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Abstract
We study non-parametric estimation of consumer choice models. Non-parametric approaches

were introduced to alleviate unreasonable assumptions and issues of suboptimal model fit/selection
present in traditional parametric approaches, and are prevalent in several application areas.
We present a generic convex optimization-based framework to efficiently learn a simple non-
parametric choice model from data that is close to the best-fitting one, where simplicity is
measured by sparsity of the underlying distribution. As opposed to the existing literature, we
propose a solution method which enjoys provable convergence guarantees and extends naturally
to the dynamic observation setting. Our computational study on the dynamic setting reveals the
true impact of how much data are needed and at what rate to achieve the best trade-off in terms
of estimation accuracy and model simplicity.

1 Introduction
A choice model specifies the probability distribution for rankings that consumers have over a set of
items. Such models give choice probabilities, that is, the probability that a given consumer will
choose an item from a given subset. Choice models are prevalent in several application areas such
as revenue management, web page ranking, betting theory, social choice, marketing, and economics
(see [7–9, 12, 19] and references therein). A good choice model aims to capture complex substitution
behaviors of consumers in order to accurately predict demand from limited observations.

Choice model estimation has received quite a bit of interest. Traditional choice models often
specify a parametric structure for the probability distribution (examples include the multinomial
logit (MNL), nested logit, and mixed MNL models), see [19] and references therein. Imposing a
parametric structure makes estimation of the necessary parameters a simpler task, but is often at
the expense of overly facile assumptions on consumer behavior (such as independence of irrelevant
alternatives in MNL models) preventing us from accurately capturing the substitution behavior.
Because of this, the non-parametric approach of estimating the probability distribution for rankings
directly have drawn growing interest in academia and practice [10, 17], and is shown through case
studies [10] to lead to substantial improvement in prediction accuracy. However, learning (or even
specifying) a full non-parametric model is intractable even for moderate-sized problems, since there
are a factorial number of probabilities to estimate. Furthermore, today’s technology enables us
to collect data on a continuous basis. Unfortunately, existing methods have a notable deficiency:
in order to update their estimates with the latest data, they must re-solve their choice models
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entirely. In the case of non-parametric choice estimation, such dynamic considerations significantly
compound the existing computational challenges.

Related literature. Earliest studies on non-parametric choice models appear in the economics
and psychology literatures, e.g., Block and Marschak [4]. Mahajan and van Ryzin [14] showed
that non-parametric models capture a number of parametric models as special cases. There are
three main approaches employed for the static estimation of non-parametric choice models. Farias
et al. [10] outline a constraint sampling based method to estimate the non-parametric model from
observational data on consumer choices. Other methods based on maximum likelihood estimation
(MLE) and norm minimization are presented by van Ryzin and Vulcano [20] and Bertsimas and
Mišic [3] respectively. While [10] and [20] provide useful recovery results under some assumptions
on the observational data, none of the methods in [3, 10, 20] come with provable convergence
guarantees. Moreover, these prior methods are not equipped to deal with the more realistic dynamic
data setting, where the firm continuously collect and wishes to utilize more consumer data even as
we implement an estimation procedure.

Our contributions. We present a generic yet simple iterative framework for dynamically
estimating non-parametric choice models and tackle the issues of the previous non-parametric
approaches outlined above. We formulate the choice model estimation problem as the minimization
of a generic distance metric between the theoretical distribution and an empirical one from the
observations. Consequently, the generic nature of our distance metric allows us to present a unified
view of the existing methods [3, 10, 20]. Unlike the existing literature, in this generic framework,
using tools from convex duality and online convex optimization, we derive, for the first time, provably
efficient convergence guarantees, i.e., we establish the number of iterations needed in order to estimate
the choice model to within a given accuracy ε. Our analysis also upper-bounds the sparsity of our
estimated model. As a result, our analysis exposes an explicit trade-off between the simplicity of
the non-parametric choice model and its estimation accuracy. Furthermore, by employing a joint
estimation-optimization (JEO) framework [2, 11], for the first time in the literature, we show that
our method extends easily and efficiently to the dynamic setting, where new empirical observations
are continuously collected and incorporated as new data into the choice model estimation process.
On the algorithmic side, our general solution method enables us to recover primal solutions to
convex optimization problems via a dual formulation. In particular, this technique can naturally
be adapted to the dynamic case via the JEO framework, where the problem data are updated
continuously. We also carry out a computational study, where we test the behavior of different
distance metrics (`p-norms) in terms of estimation accuracy and sparsity of our learned models as
well as the impact of number of observations and batch size used in the dynamic data setting on the
same criteria. Our numerical results indicate that several choices in designing a generic dynamic
setup mainly influence the simplicity of the estimated choice model as opposed to its accuracy.

Notation. For a positive integer n ∈ N, we let [n] = {1, . . . , n}, define ∆n := {x ∈
Rn+ :

∑
i∈[n] xi = 1} to be the standard simplex, and Sn to be the collection of rankings of

the set [n]. We refer to a collection of objects bj , j ∈ J by the notation {bj}j∈J . Throughout the
paper, the superscript, e.g., yt, zt, f t, is used to attribute items to the t-th time period or iteration.
The subscript is used to denote coordinates of a vector or matrix, e.g., βij . Given vectors x and y,
〈x, y〉 corresponds to the usual inner product of x and y. Given a norm ‖ · ‖ on a Euclidean space
E and a real number a > 0, we denote its dual norm by ‖x‖∗ = miny{〈x, y〉 : ‖x‖ ≤ 1}. We let
∂f(x) be the subdifferential of f taken at x. We abuse notation slightly by denoting ∇f(x) for
both the gradient of function f at x if f is differentiable and a subgradient of f at x, even if f
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is not differentiable. If φ is of the form φ(x, y), then ∇xφ(x, y) denotes the subgradient of φ at x
while keeping the other variables fixed at y. We denote the indicator function as I, i.e., I(S) = 1 if
statement S holds, and I(S) = 0 otherwise.

2 Data and Model
In the general non-parametric choice estimation framework, we consider a firm which has n products
to sell. We assume that the firm chooses from a given set of m assortments A1, . . . ,Am ⊂ [n], and
the item 1 represents the ‘no-buy’ option and is present in all assortments Aj , j ∈ [m]. Therefore,
when presented with an assortment, the consumer will always choose an item from it (perhaps the
no-buy option, i.e., item 1). We also denote N :=

∑m
j=1 |Aj |.

In this paper, we work with the following data collection process. When a consumer arrives,
the firm displays an assortment Aj to the consumer. The consumer chooses a product ij ∈ Aj ,
and the firm observes this choice. A data set with K such observations will be a collection of
pairs

{
ik,Ak

}K
k=1

, where ik denotes the item chosen and Ak denotes the assortment displayed for
observation k. There are a number of useful statistics on this data set, which are defined as follows:

qij := 1
K

K∑
k=1

I(ik = i,Ak = Aj) and qj := 1
K

K∑
k=1

I(Ak = Aj) (1)

pij :=
∑K
k=1 I(ik = i,Ak = Aj)∑K

k=1 I(Ak = Aj)
= qij
qj
. (2)

In words, qij is the proportion of observations where assortment Aj was displayed and item i was
chosen, qj is the proportion of observations where assortment Aj was displayed, and pij is the
proportion of consumers who chose item i given that assortment Aj was displayed.

The non-parametric choice model is as follows. An incoming consumer will choose an item
according to his/her ranking σ ∈ Sn of the products in [n], that is, when presented with an
assortment Aj , the consumer chooses the highest ranked product from Aj , i.e., arg mini∈Aj

σ(i).
The key assumption in this model is that the ranking σ of each incoming consumer is distributed
i.i.d. according to some distribution λ on the set of all rankings Sn. Then λ represents the vector of
probabilities of each σ ∈ Sn being drawn, i.e., the probability that a consumer will have a ranking σ
is λ(σ).

For an item-assortment pair i ∈ Aj , we define a binary vector aij ∈ {0, 1}n! to have entries
aij(σ) = I

(
i = arg mini∈Aj

σ(i)
)
for σ ∈ Sn. Thus, each entry of aij corresponds to a ranking σ,

with aij(σ) = 1 if i is the highest ranked item in Aj according to σ, and aij(σ) = 0 otherwise. We
define A to be the binary matrix of dimension N × n! with rows a>ij . We denote the columns of A
as the vector a(σ) ∈ {0, 1}N , indexed by rankings σ ∈ Sn. Finally, for j ∈ [m], we define Aj to be
the submatrix of A with rows a>ij for i ∈ Aj .

Then, based on our notation, given a distribution λ ∈ ∆n! over rankings, the probability Pλ[i | Aj ]
that a consumer chooses item i from Aj is simply represented as the inner product 〈aij , λ〉. Moreover,
Aλ is nothing but the vector composed of the collection of probabilities {Pλ[i | Aj ]}i∈Aj ,j∈[m].
Finally, the probability distribution of a consumer choosing item i ∈ Aj given that they were offered
assortment Aj , i.e. {Pλ[i | Aj ]}i∈Aj

, is simply Ajλ. The statistics (1), (2) will be used to infer the
best-fitting probability distribution λ, since pij is an empirical estimate of P[i | Aj ]. We denote the
collected vectors of {pij}i∈Aj ,j∈[m] = p ∈ RN and {pij}i∈Aj

= pj ∈ R|Aj | for j ∈ [m].
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3 Dynamic Learning of a Non-Parametric Choice Model
In Appendix A, we give a brief overview of three closely related approaches to learn the non-parametric
choice model from data [3, 10, 20]. There, we also demonstrate that these seemingly disparate models
used in [3, 10, 20] are special instantiations of a more general distance minimization framework,
where λ is inferred by minimizing a distance measure D(·, ·) from the theoretical probabilities Aλ
to the empirical observations p:

min
λ
{D(Aλ, p) : λ ∈ ∆n!} . (3)

In this paper, unlike prior literature, we provide a solution method equipped with efficient convergence
guarantees for the general class of distance measures D. We assume that D(·, p) is convex and
continuous on its domain; this is the case for the specific instantiations of D in [3, 10, 20] as well.

For a specified accuracy level ε > 0, our goal is to obtain an (additive error) ε-approximate
solution to this problem within a reasonable number of iterations. We also consider a dynamic
variant of the problem where instead of fixed data p, we now have changing data pt that converges
to a limit p as we have more observations, i.e., t → ∞. Under standard statistical assumptions,
the estimates pt obtained through (2) from a growing set of observations converge to the true
distribution vector p = {P[i, | Aj ]}i∈Aj ,j∈[m] (almost surely). In this setup we would still like to
estimate λ, but we are only given access to the sequence {pt}t≥1. Also, note that (3) is intractable
due to the n! decision variables. To address these three challenges, we use three tools: convex
duality, online convex optimization, and joint estimation-optimization.
3.1 Dual Formulation via Convex Conjugacy
Given that D(·, p) is convex and continuous on its domain, we can write D(Aλ, p) via its convex
conjugate D∗:

D(Aλ, p) = sup
y

{
〈Aλ, y〉 −D∗(y, p) : y ∈ RN

}
,

where D∗(y, p) := sup
z

{
〈y, z〉 −D(z, p) : z ∈ RN

}
.

Note that D∗(y, p) is convex in y. In addition, if we assume that the (sub)gradients ∇zD(z, p) are
bounded ‖∇zD(z, p)‖ ≤ R for some norm ‖ · ‖, then we can restrict the domain of y accordingly:

D(Aλ, p) = sup
y:‖y‖≤R

{
〈Aλ, y〉 −D∗(y, p) : y ∈ RN

}
.

Henceforth, we denote Y := {y : ‖y‖ ≤ R} to be the corresponding norm ball. Based on these
definitions, the problem (3) now admits a natural saddle point representation:

SV(p) := min
λ
{D(Aλ, p) : λ ∈ ∆n!} = min

λ∈∆n!
sup
y∈Y
{〈Aλ, y〉 −D∗(y, p)} . (4)

In an ideal situation, we would solve (4) with a computationally efficient saddle point al-
gorithm such as Mirror Prox [16], which leads to a convergence rate of O (log(N + n!)/T ) ≈
O ((log(N) + n log(n))/T ) after T iterations. However, each iteration of the Mirror Prox algorithm
involves updating λ, i.e., n! decision variables, which is intractable.
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To remedy this, we transform the problem using standard convex conjugacy. The minimax
theorem [18] allows us to write (4) as

SV(p) = sup
y∈Y

min
λ∈∆n!

{〈Aλ, y〉 −D∗(y, p)} .

The second equality follows from the fact that 〈Aλ, y〉 −D∗(y, p) is a linear function in λ, thus the
minimum occurs at a vertex of ∆n!, i.e., some column of A. Thus, we arrive at the dual problem

SV(p) = sup
y∈Y

f(y, p), where f(y, p) := min
λ∈∆n!

{〈Aλ, y〉 −D∗(y, p)} . (5)

Notice that f(y, p) is concave in y and has supergradients ∇yf(y, p) = Aλ−∇yD∗(y, p), where
λ ∈ arg minλ′∈∆n!〈Aλ

′, y〉. Thus, SV(p) is simply maximizing a concave function over a bounded
convex domain Y . Moreover, the dimension of Y is N , which is much more manageable than n!.

Using online convex optimization, we show how to recover a primal solution λ for original
problem (3) via solving the dual problem (5). We note that similar ideas were applied to online
stochastic programming [1] and in an algorithmic approach to Approximate Caratheodory Theorem
[15].

The dynamic variant of (5) can be described as follows: we would like to maximize f(y, p)
over Y , but we only have access to approximate data pt, and hence we only see an approximate
sequence of functions f(y, pt). This is now exactly a JEO problem [2, 11], for which methods exists
to optimize f(y, p) using a sequence pt → p and employing efficient updates at each step t. In the
next section, we show how to recover a primal solution λ for (3) with updating objective by solving
a JEO version of the dual problem (5). Such a primal solution recovery from the dual problem was
not examined in the previous literature including [2, 11], and thus it is a novel contribution.
3.2 Obtaining Primal Solutions via the Dual Problem
In Section 3.1, we established the equivalence between the primal problem (3) and its dual (5). We
now show how to recover a solution for the primal problem via solving the dual problem in the
dynamic data setting.

The key idea is as follows. For a given sequence of dual points {yt}Tt=1, we define concave
functions f t based on the current yt and pt by

f t(y) := 〈Aλt, y〉 −D∗(y, pt), where λt := arg min
λ∈∆n!

〈Aλ, yt〉. (6)

Notice that from (6), we also get a sequence of primal points {λt}Tt=1. From these primal points, we
build a candidate primal solution λ̄T = 1

T

∑T
t=1 λ

t, which has the following optimality gap bound.

Theorem 3.1. Given a sequence {yt}Tt=1, let λt be generated according to (6). Then

D
(
Aλ̄T , p

)
− min
λ∈∆n!

D(Aλ, p) ≤ max
y∈Y

1
T

T∑
t=1

f t(y)− 1
T

T∑
t=1

f t(yt)

+ max
y∈Y

1
T

T∑
t=1

[
D∗(y, pt)−D∗(y, p)

]

+ 1
T

T∑
t=1

[
min
λ∈∆n!

D(Aλ, pt)− min
λ∈∆n!

D(Aλ, p)
]
.
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Proof. Note that we have

D
(
Aλ̄T , p

)
= D

(
1
T

T∑
t=1

Aλt, p

)
= max

y∈Y

{〈
1
T

T∑
t=1

Aλt, y

〉
−D∗(y, p)

}

= max
y∈Y

1
T

T∑
t=1

[
〈Aλt, y〉 −D∗(y, pt) +D∗(y, pt)−D∗(y, p)

]

= max
y∈Y

1
T

T∑
t=1

[
f t(y) +D∗(y, pt)−D∗(y, p)

]

≤ max
y∈Y

1
T

T∑
t=1

f t(y)− 1
T

T∑
t=1

f t(yt) + 1
T

T∑
t=1

f t(yt) + max
y∈Y

1
T

T∑
t=1

[
D∗(y, pt)−D∗(y, p)

]
,

where the inequality follows from decomposing the terms in the maximum. Furthermore, we have
f t(yt) = 〈Aλt, yt〉 −D∗(yt; pt) = f(yt; pt). Hence, from yt ∈ Y , we deduce

f t(yt) = f(yt; pt) ≤ max
y∈Y

f(y, pt) = max
y∈Y

min
λ∈∆n!

{
〈Aλ, y〉 −D∗(y, pt)

}
= min

λ∈∆n!
D(Aλ, pt).

Substituting this bound into the above expression and rearranging terms gives us the desired result.

Theorem 3.1 decomposes the optimality gap of our candidate point λ̄T into three error terms.
We now examine each of these terms. The latter two error terms

max
y∈Y

1
T

T∑
t=1

[
D∗(y, pt)−D∗(y, p)

]
and 1

T

T∑
t=1

[
min
λ∈∆n!

D(Aλ, pt)− min
λ∈∆n!

D(Aλ, p)
]

are penalty terms that originate from the use of inexact data pt ≈ p, and they disappear in the
static case when pt = p. In the dynamic case, as pt → p, these two terms converge to zero if the
distance function D and its conjugate D∗ are sufficiently regular. For example, Lipschitz continuity
of the functions D∗(y, ·) (uniformly over y ∈ Y ) and minλ∈∆n! D(Aλ, ·) are sufficient for convergence
of these two terms respectively. The first term, which is a regret term for the sequence {yt}Tt=1
on the functions {f t}Tt=1, can be shown to bound the regret of {yt}Tt=1 on the (approximate) dual
objectives {f(y, pt)}Tt=1:

max
y∈Y

1
T

T∑
t=1

f t(y)− 1
T

T∑
t=1

f t(yt) ≥ max
y∈Y

1
T

T∑
t=1

f(y, pt)− 1
T

T∑
t=1

f(yt, pt).

Thus, by choosing {yt}Tt=1 to have small regret on {f t}Tt=1, we are also near-optimal on the dual
objectives. Online convex optimization (OCO) gives us several methods for minimizing regret. We
state a typical bound, and defer a more complete overview of this to Appendix B.

Theorem 3.2 (see Appendix B). There exists a method to choose yt using only yt−1, f t−1 so as to
guarantee

max
y∈Y

1
T

T∑
t=1

f t(y)− 1
T

T∑
t=1

f t(yt) ≤ O
( 1√

T

)
.
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Theorem 3.1 guarantees that, for T sufficiently large, an ε-approximate choice model λ̄T will be
returned in T iterations. Also, in each iteration, at most one new ranking will be introduced to λ̄T .

In our approach, the overall number of iterations T depends on two factors: the convergence rate
of the regret bound, which for online Mirror Descent requires T ≥ O(1/ε2); and the convergence
rate of the two error terms, which depends on the Lipschitz constants as well as the rate that pt → p.
Therefore, T upper-bounds the sparsity of the learned model λ as well. As a result, our analysis
in essence exposes an explicit trade-off between the sparsity of the non-parametric choice model λ
and its estimation accuracy ε. To the best of our knowledge, this explicit connection has not been
characterized in the literature before.

Let us summarize the assumptions we have made on the general distance function D: to obtain
a bounded domain Y = {y : ‖y‖ ≤ R}, we need bounded gradients ‖∇zD(z, p)‖ ≤ R; to obtain
the Mirror Descent bound, we need ‖Aλt − ∇yD∗(y, pt)‖∗ ≤ G for all y ∈ Y , and since Aλt are
always bounded, we need a bound on ‖∇yD∗(y, pt)‖∗; finally, to bound the error terms, we require
Lipschitz continuity of D∗(y, p) and minλ∈∆n! D(Aλ, p) in the p variable.

Example 3.3. Suppose D(Aλ, p) = ‖Aλ− p‖ is defined by a norm. Then standard convex analysis
results imply that ‖∇yD(y, p)‖∗ ≤ 1, hence we can define Y = {y : ‖y‖∗ ≤ 1} in terms of the
dual norm. Also, D∗(y, p) = 〈y, p〉 when ‖y‖∗ ≤ 1 and ∞ otherwise, thus ∇yD∗(y, pt) = pt for
y ∈ Y , and is bounded for any norm, since the data vectors pt are bounded. Therefore, the
regret bound from Theorem 3.2 can be applied, and

√
2ΩG2/T → 0 as T → ∞. Furthermore,

D∗(y, pt)−D∗(y, p) = 〈y, pt − p〉 ≤ ‖pt − p‖ for any y ∈ Y , and from standard analysis results we
know that minλ∈∆n! D(Aλ, pt)−minλ∈∆n! D(Aλ, p) ≤ ‖pt−p‖, thus the two error terms are bounded
by 2

T

∑T
t=1 ‖pt − p‖, which converges to 0 since pt → p. This shows that when D is defined as any

norm (in particular the `1-norm from Bertsimas and Mišic [3]), we can estimate a non-parametric
choice model from a continuously updated sequence of data pt → p efficiently.

Note that since the domain of λ is a simplex over the rankings, we have

Aλt = a(σt), where σt = arg min
σ∈Sn

〈a(σ), yt〉,

and hence the probability distribution λ̄T assigns 1/T weight on each ranking σt, t ∈ [T ]. Thus,
each iteration, after computing yt, we must solve the following combinatorial optimization problem
over rankings:

min
σ

 ∑
j∈[m]

∑
i∈Aj

ytijaij(σ) : σ ∈ Sn

 . (7)

On the one hand, this problem is NP-hard, since we can show that it is a generalization of the linear
ordering problem and the maximum weighted independent set problem, see e.g., [20, Proposition 3].
This is the main drawback of our approach. However, we note that the exact same combinatorial
problem must be solved in all other approaches of learning a non-parametric choice model (see
Appendix A and (10), (13), (16)). On the other hand, while we cannot avoid the NP-hardness
in learning a non-parametric choice model from data, we note that (7) can be formulated as a
(relatively) compact integer program with O(n2) variables and O(n3) constraints, and also it can be
handled efficiently by off-the-shelf integer programming solvers, see [3]. Thus, by employing our
suggested dual approach, we avoid the problem of having to handle n! decision variables in the
primal problem (3), and instead must solve a relatively compact integer program at each iteration.
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Finally, we remark that our dual approach can apply to arbitrary domains for λ and A matrices
besides the ones specified for learning non-parametric choice models in [3, 10, 20]. This flexibility
can be attractive in utilizing additional a priori structural information on the choice model λ.

4 Computational Study
We carried out a computational study to compare the model fit of three different choices of distance
functions D(·, ·) arising from three different `p-norms: p ∈ {1, 2,∞} on the same simulated data
setup from [3, Section 5.3]. In particular, our ground truth choice model is a mixed MNL model
generated by two meta-parameters: K ∈ N, the number of MNL models in the mixture, and L ∈ R+
governing the intensity of the preferences. Given mixing probabilities {pk}k∈[K] and K sets of
utilities {ui,k}i∈{0}∪[n], k ∈ [K], the mixed MNL model chooses an item i ∈ A ⊆ [n] with probability

P[i | A] =
∑
k∈[K]

wk
ui,k

u0,k +
∑
i′∈A ui′,k

.

For each k ∈ [K], we generate n+ 1 parameters qi,k ∼ U(0, 1), i ∈ {0} ∪ [n] (recall that 0 denotes
the no-choice option present in each subset). The utilities ui,k are then set as follows: four randomly
chosen i ∈ {0} ∪ [n] are set to ui,k = Lqi,k, while the rest are set to ui,k = qi,k/10. The mixing
probabilities {wk}k∈[K] are chosen randomly from the (K − 1)-dimensional simplex. We test the
case n = 10 and parameter regimes K ∈ {1, 5, 10} and L ∈ {5, 10, 100}.

For each combination of K and L, we generate 100 instances of the ground truth mixed MNL
model. We then generate two sets of 100 subsets of maximum size bn/2c uniformly at random. We
reserve one set for training, and the other set for testing. Our training regime is as follows: using the
ground truth model, we compute the ptrain vector, where ptrain,ij = P[i | Aj ], and Aj is are subsets
from our training set. We vary the number of training subsets m we use by m ∈ {10, 20, 50}.

We use ptrain to fit our model using the methods from Section 3. To evaluate model fit, we
similarly compute ptest for our ground truth model using all 100 subsets in the test set, then compute
p̂test from our learned model, and examine the mean average error (MAE) between ptest and p̂test,
defined as

MAE(p, p̂) = 1
length(p)

∑
i,j

|pij − p̂ij |.

We terminate training when MAE(ptrain, p̂train) ≤ 0.001, and we evaluate performance by computing
MAE(ptest, p̂test).

(a) K = 1 (b) K = 5 (c) K = 10

Figure 1: Test set MAE for L = 5.

Figure 1 displays the test set MAE for different K, m and p while L = 5 is fixed. As expected,
we see that as m increases, the test MAE decreases. This trend holds for all combinations of L, K
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and p, so henceforth, we examine results only for m = 20. Figure 1 also suggests a slight upward
trend as we increase p. This can further be seen in Figure 2(a), where we examine the average
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(b) Average number of rankings learned (m = 20).

Figure 2: Test set MAE and # of ranking comparisons for m = 20

MAE across the 100 instances for each parameter combination of K and L. While the scales of the
y-axes are quite small, and hence the differences quite minor, we notice that p = 1 often has the
best test MAE. The two exceptions are when L ∈ {10, 100} and K = 1, where p = 2 has the best
fit. Also notice that in all cases but one, p =∞ generally has worse fit than p ∈ {1, 2}. We plot the
average number of rankings learned across the different parameter regimes in Figure 2(b), which is
a measure of the sparsity of our model. While p = 1 often fits better than p ∈ {2,∞}, it comes
at the cost of a significantly denser model. The sparsity for p ∈ {2,∞} are generally quite similar.
Thus, choosing p = 1 will give us the best fitting model on our test set, but comes at the cost of a
significant loss of sparsity. Instead, p = 2 seems to lead to a good compromise.

We also test convergence of our method in the dynamic data setting when we only have access
to pt. In this setting, we fix the norm to be `2-norm, L = 5, K = 5, and m = 20. We generate p1 by
randomly generating 2000 observations of item-assortment choices from the ground truth model, and
aggregating them according to (2). Each subsequent pt is generated by adding κ ∈ N observations
to the previous pt−1. We stop when MAE(p̄T , p̂) ≤ 0.001, where p̄T is the average of the pt vectors
seen. We test the effects of using different κ ∈ {50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}.
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(a) Effect of different κ on test MAE.
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(b) Effect of different κ on # of iterations.

Figure 3: Dynamically updating pt for `2-norm, L = 5, K = 5, and m = 20

Figure 3(a) shows the average test MAE once the stopping criterion is reached. Here, κ =∞
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corresponds to using the true vector p. As we can see, the test MAE for different κ at the stopping
criterion are virtually identical. Figure 3(b) plots the number of iterations for different κ, and shows
that the learned model becomes more sparse when we increase κ. Note that the runs for κ = 50
take roughly twice as many iterations as κ = 1000, which means that runs for κ = 1000 use roughly
10 times as many observations to achieve effectively the same test MAE error. Surprisingly, using
the true probabilities p to learn a model also achieves the same test MAE. We deduce that the main
gains to additional observations are faster convergence and sparsity of our learned model, but test
set accuracy remains unaffected. Also, observe that gains to sparsity diminish rapidly as κ increases.

All experiments were conducted on a server with 2.3 GHz processor and 64GB memory, and
coded in Python 3.5. Gurobi 7.0 was used to solve the integer programming subproblems.

5 Future Directions
A number of research avenues are worthy of further investigation. Farias et al. [10] and van Ryzin
and Vulcano [20] provide guarantees for the recovery of the correct choice model for their respective
approaches. The question of whether similar correct recovery guarantees exist for our more general
framework is appealing. In particular, [20, Corollary 1] states that as we get more accurate data
pt → p, the MLE λ̂t, i.e., the solution to (12) with the data pt, converges to the true non-parametric
choice model λ with probability 1. However, λ̂t is the full solution to (12). It would be nice to
extend this to our more general framework, that is, obtain the same recovery guarantee λ̂t → λ with
high probability when pt → p, with the crucial difference being that the λ̂t are cheaply updated
from previous time steps according to our simple online updates rather than being full solutions of
(3) for each data point pt. In addition, exploration of the combinatorial subproblem (7) to identify
polynomial-time solvable cases or numerically efficient strategies is of further interest.
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A Existing Approaches to Non-Parametric Choice Estimation
In this section, we examine the existing approaches to learn the non-parametric choice model,
i.e., infer an appropriate probability vector λ using the data collected via the process outlined in
Section 2, and demonstrate how they are particular instantiations of our general model.
A.1 Revenue Prediction Approach
Let ri be the revenue of item i ∈ [n]. Then the expected revenue of an assortment A ⊂ [n] under
distribution λ is

∑
i∈A riPλ[i | A]. Farias et al. [10] seek to find the worst-case expected revenue

from a distribution λ consistent with the given data in the sense that the theoretical probabilities
Pλ[i | Aj ] = 〈aij , λ〉 are precisely consistent with their empirical estimates pij . Since the probabilities
Pλ[i | A] are linear in λ, this can be formulated as a linear program (LP)

min
λ

{∑
i∈A

riPλ[i | A] : Aλ = p, λ ∈ ∆n!

}
.

We first make a few observations related to this model of Farias et al. [10]. In fact, when A = Aj for
some j ∈ [m], we have Pλ[i | A] = 〈aij , λ〉 = pij due to the constraints Aλ = p, hence the objective
is constant. Thus the LP becomes a feasibility problem

find λ ∈ ∆n! s.t. Aλ = p. (8)

That said, (8) is still computationally intractable even for moderate values of n because it involves
n! variables. Nonetheless, the dual of (8) admits the following robust LP interpretation:

max
β,ν

{
〈β, p〉 − ν : max

σ∈Sn

〈β, a(σ)〉 ≤ ν
}
. (9)

Note that verifying the feasibility of a solution with respect to the robust constraint in (9), i.e.,

max
σ∈Sn

〈β, a(σ)〉 = max
σ

 ∑
j∈[m]

∑
i∈Aj

βijaij(σ) : σ ∈ Sn

 ≤ ν (10)

is a combinatorial problem of the exact same form as (7). Farias et al. [10] suggests solving (9) using
the constraint sampling technique [5] or by building an approximation to its robust counterpart
obtained from approximating the uncertainty sets with an efficiently representable polyhedron.

In fact, (8) can be seen as choosing λ ∈ ∆n! to minimize a (very harsh) distance measure:

min
λ∈∆n!

D(Aλ, p), D(Aλ, p) =
{

0, Aλ = p

∞, otherwise.
(11)

In general, and specifically when the observations are noisy, there is no guarantee that there exists
λ ∈ ∆n! to fit the data p exactly, i.e., Aλ = p. To remedy this, van Ryzin and Vulcano [20] and
Bertsimas and Mišic [3] examine approaches that use less harsh distance measures D(·, ·).

12



A.2 Maximum Likelihood Estimation Approach
van Ryzin and Vulcano [20] propose the following method to learn λ via maximum likelihood
estimation (MLE). We next describe their method and provide an alternative interpretation of
their approach as the minimization of a particular distance measure, namely Kullback-Leibler (KL)
divergence, between the true distributions Ajλ and their empirical estimates pj .

By (1), each item-assortment pair i ∈ Aj is seenKqij times amongst the observations
{
ik,Ak

}K
k=1

.

Based on this, the log-likelihood of the observation set
{
ik,Ak

}K
k=1

is
∑
j∈[m]

∑
i∈Aj

Kqij log (〈aij , λ〉).
Thus, ignoring the constant K factor, the MLE problem is

max
λ

 ∑
j∈[m]

∑
i∈Aj

qij log (〈aij , λ〉) : λ ∈ ∆n!

 . (12)

Throughout, we use the convention that when qij = 〈aij , λ〉 = 0, we set qij log(〈aij , λ〉) = 0. This
implies that if the optimal solution λ to (12) has Pλ[i | Aj ] = 〈aij , λ〉 = 0, then we must have qij = 0
also, i.e., we did not observe any choices of i from Aj in our data either.

Like (8), the problem (12) is very large, with n! variables. A column generation technique
is suggested in [20] to get around this, i.e., solve (12) on a subset of the variables, and use the
optimality conditions to add variables as needed. The MLE column generating subproblem is
constructed as

max
σ

 ∑
j∈[m]

∑
i∈Aj

qijaij(σ)
〈aij , λ(S)〉 : σ ∈ Sn

 . (13)

The solution λ(S) is optimal if (13) ≤ K, otherwise the column σ∗ maximizing (13) is added to the
set S, and the process is repeated. Note that (13) has the same form as (7) and (10).

We next demonstrate that the MLE problem (12) admits a nice interpretation between the
empirical estimates {pj}j∈[m] and the distributions {Ajλ}j∈[m]. To observe this, let us rewrite the
objective in (12) as∑

j∈[m]

∑
i∈Aj

qij log (〈aij , λ〉) =
∑
j∈[m]

qj
∑
i∈Aj

pij log (〈aij , λ〉)

= −
∑
j∈[m]

qj
∑
i∈Aj

pij log
(

pij
〈aij , λ〉

)
︸ ︷︷ ︸

=KL(pj ,Ajλ)

+
∑
j∈[m]

qj
∑
i∈Aj

pij log(pij)︸ ︷︷ ︸
=constant

where KL(a, b) is the KL divergence between two probability distributions a and b. Hence, (12) is
equivalent to solving

min
λ

 ∑
j∈[m]

qj KL(pj , Ajλ) : λ ∈ ∆n!

 . (14)

Thus, by defining D(Aλ, p) =
∑
j∈[m] qj KL(pj , Ajλ), we see that the MLE is equivalent to (11) but

with a different distance metric D(·, ·).
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A.3 Norm-Minimization Approach
As opposed to the approaches outlined in Sections A.1 and A.2, in order to estimate a non-parametric
choice model λ, Bertsimas and Mišic [3] suggest minimizing the `1-norm of p−Aλ by solving

min
λ
{‖p−Aλ‖1 : λ ∈ ∆n!} . (15)

In fact, (15) can be cast as an LP, but it is still computationally intractable since the dimension
of λ is n!. Similar to [20], [3] addresses this computational difficulty via a column generation
approach. Again, (15) is of the same form as (11) where the distance metric D(·, ·) is selected to be
D(Aλ, p) = ‖p−Aλ‖1. Furthermore, the column generating subproblem is of the form

max
σ

 ∑
j∈[m]

∑
i∈Aj

βij(S)aij(σ)− ν(S) : σ ∈ Sn

 , (16)

where β(S), ν(S) are from the dual solution to solving (15) on a subset of columns σ ∈ S ⊂ Sn.
Again, this has the same form as (7), (10) and (13).

B Online Convex Optimization Based Framework
Online convex optimization (OCO) is commonly used to capture decision making in dynamic
environments. Here we outline the basic OCO concepts; for further details and background, we
refer the reader to Cesa-Bianchi and Lugosi [6].

In OCO, we are given a finite time horizon T , closed, bounded, and convex domain Z, and in
each time period t ∈ [T ], a convex loss function f t : Z → R is revealed. At time periods t ∈ [T ]
we must choose a decision zt ∈ Z, and based on this we suffer a loss of f t(zt) and receive some
feedback typically in the form of first-order information on f t. The main aim of OCO is to choose a
sequence of points {zt}Tt=1 from the domain Z to bound the weighted regret

T∑
t=1

θtf t(zt)− inf
z∈Z

T∑
t=1

θtf t(z), (17)

where θ = {θt}Tt=1 ∈ ∆T is a collection of convex combination weights. The key restriction that
separates OCO from standard optimization problems is that zt must be chosen before observing
f t. The fact that there exist algorithms which bound (17) for any sequence {f t}Tt=1 is the crucial
aspect of OCO which we exploit to solve the dynamic variant of (5).

A key class of algorithms which can be used for OCO (as well as standard offline convex
optimization) are first-order methods (FOMs). Following the notation in the surveys [13], we outline
the proximal setup for a general domain Z. This setup forms the basis for several FOMs such as
Mirror Descent and is used in their convergence analyses.

• Norm: ‖ · ‖ on the Euclidean space E where the domain Z lives, along with its dual norm
‖ζ‖∗ := max

‖z‖≤1
〈ζ, z〉.

• Distance-Generating Function (d.g.f.): A function ω(z) : Z → R, which is convex and
continuous on Z, and admits a selection of subgradients ∇ω(z) that is continuous on the set
Z◦ := {z ∈ Z : ∂ω(z) 6= ∅} (here ∂ω(z) is a subdifferential of ω taken at z), and is strongly
convex with modulus 1 with respect to ‖ · ‖:

∀z′, z′′ ∈ Z◦ : 〈∇ω(z′)−∇ω(z′′), z′ − z′′〉 ≥ ‖z′ − z′′‖2.
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ALGORITHM 1: Generalized Mirror Descent
Input: time horizon T , positive step sizes {γt}T

t=1, and a sequence of vectors {ξt}T
t=1

Output: sequence {zt}T
t=1 from Z.

z1 := minz∈Z ω(z);
for t = 1, . . . , T do

zt+1 = Proxzt (γtξt);
end

• Prox-mapping: Given a prox center z ∈ Z◦,

Proxz(ξ) := arg min
z′∈Z

{
〈ξ −∇ω(z), z′〉+ ω(z′)

}
: E→ Z◦.

When the d.g.f. is taken as the squared `2-norm, the prox mapping becomes the usual
projection operation of the vector z − ξ onto Z.

• Set width: Ω = Ωz := max
z∈Z

ω(z)−min
z∈Z

ω(z).

For common domains Z such as simplex, Euclidean ball, and spectahedron, standard proximal
setups, i.e., selection of norm ‖ · ‖, d.g.f. ω(·), the resulting Prox computations and set widths Ω
are discussed in [13, Section 1.7].

In the most basic setup, our functions f t are convex and non-smooth. In this case, we utilize a
generalization of Mirror Descent, outlined in Algorithm 1 for bounding the weighted regret (17).

We next state a bound on the weighted regret (17) in the most general case where our functions
f t need only satisfy convexity and Lipschitz continuity. More precisely, we will assume the following.

Assumption B.1. A proximal setup of Section B exists for the domain Z. Each function f t is
convex, and there exists G ∈ (0,∞) such that the subgradients of f t are bounded, i.e., ‖∇f t(z)‖∗ ≤ G
for all z ∈ Z and t ∈ [T ].

Theorem B.1 ([11, Theorem 1]). Suppose Assumption B.1 holds, and we are given weights θ ∈ ∆T .
Then Algorithm 1 with ξt = θt∇f t(zt), and step sizes γt = γ :=

√
2Ω

supt∈[T ](θt)2G2T for all t ∈ [T ]

results in
T∑
t=1

θtf t(zt)− inf
z∈Z

T∑
t=1

θtf t(z) ≤

√√√√2Ω
(

sup
t∈[T ]

(θt)2

)
G2T .

The bound on weighted regret in Theorem B.1 is optimized when the convex combination weights
θ ∈ ∆T are set to be uniform, i.e., θt = 1/T ; in this case, the bound above becomes O(1/

√
T ).
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