ) = infb∈B σDµ(b)≥ η0. Thus, B∩ int(Vµ) = ∅ (in fact, we have something slightly stronger: the
relative interior of Vµ does not contain any points from B). Then, Vµ is a closed, convex, and B-free set.

The sets underlying gauge functions and support functions are nicely related via polarity. Next, we relate
Vµ to the polar set of Dµ defined as

Do
µ := {r ∈Rm : λT r≤ 1 ∀λ∈Dµ}.

Then, Do
µ is a closed convex set containing the origin, and the (Minkowski) gauge function of Do

µ, γDoµ(·),
is defined as

γDoµ(r) := inf
t
{t > 0 : r ∈ tDo

µ} for all r ∈Rm.
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The gauge function γDoµ(·) by definition is nonnegative, closed, and sublinear, and when 0 6∈ int(Do
µ), γDoµ(·)

can take the value of +∞. Moreover, from [46, Theorem C.1.2.5], we have

Do
µ = {r ∈Rm : γDoµ(r)≤ 1}.

That is, γDoµ(·) representsDo
µ.7) It is well known [46, Corollary C.3.2.5] that wheneverQ is a closed convex

set containing the origin, the support function of Q is precisely the gauge function of its polar γQo . Hence,
whenever Dµ is closed, convex, and 0∈Dµ, the support function of Dµ studied here is precisely the gauge
function of the polar set Do

µ, i.e., σDµ = γDoµ . Then, when we additionally assume η0 = 1, we immediately
observe that Vµ =Do

µ and arrive at the following result:

PROPOSITION 13. Suppose (µ; 1) with 0 ∈Dµ is an Rn+-sublinear inequality for S(A,Rn+,B). Then,
the support function σDµ(·) of Dµ is exactly the gauge function of its polar Do

µ, that is, σDµ = γDoµ; and
moreover, Do

µ is a closed convex and B-free set.

Proposition 13 calls attention to valid inequalities (µ;η0) with η0 = 1, i.e., the ones separating the origin
from conv(S(A,Rn+,B)). Such valid inequalities have attracted specific attention in the MILP literature
and recently for disjunctive sets of form S(A,Rn+,B). Particularly, Conforti et al. [28] consider disjunctive
sets of the form S(A,Rn+,B) with K= Rn+ for an arbitrary dimension n (and thus A is also arbitrary), but
under the additional assumption that B is a given nonempty, closed set satisfying 0 6∈ B. In their study, the
main focus is on cuts µTx≥ 1 that separate the origin from conv(S(A,Rn+,B)), and the properties of cut-
generating functions, that is ψ :Rm→R, which takes as input ai, the data pertaining to the variable xi, and
maps it to the corresponding cut coefficient µi. Starting from a dominance relation among such functions,
[28] establishes a minimality notion for cut-generating functions and studies various structural properties
of minimal finite valued cut-generating functions and their relations with B-free sets.

Let us examine the connection between our results and those from [28] by assuming that the dimension
n is fixed in advance in [28]. Under the assumption 0 /∈ B of [28], it is easily seen that 0 /∈ S(A,Rn+,B)
(see [28, Lemma 2.1]); and therefore, without loss of generality, we can assume that the cuts separating
the origin from conv(S(A,Rn+,B)) have the form (µ; 1), i.e., their right hand side value is 1. When the
dimension n is fixed, the main set of interest in [28] is exactly our set S(A,Rn+,B), and the corresponding
cuts separating the origin are a subset of inequalities from C(A,Rn+,B). Furthermore, because these cuts
have positive right hand sides, they are non-cone-implied, and thus are all Rn+-sublinear [52, Proposition 3
and Corollary 2]. Hence, the support functions σDµ(·) we examine here do have a direct relation with the
corresponding cut-generating functions of interest from [28]. We discuss this next.

The cut-generating function point of view is based on the following motivation: For a fixed set B, a cut-
generating function can be used to generate a valid inequality for any data matrix A. Note that whenever
the function σ(·) used to generate a valid inequality is finite valued everywhere, it can be used for any data
matrix A. Furthermore, once the function σ(·) is fixed, the right hand side of the inequality depends only
on the set B because the value ϑ(µ) = infb∈B σ(b) is independent of A. On the other hand, the support
functions σDµ(·) associated with Rn+-sublinear inequalities are not always guaranteed to be finite valued.
This indicates a distinction between our results and the ones from [28]. Note that it is not necessary to
require a function to be finite valued everywhere in order to use it to generate cuts for a given problem
instance with data matrix A. In particular, the functions that are not finite valued everywhere, such as the
support functions we are considering here, can still be meaningful and interesting in terms of generating
valid inequalities for the problem instance at hand. Furthermore, given a problem instance A, B, and K =
Rn+, under further assumptions on A and B, it may be possible to obtain an appropriate, nonempty, bounded
set ∅ 6= D̃ ⊆Dµ ensuring infb∈B σD̃(b)≥ η0 = 1 and σD̃(ai) = µi for all i= 1, . . . , n. That is, the support
function of D̃ is finite valued everywhere and generates the same inequality (µ;η0). Thus, under further

7) We say that a sublinear function ψ(·) represents a convex set Q when the relation Q= {r ∈Rm : ψ(r)≤ 1} holds.
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technical assumptions we can in addition ensure the finite valuedness of the support functions σDµ(·). Then,
these support functions will lead to valid inequalities for an arbitrary selection of the columns ai. That is,
they will indeed be cut-generating functions for the given set B. Such a condition ensuring finite valuedness
of these support functions is for example studied in [52]. Let us consider Example 6.1 of [28] in the light of
this discussion.

EXAMPLE 10. Suppose A is the 2 × 2 identity matrix, B = {[0; 1]} ∪ {Z;−1} and K = R2
+, which

leads to S(A,R2
+,B) = conv(S(A,R2

+,B)) = {[0; 1]}. This particular disjunctive conic set violates our
Assumption 1, and therefore, none of the valid inequalities is R2

+-minimal. Nevertheless, the sufficiency
of R2

+-sublinear inequalities is not based on Assumption 1 [52, Proposition 3]. Indeed, we next show that
the particular inequality (µ;η0) = ([−1; 1]; 1) considered in [28] is R2

+-sublinear. It is easy to see that the
sufficiency conditions forK-sublinearity established in Proposition 10 are satisfied for this inequality. Actu-
ally, Dµ = {(λ1;λ2) ∈ R2 : λ1 ≤−1, λ2 ≤ 1}, σDµ(Ae1) = σDµ([1; 0]) =−1 = µ1 = µT e1, σDµ(Ae2) =
σDµ([0; 1]) = 1 = µ2 = µT e2, and clearly e1 + e2 ∈ int(R2

+). Furthermore, infb∈B σDµ(b) = 1 = η0, proving
that (µ;η0) = ([−1; 1]; 1) is a tight R2

+-sublinear inequality for this particular conv(S(A,R2
+,B)). On the

other hand, the support function corresponding to this inequality is not finite valued everywhere. As a matter
of fact, when we try to bound Dµ to obtain D̃ ⊆Dµ and use D̃ to generate a valid inequality, we cannot
ensure σD̃(Aei) = µT ei = µi for i= 1,2, and ϑ(µ) = infB σD̃(b) = 1 simultaneously. ♦

It was conjectured in [28] and later on proved in [33] that, in addition to their earlier assumption 0 /∈ B,
if we further suppose the following “containment” assumption, cone({a1, . . . , an})⊇B, we can ensure the
existence of finite valued cut-generating functions corresponding to every extreme inequality separating the
origin from S(A,Rn+,B). Furthermore, it is shown in [52, Proposition 5] that in the same setup and under
the same containment assumption of [28, 33], one can ensure that the support functions associated with
all Rn+-sublinear inequalities are finite valued. Actually, there is an explicit duality relation between the
support functions studied in this paper (and also [49]) and the value functions studied in [47] and also used
in the sufficiency proof of cut-generating functions in [33]. We finish our discussion by examining a slight
variant of Example 10 obtained from setting B̄ = {[0; 1]} ∪ {(Z−;−1)}. Note that in this variant we still
have S(A,R2

+,B) = S(A,R2
+, B̄), and S(A,R2

+, B̄) still violates the containment assumption of [28, 33].
Nevertheless, we can show that (µ;η0) = ([−1; 1]; 1) is generated by a finite valued cut-generating function.
Indeed, one can easily check that the support function of the set D̃ := {(λ1;λ2)∈R2 : λ1 =−1, −1≤ λ2 ≤
1} obtained from boundingDµ will do the job. This indicates the possibility for weakening the containment
assumption of [28, 33].

We next have a few comments on Rn+-sublinear inequalities and the associated sets Vµ,Do
µ and functions

σDµ , γDoµ .
For Rn+-sublinear inequalities (µ; 1) that separate the origin from conv(S(A,Rn+,B)), under the assump-

tion that 0 ∈ Dµ, we have Do
µ = Vµ implying Do

µ is a closed convex and B-free set and γDoµ = σDµ (cf.
Proposition 13). Given µ ∈Π(A,K,B), the set Dµ is always closed and convex. Yet, 0 ∈Dµ is not always
guaranteed. When µ ∈K∗, we have 0 ∈Dµ; but the other cases of µ ∈ Im(A∗) +K∗ are also of interest. In
such cases, by taking the polar of Do

µ, we obtain Doo
µ := (Do

µ)o, a closed convex set containing the origin.
In addition, we always have Dµ ⊆Doo

µ ; and so, for all r ∈Rm we have σDµ(r)≤ σDooµ (r) = γDoµ(r), where
the equation follows from [46, Proposition C.3.2.4]. Because γDoµ and σDµ respectively represent Do

µ and
Vµ, and σDµ(r)≤ γDoµ(r) holds for all r ∈ Rm, we have Do

µ ⊆ Vµ. Therefore, Do
µ is also a closed convex

and B-free set regardless of 0∈Dµ.
In general σDµ(·) and γDoµ(·) may differ quite significantly, i.e., a support function can take negative

values while a gauge function cannot. Therefore, we expect Vµ to differ significantly from Do
µ when 0 /∈Dµ

(cf. Proposition 13). Given that Vµ is a closed convex and B-free set such that 0∈ int(Vµ) and Vµ ⊇Do
µ, we

will focus on generating cuts based on Vµ in the following.
For a given valid inequality (µ; 1), recall that σDµ(·) represents Vµ, i.e., Vµ = {r ∈ Rm : σDµ(r) ≤ 1}

and we can immediately use σDµ(·) to generate cuts. For a given sublinear function there is a unique set
associated with it in this manner. However, there can be other sublinear functions ψ(·) representing the same



Kılınç-Karzan: On Minimal Valid Inequalities for MICPs
32 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

set Vµ, i.e., Vµ = {r ∈Rm : ψ(r)≤ 1}. To obtain strong cuts via sublinear functions ψ(·), we are interested
in the pointwise smallest possible such sublinear function ψ(·) representing Vµ. Because sublinear functions
are positively homogeneous, for any sublinear function ψ(·) representing Vµ, we have σDµ(r) = ψ(r) for
every r satisfying ψ(r) > 0. In order to find the smallest sublinear function ψ(·) representing the set Vµ,
Basu et al. [13] considers the following subset of the relative boundary of V o

µ :

V̂ o
µ := {λ∈ V o

µ : ∃r ∈ Vµ s.t. λT r= 1}.

Under the assumption 0∈ int(Vµ) (which immediately holds in our setup), it was shown in [13] that among
the sublinear functions ψ(·) representing Vµ, we have the following relation σV̂ oµ (r) ≤ ψ(r) ≤ γVµ(r) for
all r ∈ Rm. Then, σV̂ oµ (r) ≤ σDµ(r) ≤ γVµ(r) holds for all r ∈ Rm because σDµ(·) represents Vµ. Since
Vµ is a closed convex set containing the origin, we also have γVµ = σV oµ [46, Proposition C.3.2.4]. Thus,
σV̂ oµ (r)≤ σDµ(r)≤ σV oµ (r) holds for all r ∈Rm. Hence, studying the cases when we have σDµ = σV̂ oµ is of
independent interest for understanding the strength, e.g., minimality, of these support functions σDµ(·).

REMARK 12. In the case of K = Rn+, as discussed above, there are strong connections between our
K-sublinear inequalities, the cut-generating functions [30], and the strong functional dual for MILPs [58].

Moving forward, one may be interested in extending the definition of a cut-generating function from
MILPs to MICPs. However, the situation seems to be much more complex for general regular cones K
other than the nonnegative orthant. In the MILP context, one of the main properties of a cut-generating
function is that the function acts locally on each variable. Namely, the cut-generating function takes as input
solely the data associated with an individual variable xi, i.e., the corresponding column ai, and based on
this input, it generates the individual cut coefficient µi associated with xi. Imposing such a local view on
cut-generating functions is acceptable in the case of the nonnegative orthant because such cut-generating
functions are sufficient in the case ofK=Rn+ when we drop the finite valuedness restriction on the function
or under reasonable structural assumptions [52]. This, we believe, is strongly correlated with the fact that the
underlying cone K = Rn+ is decomposable in terms of individual variables. On the other hand, for general
regular cones K, imposing the same local view requirement on cut-generating functions turns out to be
problematic, especially when the cone K encodes nontrivial dependencies among variables.

In particular, Example 8 reveals an important fact in this discussion: Unlike the case where K = Rn+,
unless we make further structural assumptions, for general S(A,K,B) with a regular cone K, even when
the cone K is as simple as L3, not all extreme (and also tight, K-minimal) valid linear inequalities can be
generated by functions acting locally on individual variables. Specifically, in Example 8, the linear map is
given byA= [1,0,0], and the class of valid inequalities (µ(t);η

(t)
0 ) = ([0; t;

√
t2 + 1]; 1) parametrized by t∈

R are all extreme and thus necessary in the description of conv(S(A,K,B)). If one considers cut-generating
functions of the form that take as input the individual columns of A and output the corresponding cut
coefficient, then no such function ψ(·) will precisely generate the vector defining the inequality (µ(t);η

(t)
0 ) =

([0; t;
√
t2 + 1]; 1) for any t ∈ R. This is because such a function ψ(·) will inevitably need to satisfy t =

µ
(t)
2 =ψ(a2) =ψ(0) =ψ(a3) = µ

(t)
3 =

√
t2 + 1, which is impossible.

Therefore, Example 8 demonstrates that for regular cones K other than the nonnegative orthant, if we
were to straightforwardly extend the definition of cut-generating functions based on a local view from the
MILP literature and rely only on such functions, we may completely miss large classes of nontrivial extreme
inequalities necessary for the description of conv(S(A,K,B)). On the other hand, it may be possible to
introduce and study cut-generating maps Γ(·), which take a global view and consider the entire data A
to generate the cut coefficient vector µ at once, i.e., µ = Γ(A). We leave the questions surrounding such
cut-generating maps, such as their existence, structural properties, sufficiency, etc., for future work.

On a positive note, for specific MICPs of form (2) discussed in Example 3, Moran et al. [57] show
that a strong functional dual exists under a technical condition. Existence of strong MICP duals for these
specific MICPs is equivalent to the sufficiency of (indeed, very specific classes of) finite valued functions
that generate the cut coefficients of all cuts for these sets. In fact, these functions from [57] indeed act locally
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on each individual variable, and thus, naturally extend the standard cut-generating function framework used
in the MILP literature to the specific MICPs of form (2). Thus, in spite of the fact that Moran et al. [57]
do not refer to these functions as cut-generating functions, they are indeed so. However, we highlight that
the natural disjunctive conic representation S(A,K,B) for the specific class of MICPs from [57] discussed
in Example 3 imposes further structure. In particular, the underlying cone K in the resulting equivalent
disjunctive conic form representation S(A,R2n

+ ,B) of MICP given in (2) is simply R2n
+ . On the other hand,

the cone involved in Example 8 is L3. On a related note, we do not know of the existence of a similar strong
functional MICP dual result for MICPs of form (1) discussed in Example 2. Example 8 suggests that such
a result is not likely. ♦

4.4. Connections to Conic Mixed Integer Rounding Cuts Atamtürk and Narayanan [7] introduced
conic mixed integer rounding cuts for the following simple mixed integer set

S0 := {(x, y,w, t)∈Z×R3
+ : |x+ y−w− b| ≤ t}. (6)

They have shown that when b= bbc+ f with f ∈ (0,1), the valid inequality given by

(1− 2f)(x−bbc) + f ≤ t+ y+w, (7)

when added to the description of S0 gives conv(S0).
We can represent S0 in disjunctive conic form via the following set:

S :=

{
(y,w, t, γ)∈R3

+×L2 :

[
y−w
t

]
− γ =

[
b−x

0

]}
, (8)

which leads to a regular cone K=R3
+×L2, and

A=

[
1 −1 0 −1 0
0 0 1 0 −1

]
and B=


[
f
0

]
︸︷︷︸
:=b+1

,

[
1 + f

0

]
︸ ︷︷ ︸

:=b+2

, . . . ,

[
f − 1

0

]
︸ ︷︷ ︸

:=b−1

,

[
f − 2

0

]
︸ ︷︷ ︸

:=b−2

, . . .

 ,

where x ∈ Z is used to define the set B. The first equation in (8) follows from y − w − γ1 = b− x, and
together with b= bbc+f it implies x−bbc=−y+w+γ1 +f . By substituting x−bbcwith−y+w+γ1 +f
in (7), we rewrite (7) in terms of the variables in our representation as follows:

(1− 2f)(−y+w+ γ1 + f) + f ≤ t+ y+w
(2− 2f)y+ 2fw+ t+ (2f − 1)γ1 + 0γ2 ≥ f(2− 2f).

Then η0 = f(2− 2f), µ1 = 2− 2f , µ2 = 2f , µ3 = 1, µ4 = 2f − 1 and µ5 = 0 in our usual notation.
We are now ready to demonstrate how the results from section 4 can be used to analyze this the inequality

(µ;η0) for S. In particular, without the knowledge of explicit description for conv(S), we will derive the
best possible right hand side value for µ, i.e., ϑ(µ), and show that ϑ(µ) = η0 proving the validity and
tightness of this inequality (7). We will then verify that (7) is K-minimal as well.

For the given vector µ, we have

Dµ = {λ∈R2 : A∗λ�K∗ µ}=

{
λ∈R2 : λ1 ≤ µ1, −λ1 ≤ µ2, λ2 ≤ µ3,

[
−λ1

−λ2

]
�L2

[
µ4

µ5

]}
=
{
λ∈R2 : λ1 ≤ 2− 2f, −λ1 ≤ 2f, λ2 ≤ 1, |2f − 1 +λ1| ≤ λ2

}
.

Because f ∈ (0,1), Dµ 6= ∅. The set Dµ for f = 0.25 is plotted in Figure 3.
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λ2

λ1

(0,0)

(0,1)

(1,0) (2,0)

FIGURE 3. Feasible region corresponding to Dµ for f = 0.25 in conic mixed integer rounding cut of [7].

Because Dµ 6= when f ∈ (0,1), we have µ ∈ K∗ + Im(A∗). Thus, µ satisfies condition (A.0). Let ei

stand for the ith unit vector in R5. Then σDµ(b+
1 ) = f · σDµ(e1) = f(2 − 2f), and for i = 1,2, . . ., we

have σDµ(b+
i+1) = (f + i)(2− 2f) = (2− 2f)i+ 2f − 2f2. Therefore, σDµ(b+

1 ) < σDµ(b+
2 ) < . . . holds

because f ∈ (0,1). Similarly, σDµ(b−1 ) = (1− f)σDµ(−e1) = (1− f)(−2f) = 2f(f − 1), and σDµ(b−i ) =
(f − i)(−2f) = 2fi− 2f2 for i= 1,2, . . .. Thus, σDµ(b−1 )<σDµ(b−2 )< . . . implying

inf
b∈B

σDµ(b) = min
{
σDµ(b+

1 ), σDµ(b−1 )
}

= f(2− 2f) = η0.

By Proposition 7, this proves the validity of the inequality (µ;η0). Furthermore, because the underlying cone
K=R3

+×L2 is polyhedral, by Proposition 8, we have ϑ(µ) = infb∈B σDµ(b) = η0, proving the tightness of
(µ;η0).

Before studying the K-minimality of (µ;η0), we first verify Assumption 1. Because for any ε1, ε2 > 0,
(y;w; t;γ1;γ2) = (f + ε1; ε1; ε2; 0; ε2)∈ int(K)∩S, Assumption 1 is satisfied for S. Therefore, K-minimal
inequalities exist. However, S is not full dimensional since t− γ2 = 0 is a valid equation. By Corollary 1,
we immediately have this valid equation is K-minimal.

Finally, consider the following set of points{
z1 := [f ; 0; 0; 0; 0], z2 := [0; 1− f ; 0; 0; 0], z3 := [0; 0;f ;−f ;f ], z4 := [0; 0; 1− f ; 1− f ; 1− f ]

}
.

Given f ∈ (0,1), one can easily see that for i = 1, . . . ,4, we have zi ∈ S and 〈µ, zi〉 = η0 = 2f − 2f2.
Moreover, z̄ := 1

4

∑4

i=1 z
i is in the interior of K= R3

+×L2. Therefore, using Proposition 11, we conclude
that the valid inequality given by (µ;η0) = ([2− 2f ; 2f ; 1; 2f − 1; 0]; 2f − 2f2) is a K-minimal inequality.

5. Characterization of Valid Equations Our results with regard to the existence of K-minimal
inequalities are based on Assumption 1, i.e., we assume that for all δ ∈ K∗ \ {0}, there exists zδ ∈
S(A,K,B) such that 〈δ, zδ〉 > 0. Under a stronger assumption stated below, we can show that all valid
equations (µ;η0) satisfy µ∈ Im(A∗).

Assumption 2: There exists ẑ ∈ S(A,K,B) such that ẑ ∈ int(K) and Aẑ = b̂ for some b̂∈B.
In this section, we use B̂ := {b ∈ B : ∃x ∈K s.t. Ax= b} to denote the set right hand side choices from B
that are achievable. Note that S(A,K,B) = S(A,K, B̂). Then B̂ 6= ∅ because S(A,K,B) 6= ∅.

THEOREM 5. Suppose that Assumption 2 holds. Then (µ;η0) is a valid equation if and only if there
exists some λµ ∈Rm such that

A∗λµ = µ and bTλµ = η0 = ϑ(µ) for all b∈ B̂.

Proof.
(⇐) It is easy to see that the condition in Theorem 5 is sufficient. Existsence of λµ ∈ Rm satisfying

A∗λµ = µ and bTλµ = η0 for all b∈ B̂, implies for any z ∈ S(A,K,B)

〈µ, z〉= 〈A∗λµ, z〉= λTµAz = λTµ b= η0 = ϑ(µ),

where the third equation follows because z ∈ S(A,K,B) = S(A,K, B̂), and hence Ax = b ∈ B̂. Thus,
(µ;η0) is a valid equation.
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(⇒) To prove the necessity of the condition, suppose that (µ;η0) is a valid equation. Then, clearly η0 =
ϑ(µ). Let b̂ and ẑ be as described in Assumption 2 preceding the theorem and consider

inf
z
{〈µ, z〉 : Az = b̂, z ∈K}.

The solution set of this problem is contained in S(A,K,B). Because (µ;ϑ(µ)) is a valid equation, the
optimum value of this optimization problem is equal to ϑ(µ). Moreover, this problem is strictly feasible
because there exists ẑ ∈ int(K) satisfying Aẑ = b̂. Then, strong conic duality implies

ϑ(µ) = max
λ∈Rm

{b̂Tλ : A∗λ�K∗ µ}.

Thus, there exists an optimal solution λµ satisfying A∗λµ �K∗ µ and b̂Tλµ = ϑ(µ). Note that any feasible
solution to the primal problem including the strictly feasible solution ẑ is optimal. Therefore, using the
complementary slackness condition, we have

〈ẑ, µ−A∗λµ〉= 0.

Because ẑ ∈ int(K), the above equation is possible if and only ifA∗λµ = µ. Hence, there exists λµ such that
A∗λµ = µ and b̂Tλµ = ϑ(µ). Then, for any b∈ B̂ and zb ∈K satisfying Azb = b, we have

ϑ(µ) = 〈µ, zb〉 ≥ inf
z
{〈µ, z〉 : Az = b, z ∈K} ≥ sup

λ∈Rm
{bTλ : A∗λ�K∗ µ} ≥ bTλµ, (9)

and

−ϑ(µ) = 〈−µ, zb〉 ≥ inf
z
{〈−µ, z〉 : Az = b, z ∈K} ≥ sup

λ∈Rm
{bTλ : A∗λ�K∗ −µ} ≥−bTλµ, (10)

where in both (9) and (10), the second inequality follows from weak duality, the last inequality follows
because λµ is a feasible solution to the dual in (9) and −λµ is feasible in (10). Then, (9) and (10) together
lead to ϑ(µ) = bTλµ.

�

In addition to the characterization of Theorem 5, each valid equation (µ;ϑ(µ)) is related to its corre-
sponding cut-generating set Dµ as follows:

COROLLARY 5. Suppose that Assumption 2 holds. Then, for any valid equation (µ;ϑ(µ)), there exists
λµ satisfying Dµ = {λ :A∗λ�K∗ µ}= λµ+{λ : A∗λ�K∗ 0} and ϑ(µ) = infb∈B̂ σDµ(b) = supb∈B̂ σDµ(b).

Proof. Suppose (µ;ϑ(µ)) is a valid equation. Then by Theorem 5, there exists λµ such that µ = A∗λµ
and ϑ(µ) = bTλµ for all b∈ B̂. Thus, we have

Dµ = {λ : A∗λ�K∗ A∗λµ}= {λµ +λ : A∗λ�K∗ 0},

and

inf
b∈B̂

σDµ(b) = inf
b∈B̂

sup
λ∈Rm

{bT (λµ +λ) : A∗λ�K∗ 0}= inf
b∈B̂

bTλµ︸ ︷︷ ︸
=ϑ(µ)

+sup
λ

{bTλ : A∗λ�K∗ 0}︸ ︷︷ ︸
∈{0,+∞}

= ϑ(µ),

where the last equation follows because ϑ(µ) ∈ R. We can show that ϑ(µ) = supb∈B̂ σDµ(b) in a similar
manner. �

WhenK=Rn+ (or any regular cone where each pair of its extreme rays is orthogonal), under Assumption
2, Corollary 5 gives a complete characterization of valid equations.
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6. Conclusions and Further Research We introduce the class of K-minimal valid inequalities in
the general disjunctive conic programming context that naturally arises in solution set representations and
relaxations for MICPs. We show that K-minimality concept captures the dominance relations among valid
inequalities induced by the cone K. In particular, under a mild technical assumption, we establish that
the class of K-minimal inequalities together with the original constraint x ∈ K is sufficient to describe
conv(S(A,K,B)). This prompts an interest in K-minimal inequalities, suggesting that an efficient cut-
ting plane procedure for solving MICPs should at the least aim at separating inequalities from this class.
Nevertheless, the definition of K-minimality reveals little about the structure of K-minimal inequalities.
Specifically, testing K-minimality based on its definition is a nontrivial task. To address this, we show that
the class of K-minimal inequalities is contained in a slightly larger class of so-called K-sublinear inequal-
ities defined by algebraic conditions. We establish a close connection between K-sublinear inequalities for
disjunctive conic sets and the support functions of cut-generating sets. Using this connection, we show that
when K = Rn+, all K-sublinear inequalities are generated by sublinear (positively homogeneous, subaddi-
tive, and convex) functions that are also piecewise linear. Thus, our results naturally capture some of the
earlier results from the MILP setup and generalize them to the conic case. Furthermore, this connection
with the support functions has led to practical ways of showing K-minimality and/or K-sublinearity prop-
erties of inequalities. To the best of our knowledge, these sufficient conditions for K-minimality and/or
K-sublinearity of the valid inequalities are new even in the MILP setup.

Our work has shed some light on the structure of K-minimal and K-sublinear inequalities for disjunctive
conic sets S(A,K,B) involving a regular cone K. However, many questions remain open when we start
considering regular cones other than Rn+. In particular, the following questions are of interest:
• [Characterization of extreme valid inequalities] Under a mild technical assumption, e.g., Assumption

1, we have shown that all extreme inequalities are K-minimal. However, not every K-minimal inequality
is extreme (see e.g., Example 7 and Proposition 4). Further characterizations of extreme inequalities for
disjunctive conic sets beyond K-minimality are of great interest and importance.
• [Finiteness of K-minimal conic inequalities] When K= Rn+ and B is finite, Johnson [49] proved that

the cone of K-minimal inequalities is finitely generated, i.e., GC is finite. Note that GL is always finite. For
non-polyhedral regular cones, e.g., Ln,Sn+, in general, expecting conv(S(A,K,B)) to be given by finitely
many linear inequalities is too much and is against the inherent nonlinear nature of these cones. Example 8
shows that this is not possible even for L3; the resulting conv(S(A,K,B)) requires infinitely many extreme
linear inequalities. On the other hand, in that example, it is clear that the description of conv(S(A,K,B))
involves only two linear inequalities and two conic inequalities involvingL3. While theK-minimality notion
is seemingly defined for linear inequalities, we can immediately extend it to a conic inequality by saying
that a conic quadratic inequality is K-minimal if the associated (possibly infinite) set of linear inequalities
are all K-minimal. We believe that instead of focusing on the finiteness of linear inequalities describing
conv(S(A,K,B)), it is more natural and relevant to focus on the finiteness of conic inequalities (of the same
type of K) describing conv(S(A,K,B)). Therefore, we wonder what can be said in terms of the number of
K-minimal conic inequalities required in the description of conv(S(A,K,B)). Is it a finite number when B
is finite? Is it finite regardless of the size of B? Or, can we at least identify the cases where it is finite? In
the very specific case of disjunctive conic sets arising from two-term disjunctions on Ln, the recent work in
[53, 54] provides partial answers to some of these questions.
• [Relations with other structured non-convex sets] In section 4.4 we examined conic MIR inequalities

from [7] in our framework. Moreover, in a recent series of papers [53, 54], the characterization of tight
K-minimal inequalities has played a critical role in the derivation of explicit expressions for convex valid
inequalities for disjunctive conic sets associated with a two-term disjunction on Ln. These derivations relate
nicely to other recently developed valid inequalities for MICPs based on split or disjunctive arguments
in [4, 14, 19, 34, 56]. The sets obtained from split or general two-term disjunctions are inherently linked
to the ones defined by non-convex quadratics. Therefore, convexification techniques for such non-convex
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quadratic sets form the next step in this line of research; and these are attracting more attention in the liter-
ature [19, 25, 56] lately. Thus, establishing an explicit connection between our disjunctive conic framework
and such sets involving non-convex quadratics is compelling.
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[33] G. Cornuéjols, L. Wolsey, and S. Yıldız. Sufficiency of cut-generating functions. Math. Program., pages 1–9,
2014.

[34] D. Dadush, S. S. Dey, and J. P. Vielma. The split closure of a strictly convex body. Oper. Res. Lett., 39(2):121–
126, Mar. 2011.

[35] S. Drewes. Mixed integer second order cone programming. PhD thesis, Technische Universität, 2009.

[36] S. Drewes and S. Pokutta. Cutting-planes for weakly-coupled 0/1 second order cone programs. Electronic Notes
in Discrete Mathematics, 36:735–742, 2010.

[37] A. Frangioni and C. Gentile. Solving nonlinear single-unit commitment problems with ramping constraints.
Operations Research, 54(4):767–775, 2006.

[38] J. Gao and D. Li. Cardinality constrained linear-quadratic optimal control. Automatic Control, IEEE Transactions
on, 56(8):1936–1941, Aug 2011.

[39] M. X. Goemans. Semidefinite programming in combinatorial optimization. Math. Program., 79:143–161, 1997.

[40] R. E. Gomory. Some polyhedra related to combinatorial problems. Lin. Alg. Appl., 2(4):451–558, 1969.

[41] R. E. Gomory and E. L. Johnson. Some continuous functions related to corner polyhedra. Math. Program.,
3:23–85, 1972.

[42] R. E. Gomory and E. L. Johnson. Some continuous functions related to corner polyhedra, II. Math. Program.,
3:359–389, 1972.
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