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Abstract

Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model
parameter uncertainty. The recent connections between RO and problems in statistics and
machine learning domains demand for solving RO problems in ever more larger scale. However,
the traditional approaches for solving RO formulations based on building and solving robust
counterparts or the iterative approaches utilizing nominal feasibility oracles can be prohibitively
expensive and thus significantly hinder the scalability of RO paradigm. In this paper, we present
a general and flexible iterative framework to approximately solve robust convex optimization
problems that is built on a fully online first-order paradigm. In comparison to the existing
literature, a key distinguishing feature of our approach is that it only requires access to first-
order oracles that are remarkably cheaper than pessimization or nominal feasibility oracles, while
maintaining the same convergence rates. This, in particular, makes our approach much more
scalable and hence preferable in large-scale applications, specifically those from machine learning
and statistics domains. We also provide new interpretations of existing iterative approaches in
our framework and illustrate our framework on robust quadratic programming.

1 Introduction

Robust optimization (RO) is one of the leading modeling paradigms for optimization problems
under uncertainty. As opposed to the other approaches, RO seeks a solution that is immunized
against all possible realizations of uncertain model parameters (noises) from a given uncertainty
set. It is widely adopted in practice mainly because of its computational tractability. We refer
the reader to the paper by Ben-Tal and Nemirovski [6], the book by Ben-Tal et al. [4] and surveys
[8, 9, 11, 16] for a detailed account of RO theory and numerous applications.

Recently, fascinating connections have been established between problems from the statistics
and machine learning domains and robust optimization. More precisely, it is demonstrated that
RO can be used to achieve desirable statistical properties such as stability, sparsity, and consis-
tency. For example, for linear regression problems, El Ghaoui and Lebret [19] and Xu et al. [45]
respectively establish the equivalence of the ridge regression and Lasso to specific RO formulations
of unregularized regression problems. Moreover, Xu et al. [44] exhibit similar results in the context
of regularizing support vector machines (SVMs), and [44, 45] validate the statistical consistency of
methods such as SVM and Lasso via RO methodology. In addition to these RO interpretations of
regularization techniques used in statistics and machine learning, robust versions of many problems
from these domains are gaining traction. For example, [43] examines robust variants of SVMs and

1



other classification problems, and [2] explores a robust formulation for kernel classification prob-
lems. We refer the reader to [16, 5] and references therein for further examples and details on
connections between robust optimization and statistics and machine learning.

These recent connections not only highlight the importance of RO methodology but also present
algorithmic challenges where the scalability of RO algorithms with problem dimension becomes
crucial. The primary method for solving a robust convex optimization problem is to transform it
into an equivalent deterministic problem called the robust counterpart. Under mild assumptions,
this yields a convex and tractable robust counterpart problem (see [4, 11, 3]), which can then
be solved using existing convex optimization software and tools. This traditional approach has
seen much success in decision making domain, nevertheless it has a major drawback that the
reformulated robust counterpart is often not as scalable as the deterministic nominal program. In
particular, the robust counterpart can easily belong to a different class of optimization problems as
opposed to the underlying original deterministic problem. For example, a linear program (LP) with
ellipsoidal uncertainty is equivalent to a convex quadratic program (QP), and similarly, a conic-
quadratic program with ellipsoidal uncertainty is equivalent to a semidefinite program (SDP) (see
e.g., [4, 11]). It is well-known that convex QPs as opposed to LPs, and SDPs as opposed to convex
QPs are much less scalable in practice. This then presents a critical challenge in applying RO
methodology in big data applications frequently encountered in machine learning and statistics,
where even solving the original deterministic nominal problem to high accuracy is prohibitively
time-consuming.

The iterative schemes that alternate between the generation/update of candidate solutions and
the realizations of noises offer a convenient remedy to the scalability issues associated with the
robust counterpart approach. Thus far, such approaches [31] and [5] have relied on two oracles: (i)
solution oracles to solve instances of extended (or nominal) problems with constraint structures
similar to (or the same as) the deterministic problem, and (ii) noise oracles to generate/update
particular realizations of the uncertain parameters. At each iteration of these schemes, both solution
and noise oracles are called, and their outputs are used to update the inputs of each other oracle in
the next iteration. Because solution oracles rely on a solver of the same class capable of solving the
deterministic problem, these iterative approaches circumvent the issue of the robust counterpart
approach potentially relying on a different solver. Nevertheless, these iterative approaches still
suffer from a serious drawback: the solution oracles in [31, 5] themselves can be expensive as
they require solving extended or nominal optimization problems completely. While solving the
nominal problem is not as computationally demanding as solving the robust counterpart, the overall
procedure depending on repeated calls to such oracles can be prohibitive. In fact, each such call
to a solution oracle may endure a significant computational cost, which is at least as much as
the computational cost of solving an instance of the deterministic nominal problem. Note that,
to ensure scalability, most applications in machine learning and statistics already need to rely on
cheap first-order methods for solving deterministic nominal problems.

In this paper, we propose an efficient iterative framework for solving robust convex optimization
problems which can rely on, in an online fashion, much cheaper first-order oracles in place of full
solution and noise oracles. In particular, in each iteration, instead of solving a complete optimization
problem within the solution and/or noise oracles, we show that simple simultaneous updates on
the solution and noise in an online fashion using only first-order information from the deterministic
constraint structure is sufficient to solve robust convex optimization problems. Moreover, we show
that the number of calls to such online first-order (OFO) oracles is not only at most that of the
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state-of-the-art iterative approaches utilizing full optimization based oracles for solution and/or
noise, but also almost independent of the dimension of the problem. Therefore, this makes our
approach especially attractive for applications in statistics and machine learning domains where it
is critical to maintain that the overall approach has both gracious dependence on the dimension
of the problem and cheap iterations. We outline our contribution more concretely after discussing
the most relevant literature.

Related Work

Thus far, the iterative approaches, which bypass the restrictions of the robust counterparts, work
with extended nominal problems that belong to the same class as the deterministic nominal one by
carefully controlling the constraints included in the formulation corresponding to noise realizations.

For robust binary linear optimization problems with only objective function uncertainty and
a polyhedral uncertainty set, Bertsimas and Sim [13] suggest an approach which relies on solving
n+ 1 number of instances of the nominal problem, where n is the dimension of the problem.

For robust convex optimization problems, Calafiore and Campi [15] study a ‘constraint sampling’
approach based on forming a single extended nominal problem of the same class as the deterministic
one via i.i.d. sampling of noise realizations. They show that the optimal solution to this extended
nominal problem is robust feasible with high probability where the probability depends on the
sampling procedure, the number of samples drawn, and the dimension.

Mutapcic and Boyd [31] follow a ‘cutting-plane’ type approach where in each iteration, a solution
oracle is called to solve an extended nominal problem of the same class as the deterministic problem
and a noise oracle, referred to as pessimization oracle, is invoked to iteratively expand and refine
the extended nominal problem. Given a candidate solution, a pessimization oracle either certifies
its feasibility with respect to the robust constraints or returns a new noise realization from the
uncertainty set for which the solution is infeasible; then the nominal constraint associated with
that particular noise realization is included in the extended problem. This process is repeated until
a robust feasible solution is found or the last extended problem is found to be infeasible. In the
overall procedure, the number of iterations (or calls to the pessimization oracle) can be exponential
in the dimension. Despite this, [31] reports impressive computational results. The cutting-plane
approach is also further tested on mixed integer linear problems in [12] and it is demonstrated that
the same computational phenomenon holds.

Both of the approaches from [15] and [31] pose issues for high-dimensional problems. In [15],
as the dimension grows, an extended problem with linearly more nominal constraints is required to
ensure the high probability guarantee on finding a good quality solution. In [31] at each iteration,
a nominal constraint is added to the extended nominal problem. The theoretical bound on the
number of constraints that need to be added is exponential, so the extended problem in [31] can
grow to be exponentially large. Moreover, in both cases the extended nominal problem may no
longer have certain favorable problem structure of the deterministic nominal problem, such as a
network flow structure.

To address these issues, in particular, the issue of solving extended nominal problems that
are not only larger-in-size than the deterministic problem but also may lack certain favorable
problem structure of the deterministic problem, Ben-Tal et al. [5] introduce a new iterative approach
to approximately solve robust feasibility problems via a nominal feasibility oracle and running
an online learning algorithm to choose noise realizations. Given a particular noise realization,
the nominal feasibility oracle solves an instance of the deterministic nominal feasibility problem
obtained by simply fixing the noise to the given value. Hence, the problem solved by this oracle
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has the same number of constraints and the same structure as the original nominal problem; in
particular its size does not grow in each iteration. This is an important distinguishing feature of this
approach. The other distinguishing feature is that Ben-Tal et al. [5] replace the pessimization oracle
of [31] by employing an online learning algorithm, which simply requires first-order information of
the noise from the constraint functions. Moreover, [5] provides a dimension independent bound on
the number of iterations (nominal feasibility oracle calls).

Because the approaches of both [31] and [5] are closely related to our work, we give a detailed
summary of these in Sections 4.2 and 4.3 respectively and highlight their connections to our work.
In fact, we show that they both can be seen as special cases of our framework.

We close with a brief summary of the assumptions on the computational requirements of these
methods. The constraint sampling approach of [15] requires access to a sampling procedure on
the uncertainty sets as well as an oracle capable of solving the extended nominal problem. The
cutting plane approach of [31] replaces the sampling procedure of [15] with a noise oracle, namely
the pessimization oracle that works with the uncertainty sets but still requires the same type of
optimization oracle as a solution oracle to solve the extended problems. Ben-Tal et al. [5] substitute
the pessimization oracle with an online learning-based procedure, which requires merely first-order
information from the constraint functions and simple projection type operations on the associated
uncertainty sets, but it still relies on a solution oracle capable of solving the original nominal
problem, which is essentially the same (up to log factors) as the optimization oracles in [15] and
[31]. If the deterministic problem admits special structure such as network flows etc., a specific
solver can be used in the framework of [5], but this is not possible for [15] and [31].

Summary of Our Contributions

It is possible to view all of these iterative approaches as two iterative processes that run simul-
taneously and in conjunction with each other to generate/update solutions and noise realizations.
This naturally leads to a dynamic game environment where in each round Player 1 chooses a so-
lution and Player 2 chooses a realization of uncertain parameters. In this framework, the policies
employed by these players in their decision making determine the nature of the final approach. In
the case of [31], Player 1 considers all of the previous noise realizations when making his decision,
whereas Player 2 simply reacts to the current solution when choosing the noise. In [5], Player 1
reacts to only the current noise in generating/updating the solution while Player 2 minimizes the
regret associated with past solutions in choosing noise.

In this paper, we further analyze this interaction between Player 1 and Player 2, with the aim
of deriving a simpler and computationally much less demanding iterative approach to solving RO
problems. Our contributions can be summarized as follows.

1. We build a general and flexible framework for iteratively solving robust feasibility problems,
and demonstrate its flexibility by describing it as a meta-template. By customizing our frame-
work appropriately, we modify the pessimization oracle-based approach of [31] by replacing
the extended nominal solver used in [31] with efficient first-order updates. We call this the
FO-based pessimization approach, and demonstrate that as opposed to [31] it has both a
much better bound on the number of oracle calls and far superior practical performance. We
also provide a new interpretation of the nominal feasibility oracle-based approach of [5] as a
special case within our framework. Furthermore, we extend the analysis of the approach of
[5] under the same assumptions, e.g., access to a nominal optimization oracle, and show that
it can solve the robust optimization problem directly without relying on a binary search (see
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Remark 4.3).

2. When the original deterministic problem admits first-order oracles capable of providing gra-
dient/subgradient information on each constraint function, we demonstrate that online first-
order (OFO) algorithms can be used to iteratively generate/update solutions and noise real-
izations simultaneously in an online manner leading to robust feasibility/infeasibility certifi-
cates within our framework. In contrast to the approaches of [31] and [5], which rely on full
nominal feasibility oracles to generate points, our OFO-based approach only requires simple
update rules in each iteration and thus has much lower per-iteration cost. Besides, our noise
oracle generates a realization of the noise in an online learning fashion as was done in [5], and
hence it is less expensive than the pessimization oracle of [31].

3. In our framework, the number of iterations (or oracle calls) needed to obtain approximate
robust solution or a robust infeasibility certificate is a function of the approximation guarantee
ε and the complexities of the domains for the solution and the uncertainty set; in particular,
our convergence rate is (almost) independent of both the number of robust constraints and the
dimension of the deterministic problem. We also demonstrate that the iteration complexity
of our OFO-based approach is at least as good as that of the efficient approach of [5], and
better than the exponential complexity of [31]. Overall, our OFO-based approach leads to
computational savings over the approach of [5] by a factor as large as O(1/(ε2 log(1/ε)))
arithmetic operations when the number updates of the solution is smaller than or equal to
the number of updates of the noise realization, which is the case in many applications. For
further comparisons and discussion, see Section 4.4. In addition, our framework is amenable to
exploiting favorable structural properties of the constraint functions such as strong concavity,
smoothness, etc., through which better convergence rates can be achieved.

4. Our framework is based on formulating the robust feasibility problem as a convex-nonconcave
saddle point (SP) problem, and explicitly analyzing its structure. While convex-concave SP
problems are well-studied in the literature, and many efficient first-order algorithms exist for
these (see for example [38, 27, 28]), the convex-nonconcave SP problem is not as well-studied.
To our knowledge, an explicit study of convex-nonconcave SP problems and their relation
to RO has not been conducted previously; in this respect, the most closely related work
[5] neither provides an explicit connection between robust feasibility and SP problems, nor
analyzes their structure explicitly.

To demonstrate the application and effectiveness of our proposed framework, we walk through
a detailed example on robust QPs. In particular, for robust QPs, we are able to leverage a re-
cent convex QP-based reformulation of the classical trust region subproblem [25, 23] in order to
avoid working with a nonconvex reformulation in a lifted space as in [5, Section 4.2] and relying
on a probabilistic follow-the-perturbed-leader type algorithm [5, Section 3.2]. While using such
nonconvex techniques will work within our framework, our convex reformulation allows us to work
directly in the original space of the variables with a deterministic subgradient-based algorithm
while still achieving asymptotically similar iteration complexity guarantees as [5]. Moreover, each
iteration of our approach requires only first-order updates where the most expensive operation is
the computation of a maximum eigenvector; thus our per-iteration cost is significantly less.

We also conduct a preliminary numerical study on the comparison of our approach with other
iterative approaches [31] and [5] on robust QPs arising in portfolio optimization. Our results show
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that when the problem size is small, the nominal solver approaches of [31] and [5] are more efficient.
However, when problem size increases, replacing the nominal solvers with first-order updates using
our framework allows us to achieve faster solution times. This highlights the benefits and potential
of investigating first-order based approaches such as ours in iterative RO methods.

Outline

The rest of the paper is organized as follows. We begin with some notation and preliminaries in
Section 2. We introduce our robust feasibility problem and robust feasibility/infeasibility certificates
in Section 2.1, convex-concave SP problems in Section 2.2, and briefly summarize important online
convex optimization (OCO) tools as well as a useful OFO algorithm in Section 2.3. We formulate
the robust feasibility problem as a convex-nonconcave SP problem in Section 3; this formulation
and certain bounds associated with its SP gap function form the basis of our general framework for
solving robust feasibility problems. In Section 4 we specify an assortment of approaches obtained
in our general framework by using different oracles. We examine our OFO-based approach in
Section 4.1 by interpreting various terms in our framework in the context of OCO. In Section
4.2, we modify the pessimization oracle-based approach of [31] to obtain an efficient bound on
the number of iterations required. In Section 4.3 we show how the nominal feasibility oracle-
based approach of [5] fits within our framework. Finally, we discuss the convergence rates and
accelerations attainable in our framework and compare our work with the existing approaches in
Section 4.4. In Section 5 we illustrate our OFO-based approach through an example application on
robust QPs. We provide in Section 6 a preliminary numerical study comparing our framework with
other iterative approaches [31] and [5]. We close with a summary of our results and a few compelling
further research directions in Section 7. In Appendix A we give an alternative formulation of the
robust feasibility problem as a convex-concave SP problem in an extended space, and discuss its
advantages and disadvantages over the convex-nonconcave SP formulation.

2 Notation and Preliminaries

Given a ∈ R, sign(a) denotes the sign of the number a. For a positive integer n ∈ N, we let [n] =
{1, . . . , n} and define ∆n := {x ∈ Rn+ :

∑
i∈[n] xi = 1} to be the standard simplex. Throughout the

paper, the superscript, e.g., f i, ui, U i, is used to attribute items to the i-th constraint, whereas the
subscript, e.g., xt, ft, φt, is used to attribute items to the t-th iteration. Therefore, we sometimes
use ui, xt, as well as uit to denote vectors in Rn. We use the notation {xt}Tt=1 to denote the collection
of items {x1, . . . , xT }. Given a vector x ∈ Rn, we let x(k) denote its k-th coordinate for k ∈ [n].
One exception we make to this notation is that we always denote the convex combination weights
θ ∈ ∆T with θt. For x ∈ Rn and p ∈ [1,∞], we use ‖x‖p to denote the `p-norm of x defined as

‖x‖p =


(∑

i∈[n] |x(i)|p
)1/p

if p ∈ [1,∞)

maxi∈[n] |x(i)| if p =∞
.

Throughout this paper, we use Matlab notation to denote vectors and matrices, i.e., [x; y] denotes
the concatenation of two column vectors x, y. Sn denotes the space of n× n symmetric matrices,
and we let Sn+ be the positive semidefinite cone in Sn. We let In denote the identity matrix in
Sn. For a matrix A ∈ Sn, λmax(A), ‖A‖Fro, and ‖A‖Spec correspond to its maximal eigenvalue,
Frobenius norm, and spectral norm, respectively. Given a set V , we denote its closure by cl(V ).
We abuse notation slightly by denoting ∇f(x) for both the gradient of function f at x if f is
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differentiable and a subgradient of f at x, even if f is not differentiable. If f is of the form f(x, u),
then ∇xf(x, u) denotes the subgradient of f at x while keeping the other variables fixed at u.

2.1 Robust Feasibility Problem

Consider a convex deterministic or nominal mathematical program

min
x

{
f0(x) : x ∈ X, f i(x, ui) ≤ 0, ∀i ∈ [m]

}
, (1)

where the domain X ⊂ Rn is closed and convex, the functions f0(x) and f i(x, ui) for i ∈ [m] are
convex functions of x, and u = (u1, . . . , um) is a fixed parameter vector. Without loss of generality
we assume the objective function f0(x) does not have uncertainty. The robust convex optimization
problem associated with (1) is

Opt := min
x

{
f0(x) : x ∈ X, sup

ui∈U i

f i(x, ui) ≤ 0, ∀i ∈ [m]

}
, (2)

where U1, . . . , Um are the uncertainty sets given for the parameter ui of constraint i ∈ [m]. Because
we assume formulation (1) is convex, the overall optimization problem in (2) is convex.

In this paper, we work under the following mild regularity assumption:

Assumption 2.1. The constraint functions f i(x, ui) for all i ∈ [m] are finite-valued on the domain
X × U i, convex in x and concave in ui. X, the domain for x, is closed and convex, and U i, the
domains for ui, are closed and bounded.

We take Assumption 2.1 as given for all our results and proofs. Without loss of generality, we
assume that the uncertainty set has a Cartesian product form U1 × . . . × Um, see e.g., [8]; we let
U = U1× . . .×Um and write u = [u1; . . . ;um] ∈ U . We do not further assume that the sets U i are
convex. However, for some algorithms we consider, convexity of U i for i ∈ [m] will be required.

A convex optimization problem can be solved by solving a polynomial number of associated
feasibility problems in a standard way, via a binary search over its optimal value. In particular, let
[υ0, υ0] be an initial interval containing the optimal value of (2). At each iteration k of the binary
search, we update the domain Xk := X ∩ {x : f0(x) ≤ υk} for some υk ∈ [υk, υk] and arrive at the
following robust feasibility problem:

find x ∈ Xk s.t. sup
ui∈U i

f i(x, ui) ≤ 0 ∀i ∈ [m]. (3)

Then based on the feasibility/infeasibility status of (3), we update our range [υk+1, υk+1] and go
to iteration k + 1. In this scheme, we are guaranteed to find a solution x∗ ∈ X whose objective

value is within δ > 0 of the optimum value of (2) in at most
⌊
log2

(
υ0−υ0
δ

)⌋
iterations. Therefore,

one can equivalently study the complexity of solving robust feasibility problem (3) as opposed to
(2). From now on, we focus on solving robust feasibility problem and assume that the constraint
on the objective function f0(x) is already included in the domain X for simplicity in our notation.

Given functional constraints f i(x) ≤ 0, i ∈ [m], most convex optimization methods will declare
infeasibility or return an approximate solution x ∈ X such that f i(x) ≤ ε for i ∈ [m] for some
tolerance level ε > 0. Therefore, we consider the following robust approximate feasibility problem:{

Either : find x ∈ X s.t. supui∈U i f i(x, ui) ≤ ε ∀i ∈ [m];

or : declare infeasibility, ∀x ∈ X, ∃i ∈ [m] s.t. supui∈U i f i(x, ui) > 0.
(4)
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We refer to any feasible solution x to (4), i.e., x ∈ X such that supui∈U i f i(x, ui) ≤ ε holds for
all i ∈ [m] as a robust ε-feasibility certificate. Similarly, any realization of the uncertain parameters
ū ∈ U such that there exists no x ∈ X satisfying f i(x, ūi) ≤ 0 for all i ∈ [m] is referred to as a
robust infeasibility certificate.

2.2 Saddle Point Problems

Saddle point (SP) problems play a vital role in our developments. In its most general form, a
convex-concave SP problem is given by

SV = inf
x∈X

sup
y∈Y

φ(x, y), (S)

where the function φ(x, y) is convex in x and concave in y and the domains X,Y are nonempty
closed convex sets in Euclidean spaces Ex,Ey.

Any convex-concave SP problem (S) gives rise to two convex optimization problems that are
dual to each other:

Opt(P ) = infx∈X [φ(x) := supy∈Y φ(x, y)] (P )

Opt(D) = supy∈Y [φ(y) := infx∈X φ(x, y)] (D)

with Opt(P ) = Opt(D) = SV. It is well-known that the solutions to (S) — the saddle points of φ
on X × Y — are exactly the pairs [x; y] formed by optimal solutions to the problems (P ) and (D).

We quantify the accuracy of a candidate solution [x̄, ȳ] to SP problem (S) with the saddle point
gap given by

εφsad(x̄, ȳ) := φ(x̄)− φ(ȳ) =
[
φ(x̄)−Opt(P )

]︸ ︷︷ ︸
≥0

+
[
Opt(D)− φ(ȳ)

]︸ ︷︷ ︸
≥0

. (5)

Because convex-concave SP problems are simply convex optimization problems, they can in prin-
ciple be solved by polynomial-time interior point methods (IPMs). However, the computational
complexity of such methods depends heavily on the dimension of the problem. Thus, scalability
of resulting algorithms becomes an issue in large-scale applications. As a result, for large-scale
SP problems, one has to resort to first-order subgradient-type methods. On a positive note, there
are many efficient first-order methods (FOMs) for convex-concave SP problems. These in partic-
ular include Nesterov’s accelerated gradient descent algorithm [38] and Nemirovski’s Mirror-Prox

algorithm [34], both of which bound the saddle point gap at a rate of εφsad(x̄T , ūT ) ≤ O
(

1
T

)
where

x̄T , ūT are solutions obtained after T iterations.

2.3 Online Convex Optimization Tools

Our efficient framework for RO employs tools from the online convex optimization domain. We
now briefly outline these and refer to [17, 21, 42] for further details and applications of OCO.

OCO is used to capture decision making in dynamic environments. We are given a finite time
horizon T , closed, bounded, and convex domain Z, and in each time period t ∈ [T ], a convex loss
function ft : Z → R is revealed. At time periods t ∈ [T ] we must choose a decision zt ∈ Z, and
based on this we suffer a loss of ft(zt) and receive some feedback typically in the form of first-order
information on ft. Our goal is to minimize the weighted regret

T∑
t=1

θtft(zt)− inf
z∈Z

T∑
t=1

θtft(z), (6)
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where θ ∈ ∆T is a vector of convex combination weights.1

Most OCO algorithms are closely related to offline iterative FOMs. In this paper, we will make
use of the proximal setup of [27] to choose the sequence {zt}Tt=1 which ensures that the weighted
regret (6) converges to 0 as T →∞. Thus, we make the following assumption on Z for the existence
of a proximal setup.

Assumption 2.2. Let Ez be the Euclidean space containing Z. There exists a norm ‖·‖ and its dual
norm ‖ · ‖∗ on Ez, a distance-generating function ω : Z → R which is 1-strongly convex with respect
to ‖·‖ and leads to an easy-to-compute prox function Proxz(ξ) := arg minw∈Z {〈ξ, w〉+ ω(w)− 〈ω′(z), w − z〉}
and set width Ω := maxz∈Z ω(z)−minz∈Z ω(z) which is finite when Z is bounded.

The proximal setup of Assumption 2.2 allows us to adjust to the geometry of domain Z. The
standard basic domains satisfying Assumption 2.2 include simplex, Euclidean ball, and spectahe-
dron; see [27, Section 1.7] for the standard proximal setups (i.e., Assumption 2.2) for these basic
domains in terms of selection of ‖ · ‖ and resulting ω, Prox computation, and set width Ω.

Under Assumption 2.2 and various structural properties, the straightforward extension of the
standard online mirror descent algorithm (see, e.g., [29]) from uniform weigths to weighted regret
achieves the following convergence rate.

Theorem 2.1 ([29, Theorem 5]). Suppose there exists G ∈ (0,∞) such that ‖∇ft(z)‖∗ ≤ G

for all z ∈ Z, t ∈ [T ]. Define γ =
√

2Ω
G2

∑T
t=1 θ

2
t

. Choose z1 = arg minz∈Z ω(z) and zt+1 =

Proxzt(γθt∇ft(zt)) for t ∈ [T ]. Then

T∑
t=1

θtft(zt)− inf
z∈Z

T∑
t=1

θtft(z) ≤

√√√√2ΩG2

T∑
t=1

θ2
t .

In particular, for uniform weights θt = 1/T , the upper-bound becomes O(1/
√
T ).

We refer to [29] for details of the proof. When ω(z) = z>z/2 and weights θt = 1/T for t ∈ [T ],
the update rule zt+1 = Proxzt(γ∇ft(zt)) becomes simply gradient descent, and Theorem 2.1 reduces
to the standard bound of online gradient descent from [47].

3 General Framework for Robust Feasibility Problems

In this section, we build a general framework to solve the robust feasibility problem (4) by working
with its natural saddle point formulation.

Given constraint functions f i(x, ui), i ∈ [m], let us define Φ(x, u) := maxi∈[m] f
i(x, ui). Then

Φ(x, u) is a convex function of x, but not necessarily concave in u. In addition, with this definition
of Φ(·), the robust approximate feasibility problem (4) is equivalent to simply verifying

either inf
x∈X

sup
u∈U

Φ(x, u) = inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui) ≤ ε or inf
x∈X

sup
u∈U

Φ(x, u) > 0, (7)

1Note that in the OCO literature, regret is usually defined with uniform weights θt = 1/T . Nonuniform weights
introduce flexibility to our framework by allowing selection of specific customization of OCO algorithms for exploiting
structural properties of the constraint functions f i to achieve better convergence rates. A prime example for this is
when the functions are strongly convex.
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which is nothing but solving a specific SP problem and checking its value. Analogous to the
convex-concave SP gap (5), for a given solution [x̄, ū], we define the SP gap of problem (7) as

εΦsad(x̄, ū) := Φ(x̄)− Φ(ū) = sup
u∈U

Φ(x̄, u)− inf
x∈X

Φ(x, ū).

In general, solving a convex-nonconcave SP problem of form (7), i.e., finding a solution [x̄, ū]
such that εΦsad(x̄, ū) ≤ ε, can be difficult. That said, a bound on the SP gap εΦsad(x̄, ū) along with
the value of Φ(x̄, ū) leads to robust feasibility certificates for (7) as follows.

Theorem 3.1. Let Ψ : X × U → R be a given function associated with a SP (not necessarily
admitting a convex-concave structure). Suppose we have x̄ ∈ X, ū ∈ U , and τ ∈ (0, 1) such
that εΨsad(x̄, ū) ≤ τε. Then if Ψ(x̄, ū) ≤ (1 − τ)ε, we have supu∈U Ψ(x̄, u) ≤ ε. Moreover, if
Ψ(x̄, ū) > (1− τ)ε and τ ≤ 1

2 , we have infx∈X Ψ(x, ū) > 0.

Proof. Suppose Ψ(x̄, v̄) ≤ (1 − τ)ε. Because εΨsad(x̄, v̄) = supu∈U Ψ(x̄, u) − infx∈X Ψ(x, ū) ≤ τε,
we have supu∈U Ψ(x̄, u) ≤ infx∈X Ψ(x, ū) + τε ≤ Ψ(x̄, ū) + τε ≤ ε. On the other hand, when
Ψ(x̄, ū) > (1 − τ)ε, we have (1 − τ)ε < Ψ(x̄, ū) ≤ supu∈U Ψ(x̄, u) ≤ infx∈X Ψ(x, ū) + τε, which
implies infx∈X supu∈U Ψ(x, u) ≥ infx∈X Ψ(x, ū) > (1− 2τ)ε ≥ 0 when τ ≤ 1

2 .

Remark 3.1. When m = 1, Φ(x, u) = f1(x, u1), and it is thus convex in x and concave in u
due to Assumption 2.1. Therefore, in the case of a single robust constraint, i.e., m = 1, under
Assumption 2.1 and assuming U = U1 is a closed convex set, the optimization problem in (7)
reduces to a standard convex-concave SP problem.

While it is not very common, a few robust convex optimization problems come with a single
robust constraint and convex uncertainty set U ; see for example [2] for a robust version of a SVM
problem with one constraint. In such cases, based on Remark 3.1, the resulting convex-concave SP
problems can directly be solved via efficient FOMs. On the other hand, in the presence of multiple
constraints, the function Φ(x, u) is not concave in u = [u1; . . . ;um] even under Assumption 2.1.
Nevertheless, when m > 1, it is still possible to have a convex-concave SP reformulation of the
optimization problem in (7) in an extended space via perspective transformations, which we present
in Appendix A. While this reformulation has the benefit of reducing the robust feasibility problem
to a well-known and well-studied problem, it destroys the simplicity of the original domains and
constraint functions and hence comes with some challenges. Therefore, we develop a framework
where we work directly with the convex-nonconcave SP formulation in (7) in the space of original
variables. Moreover, because we work in the original space of variables, we simply utilize the first-
order information on the original constraint functions f i and original domains X and U i. This
direct approach in particular allows us to take greater advantage of the structure of the original
formulation such as the availability of efficient projection (prox) computations over domains X, U i,
and/or better parameters for smoothness, Lipschitz continuity, etc., of the functions f i.

Because Φ(x, u) is not concave in u, we cannot bound the SP gap εΦsad(x̄, ū) by using traditional
FOMs designed for solving convex-concave SP problems. However, we next show that by just
partially upper bounding εΦsad(x̄, ū), we can derive a general iterative framework to obtain robust
feasibility/infeasibility certificates. We describe the further specifics of this framework in Section 4.

Henceforth we will no longer use the shorthand notation Φ(x, u) = maxi∈[m] f
i(x, ui), but we

will denote the SP gap εΦsad(x̄, ū) as

ε(x̄, ū) := εΦsad(x̄, ū) = max
i∈[m]

sup
ui∈U i

f i(x̄, ui)− inf
x∈X

max
i∈[m]

f i(x, ūi). (8)
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The robust feasibility certificate result from Theorem 3.1 indicates the importance of bounding
the SP gap ε(x̄, ū). Often, FOMs achieve this by iteratively generating points xt ∈ X, ut ∈ U for
t ∈ [T ] and tracking the points x̄ and ū obtained from a convex combination of {xt, ut}Tt=1. In order
to simplify our notation, given convex combination weights θ ∈ ∆T and points {xt, ut}Tt=1, we let

x̄T :=

T∑
t=1

θtxt and ūT :=

T∑
t=1

θtut.

We now present an upper bound on ε(x̄T , ūT ) that follows naturally from the convex-concave
structure of functions f i. To this end, given a set of vectors yt ∈ ∆m for t ∈ [T ], we also define

ε◦({xt, ut, θt}Tt=1) := max
i∈[m]

{
sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t)

}
, and

ε•({xt, ut, yt, θt}Tt=1) := max
i∈[m]

T∑
t=1

θtf
i(xt, u

i
t)− inf

x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit),

together with

ε̂({xt, ut, yt, θt}Tt=1) := inf
x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit)− inf

x∈X
max
i∈[m]

T∑
t=1

θtf
i(x, uit).

Our next result relates these quantities to the value of the SP gap function ε (x̄T , ūT ).

Proposition 3.1. Let xt ∈ X and ut ∈ U for t ∈ [T ] be given a set of vectors. Then for any set
of vectors yt ∈ ∆m for t ∈ [T ] and any θ ∈ ∆T , we have

ε

(
T∑
t=1

θtxt,
T∑
t=1

θtut

)
≤ ε◦({xt, ut, θt}Tt=1) + ε•({xt, ut, yt, θt}Tt=1) + ε̂({xt, ut, yt, θt}Tt=1). (9)

Proof. Given yt ∈ ∆m for t ∈ [T ] and θ ∈ ∆T , let us define x̄ :=
∑T

t=1 θtxt and ū :=
∑T

t=1 θtut. We
first partition ε(x̄, ū) as ε(x̄, ū) = ε(x̄) + ε(ū) where

ε(x̄) := max
i∈[m]

sup
ui∈U i

f i(x̄, ui)− inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui),

ε(ū) := inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui)− inf
x∈X

max
i∈[m]

f i(x, ūi),

and then derive upper bounds on ε(x̄) and ε(ū).
We start with bounding ε(x̄). Because the functions f i(x, ui) are convex in x for all i and

θ ∈ ∆T , we have maxi∈[m] supui∈U i f i(x̄, ui) ≤ maxi∈[m] supui∈U i

∑T
t=1 θtf

i(xt, u
i). Therefore,

ε(x̄) = max
i∈[m]

sup
ui∈Ui

f i(x̄, ui)− inf
x∈X

max
i∈[m]

sup
ui∈Ui

f i(x, ui)

≤ max
i∈[m]

sup
ui∈Ui

T∑
t=1

θtf
i(xt, u

i)− max
i∈[m]

T∑
t=1

θtf
i(xt, u

i
t) + max

i∈[m]

T∑
t=1

θtf
i(xt, u

i
t)− inf

x∈X
max
i∈[m]

sup
ui∈Ui

f i(x, ui)

≤ max
i∈[m]

{
sup

ui∈Ui

T∑
t=1

θtf
i(xt, u

i)−
T∑

t=1

θtf
i(xt, u

i
t)

}
+ max

i∈[m]

T∑
t=1

θtf
i(xt, u

i
t)− inf

x∈X
max
i∈[m]

sup
ui∈Ui

f i(x, ui),

(10)
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where the last inequality follows since maxi∈[m]{αi − βi} ≥ maxi∈[m] αi − maxi∈[m] βi for any
sequence of numbers αi, βi, i ∈ [m].

Note that infx∈X maxi∈[m] f
i(x, ui) ≥ infx∈X maxi∈[m]

∑T
t=1 θtf

i(x, ui) because under Assump-
tion 2.1 the functions f i(x, ui) are concave in ui for all i. Thus, we arrive at

ε(ū) = inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui)− inf
x∈X

max
i∈[m]

f i(x, ūi)

≤ inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui)− inf
x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit) + inf

x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit)

− inf
x∈X

max
i∈[m]

T∑
t=1

θtf
i(x, uit)

= inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui)− inf
x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit) + ε̂({xt, ut, yt, θt}Tt=1). (11)

Then by summing (10) and (11) and rearranging the terms, we deduce the result.

We are now ready to state our main result. This is analogous to Theorem 3.1 except that we
do not need to bound all three terms in (9), but instead it suffices to guarantee that

ε◦({xt, ut, θt}Tt=1) + ε•({xt, ut, yt, θt}Tt=1) ≤ ε.

We show that when the above condition holds, based on the value of maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) we

can then obtain either a robust ε-feasible solution, or an infeasibility certificate.

Theorem 3.2. Suppose we have sequences {xt, ut, yt, θt}Tt=1 with xt ∈ X, ut ∈ U , yt ∈ ∆m for all
t ∈ [T ], θ ∈ ∆T . Let τ ∈ (0, 1). If ε◦({xt, ut, θt}Tt=1) ≤ τε and maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1−τ)ε,

then the solution x̄T :=
∑T

t=1 θtxt is ε-feasible with respect to (4). If ε•({xt, ut, yt, θt}Tt=1) ≤ (1−τ)ε

and maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) > (1− τ)ε, then (4) is infeasible.

Proof. First suppose there exists a τ ∈ (0, 1) and corresponding vectors {xt, ut, yt, θt}Tt=1 such that
ε◦({xt, ut, θt}Tt=1) ≤ τε and maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1− τ)ε holds as well. Note that

τε ≥ ε◦({xt, ut, θt}Tt=1) = max
i∈[m]

{
sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t)

}

≥ max
i∈[m]

sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−max
i∈[m]

T∑
t=1

θtf
i(xt, u

i
t), (12)

where the last inequality follows since maxi∈[m]{αi−βi} ≥ maxi∈[m] αi−maxi∈[m] βi for any sequence
of numbers αi, βi, i ∈ [m]. Then x̄T is an ε-feasible solution for (4) because

max
i∈[m]

sup
ui∈U i

f i
(
x̄T , u

i
)

= max
i∈[m]

sup
ui∈U i

f i

(
T∑
t=1

θtxt, u
i

)

≤ max
i∈[m]

sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i) ≤ τε+ max
i∈[m]

T∑
t=1

θtf
i(xt, u

i
t) ≤ ε,
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where the first inequality follows from the convexity of the functions f i and the fact that θ ∈ ∆T , the
second inequality from (12), and the last inequality holds since maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1−τ)ε.

On the other hand, suppose ε•({xt, ut, yt, θt}Tt=1) ≤ (1 − τ)ε and maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) >

(1− τ)ε. Note that

inf
x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit) ≤ inf

x∈X

T∑
t=1

θt max
i∈[m]

f i(x, uit)

≤ inf
x∈X

T∑
t=1

θt max
i∈[m]

sup
ui∈U i

f i(x, ui) = inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui), (13)

where the first inequality follows since yt ∈ ∆m for all t ∈ [T ], the second inequality holds because

f i(x, uit) ≤ supui∈U i f i(x, ui) for all i ∈ [m] and y
(i)
t ≥ 0 for i ∈ [m], t ∈ [T ], and the last equation

follows from θ ∈ ∆T . Then using the bound

(1− τ)ε ≥ ε•({xt, ut, yt, θt}Tt=1) = max
i∈[m]

T∑
t=1

θtf
i(xt, u

i
t)− inf

x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit), (14)

we arrive at

inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui) ≥ inf
x∈X

T∑
t=1

θt

m∑
i=1

y
(i)
t f i(x, uit) ≥ max

i∈[m]

T∑
t=1

θtf
i(xt, u

i
t)− (1− τ)ε > 0,

where the first inequality follows from inequality (13), the second inequality from (14) and the last
inequality holds because maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) > (1− τ)ε. This implies (4) is infeasible.

In Section 4.1 we will show that ε◦({xt, ut, θt}Tt=1) can be interpreted as a weighted regret term
(6). On the other hand, the term ε•({xt, ut, yt, θt}Tt=1) has no such direct interpretation. In order
to upper-bound it by a weighted regret term, we need the following result.

Corollary 3.1. Given sequences {xt, ut, θt}Tt=1 with xt ∈ X, ut ∈ U , for all t ∈ [T ], θ ∈ ∆T ,
there is an appropriate choice of sequence {ȳt}Tt=1 where ȳt ∈ ∆m for all t ∈ [T ], such that
ε•({xt, ut, ȳt, θt}Tt=1) is upper-bounded by

ε•({xt, ut, θt}Tt=1) :=
T∑
t=1

θt max
i∈[m]

f i(xt, ut)− inf
x∈X

T∑
t=1

θt max
i∈[m]

f i(x, ut). (15)

Thus, if ε•({xt, ut, θt}Tt=1) ≤ (1−τ)ε and maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) > (1−τ)ε, then (4) is infeasible.

Proof. Given {ut}Tt=1, let x∗ ∈ arg minx∈X
∑T

t=1 θt maxi∈[m] f
i(x, uit) and for all t ∈ [T ] define

ȳt ∈ Rm to be the i-th unit vector where i is the smallest index satisfying i ∈ arg maxi′∈[m] f
i(x∗, ui

′
t ).

Then infx∈X
∑T

t=1 θt
∑m

i=1 ȳ
(i)
t f i(x, uit) = infx∈X

∑T
t=1 θt maxi∈[m] f

i(x, uit), and the bound follows

from maxi∈[m]

∑T
t=1 θtf

i(xt, ut) ≤
∑T

t=1 θt maxi∈[m] f
i(xt, ut). We deduce the last result from The-

orem 3.2.

The following corollary demonstrates how we can choose τ in Theorem 3.2.
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Corollary 3.2. Suppose {xt, ut, yt, θt}Tt=1 with xt ∈ X, ut ∈ U , yt ∈ ∆m for all t ∈ [T ], and θ ∈ ∆T

is such that there exists κ◦, κ• ∈ (0, 1) satisfying ε◦({xt, ut, θt}Tt=1) ≤ ε κ◦ and ε•({xt, ut, yt, θt}Tt=1) ≤
ε κ• with κ◦+κ• ≤ 1. Let τ ∈ [κ◦, 1−κ•]. Whenever maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1−τ)ε as well, the

solution x̄T :=
∑T

t=1 θtxt is ε-feasible with respect to (4). Also, whenever maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) >

(1− τ)ε, then (4) is infeasible.

Proof. Note that τ ∈ (0, 1) follows from its definition, κ◦, κ• ≥ 0, and κ◦ + κ• ≤ 1. Furthermore,
the interval [κ◦, 1−κ•] is well-defined since κ◦ ≤ 1−κ• always holds. Moreover, ε◦({xt, ut, θt}Tt=1) ≤
ε κ◦ ≤ ε τ and ε•({xt, ut, yt, θt}Tt=1) ≤ ε κ• ≤ ε(1− τ) holds from the definition of τ . The result now
follows from Theorem 3.2.

Theorem 3.2 and Corollary 3.1 points to our general iterative framework for finding robust feasi-
bility/infeasibility certificates of (4): generate sequences {xt, ut}Tt=1 iteratively to bound ε◦({xt, ut, θt}Tt=1)
and ε•({xt, ut, θt}Tt=1), and then evaluate the term maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t). We provide a descrip-

tion of our framework in Algorithm 1. We assume that we have access to weights {θt}Tt=1 and update
algorithms Ai and Ax for choosing uit ∈ U i and xt ∈ X based on past observations {xs, us}t−1

s=1. We
denote the updates by

uit = Ai({xs, us}t−1
s=1) ∈ U i ∀i ∈ [m], xt = Ax({xs, us}t−1

s=1) ∈ X,

and initializations ui1 = Ai({}) ∀i ∈ [m], x1 = Ax({}). Moreover, we assume that these algorithms
enjoy the following convergence guarantees: for any sequence {xt}Tt=1, let uit = Ai({xs, us}t−1

s=1) ∀i ∈
[m], then

sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t) ≤ Ri(T ); (16)

for any sequence {us}Ts=1, let xt = Ax({xs, us}t−1
s=1), then

ε•({xt, ut, θt}Tt=1) =

T∑
t=1

θt max
i∈[m]

f i(xt, u
i
t)− inf

x∈X

T∑
t=1

θt max
i∈[m]

f i(x, uit) ≤ Rx(T ). (17)

Explicit examples of Ai,Ax and their bounds Ri,Rx will be discussed in Section 4. Generally, we
desire that the error bounds Ri(T ),Rx(T )→ 0 as T →∞, which can be achieved by using online
mirror descent as in Theorem 2.1. That said, our OFO-based approach in Algorithm 1 is quite
flexible in terms of the selection of OFO algorithms Ai,Ax, and is certainly not restricted to only
using online mirror descent.

Remark 3.2. Notice that in Algorithm 1 we generate ut before generating xt. Thus, nothing stops
us from choosing xt based on the knowledge of ut, or vice versa. Indeed, the pessimization oracle
approach of [31] and the nominal feasibility oracle approach of [5] fit within our framework if we
rewrite Algorithm 1 to reflect this, and it is a trivial matter to do so. However, a conflict may
arise if we encounter a situation where generating xt requires knowledge of ut, and generating ut
also requires knowledge of xt. Thus, when selecting the update algorithms Ai, Ax, care must be
taken to avoid such situations. Our suggested OFO approach in Section 4.1 utilizes Theorem 2.1.
Moreover, Theorem 2.1 generates the current decision in a non-anticipatory manner based on only
the knowledge of ft−1, and not of ft. That is, it ensures that we will only use ut−1 to generate xt,
and similarly we only use xt−1 to generate ut, thus no conflicts will arise.
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Algorithm 1 OFO-based approximate robust feasibility solver.

input: update algorithms Ai, i ∈ [m], Ax, tolerance level ε > 0, sufficiently large T = T (ε) such that
maxi∈[m]Ri(T ) +Rx(T ) ≤ ε, and convex combination weights θ1, . . . , θT > 0.
output: either x̄ ∈ X such that supui∈Ui f i(x̄, ui) ≤ ε for all i ∈ [m], or an infeasibility certificate for
(4).
initialize ui1 = Ai({}) for i ∈ [m] and x1 = Ax({}).
for t = 2, . . . , T do

for i = 1, . . . ,m do
compute uit = Ai({xs, us}t−1s=1) ∈ U i.

end for
compute xt = Ax({xs, us}t−1s=1) ∈ X.
obtain upper bounds maxi∈[m]Ri(t) ≥ ε◦({xs, us, θs}ts=1) and Rx(t) ≥ ε•({xs, us, θs}ts=1).
compute κ◦t = maxi∈[m]Ri(t)/ε, κ

•
t = Rx(t)/ε.

if κ◦t + κ•t ≤ 1 then
set ϑt := maxi∈[m]

∑t
s=1 θsf

i(xs, u
i
s) and τt := 1− κ•t .

if ϑt > (1− τt)ε then return ‘infeasible’.
if ϑt ≤ (1− τt)ε then return x̄t = 1

t

∑t
s=1 xs as a robust ε-feasible solution to (4).

end if

end for

Remark 3.3. Note that Algorithm 1 chooses τt = 1− κ•t , whereas Corollary 3.2 allows us to choose
from a range τt ∈ [κ◦t , 1−κ•t ]. This is because it is theoretically possible for (4) to simultaneously be
infeasible and robust ε-feasible, but in practice we would like to discover infeasibility of (4) rather
than an approximately feasible solution. Then the best value for τt ∈ [κ◦t , 1 − κ•t ] in detecting
infeasibility of (4) is given by τt = 1− κ•t .

In the next section, we describe some approaches to implement Algorithm 1 in practice by
providing explicit examples of Ai and Ax.

4 Customizations of the General Framework

In this section, we examine how to generate the sequences {xt, ut}Tt=1 in practice. In Section 4.1, we
first interpret the terms ε◦({xt, ut, θt}Tt=1) and ε•({xt, ut, θt}Tt=1) from Section 3 as weighted regret
terms, which gives rise to our OFO-based approach. In Section 4.2, we modify the pessimization
oracle-based approach of [31] to solving (4) within our framework. In Section 4.3, we examine
the nominal feasibility oracle-based approach of [5] within the context of our general framework.
Finally, in Section 4.4, we summarize and compare the convergence rates achievable via various
customizations of our framework using these different approaches.

4.1 The OFO-based Approach

Let us first consider ε◦({xt, ut, θt}Tt=1). For any i ∈ [m], given xt, we define the function f it : U i → R
as f it (u

i) = −f i(xt, ui). Then the function f it (u
i) is convex in ui under Assumption 2.1, and the

subterm of ε◦({xt, ut, θt}Tt=1) given by

sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t) (18)

is the weighted regret (6) corresponding to the sequence of functions {f it}Tt=1. When the uncertainty
sets U i, i ∈ [m] admit proximal setups as in Assumption 2.2, Theorem 2.1 from Section 2.3 gives
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an efficient OFO algorithm for choosing {uit}mi=1 to bound the regret subterms (18) with O(1/
√
T ).

Therefore, by using the online mirror descent algorithm of Theorem 2.1 as Ai in the computation
of our uit, we guarantee that

ε◦({xt, ut, θt}Tt=1) = max
i∈[m]

{
sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t)

}
≤ max

i∈[m]
Ri(T ),

where Ri(T ) = O(1/
√
T ) with uniform weights θt = 1/T .

On the other hand, given uit ∈ U i for i ∈ [m], let us define ϕt(x) := maxi∈[m] f
i(x, uit). Then

ϕt(x) is convex in x over X since the functions f i are convex in x by Assumption 2.1. We can then
rewrite ε•({xt, ut, θt}Tt=1) as

ε•({xt, ut, θt}Tt=1) =

T∑
t=1

θt max
i∈[m]

f i(xt, u
i
t)− inf

x∈X

T∑
t=1

θt max
i∈[m]

f i(x, uit)

=

T∑
t=1

θtϕt(xt)− inf
x∈X

T∑
t=1

θtϕt(x). (19)

Then ε•({xt, ut, θt}Tt=1) is also a weighted regret term (6) corresponding to the sequence of functions
{ϕt}Tt=1. When the domain X admits a proximal setup as in Assumption 2.2, Theorem 2.1 again
gives an efficient OFO algorithm for choosing xt to bound (19). Once again, we may choose Ax to
be the online mirror descent, and get Rx(T ) = O(1/

√
T ) with uniform weights θt = 1/T .

Algorithm 1 can now be employed, provided we choose T = Ω(1/ε2), to solve the robust
feasibility problem (4). Since the online mirror descent algorithm of Theorem 3.2 only uses first-
order information, we can solve the robust feasibility problem (4) while avoiding reliance on a
pessimization oracle for u as in [31] or a nominal feasibility oracle for x as in [5].

4.2 The Pessimization Oracle-Based Approach

Mutapcic and Boyd [31] generate solutions xt ∈ X at each iteration t by solving an extended
nominal problem

min
x∈X

{
f0(x) : f i(x, ui) ≤ 0, ∀ui ∈ Û it−1, i ∈ [m]

}
, (20)

where Û it−1 ⊂ U i are finite approximate uncertainty sets based on past noise realizations {uit′}mi=1

for t′ ∈ [t−1]. New noises ut are then generated by calling the pessimization oracles on the current
solution xt. More precisely, given xt ∈ X, the pessimization oracles solve supui∈U i f i(xt, u

i) and
return

uit ∈ U i s.t. f i(xt, u
i
t) ≥ sup

ui∈U i

f i(xt, u
i)− τε. (21)

In terms of our framework of Algorithm 1, the update policy of generating new noises ut in this
approach of [31] corresponds to selecting the algorithms Ax to be a extended nominal solver for
(20) and the algorithms Ai to be pessimization oracles that solve (21). Note that computing uit
requires knowledge of xt (see Remark 3.2), and consequently the bound for the regret term (16)
is Ri(T ) ≤ τε for any T . We show this in the proof of Theorem 4.1. If for all i ∈ [m] we have
f i(xt, u

i
t) ≤ (1− τ)ε, then we terminate and declare xt is a robust ε-feasible and optimal solution;

otherwise, we append Û it = Û it−1 ∪ {uit} and re-solve (20) with the new approximate sets Û it . It is
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shown in [31, Section 5.2] that the number of iterations T needed before termination with a robust
ε-feasible solution xT is upper bounded by (1 +O(1/ε))n where n is the dimension of x.

Suppose now that we are interested in robust feasibility (4). [31, Section 5.3] discusses a number
of variations for generating xt by modifying (20). In contrast, we propose the following modification:
instead of solving (20), generate {xt}Tt=1 via a non-anticipatory algorithm Ax (see Remark 3.2) to
bound ε•({xt, ut, θt}Tt=1) ≤ Rx(T ) = (1 − τ)ε. We call our modification FO-based pessimization.
Then the FO-based pessimization approach fits within our framework as a special case.

Theorem 4.1. Let τ ∈ (0, 1). Suppose {xt}Tt=1 are generated iteratively to guarantee that ε•({xt, ut, θt}Tt=1) ≤
(1−τ)ε for any sequence {ut}Tt=1. Suppose uit are generated by pessimization oracles (21) for i ∈ [m].
If there exists t ∈ [T ] such that for all i ∈ [m] we have f i(xt, u

i
t) ≤ (1 − τ)ε, then xt is a robust

ε-feasible solution to (4). If maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1− τ)ε, then x̄T =

∑T
t=1 θtxt is a robust

ε-feasible solution to (4). If maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) > (1− τ)ε, then we certify that (4) is robust

infeasible.

Proof. It is clear that if there exists t ∈ [T ] such that for all i ∈ [m] we have f i(xt, u
i
t) ≤ (1−τ)ε, then

xt is a robust ε-feasible solution to (4). Furthermore, the fact that maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) > (1−

τ)ε implies robust infeasibility of (4) follows from our assumption that ε•({xt, ut, θt}Tt=1) ≤ (1− τ)ε
and Corollary 3.1. To show that maxi∈[m]

∑T
t=1 f

i(xt, u
i
t) ≤ (1 − τ)ε implies that x̄T is robust

ε-feasible, we only need to show that ε◦({xt, ut, θt}Tt=1) ≤ τε. Observe that by our definition of uit
in (21), we have f i(xt, u

i
t) ≥ supui∈U i f i(xt, u

i) − τε, hence the regret terms in ε◦({xt, ut, θt}Tt=1)
satisfy

sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t) ≤ sup

ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θt

(
sup
ui∈U i

f i(xt, u
i)− τε

)

= sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θt sup
ui∈U i

f i(xt, u
i) + τε

≤ τε.

Then

ε◦({xt, ut, θt}Tt=1) = max
i∈[m]

{
sup
ui∈U i

T∑
t=1

θtf
i(xt, u

i)−
T∑
t=1

θtf
i(xt, u

i
t)

}
≤ τε,

and the result follows from Corollary 3.1.

Theorem 4.1 can only be used to certify robust feasibility/infeasibility. Hence, to find a robust
ε-optimal solution in FO-based pessimization approach, we must perform a binary search and
solve at most O(log(1/ε)) instances of robust feasibility problems. Despite this, in Section 4.4,
we discuss how FO-based pessimization approach which uses OFO algorithms to generate {xt}Tt=1

to bound ε•({xt, ut, θt}Tt=1) results in much better complexity guarantees than using an extended
nominal feasibility solver (20) as proposed by [31], even when taking into account the additional
O(log(1/ε)) factor.

Remark 4.1. In the pessimization oracle-based approach, the noises ut need to be generated with
knowledge of xt, because it is not possible to guarantee f i(xt, u

i
t) ≥ supui∈U i f i(xt, u

i) − τε if the
vectors uit were chosen with only the knowledge of x1, . . . , xt−1.
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4.3 The Nominal Feasibility Oracle-Based Approach

The nominal feasibility oracle-based approach of Ben-Tal et al. [5] suggest using OFO algorithms to
choose a sequence {ut}Tt=1 that guarantees ε◦({xt, ut, θt}Tt=1) is small, in a non-anticipatory fashion,
for any sequence {xt}Tt=1. In this aspect, it essentially matches with our OFO-based approach
outlined in Section 4.1 i.e., the choice of Ai is essentially the same. The key differentiating point
between our OFO-based approach and that of [5] lies in which algorithm is chosen for Ax. At
step t, [5] utilizes a nominal feasibility oracle. That is, given parameters ut, they call a powerful,
and potentially expensive, nominal feasibility oracle that solves the following feasibility problem to
ε-accuracy {

Either : find x ∈ X s.t. f i(x, uit) ≤ (1− τ)ε ∀i ∈ [m];

or : declare infeasibility, ∀x ∈ X, ∃i ∈ [m] s.t. f i(x, uit) > 0.
(22)

We denote xt ∈ X to be the point returned by this oracle at step t, if it exists. For this approach, the
outputs of a nominal feasibility oracle can be used to deduce a result similar to Corollary 3.1, except
that we no longer need to evaluate ε•({xt, ut, θt}Tt=1), we just need to bound ε◦({xt, ut, θt}Tt=1).

Theorem 4.2. Given weights θ ∈ ∆T , suppose that the sequence {ut}Tt=1 is generated in a non-
anticipatory manner to guarantee ε◦({xt, ut, θt}Tt=1) ≤ τε for any sequence {xt}Tt=1. Also, suppose
that at each step t ∈ [T ], xt is generated by the nominal feasibility oracle which solves (22). If there
exists t ∈ [T ] such that (22) declares infeasibility, then (4) is infeasible. Otherwise, if xt satisfies
f i(xt, u

i
t) ≤ (1− τ)ε for all t ∈ [T ] and i ∈ [m], we have a robust ε-feasibility certificate for (4).

Proof. If (22) declares infeasibility, then it is obvious that the robust feasibility problem is infeasi-
ble. We focus on the latter case. By the premise of the theorem, we have ε◦({xt, ut, θt}Tt=1) ≤ τε.
Let us evaluate maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t). Because θ ∈ ∆T and from the definition of the nom-

inal feasibility oracle we have f i(xt, u
i
t) ≤ (1 − τ)ε for all t ∈ [T ] and i ∈ [m], we conclude

maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1− τ)ε. The conclusion now follows from Theorem 3.2.

Thus, the approach of [5], which works with nominal feasibility oracles, fits within our framework
of Algorithm 1 right away. We next make three important remarks.

Remark 4.2. Similar to Remark 4.1, a critical property required in the approach of [5] of the
vectors xt is that f i(xt, u

i
t) ≤ (1− τ)ε. This is possible only if xt were chosen with the knowledge

of {ui1}mi=1, . . . , {uit}mi=1.

Remark 4.3. Theorem 4.2 states that the nominal feasibility oracle-based approach can solve robust
feasibility problems (4). This then recovers [5, Theorems 1,2]. In addition, we next make a nice and
practical observation that was overlooked in [5]. We show that slightly adjusting this oracle will
let us directly solve the robust optimization problem (2), i.e., optimize a convex objective function
f0(x) instead of relying on a binary search over the optimal objective value. Recall that Opt is
the optimal value of the RO problem (see (2)). Naively, to solve for Opt, we would embed f0

into the constraint set, and then perform a binary search over the robust feasible set by repeatedly
applying the oracle-based approach and Theorem 4.2 to check for robust feasibility. Suppose that
now, instead of using a nominal feasibility oracle to solve (22), we work with a nominal optimization
oracle. That is, given fixed parameters {uit}mi=1, we have access to an oracle that solves

Optt = inf
x

{
f0(x) : f i(x, uit) ≤ 0, i ∈ [m], x ∈ X

}
.
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When solving for Optt, most convex optimization solvers will either declare that the constraints
are infeasible, or return a point xt ∈ X such that f i(xt, u

i
t) ≤ (1− τ)ε and f0(xt) ≤ Optt +ε. It is

clear that f0(xt) ≤ Optt +ε ≤ Opt +ε. Given such a sequence of points {xt}Tt=1, from Theorem 4.2
we deduced that x̄T =

∑T
t=1 θtxt is a robust ε-feasible solution. Moreover, convexity of f0 implies

f0(x̄T ) ≤
T∑
t=1

θtf
0(xt) ≤

T∑
t=1

θt(Opt +ε) = Opt +ε.

Hence, not only do we claim that x̄T is robust ε-feasible, but that it is also ε-optimal. Thus, when
our oracle can return ε-optimal solutions, which most solvers can, we eliminate the need to perform
a binary search.

Below we elaborate on the differences between Theorem 4.2 and Corollary 3.1.

Remark 4.4. In contrast to Corollary 3.1, Theorem 4.2 does not need to control the term ε•({xt, ut, θt}Tt=1).
There are two reasons for this: (i) due to (22), each point xt satisfies f i(xt, u

i
t) ≤ (1 − τ)ε, hence

maxi∈[m]

∑T
t=1 θtf

i(xt, u
i
t) ≤ (1 − τ)ε always holds. Therefore, the infeasibility part of Corollary

3.1 never becomes relevant, and (ii) due to the oracle solving (22), infeasibility may be declared at
any step t ∈ [T ] in Theorem 4.2. This offers the possibility of stopping early rather than having
to wait until all T steps are completed. Thus, the nominal feasibility oracle-based approach trades
off using more effort at each iteration t to solve (22) for the ability to terminate early. In contrast,
our OFO-based approach opts to keep the per-iteration cost cheap while giving up the ability to
terminate early. More formally, let us examine a particular way of solving (22) within a nominal
feasibility oracle. Note that (22) is equivalent to checking Ft ≤ (1− τ)ε or Ft > 0, where

Ft := inf
x∈X

{
max
i∈[m]

f i(x, uit)

}
. (23)

Since each f i(x, uit) is convex in x for fixed uit, maxi∈[m] f
i(x, uit) is convex in x also, hence standard

convex optimization methods may be employed to find xt ∈ X such that

Ft ≤ max
i∈[m]

f i(xt, u
i
t) ≤ Ft + (1− τ)ε.

Then, by checking whether maxi∈[m] f
i(xt, u

i
t) ≤ (1− τ)ε or maxi∈[m] f

i(xt, u
i
t) > (1− τ)ε, we can

determine whether Ft ≤ (1− τ)ε or Ft > 0 respectively. In particular, if we find that Ft ≤ (1− τ)ε,
our point xt is feasible for (22).

Also, when all the vectors xt satisfy (23), we have the bound

ε•({xt, ut, θt}Tt=1) =
T∑
t=1

θt max
i∈[m]

f i(xt, u
i
t)− inf

x∈X

T∑
t=1

θt max
i∈[m]

f i(x, uit)

≤
T∑
t=1

θt

[
max
i∈[m]

f i(xt, u
i
t)− inf

x∈X
max
i∈[m]

f i(x, uit)

]
≤ (1− τ)ε.

Consequently, we deduce that the nominal feasibility oracle, implemented as a convex optimization
problem, also naturally bounds ε•({xt, ut, θt}Tt=1) although this bound is not utilized in Theorem 4.2.
In terms of our framework of Algorithm 1, the update policy of generating new solutions xt in
this approach corresponds to selecting the algorithm Ax to be a convex optimization solver that
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solves Optt. Then whenever the solver returns a feasible solution, the regret bound (17) satisfies
ε•({xt, ut, θt}Tt=1) ≤ Rx(T ) = (1 − τ)ε for any T . Note that the term ε•({xt, ut, θt}Tt=1) inherently
includes the objective functions maxi∈[m] f

i(x, uit) of each problem Ft. At each iteration t, instead
of evaluating Ft to (1 − τ)ε accuracy, our OFO-based approach performs only a simple update
based on the first-order information, and it yields a bound on ε•({xt, ut, θt}Tt=1) from the overall
collection of these simple updates.

4.4 Convergence Rates and Discussion

We summarize the convergence rates achievable in our general RO framework for various cases. We
first examine the number of iterations required for each approach discussed, then proceed to analyze
the per-iteration cost of each approach. A summary of our discussion is given in Table 1. We use
the notation ru(ε) to denote the number of iterations T required for algorithms Ai to guarantee
ε◦({xt, ut, θt}Tt=1) ≤ maxi∈[m]Ri(T ) ≤ ε/2. Similarly, we let rx(ε) be the number of iterations T

required for algorithm Ax to guarantee that ε•({xt, ut, θt}Tt=1) ≤ Rx(T ) ≤ ε/2. Then the resulting
worst-case number of iterations needed in Algorithm 1 to obtain robust ε-feasibility/infeasibility
certificates is max{ru(ε), rx(ε)}.

As outlined in Section 4, employing standard OFO-based algorithms, i.e., Theorem 2.1, on
the terms ε◦({xt, ut, θt}Tt=1) and ε•({xt, ut, θt}Tt=1) requires ru(ε) = O(1/ε2) and rx(ε) = O(1/ε2)
iterations to ensure they are no larger than ε/2. Thus, our OFO-based approach from Section
4.1 requires O(1/ε2) iterations to solve (3). Since our OFO-based approach returns only robust ε-
feasible solutions, we need to perform a binary search and repeatedly invoke our method O(log(1/ε))
times to obtain ε-optimal solutions, so the total number of iterations is O(log(1/ε)/ε2).

Our FO-based pessimization approach, i.e., our modification of the pessimization oracle-based
approach of [31] outlined in Section 4.2, requires rx(ε) iterations to solve (3) because by Theorem 4.1
we only need to guarantee ε•({xt, ut, θt}Tt=1) ≤ Rx(T ) ≤ ε/2. Taking into account the binary search
factor O(log(1/ε)) to find a robust ε-optimal solution, the total number of iterations required is
O(log(1/ε)/ε2), which is much better than the exponential (1 +O(1/ε))n bound of [31, Section 5.2]
that uses a full nominal solution oracle (20). Similarly, the nominal feasibility/optimization oracle-
based approach of [5] outlined in Section 4.3 requires ru(ε) = O(1/ε2) iterations (or ru(ε) log(1/ε) =
O(log(1/ε)/ε2) iterations if only a feasibility oracle is used) to obtain robust ε-optimal solutions
because by Theorem 4.2 we only need to bound ε◦({xt, ut, θt}Tt=1) ≤ maxi∈[m]Ri(T ) ≤ ε/2.

Remark 4.5. The flexibility of our general framework in terms of the selection of algorithms Ai,Ax
extends beyond just using Theorem 2.1. Depending on the structure of functions f i and uncertainty
domains U i, the algorithms Ai and Ax may be replaced by more appropriate OCO algorithms. For
example, when f i are strongly convex, certain OCO algorithms achieve faster convergence rates.
Moreover, unless explicitly required by the algorithms Ai, we do not need to assume convexity of
the sets U i. As a result, the follow-the-leader or follow-the-perturbed-leader type algorithms from
[30] can be utilized as Ai in our framework even when U i are nonconvex but certain assumptions
ensuring applicability of these algorithms are satisfied. Such assumptions are satisfied for example
when f i(x, ui) are linear in ui and the nonconvex sets U i admit a certain linear optimization
oracle. This is for example the case in a certain lifted representation of the robust convex quadratic
constraint discussed in [5, Section 4.2]. Similarly, when the functions f i(x, ui) are exp-concave in
ui, applying the online Newton step algorithm of [22] for Ai results in a weighted regret bound of
at most O (log(T )/T ) in T iterations. Such f i that are exp-concave in ui satisfying Assumption 2.1
arise in optimization under uncertainty problems where variance is used as a risk measure, e.g.,
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mean-variance portfolio optimization problems, see for example [3, Example 25]. Essentially, the
same flexibility for acceleration and/or working with nonconvex sets U i is present in [5] as well.

In the presence of favorable problem structure, based on Table 1, if an accelerated algorithm
to exploit problem structure is employed in the place of Ai, the overall number of iterations of the
nominal feasibility approach is immediately reduced accordingly. Analogous result holds for Ax and
the FO-based pessimization approach. However, in the case of our OFO-based approach, we need
to have favorable structure in both x and u and utilize the corresponding accelerated algorithms
Ax,Ai to attain the acceleration of the overall approach.

We now discuss the per-iteration cost for each approach. In order to discuss the total arithmetic
complexity of each approach, we let k be the maximum dimension of the uncertain parameters ui

for i ∈ [m] and recall that n denotes the dimension of the decision variables x. In the case where
our domains X, {U i}mi=1 have favorable geometry, such as Euclidean ball or simplex, the vectors
xt, {uit}mi=1 are updated via simple closed-form prox operations, which cost O(n) and O(km) per
iteration respectively. The cost of computing the subgradients ∇xf i(x, ui),∇uf i(x, ui) is at least
O(km + mn) each iteration. This cost is incurred in each iteration of all of the approaches we
discuss. From this, we deduce that the per-iteration cost of our OFO-based approach is at most
O(km+mn).

The per-iteration cost of the pessimization oracle based approaches involve calling m pessimiza-
tion oracles (21) and the costs related to updating xt. We denote by Pess(ε, k) the complexity of a
pessimization oracle with tolerance ε and k variables. A summary of different possible implementa-
tions is given in Table 2. If supui∈U i f i(x, ui) has a simple closed form solution, then the resulting
arithmetic cost for Pess(ε, k) is O(k) for each pessimization oracle. If we can use polynomial-time
IPMs, this cost becomes O(k3 log(1/ε)) (see [7, Section 6.6]), and using FOMs has cost O(k log(1/ε))
in the best case when the functions f i are smooth and strongly convex in ui. In the case of our
FO-based pessimization approach, the update involving xt will be given by simple closed form for-
mulas for prox operations when X has favorable geometry, resulting in a cost of O(mn). The full
pessimization approach of [31] incurs the cost of solving an extended nominal feasibility problem
for the update of xt.

The per-iteration cost of the nominal feasibility/optimization oracle-based approach of [5],
as well as that of of [31], depends on the type of solver used to solve the nominal optimiza-
tion/feasibility problem (22). We denote by Nom(ε,m, n) the complexity of a nominal oracle with
tolerance ε, m constraints and n variables. Note that nominal solvers can be either optimization or
feasibility solvers. If it is the latter, an extra log(1/ε) factor is incurred to perform binary search.
A summary of different possible implementations for Nom(ε,m, n) is given in Table 3. When ap-
plicable for Nom(ε,m, n) implementation, polynomial-time IPMs are guaranteed to terminate in
O(
√
m log(1/ε)) iterations with a solution to (22) and thus offer the best rates in terms of their

dependence on ε. They also have the advantage that they can act as a nominal optimization oracle,
and hence by Remark 4.3 there will be no need to perform an additional binary search to find
an ε-optimal solution. On the other hand, they demand significantly more memory, and their per-
iteration cost is quite high in terms of the dimension, usually around the order of O(n3+mn), see [7,
Chapter 6.6]. In order to keep both the memory requirements and the per-iteration cost associated
with implementing the nominal feasibility oracle Nom(ε,m, n) low, one may opt for a FOM called
the CoMirror algorithm that can work with functional constraints, see [1] and [27, Section 1.3].
CoMirror algorithm is guaranteed to find a solution to the nominal ε-feasibility problem within
O(1/ε2) iterations, with a much cheaper per-iteration cost of O(mn). Because CoMirror method
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Table 1: Summary of different approaches to generate {xt, ut}Tt=1.

Approach Binary search No. iterations Per-iteration cost

OFO-based log(1/ε) max {ru(ε), rx(ε)} O(km+mn)
FO-based pessimization log(1/ε) rx(ε) mPess(ε, k) +O (mn)
Nominal oracle see Table 3 ru(ε) O (km) + Nom(ε,m, n)

Full pessimization see Table 3 O(1/εn) mPess(ε, k) + Nom(ε,m+ t, n)∗

∗(number of constraints is m+ t as it grows by at least 1 each iteration t)

Direct FOM via CoMirror 1 O(1/ε2) mPess(ε, k) +O (mn)

Table 2: Arithmetic complexity for different implementations of pessimization oracles.

Implementation Pess(ε, k)

Closed form O(k)
IPM O(k3 log(1/ε))
FOM∗ O (k log(1/ε))
∗(when f i are smooth, strongly convex in ui)

can optimize as well, it does not need binary search. However, to the best of our knowledge, its
possibility to exploit further structural properties of the functions f i, such as smoothness in x, to
improve the dependence on ε are not known. In order to exploit such properties in the implemen-
tation of Nom(ε,m, n), it is possible to cast (22) as a convex-concave SP problem, and then apply
efficient FOMs such as Nesterov’s algorithm [38] or Nemirovski’s Mirror Prox algorithm [34] to
achieve a convergence rate of O(log(m)/ε) and per-iteration cost of O(mn). This convex-concave
SP approach can only be used as a nominal feasibility oracle, so we must repeat the process log(1/ε)
times to obtain an ε-optimal solution.

Table 3: Arithmetic complexity for different implementations of nominal oracles.

Implementation Nom(ε,m, n) Type Binary search

IPM O
(
km+

√
m(n3 +mn) log(1/ε)

)
optimization 1

CoMirror O
(
mn/ε2

)
optimization 1

Convex-concave SP∗ O (log(m)mn/
√
ε) feasibility log(1/ε)

∗(when f i are smooth, strongly convex in x)

Recall that Table 1 summarizes the rates for the various approaches, together with rates for
the full pessimization approach of [31] and using the CoMirror with pessimization (discussed in
Section 4.5). Note that the total overall arithmetic complexity of each approach is obtained by
multiplying the quantities in each row in Table 1. The quantities ru(ε), rx(ε) will generally be
O(1/ε2), with potential for application-specific acceleration when the functions f i exhibit favorable
structure. Table 1 indicates that our FO-based pessimization approach when it admits a closed
form solution for the implementation of Pess(ε, k) and the nominal feasibility oracle-based approach
which uses a polynomial-time IPM solver to implement the nominal feasibility oracle Nom(ε,m, n)
give the best dependence on ε among all of the methods. These are better than our OFO-based
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approach by factors of max{1, ru(ε)/rx(ε)} and max{1, rx(ε)/ru(ε)} respectively. However, in many
applications, we can expect that ru(ε) ≈ rx(ε), so these factors will be constant. In this case, our
OFO-based approach becomes competitive with having a closed form pessimization oracle in our
FO-based pessimization approach or using a nominal IPM solver in [5]. That said, compared to
IPMs, our OFO-based approach demands much less memory, and it is able to maintain a much
lower dependence on the dimensions m,n and thus is much more scalable, whereas the cost per
iteration of such IPMs has a rather high dependence on the dimension. In addition, the memory
requirements of IPMs are far more than OFO algorithms, posing a critical disadvantage to their use
in large-scale applications. Similar comparisons of our OFO-based approach against pessimization
or nominal feasibility oracle-based approaches utilizing other methods point out its advantage,
which is at least an order of magnitude better in terms of its dependence on ε. In fact, when
rx(ε) ≈ ru(ε), our method can lead to savings over the approach of [5] with CoMirror algorithm
used in its oracle by a factor as large as O(1/(ε2 log(1/ε))).

4.5 Connections with Existing First-order Methods

Finally, we would like to discuss and contrast directly solving robust convex optimization problems
(2) via general first-order methods. Many FOMs require domains that are simple so that the prox
operations can be easily done. In that respect, domains defined by multiple functional constraints
gi(x) ≤ 0 creates a challenge for directly applying many of these algorithms. We now discuss
two existing classes of FOMs that are designed to handle such domains: primal-dual methods and
the CoMirror approach. Applying these FOMs to the RO problem (2) can be viewed as another
alternative solution methodology to solve RO problems without using the robust counterpart.

A general technique to address the functional constraints in the domain is to embed these
constraints into the objective through Lagrange multipliers, and then solve the associated dual
problem via FOMs (see e.g., [32]). Such methods are known as primal-dual methods. For the RO
problem (2), this corresponds to solving

max
λ

{
L∗(λ) := min

x∈X

[
f0(x) +

m∑
i=1

λ(i)gi(x)

]
: λ ≥ 0

}
,

where we define gi(x) := supui∈U i f i(x, ui). Primal-dual methods (e.g., [32]) commonly require us
to solve the inner minimization problem over x ∈ X at each iteration. For RO, this means we must
solve an expensive SP problem at each iteration. Our OFO-based approach aims to improve on
this by reducing the per-iteration cost of each step to simple first-order updates. Two exceptions
within the primal-dual methods are the work of Nedić and Ozdaglar [33] and Yu and Neely [46],
which have cheap per-iteration cost based on only gradient computations and projection operations
in the Euclidean setup. Nedić and Ozdaglar [33] provide a convergence rate of O(1/

√
T ) in the

non-smooth case. While using such a primal-dual method has the advantage that no binary search
is needed, we note that this requires two assumptions to guarantee convergence: we have access
to exact first-order information for the robust constraint functions gi(x) := supui∈U i f i(x, ui), and
the standard Slater constraint qualification condition (i.e., strict feasibility) is satisfied. The first
assumption is often not satisfied, since we may only be able to compute gi(x) up to accuracy ε.
While there exists some FOMs that work with inexact objective gradients over simple domains,
see e.g., [18], such methods have only been applied to specific max-type objectives, e.g., objectives
obtained from smoothing. It is unclear how such methods can be extended for more general max-
type functions which can arise in RO. Secondly, enforcing the Slater condition implicitly enforces
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feasibility of (2). In contrast, our framework directly uses the functions f i(x, ui), so it does not
need to take into account the inexact gradient information, and can certify infeasibility of (2).
Yu and Neely [46] present a method that can guarantee O(1/T ) convergence when all functions
are smooth. However, for RO problems, the constraint functions gi(x) are non-smooth due to the
supremum operation, thus their results do not apply to RO.

The only FOM that we are aware of that can solve convex problems with functional constraints
without assuming feasibility is the CoMirror algorithm [1] and its earlier variations in the Euclidean
setup [35, 37, 40]. The CoMirror1 algorithm finds an ε-optimal ε-feasible solution in O(1/ε2)
iterations to a convex program minx∈X

{
f0(x) : gi(x) ≤ 0, i ∈ [m]

}
or certifies its infeasibility by

using (sub)gradient information of the objective f0 as well as the constraint functions gi. In the
RO problem (2) we defined gi(x) := supui∈U i f i(x, ui). As mentioned above, in many cases, we
may only be able to compute gi(x) approximately, thus only have access to approximate/inexact
gradient information. It is unknown to us whether or not techniques such as the ones from [18]
can be applied to the CoMirror algorithm in the presence of this type of gradient information.
While the CoMirror algorithm’s complexity is O(1/ε2) (see also Nesterov [37, Chapter 3.2.4] for
a similar result in the Euclidean case), our iterative framework can exploit favorable structure on
the functions f i that can improve on the iteration complexity ru(ε), rx(ε). For the Euclidean case,
Nesterov [37, Chapters 2.3.4-2.3.5] shows also that convergence can be obtained in O(log(1/ε))
iterations when the objective and all constraint functions are both smooth and strongly convex in
x. However, such an improvement does not apply to the RO problem, since we cannot in general
guarantee that gi(x) = supui∈U i f i(x, ui) is smooth in x. It is unknown whether the iteration
complexity of CoMirror algorithm can be improved when only the underlying function f i(x, ui) is
strongly convex or smooth, or when gi(x) is strongly convex but non-smooth.

Finally, let us get back to the case when we have a robust feasibility problem with a single
constraint m = 1 and a convex uncertainty set U = U1. In such a case, as discussed in Remark 3.1,
we have a direct convex-concave SP problem (S) under Assumption 2.1. The OFO-based approach
then corresponds to bounding the whole SP gap (5), the FO-based pessimization corresponds to
bounding the primal gap i.e., the first term in (5), and the nominal feasibility oracle approach
corresponds to bounding the dual gap, i.e., the second term in (5). Without any further struc-
tural assumptions on f1, convex-concave SP problems can be solved in O(1/ε2) iterations. Our
approaches also achieve this rate immediately, see Table 1. Moreover, when f1 is smooth in x and
strongly concave in u1, our general framework can achieve a rate of O(1/ε). However, for specific
applications involving a single robust constraint, directly working with a specialized convex-concave
SP formulation can improve this rate further. For example, such an improved rate of O(1/

√
ε) is

achieved in [2] for a robust support vector machine problem.

5 Application Example: Robust Quadratic Programming

Our framework is general and can be applied to many robust convex optimization problems. In
this section we walk through the setup and resulting convergence rates of our framework for a
robust feasibility problem of a quadratically constrained quadratic program (QP) with ellipsoidal
uncertainty. To be precise, our deterministic feasibility problem is

find x ∈ X s.t. ‖Aix‖22 ≤ b>i x+ ci, ∀i ∈ [m],

1Recall that the CoMirror algorithm is also discussed in Section 4.4 as a method to implement the nominal
feasibility solver; in that case we are given the noises ūi resulting in gi(x) := f i(x, ūi), and thus the subgradient of
gi(x) is simply the subgradient of f i(x, ūi).
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where X ⊆ Rn is the unit Euclidean ball, Ai ∈ Rn×n, bi ∈ Rn, and ci ∈ R for all i ∈ [m]. We
consider the robust quadratic feasibility problem given by

find x ∈ X s.t. sup
u∈Û

∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
(k)

)
x

∥∥∥∥∥
2

2

− b>i x− ci ≤ 0, ∀i ∈ [m], (24)

where P i1, . . . , P
i
K are uncertainty matrices for each constraint i ∈ [m], for simplicity we assume

uncertainty sets U i = Û = {u ∈ RK : ‖u‖2 ≤ 1} for all i ∈ [m], and u(k) denotes the k-th entry of
u.

It is well known that the robust counterpart of this feasibility problem is a semidefinite program
[4, 11]. Because current state-of-the-art QP solvers can handle two to three orders of magnitude
larger QPs than semidefinite programs (SDPs), Ben-Tal et al. [5, Section 4.2] suggest an approach
that avoids solving SDPs associated with robust QPs. Their approach relies on running a probabilis-
tic OCO algorithm in which a trust region subproblem (TRS)—a class of well-studied nonconvex
QPs—is solved in each iteration. Our results here further enhance this approach. In particular,
we show that we can achieve the same rate of convergence in our framework while working with a
deterministic OCO algorithm and only carrying out first-order updates in each iteration. In fact,
the most expensive operation involved with each iteration of our approach is a maximum eigenvalue
computation. Because maximum eigenvalue computation is much cheaper than solving a TRS, we
not only present a deterministic approach but also strikingly reduce the cost of each iteration.

To simplify our exposition, let us introduce some notation. For each i ∈ [m], we define the
matrix P ix ∈ Rn×K whose columns are given by the vectors P ik x for k ∈ [K] together with

Qix := (P ix)>P ix ∈ SK+ , rix := (P ix)>Aix ∈ RK , and six := ‖Aix‖22 − b>i x− ci ∈ R;

then it is easy to check that for all i ∈ [m] and u ∈ RK we have∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
(k)

)
x

∥∥∥∥∥
2

2

− b>i x− ci = u>Qixu+ 2(rix)>u+ six.

For each i ∈ [m], we define f i : X × Û → R as

f i(x, u) :=

∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
(k)

)
x

∥∥∥∥∥
2

2

− b>i x− ci + λmax(Qix)
(
1− ‖u‖22

)
= u>Qixu+ 2(rix)>u+ six + λmax(Qix)

(
1− ‖u‖22

)
. (25)

Lemma 5.1. For each i ∈ [m], the function f i(x, u) defined in (25) is convex in x for any fixed
u ∈ Û and concave in u for any given x. Moreover, for all i ∈ [m] and for any x ∈ X,

sup
u∈Û

∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
(k)

)
x

∥∥∥∥∥
2

2

− b>i x− ci = sup
u∈Û

f i(x, u).

Proof. Fix i ∈ [m]. By rearranging terms in (25), we obtain f i(x, u) = u>(Qix − λmax(Qix)IK)u +
2(rix)>u+ six. Since Qix − λmax(Qix)IK ∈ SK+ for any given x, f i(x, u) is concave in u for any given
x.
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Now consider a fixed u ∈ Û . Note that

λmax(Qix) = max
‖v‖2≤1

v>(Qix)v = max
‖v‖2≤1

∑
1≤j,k≤K

v(j)v(k)x>(P ij )
>P ik x = max

‖v‖2≤1
x>

(
K∑
k=1

P ik v
(k)

)>( K∑
k=1

P ik v
(k)

)
x.

Because
(∑K

k=1 P
i
k v

(k)
)>(∑K

k=1 P
i
k v

(k)
)
∈ Sn+, then λmax(Qix) is a maximum of convex quadratic

functions of x and hence is convex in x. Thus, for fixed u ∈ Û , f i(x, u) is convex in x.
Reformulation of the nonconvex QP over an ellipsoid into a convex QP over the ellipsoid via

the relation between u>Qixu+ 2(rix)>u+ six and f i(x, u) in (25) follows from [25, Theorem 2.1].

Lemma 5.1 implies that sup
u∈Û f

i(x, u) ≤ 0 is an alternate representation of our robust
quadratic constraint. We next state the convergence rate in our framework for the associated
feasibility problem. For this, we define the quantities

σ2 := max
i∈[m]

K∑
k=1

‖P ik‖2Fro, χ := max
i∈[m]

max
k∈[K]

‖P ik‖Spec, and

ρ := max
i∈[m]

‖Ai‖Spec, β := max
i∈[m]

‖bi‖2. (26)

Note that χ ≤ σ. Furthermore, [5, Lemma 7] proves that ‖Qix‖Fro ≤ σ2 and ‖rix‖2 ≤ σρ holds for
all x such that ‖x‖2 ≤ 1.

Corollary 5.1. Let our domain be given by X = {x ∈ Rn : ‖x‖2 ≤ 1}. The customization

of our OFO-based approach to the problem (24) ensures that within O
(

((ρ+
√
Kσ)2 + β)2

)
ε−2

iterations, we obtain a robust feasibility/infeasibility certificate. Moreover, each iteration in our
framework relies on a first-order update where the most expensive operation in the case of (24) is
computing λmax(Qix), which can be done efficiently.

Proof. In order to apply OFO-based approach, we need to customize our proximal setup. Given
that the sets X and Û are Euclidean balls, we set the proximal setup for generating the iterates
{xt, uit}Tt=1 to be the standard Euclidean d.g.f. with ‖ · ‖2-norm, and thus ΩX = Ω

Û
= 1

2 . We must
bound the magnitude of the gradients measured by the ‖ · ‖2-norm. Note that for any i ∈ [m], the
gradients of f i are given by

∇uf i(x, u) = 2
(
Qix − λmax(Qix)IK

)
u+ 2rix

∇xf i(x, u) = 2

(
Ai +

K∑
k=1

P ik u
(k)

)>(
Ai +

K∑
k=1

P ik u
(k)

)
x+ 2

(
1− ‖u‖22

)( K∑
k=1

P ik v
(k)

)>( K∑
k=1

P ik v
(k)

)
x− bi,

where v ∈ Û is an eigenvector of Qix corresponding to λmax(Qix).
Let us fix an i ∈ [m]. We first bound ‖∇uf i(x, u)‖2 for any u ∈ Û as follows:

‖∇uf i(x, u)‖2 = 2
∥∥(Qix − λmax(Qix)IK

)
u+ rix

∥∥
2

≤ 2
(∥∥(Qix − λmax(Qix)IK

)
u
∥∥

2
+
∥∥rix∥∥2

)
≤ 2λmax(Qix)‖u‖2 + 2σρ ≤ 2(σ2 + σρ),
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where the second inequality follows from
∥∥Qix − λmax(Qix)IK

∥∥
Spec

≤ λmax(Qix) and ‖rix‖2 ≤ σρ

which is implied by [5, Lemma 7], and the last inequality follows from the facts that u ∈ Û , the
definitions given in (26), and λmax(Qix) = ‖P ix‖2Spec ≤ ‖P ix‖2Fro ≤

∑K
k=1 ‖P ik‖2Fro ≤ σ2 for any x ∈ X.

Therefore, we deduce from Theorem 2.1 with uniform weights θt = 1/T that the rate of convergence
for bounding the weighted regret associated with constraint i ∈ [m] using the online mirror descent
algorithm is

sup
u∈U

1

T

T∑
t=1

f i(xt, u)− 1

T

T∑
t=1

f i(xt, ut) ≤
2(σ2 + σρ)√

T
.

This implies that ru(ε) = O((σ2 + σρ)2ε−2).
We next bound the weighted regret of the functions ϕt(x) = maxi∈[m] f

i(x, uit), i.e., the term

ε•({xt, ut, θt}Tt=1) by bounding the ‖ · ‖2-norm of ∇xϕt(x). Notice that

‖∇xϕt(x)‖2 ≤ max
i∈[m]

‖∇xf i(x, uit)‖2.

Thus, we must bound ‖∇xf i(x, u)‖2 for all x ∈ X, u ∈ Û . To this end, note that for any u ∈ Û∥∥∥∥∥
K∑
k=1

P ik u
(k)

∥∥∥∥∥
Spec

≤
K∑
k=1

‖P ik‖Spec |u(k)| ≤
√
K max

k∈[K]
‖P ik‖Spec ≤

√
Kχ,

where the second inequality holds because ‖u‖1 ≤
√
K‖u‖2 ≤

√
K holds for all u ∈ Û . Then for

any x ∈ X, u ∈ Û , and eigenvector v ∈ Û , we have

‖∇xf i(x, u)‖2 ≤ 2

∥∥∥∥∥Ai +

K∑
k=1

P ik u
(k)

∥∥∥∥∥
2

Spec

‖x‖2 + 2
(
1− ‖u‖22

) ∥∥∥∥∥
K∑
k=1

P ik v
(k)

∥∥∥∥∥
2

Spec

‖x‖2 + ‖bi‖2

≤ 2(ρ+
√
Kχ)2 + 2Kχ2 + β

≤ 4(ρ+
√
Kσ)2 + β.

Hence, ‖∇xϕt(x)‖2 ≤ 4(ρ+
√
Kσ)2 + β. Then Theorem 2.1 with weights θt = 1/T implies

T∑
t=1

θt max
i∈[m]

f i(xt, u
i
t)− inf

x∈X

T∑
t=1

max
i∈[m]

f i(x, uit) ≤

(
4(ρ+

√
Kσ)2 + β

)
√
T

.

Thus, rx(ε) = O
(

((ρ+
√
Kσ)2 + β)2

)
ε−2. Therefore, the number of iterations required for our

OFO-based approach to obtain a robust feasibility/infeasibility certificate is T = max{rx(ε), ru(ε)}.
Note that each iteration of our approach requires a first-order update that is composed of

computing the gradients ∇xf i(x, u) and ∇uf i(x, u) and prox computations. Because our domains
involve only direct products of Euclidean balls and simplices, they admit efficient prox computations
which take O(Km + mn) time. In order to evaluate the gradients ∇xf i(x, u) and ∇uf i(x, u),
in addition to the elementary matrix vector operations, we need to compute λmax(Qix) which is
the most expensive operation in our first-order update. Fortunately, computing the maximum
eigenvalue of a matrix is a well-studied problem and can be computed very efficiently.
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In the case of robust QP feasibility problem (24), [5, Corollary 3] states that with prob-
ability 1 − δ, their framework returns robust feasibility/infeasibility certificates in at most
O
(
K2σ2(ρ2 + σ2) log(m/δ)ε−2

)
calls (iterations) to their oracle. In each call to their oracle, a

nominal feasibility problem is solved to the accuracy ε/2. In comparison we deduce from Corol-
lary 5.1 that our framework requires comparable number of iterations as the approach of Ben-Tal
et al. [5]. Even so, there are a number of reasons that considerably favor our approach. First, our
approach is deterministic as opposed to the high 1 − δ probability guarantee of [5] which requires
using an adaptation of the follow-the-perturbed-leader type OCO. Second, each iteration of their
approach requires solving a nominal feasibility problem for solution oracle as well as solving TRSs
for the computation of noises ut. In contrast to this, in each iteration we carry out mainly ele-
mentary operations such as matrix vector multiplications and our most computationally expensive
operation is the maximum eigenvalue computations λmax(Qix). While there are established algo-
rithms to solve the TRS, it is inherently more complicated than finding the maximum eigenvalue of
a positive semidefinite matrix. Moreover, [5] suffers from the additional computational cost of their
solution oracle which solves the nominal feasibility problem. Hence, our approach, while requiring
a comparable number of iterations, reduces the cost per iteration remarkably.

6 Numerical Study

In this section, we conduct a numerical study comparing the approaches discussed so far. We
consider the following quadratic program inspired by mean-variance portfolio optimization problems
with a factor model for the return vector (see, e.g., [20]):

min
x

{
‖V x‖22 + x>Dx− λµ>x : x ∈ ∆n

}
, (27)

where µ ∈ Rn is the expected return vector, the term x>(V >V +D)x captures the risk associated
with the portfolio via a factor model, and λ ≥ 0 represents the trade-off between the expected
return of the portfolio and the risk associated with the portfolio.

In the robust formulation of (27), we consider the case where the true parameters µ ∈ Rn and
V ∈ Rm×n belong to uncertainty sets M and V of form

M := {µ : µ0 − γ ≤ µ, µ ≤ µ0 + γ} , V :=

{
V = V0 +

K∑
k=1

Pkuk : ‖u‖2 ≤ 1

}
,

where the nominal data µ0 ∈ Rn, γ ∈ Rn, and V0 ∈ Rm×n, {Pk ∈ Rm×n}Kk=1 are given to us. Then
the robust problem is given by

min
x

{
max
V ∈V
‖V x‖22 + x>Dx− λ min

µ∈M
µ>x : x ∈ ∆n

}
. (28)

Our test instances are synthetically generated, largely following the random instance generation
model from [20]. We begin by specifying three parameters: n, the number of variables; m, the
number of factors (which controls the rank of V ); and α ∈ (0, 1), a parameter controlling the size of
the uncertainty sets. For each instance, we randomly generate matrices V ∈ Rm×n and F ∈ Rm×m,
where we ensure F is positive semidefinite, and define D = 0.1 Diag(V >FV ). We then generate
p > m factor samples f(l) ∈ Rm, l ∈ [p], where each f(l) ∼ N(0, F ), and we also generate µ ∈ Rn

where each entry µi ∼ U(1, 5). We then set µ(l) = µ + V >f(l) + εl, where ε(l) ∼ N(0, D) are
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independent of the factor sample f(l). The matrices µ and V are estimated via linear regression

on µ(l) and f(l), to obtain µ̄, V̄ . The nominal data for (27) are set to be µ0 = µ̄, V0 = F 1/2V̄ .
To define the uncertainty sets, we first compute the scaled sum of squared errors for each i ∈ [n],
s2
i = 1

p−m−1

∑p
l=1(µ(l),i − µ0,i − V >0,if(l))

2. Let cJ(α) be the α-critical value of an F -distribution

with J degrees of freedom, and let ν be the top-left entry of A−1, where A ∈ R(p+1)×(p+1) is the

Gram matrix of the vectors 1m, {f(l)}
p
l=1. Then we set γi =

√
νc1(α)s2

i for i ∈ [n], which defines

the uncertainty set for µ. The uncertainty set for V is chosen by randomly generating matrices
Pk, and then scaling them appropriately so that the norm of each column i of V − V0 is at most√
mcm(α)s2

i for every V ∈ V.

We set p = 90 and α = 0.95, while varying m ∈ {3, 5, 7, 10, 15, 20, 25} and n ∈
{100, 200, 300, 400, 500, 600, 700}. We fix the underlying dimension of the uncertainty set V to
be K = min{2m, 15}. We generate five instances for each combination of m and n.

The four approaches we test are our OFO-based approach from Section 4.1, our FO-based
pessimization approach from Section 4.2 (see Theorem 4.1), the nominal oracle-based approach of
[5] from Section 4.3, and the full pessimization approach of [31], which requires both a pessimization
and an extended nominal feasiblity oracle. Since (28) is an instance of a robust quadratic program,
the form for nominal and pessimization oracles can be derived from Section 5. One-dimensional
line search using Brent’s algorithm [14] was used to choose step sizes for each iteration of FO-based
methods. An error tolerance of ε = 0.002 is used in all instances.

Experiments are performed on a Linux machine with 2.8GHz processor and 64GB memory
using Python v3.5.2. Whenever the nominal (extended nominal) oracles and pessimization oracles
do not have closed form solutions, they are implemented in Gurobi v7.0.2. We use standard Gurobi
tolerances and parameter choices. We employ the implementation of Brent’s algorithm in Python’s
scipy.optimize package.

Figure 1 plots the average solve times in seconds against different n for each of the approaches,
averaging across all m. As we expect, for low dimensions n, the oracle-based approaches solve the
instances very quickly compared to our first-order based approaches. However, as n increases to
400, 500, 600, 700, we see that the solution times of our first-order based approaches beat the nominal
oracle approach, and become comparable to the full pessimization approach for n = 600, 700. In
particular, we observe that the FO-based pessimization approach (see Theorem 4.1) solves faster
when n = 700.

The dimension m influences the rank of the nominal matrix V >0 V0 and controls the difficulty
of the problems. Examining the results for different m further highlights the benefits of utilizing
the first-order based approaches. Figure 2 plots average solve times for different m while fixing
n = 400, 500, 600, 700. For the oracle-based methods, the solution times increase with m, while
the solution times for first-order based methods remains relatively constant with m. For m ≥
20, we observe that our first-order based approaches significantly outperforms the oracle-based
methods which require a nominal solver. Notice that, while we expect our OFO-based approach
to outperform the FO-based pessimization approach due to the burden of solving an eigenvalue
problem in each iteration for computing the pessimization oracle, our results indicate the opposite.
This is because for small values of K, calling a pessimization oracle is faster than the line search
performed in the FO-based noise update. However, we believe that as K increases, one-dimensional
line search will become more efficient.
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Figure 1: Average solve times (seconds) for different n.

Finally, we examine the number of iterations and cost per iteration of different approaches
averaged across all instances in Table 4. We observe that, contrary to their theoretical iteration
guarantees, the oracle-based approaches of [31, 5] need very few iterations to find a solution. How-
ever, as expected, the average time per iteration is significantly higher for these methods due to
their reliance on full nominal optimization solvers. This further highlights the benefit of utilizing
first-order methods for robust optimization when the deterministic version of the problem is already
very expensive, and hence nominal oracles become expensive.

Table 4: Average number of iterations and average time per iteration for each approach.

# iterations seconds per iteration

first-order 961.487 0.015
FO-based pessimization 1009.054 0.013
nominal 3.708 4.841
full pessimization 1.975 4.875

7 Conclusion

In this paper, we advance the line of research in [13, 31, 5] that aims to solve robust optimiza-
tion problems via iterative techniques, i.e., without transforming them into their equivalent robust
counterparts. Thus far, the literature on iterative methods for RO has relied on more expensive
nominal feasibility or pessimization oracles. However, in many applications of robust convex opti-
mization, the original deterministic problem comes equipped with first-order oracles that provide
gradient/subgradient information on the constraint functions f i. In this paper, we present an effi-
cient framework that can both work with cheap online first-order oracles and also capture the prior
oracle-based approaches of [31] and [5]. We further show that working with these OFO oracles
essentially does not increase the worst case theoretical bound on number of overall oracle calls, i.e.,
the worst case bound on number of main iterations of our approach is better than or comparable
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Figure 2: Average solve times (seconds) for different n and m.

to the prior approaches. Moreover, when OFO oracles are utilized in our framework, the resulting
overall arithmetic complexity including all of the basic operations in each iteration is remarkably
cheaper than the prior approaches. The resulting framework is simple, easy-to-implement, flexible,
and it can easily be customized to many applications. We demonstrate our framework via an illus-
trative robust QP example, where the most expensive operation in each iteration of our framework
is a maximum eigenvalue computation. We further illustrate this with a preliminary numerical
study on robust portfolio optimization problem.

Our framework is amenable to exploiting favorable structural properties of the functions f i such
as strong concavity, smoothness, etc., through which better convergence rates can be achieved. For
example, when f i are strongly concave in ui, by exploiting this structural information and using
a customization of the weighted regret online mirror descent for strongly convex functions, it is
possible to achieve a better convergence rate of O(1/ε) in both our online first-order oracle setup
and the nominal feasibility oracle framework of [5]. This then partially resolves/refines an open
question stated in [5] for the lower bound on the number of iterations/calls needed in their nominal
feasibility oracle based framework. However, it remains open whether O(1/ε2) bound is tight when
no further favorable structure is present in f i or the tightness of O(1/ε) in the favorable case.
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There are several other compelling avenues for future research. From a practical perspective, it
is well-known, and also confirmed by our preliminary proof-of-concept computational experiments,
that the computation of gradients/subgradients constitute a major bottleneck in the practical
performance of FOMs. Thus, as a step to reduce the efforts involved in such computations, possible
incorporation of stochastic [41, 36] and/or randomized FOMs [26, 10] working with stochastic
subgradients into our framework is of great practical and theoretical interest. A critical assumption
in our approach as well as others, e.g., see [5] and references therein, is that the domain X is convex.
Removing the convexity requirement on the domain X will be an important theoretical development
on its own. Besides, this will open up possibilities for more principled approaches to solving robust
combinatorial optimization problems (see [11, 13]) where such a convexity assumption on X is
not satisfied. Finally, another attractive research direction is develop analogous frameworks for
multi-stage RO problems such as robust Markov decision processes (see [39, 24]).
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A Convex-Concave Saddle Point Reformulation

The SP problem (7) based on the function Φ(x, u) which is not necessarily concave in u admits a
convex-concave SP representation in a lifted space via perspective transformations. To present this
reformulation, we start by defining the following sets with additional variables y ∈ Rm+ and new
variables vi for i ∈ [m]:

V i =

{
[vi; y(i)] : 0 < y(i) ≤ 1,

vi

y(i)
∈ U i

}
∀i ∈ [m],

W =

{
w = [v1; . . . ; vm; y] : [vi; y(i)] ∈ cl(V i), i ∈ [m],

m∑
i=1

y(i) = 1

}
.

Note that for all i ∈ [m], cl(V i) = V i∪{[0; 0]} because we assumed U i to be closed sets. For the point

[vi; y(i)] = [0; 0], we set y(i)f i
(
x, vi

y(i)

)
= 0 for any x ∈ X. Note that setting y(i)f i

(
x, vi

y(i)

)
= 0 for

[vi; y(i)] = [0; 0] is well-defined as the continuation since from Assumption 2.1, f i(x, ui) is continuous
and finite-valued on U i, and U i is compact, so we deduce that f i(x, ui) will be bounded on U i.

We also define the function ψ : X ×W → R as

ψ(x,w) = ψ(x, v, y) :=

m∑
i=1

y(i)f i
(
x,

vi

y(i)

)
.

Lemma A.1. For fixed w ∈ W , the function ψ(x,w) is convex in x over X, and ψ(x,w) is a
concave function of w over W for any fixed x. Moreover, W is closed, and when U i for i ∈ [m] are
convex, the sets V i for i ∈ [m] and W are all convex.

Proof. For any w = [v1; . . . ; vm; y], the function ψ is convex in x since in all of the nonzero terms
in the summation over all i ∈ [m] defining ψ, we have y(i) > 0 and in each such nonzero term each

function f i
(
x, vi

y(i)

)
is convex in x for the given vi

y(i)
∈ U i (see Assumption 2.1). In addition, for

any given x ∈ X, the function ψ is jointly concave in v and y because it is written as a sum of the
perspective functions of functions f i which are concave in ui (see Assumption 2.1).

The closedness of W is immediate, and the convexity of the sets V i and W follows immediately
from their definition and the convexity assumption on U i.

With these definitions and Lemma A.1, we observe that (7) is equivalent to evaluating the
convex-concave SP problem defined by the function ψ over the convex domains X and W :

inf
x∈X

sup
w∈W

ψ(x,w) ≤ ε or inf
x∈X

sup
w∈W

ψ(x,w) > 0. (29)

We state this formally in the following lemma.

Lemma A.2. For any ε > 0 and x̄ ∈ X,

max
i∈[m]

sup
ui∈U i

f i(x̄, ui) ≤ ε if and only if sup
w∈W

ψ(x̄, w) ≤ ε.

As a result,
inf
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui) ≤ ε if and only if inf
x∈X

sup
w∈W

ψ(x,w) ≤ ε.
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Proof. Fix x̄ ∈ X and ε > 0. Suppose maxi∈[m] supui∈U i f i(x̄, ui) ≤ ε; then for all ui ∈ U i, i ∈ [m],

we have f i(x̄, ui) ≤ ε. Now consider any w = [v1; . . . ; vm; y] ∈ W . Then 0 ≤ y(i) ≤ 1 for all

i ∈ [m] and
∑m

i=1 y
(i) = 1. For all i ∈ [m], define ui = vi

y(i)
∈ U i whenever y(i) > 0. Then

y(i)f i(x̄, vi

y(i)
) = y(i)f i(x̄, ui) ≤ y(i)ε for 0 < y(i) ≤ 1. In addition, when y(i) = 0, because w ∈W we

must have vi = 0 and then by definition we have y(i)f i(x̄, vi

y(i)
) = 0. Therefore, from

∑m
i=1 y

(i) = 1,

we deduce ψ(x̄, w) =
∑m

i=1 y
(i)f i

(
x̄, vi

y(i)

)
≤ ε holds for any w ∈W .

Now suppose that supw∈W ψ(x̄, w) ≤ ε holds. Given i ∈ [m] and ui ∈ U i, set w to have
components y(i) = 1, vi = ui, and [vj ; y(j)] = [0; 0] for j 6= i. Then f i(x̄, ui) = ψ(x̄, w) ≤ ε. Hence,
maxi∈[m] supui∈U i f i(x̄, ui) ≤ ε follows.

Remark A.1. When m = 1, i.e., we have only one function f1(x, u1) and only one uncertainty set
U1, hence W = U1 and infx∈X supv∈W ψ(x,w) = infx∈X supu1∈U1 f1(x, u1). Also, under Assump-
tion 2.1, ψ(x,w) is convex in x and concave in u1. Thus, the preceding perspective transformation
resulting in (29) directly generalizes this case of a convex-concave SP formulation for m = 1 dis-
cussed in Remark 3.1.

As a result, Lemma A.2 and Theorem 3.1 combined with any FOM that provides bounds on the
saddle point gap εψsad(x̄, w̄) lead to an efficient way of verifying robust feasibility of (7) as follows:

Theorem A.1. Suppose x̄ ∈ X, w̄ ∈ W , and τ ∈ (0, 1) are such that εψsad(x̄, w̄) ≤ τε. If
ψ(x̄, w̄) ≤ (1 − τ)ε, then maxi∈[m] supui∈U i f i(x̄, ui) ≤ ε. If ψ(x̄, w̄) > (1 − τ)ε and τ ≤ 1

2 , then
infx∈X maxi∈[m] supui∈U i f i(x, ui) > 0.

Proof. Suppose ψ(x̄, w̄) ≤ τε. By Theorem 3.1, we have infx∈X supw∈W ψ(x,w) ≤
supw∈W ψ(x̄, w) ≤ ε. By Lemma A.2, maxi∈[m] supui∈U i f i(x̄, ui) ≤ ε as well.

On the other hand, when ψ(x̄, w̄) > (1 − τ)ε and τ ≤ 1
2 , Theorem 3.1 implies

infx∈X supw∈W ψ(x,w) ≥ infx∈X ψ(x, w̄) > 0. Then by Lemma A.2, maxi∈[m] supui∈U i f i(x̄, ui) > 0
follows.

Because of the existence of efficient FOMs to solve convex-concave SP problems, Theorem A.1
suggests a possible advantage of using the convex-concave SP problem given in (29). Nevertheless,
working with the SP reformulation given by (29) in the extended space X×W presents a number of
critical challenges. First, efficient FOMs associated with convex-concave SP problems often require
computing prox operations or projections onto the domains X and W . Unfortunately, even if
projection (or prox-mappings) onto U i admits a closed form solution or an efficient procedure, it is
unclear how to extend such projections ontoW . Furthermore, while the perspective transformations
involved in constructing the function ψ preserves certain desirable properties of the functions f i,
such as Lipschitz continuity and smoothness, the parameters associated with ψ are in general
larger than those associated with the original functions f i. Such parameters are critical for FOM
convergence rates, and thus the FOMs when applied to solve (29) will have slower convergence
rates.

To address the issues outlined above, in the main paper we discuss how to obtain robust fea-
sibility/infeasibility certificates for the convex-nonconcave SP problem (7) directly, i.e., we work
with the functions f i and the sets U i directly. This direct approach in particular allows us to take
greater advantage of the structure of the original formulation such as the availability of efficient
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projection (prox) computations over domains, and/or better parameters for smoothness, Lipschitz
continuity, etc., of the functions.

B Supplementary Numerical Results

Below, we provide the exact numerical values corresponding to the data used to generate the figures
in our numerical study in Section 6.

Table 5: Average solve time (seconds) of each approach for different n (Figure 1).

Approach
OFO-based FO-based pessimization nominal full pessimization

n

100 6.24∗ 8.03† 1.18 0.47
200 8.28‡ 9.21‡ 4.14 1.88
300 10.67 10.62 8.57 4.13
400 14.38‡ 12.91‡ 14.19 7.55
500 16.80 14.63 22.27 12.10
600 21.33 17.96 30.83 17.17
700 24.52 20.14 39.76 23.72

Table 6: Average solve time (seconds) of each approach for different m and n (Figure 2).

m
3 5 7 10 15 20 25

n

400

OFO-based 13.17§ 12.21 14.78 14.03 14.73 16.23 15.24
FO-based pessimization 12.47§ 11.04 11.92 12.97 14.27 14.81 12.77
nominal 2.16 4.23 6.77 11.31 15.82 24.86 31.77
full pessimization 1.61 2.69 3.86 6.03 8.87 12.53 16.05

500

OFO-based 15.96 15.55 15.88 17.22 17.41 17.52 18.04
FO-based pessimization 13.04 12.26 14.08 17.09 16.28 14.55 15.07
nominal 4.02 5.92 10.22 17.86 22.06 45.16 50.63
full pessimization 2.57 4.29 6.06 9.95 13.92 22.44 25.46

600

OFO-based 18.62 19.52 20.97 21.25 20.86 23.46 24.62
FO-based pessimization 15.75 16.48 18.11 16.55 17.16 20.89 20.80
nominal 3.59 8.68 13.01 23.71 38.05 55.65 73.11
full pessimization 2.91 6.16 8.68 13.25 21.25 30.91 37.05

700

first-order 19.49 21.86 24.46 25.04 25.12 28.48 27.18
pessimization 16.28 17.26 21.51 22.07 20.86 22.10 20.87
nominal 6.38 12.53 14.24 29.81 48.79 77.03 89.51
full pessimization 4.98 8.39 12.02 18.66 29.02 42.89 50.10

∗Three instances out of 35 did not solve due to numerical issues.
†Two instances out of 35 did not solve due to numerical issues.
‡One instance out of 35 did not solve due to numerical issues.
§One instance out of five did not solve due to numerical issues.
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