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SUMMARY

In this thesis, we develop tractable relaxations and efficient algorithms for large-scale

optimization. Our developments are motivated by a recent paradigm, Compressed Sensing,

which covers a multitude of large-scale, sparsity-oriented convex optimization problems.

Compressed sensing is focused on the recovery of sparse or well-concentrated signals from

possibly noisy observations in a low-dimensional space. Nowadays, this theory is success-

fully utilized in many fields ranging from MRI image processing to machine learning, from

biology to statistics. In the first chapter of this thesis, we provide a general introduction to

compressed sensing and its applications and cover some of the earlier results.

The majority of results in compressed sensing theory rely on the ability to design/use

projection matrices with good recoverability properties. In the second chapter of this thesis,

we study the conditions for good recoverability properties of a sensing matrix. We propose

necessary and sufficient conditions for a sensing matrix to allow for exact `1-recovery of

sparse signals with at most s nonzero entries while utilizing a priori information given in

the form of sign restrictions on part of the entries. We express error bounds for imperfect `1-

recovery in terms of the characteristics underlying these conditions. These characteristics,

although difficult to evaluate, lead to two different verifiable sufficient conditions, which

can be efficiently computed via linear programming (LP) and/or semidefinite programming

(SDP) and thus generate efficiently computable lower bounds on the level of sparsity, s,

for which a given sensing matrix is shown to allow for exact `1-recovery. We analyze the

connection between our LP- and SDP- based verifiable sufficient conditions, examine their

properties, describe their limits of performance and provide numerical examples comparing

them with other verifiable conditions from the literature. Even though our LP- and SDP-

based relaxations are presented in CS framework, these techniques are generic and applicable

in the case of disjoint bilinear programs.

In the third chapter, we study the compressed sensing synthesis problem – selecting the

xii



minimum number of rows from a given matrix, so that the resulting submatrix possesses

certifiably good recovery properties. Starting from the verifiable sufficient conditions, we

express the synthesis problem as the problem of approximating a given matrix by a ma-

trix of specified low rank in the uniform norm. We develop a randomized algorithm for

efficient construction of rank k approximation of matrices of size m× n achieving accuracy

bounds O(1)
√

ln(mn)/k which hold in expectation or with high probability. We supply a

derandomized version of our approximation algorithm and provide numerical results on its

performance for the synthesis problem.

Chapter 4 is dedicated to efficient first-order algorithms for large-scale, well-structured

convex optimization problems. Saddle point reformulation is proven to be an effective tool

to exploit problem structure for designing computationally efficient algorithms. Building

upon their strength, we first demonstrate that the solutions to many large-scale problems

arising from compressed sensing recovery, high-dimensional statistical inference, and ma-

chine learning can be obtained through solving a series of Bilinear Saddle Point problems

(BSPs). We accelerate the solution of associated single-parametric BSP’s by utilizing the

Mirror Prox algorithm from [101] as a prototype and by replacing precise first order oracle

(which becomes quite time-consuming in the extremely large-scale case) by its computa-

tionally cheap randomized counterpart. In the overall solution of parametric BSPs, cheap

online assessment of solution quality is crucial. Our randomized algorithms come with ex-

act guarantees on solution quality and achieves sublinear time behavior to solve large-scale

parametric BSPs. Extensive simulations show that our randomized first-order methods are

capable of handling very large-scale applications and improve considerably over the state-

of-the-art deterministic algorithms, with benefits amplifying as the sizes of the problems

grow.

In the fifth chapter, we examine a more general sparse estimation problem –estimating

a signal from its undersampled observations corrupted with nuisance and stochastic noise.

Instead of the standard sparse signal framework, here we work under the assumption that

a priori information is presented via a block representation structure of a known linear

transform of the signal, and the signal achieves a good approximation in block sparse sense

xiii



in this representation structure. There are a number of important applications where such

a nontrivial sparsifying representation arises naturally such as standard image reconstruc-

tion with Total Variation regularization or finding the solution of a linear finite-difference

equation with sparse right hand side (“evolution of a linear plant corrected from time to

time by impulse control”). We show that an extension of the standard compressed sens-

ing results from [79] to this framework is possible. Particularly, we introduce a family of

conditions, suggest two new methods of recovery based on block-`1 minimization and study

the most common cases of the block representation structure under which these estimators

have efficiently verifiable guaranties of performance. We link our performance estimations

to the well known results of compressed sensing by providing connections between our con-

ditions and Restricted Isometry Property. This also establishes connections between new

techniques and classical methods such as Lasso and Dantzig Selector.

We present a summary of conclusions of our study and provide future research directions

in the last chapter.

xiv



CHAPTER I

INTRODUCTION

In this thesis, we develop tractable relaxations and efficient algorithms for large-scale op-

timization. Our developments are motivated by a recent paradigm, Compressed Sensing,

which covers a multitude of large-scale, sparsity-oriented convex optimization problems.

The traditional approach of reconstructing signals or images from measured data follows

the well-known Shannon sampling theorem [126], which states that the sampling rate must

be twice the highest frequency. Arisen from a recent breakthrough in signal processing,

compressed sensing (also referred to as compressive sampling) is currently reshaping the

way people work with large and high-dimensional data sets. Data is compressible in most

cases; i.e., the number of salient features hidden in massive data is usually much smaller

than its dimension and therefore can be recovered from what was previously believed to

be highly incomplete measurements. Exploiting this fact, compressed sensing suggests a

paradigm change by acquiring directly low-dimensional linear projections of data, possibly

corrupted with noise, and then using sophisticated `1-recovery procedures for reconstruction

of the original data when needed.

The idea of making inferences about the data from a few of its measurements dates back

to group testing method suggested in [49] during World War II. In the late 1970s and 1980s

geophysicists used `1-minimization in reflection seismology [117, 122]. In the 1990s, the

work of [128] introduced the recovery of sparse Fourier spectra from a few samples in the

context of Nuclear Magnetic Resonance spectroscopy and this area of research has attracted

vast attention since then. Originating from [116], total variation minimization, which is

closely related to compressed sensing, has been widely applied in image processing since the

1990’s. In statistics, with the work of Tibshirani [123], use of `1-regularization and related

methods, specifically Lasso (Least Absolute Shrinkage and Selection Operator) estimator,

gained great popularity in model selection and sparse estimation areas. `1-recovery was also

1



proposed in computational harmonic analysis for extracting a sparse signal representation

from highly overcomplete dictionaries (see [32]). Nowadays, compressed sensing theory is

successfully utilized in many fields ranging from magnetic resonance image (MRI) processing

to machine learning, from biology to statistics. A few of these direct application areas

with references describing the setup of the problems are as follows: Imaging including

MRI [21, 89, 127, 129], radar [69], error correction [27], biology including microarray gene

expression studies [25, 95, 109] and even a nonparametric approach to modeling customer

choice from limited data in revenue management [57]. We refer the interested reader to

[11, 39] and [59] for a broader description of compressed sensing applications with details.

1.1 Overview of Compressed Sensing

1.1.1 Preliminaries and Notation

Let x ∈ Rn and ‖ · ‖ be any norm. For 1 ≤ p < ∞, we denote by ‖ · ‖p the usual `p-norm

given by

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

,

and ‖x‖∞ = max
i=1,...,n

|xi|. For 0 < p < 1, ‖ · ‖p defined above becomes a quasi-norm. For a

given norm ‖ · ‖, its conjugate norm is defined as

‖u‖∗ = max
x

{
uTx : ‖x‖ ≤ 1

}
.

For a subset I ⊂ {1, . . . , n}, we denote by xI ∈ Rn the vector which coincides with

x ∈ Rn on the entries in I and is zero outside of I. While Card(I) represents the cardinality

of the set I, the subset Ī := {1, . . . , n} \ I denotes the complement of I. The kernel

(nullspace) of a matrix is defined as Ker(A) = {u : Au = 0}.

Given an m× n matrix A, we use ‖A‖p→q to denote the operator norm associated with

norms ‖ · ‖p and ‖ · ‖q in the argument and image spaces respectively, namely:

‖A‖p→q = max
x
{‖Ax‖q : ‖x‖p ≤ 1} .

Unless otherwise stated, In denotes the n×n identity matrix and ei is the ith basic orth.
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1.1.2 Sparsity and Compression

Compressed sensing is based on the empirical observation that many types of real-world sig-

nals and images have a sparse expansion of a suitable basis, for example a wavelet expansion

provides sparse representation for certain types of images. This means that the expansion

has only a small number of significant terms, or in other words, that the coefficient vector

can be well-approximated with one having only a small number of nonzero entries.

We say that an n-dimensional signal (vector) x is s-sparse if it has s or fewer nonzero

coordinates, i.e., ‖x‖0 ≤ s� n where

‖x‖0 := Card(supp(x))

and supp(x) = {j : xj 6= 0} denotes the support of x. Although ‖ · ‖0, which counts the

number of nonzero coordinates of a vector, is not even a quasi-norm, it is usually referred

as `0-norm.

Signals encountered in practice are often not exactly sparse, but their coefficients decay

rapidly following a power law:

|x[k]| ∝ k(−1/q),

where x[k] is the k-th largest in magnitude entry in x and 0 < q < 1. This class of signals

is referred to as compressible signals. In addition to covering sparse signals as a subclass,

compressible signals exhibit the nice property that they can be well approximated by sparse

signals. We will denote by xs, the best s-sparse approximation of the vector x, which is

obtained by setting to zero all but the s largest in magnitude entries in x and we will refer

to ‖x−xs‖1 as the s-tail of the vector x. For any positive integer s and 1 ≤ p <∞, we will

define the (s, p)-norm, denoted by ‖ · ‖s,p, of a vector x as follows:

‖x‖s,p := ‖xs‖p.

Traditionally in order to compress a vector x, one may simply store its s largest en-

tries and their locations. When reconstructing x from its compressed version the missing

entries are simply set to zero leading to a small reconstruction error whenever the signal
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is compressible. This observation paired with the suitable sparsifying basis plays the key

role in many commonly used compression algorithms for visual and audio signals such as

JPEG, JPEG-2000, MP3, and MP4. However we should emphasize that the procedure of

obtaining the compressed version of x is adaptive and nonlinear since it requires the search

of the largest entries of x in absolute value. In particular, the location of the nonzeros is a

nonlinear type of information.

1.1.3 Compressed Sensing

The adaptive compression of a signal x by only keeping its largest coefficients as described

before is certainly valid only when full information on x is available. Note that especially

when the signal first has to be acquired or measured by a somewhat costly or lengthy pro-

cedure, this compression seems to be a waste of resources. At first, large efforts are made to

acquire the full signal and then most of the data is thrown away in the compression process.

Alternatively, in compressed sensing, one tries to avoid this waste of effort in acquisition

phase as much as possible. The key objective in compressed sensing is to reconstruct a

signal accurately and efficiently from a small set of non-adaptive (possibly noisy) linear

measurements.

A collection of m linear measurements of a signal x ∈ Rn, corresponds to applying an

m × n measurement or (sensing) matrix A. In other words, given an m × n measurement

matrix A, we only have access to a vector of observations (also referred as measurements),

b, obtained in the following way

b = Ax+ e (1)

where x is the signal to be estimated, and if present, e ∈ Rm, is the vector for observation

error. The two most popular assumptions for modeling observation error, e, are as follows:

(B) e is “uncertain-but-bounded” i.e., all we know about e is that ‖e‖ ≤ δ for a given δ

and norm ‖ · ‖, or

(S) e = σξ where ξ is a stochastic r.v. with known distribution P , and σ is the noise

intensity level.
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Depending on the application area, there are a number of closely related goals including

the recovery of x, the recovery of the support of x or recovery of a linear transform Bx of

x from the measurements b.

Regardless of the choice of noise model, the undersampled estimation problem is usually

the main focus of research, i.e., m� n, where there are more columns than rows in matrix

A. In the undersampled case, even when there is no noise, i.e., e = 0, we are dealing

with a highly underdetermined system of equations and hence (1), if solvable, will have

infinitely many solutions, and thus one cannot effectively distinguish the true underlying

signal among them without further information.

Compressed sensing exploits the fact that there is some structure and redundancy in

the majority of interesting signals –they are not pure noise. In particular, most signals are

sparse, that is, they contain many coefficients close to or equal to zero, when represented in

appropriate basis. Instead of working with the general class of all signals, one can achieve

satisfactory results in reconstructing signals from specific signal classes such as sparse or

compressible.

In this setting, one way of incorporating the a priori sparsity information in the recovery

of a vector x from its observations b is simply to use it in guiding the search. In the case of

uncertain-but-bounded noise model (B), this approach leads to the `0-minimization problem

given by

x̂ = argmin
z
{‖z‖0 : ‖Az − b‖ ≤ δ}, (2)

which searches for the sparsest signal consistent with the observations within the noise level.

A similar sparsity promoting estimator for the stochastic noise model (S) (ξ is assumed to

be a Gaussian r.v. in most of the literature) is suggested as

x̂ = argmin
z
{‖Az − b‖22 + λ‖z‖0}, (3)

where λ is a regularization parameter depending on noise intensity level σ.

Whenever there is no observation error/noise, i.e., e = 0, x is s-sparse and A is one-

to-one on all 2s-sparse vectors, the unique minimizer to (2) is the original vector x (true
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signal). On the other hand both of these `0-regularized minimization problems are neither

stable with respect to observation errors nor easy to solve. In fact, for a general matrix A

and vector b, it is NP-hard to solve (2) (see [97]).

The computational difficulty in `0-regularized optimization problems is due to the non-

convex, in fact discrete, nature of the objective function. Tractable alternatives are obtained

by replacing the `0-norm in the objective with `1-norm. When noise is modeled as in (B),

the following `1-minimization problem, also referred as basis pursuit is obtained

x̂ = argmin
z
{‖z‖1 : ‖Az − b‖ ≤ δ}. (4)

Similarly, in the stochastic noise setting, (S), there is a computationally efficient alternative

to problem (3), namely the Lasso estimator, `1-penalized least squares from [123]:

x̂L = argmin
z
{‖Az − b‖22 + λ‖z‖1}. (5)

Another commonly used estimator in the stochastic noise setting is given by Dantzig selector

from [29], given by

x̂D = argmin
z
{‖z‖1 : ‖AT (Az − b)‖∞ ≤ ρ}, (6)

where ρ is a parameter of the algorithm. In high dimensional statistical inference, par-

ticularly model selection area (variable selection in linear regression models from a small

number of noisy observation), both Lasso estimator and Dantzig selector have gained a lot

of popularity, e.g., see [17, 18, 23, 29, 123] and also the references cited therein.

Various characterizations of conditions on the matrix A and the sparsity of the signal

of interest have been proposed to guarantee that the suggested estimators x̂ recovers (or at

least is close to) the true solution x. In general, with `1-regularization, while we attain an

easy-to-solve alternative, we pay a price by requiring a stronger condition on the sensing

matrices A to guarantee the perfect recovery for all signals that are “sparse enough.” In

the next section, we will examine some of these most commonly studied conditions from

the literature.
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1.2 Summary of Previous Results for `1-recovery

1.2.1 Conditions for `1-recovery

The compressed sensing theory offers strong results which state, in particular, that if the

signal x is s-sparse (or compressible) and the matrix, A, possesses a certain well-defined

property, then the `1-recovery of x is close to the true signal, provided the observation error,

e in (1), has a small norm or noise intensity level. In this section, we will cover some of the

major results in this respect.

We start by characterizing the conditions for exact `1-recovery when there is no noise

in the observations (i.e., e = 0 and thus b = Ax). Here we are mainly interested to answer

the following question:

Whether the matrix A is such that whenever the true signal x in (1) is s-

sparse, the `1-recovery in (4) with e = 0 recovers x exactly as the unique solution.

If the answer is positive, the matrix A is said to be s-good.

Various sufficient, and necessary and sufficient conditions for s-goodness are proposed in

the literature. Moreover the quality of the `1 estimators guaranteed by these conditions in

the “imperfect settings”– when observation error is present and the signal is compressible,

but not exactly s-sparse, has been an active research area.

1.2.1.1 Nullspace Property

A well known necessary and sufficient condition for s-goodness is as follows:

Definition 1.2.1 (see [38, 81]). A matrix A is said to satisfy Nullspace Property at level

s, where s is a positive integer, if for all x ∈ Ker(A) and for all subsets I ⊆ {1, . . . , n} with

Card(I) ≤ s, there exists γ̂s(A) ∈ (0, 1
2) such that

∑
i∈I
|xi| ≤ γ̂s(A)‖x‖1. (7)

This condition has been investigated extensively. Donoho and Huo [45] proved that

the matrix A is s-good if A satisfies Nullspace property with γ̂s(A) < 1
2 . The necessity of

Nullspace property with γ̂s(A) < 1
2 for s-goodness has been established in [42]. Note that
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this condition also appears in the literature under the name of strict s-balancedness (see

[132, 134]).

Nullspace property can be used to determine the quality of the estimate from `1-recovery

under “imperfect conditions” – where the signal is approximately sparse, there is bounded

noise in the observations (noise model (B)) and `1-minimization in (4) is approximately

solved (see Proposition 3.1 in [81] or [34]):

Theorem 1.2.1 Consider the uncertain-but-bounded noise model (B) with norm ‖ · ‖. Let

x ∈ Rn, and the sensing matrix A satisfy Nullspace property with γ̂ := γ̂s(A) < 1
2 and x̂ be

a ν-optimal solution to (4), meaning

‖x̂‖ ≤ min
z
{‖z‖1 : ‖Az − b‖ ≤ δ}+ ν.

Then

‖x− x̂‖1 ≤
1

1− 2γ̂
[4βδ + 2‖x− xs‖1 + ν] (8)

where β is a constant depending on only A and norm ‖ · ‖.

On the negative side, verifying the Nullspace property turns out to be a hard optimiza-

tion problem. Starting from the Nullspace property, efficiently verifiable sufficient condi-

tions based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations

are proposed in [81] and [38] respectively. In both papers, the goal is to efficiently bound

γ̂s(A) in (7) from above. In particular, in [81], the following LP-based verifiable sufficient

condition for A to be s-good is stated:

There exists Y ∈ Rm×n s. t. max
i
‖(In − Y TA)ei‖s,1 <

1

2
(9)

where In denotes the n× n identity matrix and ei is the ith basic orth. This condition can

be further relaxed to obtain another verifiable sufficient condition for A to be s-good given

by the following (cf. [81]):

There exists Y ∈ Rm×n such that ‖In − Y TA‖∞ <
1

2s
(10)

where ‖X‖∞ = max
i,j
|Xij | and Xij are the elements of the matrix X.
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Unfortunately, tractability has a price: the limits of performance of the verifiable suffi-

cient conditions from [38] and [81] have been established as follows: for an m×n matrix A,

the LP-based conditions cannot verify s-goodness for levels of s > 2
√

2m provided A is not

“nearly square,” specifically n ≥ (1 + 2
√

2m)2 (see [81]). This bound is much worse than

the O(m/ ln(n/m))-level of goodness bound which is theoretically achievable for random

matrices. Moreover the SDP-based verifiable sufficient condition of [38], despite its signifi-

cantly higher numerical complexity as compared to the LP-based condition of [81], shares

the same asymptotic performance limit.

1.2.1.2 Restricted Isometry Property

Some particularly impressive results in compressed sensing literature make use of the suffi-

cient condition for s-goodness:

Definition 1.2.2 (see [25, 26]) An m×n matrix A satisfies the Restricted Isometry Prop-

erty with parameters γ ∈ (0, 1) and s, where s is a positive integer, RIP(γ, s), if

(1− γ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + γ)‖x‖22. (11)

holds for all s-sparse x ∈ Rn.

In other words, RIP(γ, s) states that A should be well conditioned when acting on signals

of interest. RIP condition provides uniform recovery guarantees over all sparse signals of

interest for many convex optimization approaches such as `1-minimization, Dantzig selector

or Lasso estimator. For instance, the following result due to Candés et al. for the bounded

noise model of (B) is well known (see Theorem 1.2 in [26] or Theorem 4.1 in [25]):

Theorem 1.2.2 Let x ∈ Rn and ‖ · ‖ be the `2-norm in the `1-recovery given in (4), and

let the sensing matrix A satisfy RIP(γ, 2s) with γ <
√

2− 1. Then

‖x− x̂‖1 ≤
2

1− γ −
√

2γ

[
2δ
√

1 + γ
√
s+ (1− γ +

√
2γ)‖x− xs‖1

]
. (12)

Theorem 1.2.2 establishes the stability of `1-recovery with respect to uncertain-but-bounded

observation error, δ, and approximate sparsity of the signals under RIP(γ, 2s) condition.
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The RIP based results regarding levels of achievable compression in compressed sens-

ing is even more impressive. There are m × n sensing matrices A which possess, say, the

RIP(1
2 , s)-property for “large” sparsity levels s as large as O( m

ln(n/m)) (this bound is tight).

For instance, for normalized (all columns have Euclidean length equal to 1) random ma-

trices where entries are sampled from i.i.d. standard Gaussian distribution or Rademacher

distribution (entries are ±1 with equal probability), this is the case with overwhelming

probability (i.e., probability 1−O(e−τn) for some τ > 0) (see [25, 28]). Similar results also

exist for normalizations of randomly selected submatrices of the Fourier transform or other

orthogonal matrices such as Hadamard.

On the negative side, random matrices are the only known matrices which possess the

RIP(γ, s) property for such large s. Yet, in practical applications, random matrices are usu-

ally undesirable due to storage limitations, computational considerations, or the mismatch

of such matrices with certain measurement architectures. For all known deterministic fam-

ilies of m×n matrices provably possessing the RIP(γ, s) property, one has s ≈ O(
√
m) (we

discuss the known deterministic constructions and achievable levels of sparsity in detail in

Section 1.2.2), which is essentially worse than the bound s = O( m
ln(n/m)) promised by the RIP

based theory. Furthermore there are known lower bounds on the number of rows of a sparse

matrix satisfying RIP(γ, s); particularly in [31], it is shown that for a 0−1 matrix to satisfy

RIP(γ, s), the number of rows, m should be “large,” i.e., m ≥ min

{(
1−γ
1+γ

)2
s2, 1−γ

1+γn

}
.

Moreover RIP(γ, s) itself is “intractable” (see [111] for a discussion of the hardness of this

problem) – the only currently available technique to verify the property for an m×n matrix

amounts to test all its m× s submatrices. In other words, given a large sensing matrix A,

verifying RIP(γ, s)-property with a given s� 1 is almost impossible in a reasonable amount

of time.

The link between the Nullspace property and RIP condition is studied in [34]; it is

shown that whenever A satisfies the RIP(γ, 3s), then A satisfies the Nullspace property of

order 2s and γ̂2s(A) =
√

1+γ√
2(1−γ)+

√
1+γ

. Also in [81], it was shown that whenever matrix A

is, say RIP(1/4,m) (so the true level of s-goodness of A is O(1)1m), the LP-based sufficient

1In this thesis, we will use the notation O(1) to denote absolute constants.

10



conditions do certify that A is O(1)
√
m-good –e.g., they guarantee “at least the square root

of the true level of goodness.”

1.2.1.3 Mutual Incoherence

To the best of our knowledge, the earliest efficiently verifiable condition for s-goodness

offered by the existing compressed sensing theory is the sufficient condition based on the

mutual incoherence:

Definition 1.2.3 (see [42, 45, 90]). The mutual incoherence of a given matrix A is the

largest absolute normalized inner product between different columns from A. It is given by

µ(A) = max
i 6=j

|ATi Aj |
ATi Ai

(13)

where Ai are columns of A (assumed to be nonzero).

The mutual incoherence aims to characterize the dependence between columns of the matrix

A. For a unitary matrix, columns are pairwise orthogonal, and so the mutual incoherence

is zero. For general matrices with more columns than rows, m < n, µ(A) is necessarily

strictly positive, and one would seek for the smallest possible value so as to get as close as

possible to the behavior exhibited by unitary matrices. In particular, we have the following

theorem (cf. [42]):

Theorem 1.2.3 Let A has the mutual incoherence value, µ(A), as defined in (48), then A

is s-good for any sparsity level s satisfying

s <
1

2

(
1 +

1

µ(A)

)
. (14)

Clearly, the mutual incoherence can be easily computed even for large matrices. On the

other hand, in [81], it is shown that the “level of goodness” estimate of a sensing matrix based

on mutual incoherence given in Theorem 1.2.3 is usually too conservative. In particular,

whenever the mutual incoherence condition from Theorem 1.2.3 verifies the sparsity level

s, LP-based verifiable sufficient conditions proposed in [81] for the same sparsity level s are

automatically satisfied (in particular the simple condition given in (10) is satisfied).

11



1.2.2 Deterministic Construction of Compressed Sensing Matrices

There is significant interest in the construction of structured sensing matrices and alterna-

tive reconstruction algorithms. One of the earliest results on deterministic construction of

compressed sensing matrices with provably good recovery properties is due to [41]. Using

finite fields, [41] provides deterministic constructions of cyclic 0-1-valued matrices satisfy-

ing RIP(s, γ) with m = O( s
2 log2(n)
γ2

). The analysis in [41] is based on mutual incoherence

property and the resulting matrices are provably s-good for the values of s = O(
√
m). The

recent work of [20] manage to break through the
√
m “barrier” using techniques from ad-

ditive combinatorics: they construct RIP matrices of order s = O(n1/2+ε0) where ε0 > 0

is an unspecified “explicit constant.” Note that this is still far from the order achieved by

probabilistic constructions.

In recent years, building on the connection with coding theory, adjacency matrices of

unbalanced expander graphs originating from [119] have gained increased popularity in

compressed sensing field (see [15, 40, 62, 72, 73, 74, 112] and the references therein). An

expander graph is a regular bipartite graph for which every pair of subsets of nodes in one

side of the partition with sufficiently small size has a small number of colliding edges and a

significant number of unique neighbors on the other side:

Definition 1.2.4 A simple bipartite graph G = (U, V,E) with vertices partitioned into two

groups U and V , and edge set E, is said to be a d-regular (s, ε)-unbalanced expander graph

if each vertex in the left partition, say U , has degree d and the graph is such that for any set

X ⊂ U with |X| ≤ s, the set of neighbors N (X) ⊂ V of X has size |N (X)| ≥ (1− ε)d|X|.

Using probabilistic techniques, the existence of left-regular (s, ε)-unbalanced expander

graphs with n left vertices and m = O( s log(n/s)
ε2

) right vertices and the left degree d =

O( log(n/s)
ε ) is shown (see [15, 72] and the references therein). No explicit construction with

the aforementioned parameters are known, however [15] provides an explicit construction

of these matrices with d = 2O(log(log(n)/ε)) and m = sd/εO(1). Moreover explicit deter-

ministic construction of expander graphs based on Parvaresh-Vardy codes [110] exists and

in the recent work of [68], the associated explicit construction parameters are stated as
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d = O(1)( log(n) log(s)
ε )1+ 1

α and m = s1+αd2 for any fixed α > 0.

The increased interest in the adjacency matrices of expander graphs is due to their stable

recovery properties, the sparseness of the associated matrices and the specialized efficient

recovery algorithms. Let Φ be the adjacency matrix of a d-regular, (2s, ε)-unbalanced

expander graph with ε < 1
6 and define A = Φ

d to be the normalized adjacency matrix,

then A satisfies the Nullspace property with γ̂s(A) = 2ε
1−2ε <

1
2 (see Lemma 16 in [15]).

Combined with Theorem 1.2.1 this validates `1-recovery under imperfect conditions (another

validation, adjusted to the specific matrices in question, is given in [15]). Furthermore, in

[15], it is demonstrated that the empirical behavior of randomly generated binary sparse

matrices is consistent with the analytic performance analysis (phase transition behavior)

of random Gaussian matrices. On the algorithmic side, there are specialized algorithms

exploiting the combinatorial structure of expander graphs: Expander Matching Pursuit

of [72] works in the noise-free setting and achieves O(n log n
s ) computational complexity;

Sequential Sparse Matching Pursuit of [16] requires slightly higher (by a logarithmic factor)

running time yet handles the bounded noise model of (B).

1.3 Efficient Algorithms for `1-recovery

1.3.1 Convex Optimization Methods

The `1-regularized optimization problems stated in (4)-(6) are convex optimization prob-

lems, and as such, they can be solved to arbitrarily high accuracy by theoretically and

practically efficient polynomial-time algorithms for convex optimization. In addition to the

convexity, there is a nice transparent structure in the `1-minimization problem of (4): when

‖ · ‖ is a polyhedral norm such as ‖ · ‖∞ or ‖ · ‖1, (4) reduces to Linear Programming (LP),

and when ‖ · ‖ = ‖ · ‖2, the most popular choice in compressed sensing, it becomes a Conic

Quadratic Programming (CQP). Problems of this type are amenable for the most advanced

polynomial-time Interior Point methods (IPMs) known so far. In particular, both LP and

CQP are especially well suited for IPMs, and nowadays commercial software packages such

as CPLEX[35], Gurobi[67] and Mosek[4] are capable of solving LPs and CQPs to high

accuracy within a moderate number of Newton-like iterations.
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However in the case of large-scale LP/CQP problems with dense constraint matrices

(e.g., matrix A in (4)), the practical scope of IPMs is restricted to problems with at most

few thousands of decision variables. This restriction comes from the fact that IPMs have

“computationally demanding” iterations unless problem’s data possess favorable sparsity

structure. The computational cost, e.g., the number of arithmetic operations (a.o.), of an

iteration of standard IPMs grows nonlinearly, in the dense case as O(n3), with the design

dimension, n, of the problem. In the problems originating from real-life decision making,

the constraint matrices reflect dependencies between various elements/processes such as in

production facilities, inventory and/or supply chain systems, and it is difficult to imagine

such a system where “everything influences everything else.” Therefore it is usual to have

LPs and/or CQPs with sparsity structure in these problems. On the other hand, it is easy to

arrive at dense large-scale problems in signal processing and machine learning applications,

where the matrices are usually given analytically due to their “mathematical origin.” Such

an example is readily given in compressed sensing when A matrix in (4) is a subsampled

Fourier transform.

Fast -cubic- growth of computational effort per iteration makes standard IPMs prac-

tically too expensive or even unable to handle dense problems with tens and hundreds of

thousands of design variables. Fast convergence in terms of iteration count of IPMs, does

not help much when the very first iteration “lasts forever.” In situations like this, high accu-

racy offered by standard IPMs turns out to be computationally too expensive and it becomes

necessary to have the complexity of each iteration having at most a linear growth of the

design dimension n, i.e., O(n). At the present level of our knowledge, the latter requirement

rules out all known polynomial-time routines and, as far as constrained problems like (4)

are concerned, leaves us the only option –computationally cheap “black-box-oriented” first-

order methods (FOMs) like gradient descent, conjugate gradient, quasi-Newton methods

with restricted memory.
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1.3.1.1 Review of First-Order Methods and Their Limits of Performance

In order to provide sufficient background and put our results into perspective, here we

review some of the literature on first-order convex programming and related complexity

theory. Our review is mainly based on a summary of results relevant to us from [80], we

refer the reader to [80, 103, 105] for full details on the subject and further discussions.

We restrict our attention to the convex programs of the form

Opt(f) = min
x∈X

f(x), (15)

where X is a nonempty compact convex subset of Rn, and f is known to belong to a

given family F of convex and (at least) Lipschitz continuous functions2 on X . Clearly the

feasibility and compactness of X combined with continuity of f implies that the optimum

value in (15) is attained, i.e., (15) is solvable.

While solving (15), a FOM knows in advance what X and F are, but does not know

the particular objective function f ∈ F is. It is restricted to “learn” f via subsequent

calls to a first-order oracle – a “black-box” routine which, given as an input a point x ∈

X , outputs the value f(x) and a (sub)gradient f ′(x) of f at x3. For a given particular

objective function f and a required accuracy ε > 0, a FOM generates a finite sequence

of search points xt ∈ X , t = 1, 2, . . . by calling the first-order oracle. Upon termination,

the algorithm outputs an approximate solution x̂ ∈ X which should be ε-optimal, i.e.,

f(x̂)−Opt(f) ≤ ε. Thus a FOM, in fact, is a collection of rules for generating subsequent

search points, termination criteria and building the approximate solution. These rules,

in principle, can be arbitrary, with the only limitation of being non-anticipating, i.e., the

“output” of a rule is uniquely defined by X and the first-order information on f accumulated

before the rule is applied. Consequently, for a given FOM and X , x1 is independent of f ,

x2 depends solely on f(x1), f ′(x1), and so on. Moreover both the termination rule and the

2The function f(x) is said to be Lipschitz continuous with Lipschitz constant L with respect to norm ‖ ·‖
if

|f(x)− f(y)| ≤ L‖x− y‖
holds for all x, y.

3Informally speaking, this setting implicitly assumes that the domain X is “simple” (like box, or ball, or
standard simplex), while f can be complicated.
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construction of approximate solution should also be non-anticipating, depending only on X

and the previous information on f collected at the search points.

In this framework, given target accuracy ε, the lower complexity bound of a problem

family (X ,F), denoted by N`(X ,F , ε), is defined as the minimum number of iterations, N ,

of any FOM capable to solve every problem of type (15) with every possible function f ∈ F

within accuracy ε. An upper bound on complexity can be obtained by demonstrating a

FOM and its associated worst case performance on the outlined problem family. Whenever

there exists a FOM capable of solving all problems of type (15) with functions f ∈ F within

accuracy ε with a worst case performance that is within an absolute factor of N`(X ,F , ε),

then that algorithm is referred as an optimal method for the given problem class. Limits of

performance of black-box-oriented FOMs are established by Information-Based Complexity

Theory in [103]. Several instructive examples for specific classes of X and F are given in

[103], the following are of particular interest:

(a) [Nonsmooth case] Let X = {x ∈ Rn : ‖x‖p ≤ R}, where p ∈ {1, 2}, and let Fp be

comprised of all convex functions f which are Lipschitz continuous w.r.t. ‖ · ‖p, with

a given constant L. Then N`(X ,Fp, ε) is at least O(1) min[n,L2R2/ε2]. This lower

complexity bound remains true when F is restricted to be the family of all functions

of type f(x) = max
1≤i≤n

[εiLxi + ai] with εi = ±1. Moreover, an optimal FOM suggested

in [103] is capable of solving all problems of the outlined type within accuracy ε in

O(1)(ln(n))2/p−1L2R2/ε2 steps.

(b) [Smooth case] Let X = {x ∈ Rn : ‖x‖2 ≤ 1}, and let F be comprised of all convex

functions f which have Lipschitz continuous gradients w.r.t. ‖ · ‖2, with a given con-

stant L. Then N`(X ,F , ε) is at least O(1) min[n,
√
LR2/ε]. This lower complexity

bound remains true when F is restricted to be the family of convex quadratic func-

tions of form f(x) = 1
2x

TAx+ bTx with positive semidefinite symmetric matrices A of

spectral norm (maximal singular value) not exceeding L. Nesterov’s optimal algorithm

for smooth convex minimization (see [104, 106]) is capable of solving all problems of

the outlined type within accuracy ε in O(1)
√
LR2/ε steps.
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(c) [Structured nonsmooth case] Let X = {x ∈ Rn : ‖x‖2 ≤ 1}, and let F be comprised of

all convex functions of the form f(x) = ‖Ax− b‖2 where the spectral norm of A4 does

not exceed L. Here we extend the “power” of the first-order oracle slightly and assume

that at a step of a FOM we are allowed to carry out O(1) matrix-vector multiplications

involving A and AT , yet we don’t have direct access to A. In this setup, N`(X ,F , ε) is

at least O(1) min[n,LR/ε]. Again, this lower complexity bound is “nearly achievable:”

there exist a FOM, (in particular, Nesterov’s optimal algorithm from [106] as applied

to the quadratic form ‖Ax− b‖22) achieves the desired accuracy in O(1)LR/ε steps.

In the case of large-scale convex optimization, where the problem’s design dimension,

n, is large, the results stated above bring us bad news: unless the number of steps exceeds

n (which is of no interest in large-scale case), a FOM can exhibit only sublinear rate of

convergence if no additional structural restrictions on the objective function are imposed.

Specifically, if we let t denote the number of steps required to get accuracy ε, the complexity

of O(1) (ln(n))1/p−1/2LR√
t

in the case of (a) is really slow; in the case of (b), the complexity

given by O(1)LR
2

t2
is much better but minimization of a smooth function over a simple

domain is a rare commodity; and the complexity of O(1)LRt in (c) is “in between” (a) and

(b). Therefore FOMs are poorly suited for building high-accuracy solutions to large-scale

convex problems.

On the positive side, for problems with favorable geometry (e.g., those in (a) – (c)),

good FOMs exhibit nearly dimension-independent rate of convergence5, which is of utmost

importance in large-scale applications.6 Moreover, in all of the above cases, whenever X

is simple, the implementation of the optimal algorithms nearly achieving the complexity

bounds is quite simple with cheap iterations – modulo computations “hidden” in the oracle,

an iteration costs just O(n) a.o. where n = dim(X ). For details of these algorithms and

more discussion on the topic, we refer the reader to [80]. As a consequence, FOMs are well

4In this setting A is no longer restricted to be positive semidefinite.
5upto log(n) factor dependency involved in the complexity bounds
6On a side note, this nearly dimension-independent performance of FOMs heavily depends on the as-

sumption p ∈ {1, 2}. In this nonsmooth setting, when minimization is over a box, i.e., p =∞, the upper and
lower complexity bounds become O(1)n log(LR/ε) provided that LR/ε ≥ 2, demonstrating the significant
dependence on the dimension.
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suited for finding medium-accuracy solutions to large-scale convex problems with “favorable

geometry.”

Coming back to the origin of our interest in FOMs, it is easy to note that none of the

`1-regularized optimization procedures fits into the “favorable geometry” settings described

above. However a close relative given by

min
z
{‖Az − b‖ : ‖z‖1 ≤ R} (16)

fits into the structured nonsmooth optimization over a simple domain setting as discussed

in case (c). It can be shown that the optimal solution to the `1-recovery problem given

in (4) can be obtained by solving a sequence of problems of the form (16) (see Section

4.2.2.2 in Chapter 4). Therefore algorithms for the structured nonsmooth setting described

in (c) are fundamental in our developments. The recent development in FOMs as described

in case (c), is due to Nesterov’s breakthrough paper of [106]. Nesterov in [106] showed

that typical problems of nonsmooth convex minimization usually can be reformulated (and

this is where problems structure is exploited) as smooth (often just bilinear) convex-concave

saddle point problems, and the latter can be solved by appropriate black-box oriented FOMs

with O(1/t) rate of convergence. For a slightly more general class of problems, utilizing

the bilinear saddle point reformulation, Nemirovski in [101] suggested a new FOM – Mirror

Prox (MP) algorithm – achieving the same O(1/t) rate of convergence.

The deterministic first-order oracle in both algorithms of [106] and [101] for solving

problems of type (16) requires just several matrix-vector multiplications (by A and AT ) plus

O(n) “overhead.” This feature of FOMs working with only matrix-vector products rather

than the full matrix as required by standard IPMs serves especially advantageous when it is

not even possible to store the full matrix in memory or when A matrix admits fast routines

for matrix-vector multiplication, which are available for instance in the case of subsampled

Fourier matrices. Moreover, when the norm ‖ · ‖ in (16) is simple such as `∞-norm or

`2-norm, and the problem is large-scale with dense A matrix (which is the case in many

machine learning and signal processing applications), these matrix-vector multiplications

dominate the computational cost of an iteration of a FOM. As the sizes of A matrix grow,
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these multiplications can become prohibitively time consuming. Further acceleration of

FOMs is possible by replacing precise deterministic first-order oracles, which can become

too time-consuming in the extremely large-scale case, with their computationally cheap

properly designed stochastic counterparts. The main idea behind the stochastic first-order

oracle is that matrix-vector multiplications is easy to randomize –reducing to just extracting

from A a row and a column, which, in the large-scale dense matrix case, can be several

orders of magnitude cheaper than exact matrix-vector multiplication. This randomization,

under favorable circumstances, allows for dramatic acceleration of FOMs in the extremely

large-scale case.

Above results on FOMs lead to another important conclusion: unlike polynomial time

IPMs, the limits of performance of FOMs heavily depend on the size R of the feasible

domain; in particular, boundedness of X is of paramount importance, at least theoretically,

for the success of FOMs. In this respect, unconstrained settings, like Lasso estimator given

by (5) are less preferable than their “bounded domain” counterparts, like (16). There are a

number of papers suggesting FOMs for typical compressed sensing problems and reporting

good empirical results (see [2, 5, 6, 7, 12, 13, 63, 64, 130] and references therein). Some

of these papers specifically deal with the unconstrained versions despite this theoretical

concern.

1.3.2 Greedy Algorithms for `1-recovery

Motivated by the desire to provide a reduced complexity alternative to the `1-recovery prob-

lem, many greedy methods are suggested in the compressed sensing literature. These greedy

methods include matching pursuit algorithms and iterative thresholding. The Matching

Pursuit algorithm for signal recovery is first introduced in [90], several variants are pro-

posed since then including orthogonal matching pursuit [90, 124, 125], Stagewise Orthogonal

Matching Pursuit (StOMP) [48], Compressive Sampling Matching Pursuit (CoSaMP) [98],

Regularized Orthogonal Matching Pursuit [99] (see, e.g., the review [21]) and iterative hard

thresholding [19, 58, 60]. Majority of these approaches are aimed at calculating the support

of the signal iteratively. At each iteration of the algorithm, based on successive Euclidean
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projections of the signal, one or several coordinates of the signal is selected for testing. Al-

though greedy approaches are relatively fast as compared to the exact `1-minimization, both

in theory and in practice; most of them deliver smaller recoverable sparsity levels and lack

provable uniform recoverability guarantees, i.e., the possibility to recover all sparse signals

and stability w.r.t. noise and/or small perturbations of the signal. Most of the performance

results on the matching pursuit algorithms rely upon the bounds on mutual incoherence

µ(A) of the sensing matrix. Recently there has been efforts on analyzing different variants

of matching pursuit algorithms to provide uniform recovery bounds for matrices satisfying

RIP property at the expense of allowing smaller sparsity levels (see [71, 98, 99]).

1.4 Organization of the Thesis

1.4.1 Chapter 2

As discussed before, the availability of a priori sparsity information plays the key role

in making compressed sensing possible. In Chapter 2, we extend the current theory by

characterizing what might be achievable if a priori information beyond the sparsity of the

signal, given in the form of sign restrictions on part of the entries, is available. We study

the conditions for good recoverability properties of a sensing matrix in this setting, in

particular our results generalize and subsume the corresponding results from [81] and [38]

as our framework allows one to have no additional information on sign restrictions of the

entries of the signal.

We start by proposing necessary and sufficient conditions for a sensing matrix to allow

for exact `1-recovery of s-sparse signals while utilizing a priori information given in the form

of sign restrictions on part of the entries (Proposition 2.2.1). We express error bounds for

imperfect `1-recovery in terms of the characteristics underlying these conditions (Proposition

2.3.1). These characteristics, although difficult to evaluate, lead to two different verifiable

sufficient conditions, which can be efficiently computed via LPs and/or SDPs and thus

generate efficiently computable lower bounds on the level of sparsity, s, for which a given

sensing matrix is shown to allow exact `1-recovery (Sections 2.4.1.3 and 2.6). Although our

LP-based verifiable condition mimics those given in [81] and thus share similar limits of
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performance (Proposition 2.5.1), we show that in the case when a priori sign information

is available, a better SDP-based verifiable sufficient condition can be constructed which we

can no longer prove to have the same limits of performance of its predecessor from [38]

(see Remark in Section 2.6). Moreover, we analyze the connection between our LP- and

SDP-based verifiable sufficient conditions (Proposition 2.6.1). We show that our LP-based

condition has dual representation of the form close to the one of the SDP-based condition

and hence they can be unified, leading to a stronger verifiable condition (Section 2.10.8).

Even though our LP- and SDP-based relaxations are presented in compressed sensing

framework, these techniques are generic and applicable in the development of tractable re-

laxations for disjoint bilinear programs. We discuss the relation of our relaxation schemes

with other tractable relaxations for disjoint bilinear programs from the literature including

McCormick bounds [91], and Sherali-Adams [118] type and Lovász-Schrijver type relax-

ations, and we show that our LP-based bound is at least as good as the first two and our

unified bound is no worse than the latter one (Section 2.9).

We also present a comparison of our LP-based verifiable condition with other verifi-

able conditions for s-goodness from the literature (Section 2.4.1.3 and Lemma 2.5.1), and

provide numerical results indicating the value of sign information in the recovery of sparse

signals (Section 2.7). We close this chapter, by proposing and analyzing a new greedy type

algorithm for `1-recovery, non-Euclidean Matching Pursuit, which utilizes our LP-based

sufficient conditions for goodness (Section 2.8).

1.4.2 Chapter 3

In Chapter 3, we study the compressed sensing synthesis problem – selecting the minimum

number of rows from a given matrix, so that the resulting submatrix possesses certifiably

good recovery properties. Starting from the LP-based verifiable sufficient condition given

in (10), we express the synthesis problem as the problem of approximating a given ma-

trix by a matrix of specified low rank in the uniform norm (maximum absolute values of

entries in the matrix). We develop (Section 3.2.1) a randomized algorithm for efficient

construction of rank k approximation of matrices of size m× n achieving accuracy bounds
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O(1)
√

ln(n)/k which hold in expectation or with high probability. We supply (Section

3.2.2) a derandomized version of our approximation algorithm and provide numerical re-

sults on its performance for the synthesis problem (Section 3.2.3). We also prove that

the O(1)
√

ln(n)/k-accuracy bound is unimprovable up to a logarithmic factor (Proposi-

tion 3.2.4). During these developments based on the condition (10), we also establish that

for certain structural matrices including subsampled Hadamard and Fourier matrices, the

computational cost of verifying (10) can be further reduced (Section 3.3.4).

1.4.3 Chapter 4

Chapter 4 is dedicated to efficient first-order algorithms for large-scale, well-structured con-

vex optimization problems. As discussed in Section 1.3.1.1, saddle point reformulation is

proven to be an effective tool to exploit problem structure for designing computationally

efficient algorithms. Building upon their strength, we first demonstrate that many large-

scale problems arising from compressed sensing recovery (Section 4.2.2.2), high-dimensional

statistical inference (Section 4.2.1.3), and machine learning (Section 4.2.2.3) can be ob-

tained through solving a series of bilinear saddle point problems (BSPs), which we refer

to as Generalized Bilinear Saddle Point Problem (GBSPP). In Section 4.4, we suggest an

algorithm for solving GBSPP which reduces the problem to a one-dimensional root-finding

for an implicitly defined function. The latter problem is solved by a Newton-type root

finding routine, with the (approximate) first-order information for this routine yielded by

approximately solving a single-parametric BSP. Our developments are motivated by the

need for efficient sublinear time algorithms to solve large-scale GBSPPs. To achieve this,

we accelerate the solution of associated single-parametric BSP’s by utilizing the Mirror

Prox algorithm from [101] as a prototype which we further modify by replacing precise

first-order oracle (which becomes quite time-consuming in the extremely large-scale case)

by its computationally cheap randomized counterpart. We provide the details of the pro-

posed algorithms and their efficiency estimates in Section 4.3, in particular we show that

our randomized algorithms have O(1/
√
t) rate of convergence. In our developments the

stochastic oracle is constructed by randomizing the matrix-vector products, thus reducing
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the complexity of the oracle from O(mn) to O(m + n) a.o. In this respect, our stochastic

FOMs have close relatives proposed in [82, 83, 102]. The advantage of the algorithms being

proposed here over those from [82, 83, 102] lies in the immediate possibility to assess, in a

computationally cheap fashion, the quality of the resulting approximate solutions. This pos-

sibility is instrumental when solving parametric bilinear saddle point problems of GBSPP

form. Although the deterministic algorithms to solve BSPs in this setup achieve O(1/t) rate

of convergence, we show that due to their high cost of iteration O(mn), the randomized al-

gorithms developed here achieving O(1/
√
t) rate of convergence with O(m+n) cost of each

iteration, outperform the deterministic ones significantly, for every fixed required accuracy,

provided that the problem is large-scale. Overall for certain range of parameters, our ran-

domized algorithms achieve sublinear-time behavior, i.e., they produce reliable solutions by

inspecting a negligible part of the data (i.e., of entries in the sensing matrix A). Extensive

simulations provided in Section 4.5 show that our stochastic first-order methods are capable

of handling very large-scale applications and improve considerably over the state-of-the-art

deterministic algorithms, with benefits amplifying as the sizes of the problems grow.

1.4.4 Chapter 5

In Chapter 5 we study a more general sparse estimation problem with stochastic noise. So

far, in this thesis, we have worked with uncertain-but-bounded noise model of (B). How-

ever, in statistical estimation framework, it is natural to have random noise with known

distribution, as in noise model (S). In addition to this, instead of studying estimation of

signals, we introduce and study estimation of signals that are block-sparse with respect to a

given representation structure. Specifically, we consider the problem of estimating a linear

transform Bx ∈ RN of a vector x ∈ Rn from the observations

y = Ax+ u+ σξ. (17)

Here A is a given m × n sensing matrix, B is a given N × n representation matrix, and

u+ σξ is the observation error; in this error, u is an unknown nuisance known to belong to

a given compact convex set U ⊂ Rm symmetric w.r.t. the origin, σ ≥ 0 is a known noise

intensity, and ξ is random noise with known distribution P . Note that the observation
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model combines (B) and(S), with u being the “uncertain-but-bounded,” and σξ being the

“stochastic” component of the observation error.

We assume that the space RN where Bx lives is represented as RN = Rn1 × ...× RnK ,

so that a vector w ∈ RN is a block vector: w = [w[1]; ...;w[K]] with blocks w[k] ∈ Rnk ,

1 ≤ k ≤ K. In particular, Bx = [B[1]x; ...;B[K]x] with nk × n matrices B[k], 1 ≤ k ≤ K.

While we do not assume that the vector x is sparse in the usual sense, we do assume that the

linear transform Bx to be estimated is block sparse, meaning that at most a given number,

s, of the blocks B[k]x, 1 ≤ k ≤ K, are nonzero.

We consider recovery routines based on block-`1 minimization, i.e., the estimate ŵ(y)

of w = Bx is Bẑ(y), where ẑ(y) is obtained by minimizing the norm
∑K

k=1 ‖B[k]z‖(k) over

signals z ∈ Rn with Az “fitting,” in certain precise sense, the observations y. Above, ‖ · ‖(k)

are given in advance norms on the spaces Rnk where the blocks of Bx take their values. We

refer to the given in advance collection (B,n1, ..., nK , ‖·‖(1), ..., ‖·‖(K)) as the representation

structure. Given such a structure and sensing matrix A, our ultimate goal is to understand

how well one can recover the s-block-sparse transform Bx by appropriately implementing

block-`1 minimization.

Note that in this framework, the standard representation structure, B = In, nk = 1,

‖ · ‖(k) = | · |, 1 ≤ k ≤ K = n, leads to the standard compressed sensing setting – recovering

a sparse signal x ∈ Rn from its noisy observations (17) via `1-minimization. In this respect,

our results generalize the recent work in [79].

As notation, for block vector w = [w[1]; ...;w[K]], we let Lp(w) be the ‖ · ‖p-norm of the

vector [‖w[1]‖(1); ...; ‖w[K]‖(K)] and Ls,p(w) is the block ‖·‖s,p-norm obtained by taking the

Lp-norm of the vector obtained from w by zeroing out all but the s largest in “magnitude”

‖w[k]‖(k) blocks in w.

In Section 5.2, we introduce a parametric family of conditions, Qs,q(κ) for 1 ≤ s ≤ K

and q ∈ [1,∞], linking sensing matrix A ∈ Rm×n and contrast matrix H ∈ Rm×M :

We say that a contrast matrix H ∈ Rm×M along with a norm ‖ ·‖ on RM satisfy
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the condition Qs,q(κ), if

∀x ∈ Rn : Ls,q(Bx) ≤ s
1
q ‖HTAx‖+ κs

1
q
−1
L1(Bx).

We suggest (Section 5.3) two recovery routines (x̂reg(·) for regular recovery and x̂pen(·)

for penalized recovery) utilizing the contrast matrices, and establish their performance

guarantees under condition Qs,q(κ) with κ ∈ (0, 1
2). In particular, let Ξ and ρ be such that

P (Ξ) ≥ 1 − ε and ‖HT (u + σξ)‖ ≤ ρ ∀(u ∈ U , ξ ∈ Ξ); then under condition Qs,q(κ), for

all ξ ∈ Ξ, u ∈ U , and x ∈ Rn, both recovery procedures achieve the following accuracy

(Theorems 5.3.1, 5.3.2):

Lp(B[x̂(Ax+ u+ σξ)− x]) ≤ 4(s)
1
p

2ρ+ s−1υs(Bx)

1− 2κ
, ∀p ∈ [1, q],

where υs(w) is the “s-concentration of w,” that is, the sum of magnitudes ‖w[k]‖(k) of all

but the s largest in magnitude blocks in w.

In Section 5.4, we study the properties of our family of conditions Qs,q(κ). Similar to the

Nullspace condition and RIP, the condition Qs,q(κ) seems to be computationally intractable.

Nonetheless, in Section 5.4.1, we establish that when all ‖·‖(k) are the uniform norms ‖·‖∞,

then the condition Qs,∞(κ), the strongest among our family of conditions Qs,q(κ) (see Ob-

servation 5.2.1), becomes “fully computationally tractable” (Proposition 5.4.1). Moreover,

in Section 5.4.2, we establish the “necessity” of condition Qs,∞(κ) (Proposition 5.4.2): when

error is measured in L∞ norm and all norms ‖ · ‖(k) = ‖ · ‖∞, ξ is a Gaussian r.v. and obser-

vation error “is present,” then whenever the error bounds of the above form is valid for some

sparsity level S, then there exists (and can be efficiently built) a contrast matrix H ∈ Rm×N

which, along with the norm ‖ · ‖∞ on RN , satisfies the condition Qs,∞ for block-sparsity

level s which is nearly as large as S: s = O(S). In Section 5.4.3, under the condition that all

of the norms ‖·‖(k) = ‖·‖π with π ∈ {1, 2,∞}, we derive verifiable sufficient alternatives for

condition Qs,q(κ) with general q ∈ [1,∞] (see Proposition 5.4.3). In the literature, mutual

block-incoherence condition of [54] is the only known so far verifiable sufficient condition

for the validity of block-`1 recovery, and is defined specifically for the case of B = In and

all blocks having Euclidean norms, i.e., ‖ · ‖(k) = ‖ · ‖2. We show in Section 5.4.3.1 that
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the mutual block-incoherence condition is more conservative than our verifiable sufficient

condition for the validity of Qs,∞(κ). We establish (Proposition 5.4.5) limits of performance

for our verifiable sufficient condition when q ∈ {1, 2}, B = In, all blocks have equal size

nk = d and common norms ‖ · ‖(k) = ‖ · ‖π with π ∈ {1, 2,∞}: unless m < 3n/4, we cannot

verify block sparsity levels s beyond n

2
√
d(n−m)

.

In Section 5.5, we restrict our attention to the standard representation structure for

sparse recovery and study the relation between condition Qs,q(κ) and RIP. These relations

allow us to establish new, and in certain cases efficiently verifiable, accuracy certificates

for Lasso estimator and Dantzig selector. In addition to this, in the case of no-nuisance

(U = {0}) and Gaussian observation noise (ξ ∼ N (0, Im)), for a Gaussian m× n matrix A

with ln(m) = O(1) ln(n), with overwhelming probability as m,n grow, the Dantzig selector

satisfies

Prob{ξ : ‖x− x̂D(Ax+ σξ)‖∞ ≤ O(1)σ
√

2 ln(n/ε)} ≥ 1− ε

for all s-sparse x with s ≤ O(1)
√
m/ ln(m). In contrast to this, when s > O(1)

√
m ln(m),

the above error bound, for typical Gaussian A, does not hold for some s-sparse signals

x. This establishes that the restriction s ≤ O(1)
√
m/ ln(m) indeed is necessary (upto

logarithmic factors) to achieve small recovery errors measured in the `∞-norm: when s is

by a logarithmic in m factor greater than this bound, the Dantzig selector associated with

a typical Gaussian sensing matrix stops to work properly.

Finally in Section 5.6, under the common norm ‖ · ‖(k) = ‖ · ‖∞ for all blocks, assuming

satisfiability of the (verifiable!) condition Qs,∞(κ), we develop a computationally cheap

alternative, block Non-Euclidean Matching Pursuit algorithm, to the regular/penalized re-

coveries for signals with block sparse structure.

In the last chapter, we provide brief conclusions of the current work and outline future

research directions.
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CHAPTER II

VERIFIABLE SUFFICIENT CONDITIONS FOR COMPRESSED

SENSING

2.1 Overview

Compressed sensing uses the most basic structural information of the signal to be recovered,

its sparsity, in order to successfully recover it from a few of its observations. In practice,

a priori information about the signal to be recovered often exists and will be beneficial if

taken into account in the recovery procedure. In this chapter, we suppose that the a priori

information about a sparse signal w ∈ Rn amounts to the sign restrictions, and is given as

the subsets P+ and P− of {1, ..., n}, P+∩P− = ∅, such that wi ≥ 0 for i ∈ P+ and wi ≤ 0 for

i ∈ P−. Therefore we address the following recovery problem: given an observation y ∈ Rm,

y = Aw + u, (18)

where A ∈ Rm×n (in this context m < n) is a given matrix, u ∈ Rm is the uncertain-but-

bounded observation error, assess a sparse signal w ∈ Rn satisfying sign restrictions.

A celebrated solution to the problem is given by the `1-recovery, which amounts to

taking, as an estimate of w, an optimal solution ŵ to the optimization problem

ŵ ∈ Argmin
x

{‖x‖1 : ‖Ax− y‖ ≤ e, xi ≥ 0 ∀i ∈ P+, xi ≤ 0 ∀i ∈ P−} (19)

(here e is an a priori bound on the norm ‖u‖ of the observation error, ‖ ·‖ being some norm

on Rm). When there are no sign restrictions (i.e., P+ = P− = ∅), we arrive at the estimator

playing the central role in the compressed sensing theory. The central result here is that

when signal w is s-sparse (i.e., with at most s nonzero entries) and the matrix A possesses a

certain well-defined (although difficult to verify) property, then the `1-recovery ŵ is close to

w, provided the error bound e is small (for a comprehensive survey see [25] and references

therein). Our goal here is to propose efficiently verifiable sufficient conditions on A which
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allow for similar ‘consistency” results, with emphasis on the case where sign restrictions are

present.

To outline our results and to position them with respect to what is already known, let

us start with noiseless recovery (i.e., e = 0 and y = Aw). Here we are interested to answer

the question:

Whether A is such that whenever the true signal w in (18) is s-sparse and

satisfies the sign constraints wi ≥ 0, i ∈ P+, wi ≤ 0, i ∈ P−, the `1-recovery

ŵ ∈ Argmin
x

{‖x‖1 : Ax = y, xi ≥ 0 ∀i ∈ P+, xi ≤ 0 ∀i ∈ P−} (20)

recovers w exactly.

If the answer is positive, we say that A is s-semigood1.

The first characterization of s-semigoodness for the case when w is nonnegative (i.e.,

P+ = {1, ..., n}) was proposed in the founding paper of Donoho and Tanner [47] in terms

of neighboring properties of the polytope AS, S being the standard simplex S = {x ∈ Rn :

x ≥ 0,
∑

i xi ≤ 1}. This paper contains also several important examples of m× n matrices

which are bm2 c-semigood (here bac stands for the integer part of a) and demonstrates that

various types of randomly generated matrices possess this property with overwhelming

probability. Extending the results from Donoho and Huo [45], an equivalent characterization

of s-semigoodness has been provided in the nonnegative case by Zhang in [133, 134], where it

is shown that A is s-semigood if and only if the kernel of A, KerA, is strictly half s-balanced,

meaning that for any set I ⊂ {1, ..., n} of cardinality ≤ s it holds∑
i∈I

zi <
∑
i 6∈I
|zi| for any z ∈ KerA such that zi ≤ 0, for all i 6∈ I. (21)

It should be mentioned that the necessary and sufficient conditions for s-semigoodness

from (7), (21) and [47, 46] share a common drawback – they seemingly cannot be verified

in a computationally efficient way.

The contributions of this chapter, which follow the approach developed in [81], are as

follows.

1We use the term “s-semigoodness” to comply with the terminology of [81], where we used the name
s-goodness to indicate that `1-recovery as in (20) without the sign restrictions is exact.
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1. Taking existing characterizations of (semi)goodness (7), (21) as a starting point, we

develop in Section 2.2, several equivalent necessary and sufficient conditions for s-

semigoodness of a matrix A in the case of general-type sign restrictions. Then in

Section 2.3, we establish error bounds for inexact `1-recovery (noisy observation (18),

imprecise optimization in (19), nearly-sparse true signals); these bounds are expressed

in the same terms as the necessary and sufficient conditions for s-semigoodness from

Section 2.2. These bounds can be seen as an extension to the sign restricted case of

bounds of Section 3 in [81] and as a special case of the bounds provided in Theorem 4.1

of [134]. To the best of our knowledge, these bounds that incorporate sign information

of the signal are new.

2. The major goal of this chapter is to use the LP relaxation techniques from [81] to derive

novel efficiently verifiable sufficient conditions for s-semigoodness. These conditions

allow one to build, in a computationally efficient fashion, lower bounds on the “level

of s-semigoodness” of a given matrix A, that is, on the largest s = s∗(A) for which A

is s-semigood with respect to given P±. Some properties of these verifiable conditions,

same as limits of their performance, are studied in Sections 2.4, 2.5, where we provide

also a computationally efficient scheme for upper bounding of s∗(A). In Section 2.6,

we develop another efficiently computable lower bound for s∗(A) by applying the SDP

relaxation, similar to the approach developed in [38] for the “unsigned” case P± = ∅.

In Section 2.7, we report on numerical experiments aimed at comparing the “power”

of our LP-based sufficient conditions for s-semigoodness, their “unsigned” prototypes

from [81], and conditions based on mutual incoherence. We show that incorporating

the sign information can improve the bounds on the level of s-semigoodness, and that

the bounds based on LP relaxations clearly outperform the bounds based on mutual

incoherence.

3. It turns out that our verifiable sufficient conditions for s-semigoodness can be ex-

pressed in terms of specific properties of the linear recovery ŵlin = Y T y associated

with an appropriate m × n matrix Y . In Section 2.8, we propose and justify a new
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non-Euclidean Matching Pursuit algorithm associated with this linear recovery.

2.2 Necessary and Sufficient Conditions for s-semigoodness

Let A be an m × n matrix, let s, 1 ≤ s ≤ m, be an integer, and let P+, P− and Pn be a

partition of {1, . . . , n} into three non-overlapping subsets. We say that A is s-semigood, if

for every vector w with at most s nonzero entries satisfying wi ≥ 0 for i ∈ P+, and wi ≤ 0

for i ∈ P−, w is the unique optimal solution to the problem

Opt = min
z
{‖z‖1 : Az = Aw, zi ≥ 0 ∀i ∈ P+, zi ≤ 0 ∀i ∈ P−} . (22)

Our primary goals are to find necessary and sufficient and verifiable sufficient conditions

for A to be s-semigood.

Note that without loss of generality we may assume P− = ∅. Indeed, by replacing the

partition P+, P−, Pn with the partition P+ = P+ ∪ P−, P− = ∅, Pn = Pn and matrix A –

with the matrix A obtained from A by multiplying the columns with indices i ∈ P− by −1, s-

semigoodness of A with respect to the original sign restrictions given by P±, Pn is equivalent

to the s-semigoodness of the new matrix A with respect to the new sign restrictions. By

this reason, we assume from now on that P− = ∅. Besides this, we assume without loss of

generality that P+ = {1, ..., p} and Pn = {p+ 1, ..., n} for some p. From now on, we denote

by Pn the set of all signals satisfying the sign restrictions:

Pn = {w ∈ Rn : wi ≥ 0 ∀i ∈ P+}.

Note that since P− = ∅, (22) simplifies to

Opt = min
z
{‖z‖1 : Az = Aw, zi ≥ 0 ∀i ∈ P+} . (23)

Let us fix a norm ‖ · ‖ on Rn, and let ‖ · ‖∗ be the conjugate norm.

Proposition 2.2.1 Let m,n, s and P+ be given. The following six conditions on an m×n

matrix A are equivalent to each other:

(i) A is s-semigood;
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(ii) For every subset J of {1, ..., n} with Card(J) ≤ s, and any x ∈ KerA\{0} such that

xi ≤ 0 for all i ∈ P+ \ J one has

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| <
∑
i 6∈J
|xi|.

(iii) There exists ξ ∈ (0, 1) such that for every subset J of {1, ..., n} with Card(J) ≤ s

and any x ∈ KerA such that xi ≤ 0 for all i ∈ P+ \ J one has

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ
∑
i 6∈J
|xi|.

(iv) There exist ξ ∈ (0, 1) and θ ∈ [1,∞) such that A satisfies the condition SGs(ξ, θ)

as follows:

for every x ∈ KerA and every subset J of {1, ..., n} with Card(J) ≤ s, one has

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ

 ∑
i∈Pn\J

|xi|+
∑

i∈P+\J

ψ(xi)

 , ψ(t) = max[−t, θt],

or, equivalently: for all x ∈ KerA, Θ(x) ≤ ξΨ(x) where

Θ(x) := max
J⊂{1,...,n},
Card(J)≤s

[∑
i∈J∩P+

max[(1− ξ)xi, (1 + θξ)xi] +
∑

i∈J∩Pn(1 + ξ)|xi|
]

Ψ(x) :=
∑

i∈P+
max[−xi, θxi] +

∑
i∈Pn |xi|

(24)

(v) There exist ξ ∈ (0, 1), θ ∈ [1,∞) and β ∈ [0,∞) such that A satisfies the condition

SGs,β(ξ, θ) as follows:

for every x ∈ Rn and every subset J of {1, ..., n} with Card(J) ≤ s, one has

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ β‖Ax‖+ ξ

 ∑
i∈Pn\J

|xi|+
∑

i∈P+\J

ψ(xi)

 , ψ(t) = max[−t, θt].

(vi) There exist ξ ∈ (0, 1) and β ∈ [0,∞) such that A satisfies the condition SGs,β(ξ)

as follows:

for every J ⊂ {1, ..., n} with Card(J) ≤ s and any x ∈ Rn such that xi ≤ 0 for all i ∈ P+\J ,

one has ∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ β‖Ax‖+ ξ
∑
i 6∈J
|xi|.
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We provide the proof of Proposition 2.2.1 in Section 2.10.1.

As we have already mentioned in Introduction, when Pn = ∅ or P+ = ∅, the charac-

terizations (i)–(iv) of s-semigoodness are not completely new. For instance, when Pn = ∅,

a necessary and sufficient condition for s-semigoodness of A in the form (ii) has been es-

tablished in [133] (compare (ii) to the definition (21) of half s-balancedness of KerA). On

the other hand, the equivalent formulation of this characterization in terms of conditions

SGs,β(ξ, θ) and SGs,β(ξ) seems to be new. We are about to demonstrate that the latter

two conditions allow to control the error of `1-recovery in the case when the vector w ∈ Rn

is not s-sparse and the problem (23) is not solved to exact optimality.

2.3 Error Bounds for Imperfect `1-recovery

We have seen that the conditions provided in Proposition 2.2.1 are responsible for s-

semigoodness of a sensing matrix A, that is, for the exactness of `1-recovery in the “ideal

case” when the true signal w is s-sparse, there is no observation error, and the optimization

problem (23) is solved to exact optimality. Below we demonstrate that these conditions

control also the error of `1-recovery in the case when the signal w ∈ Pn is not exactly

s-sparse, there is observation noise and problem (23) is not solved to exact optimality. The

corresponding error bound (cf [81, Proposition 3.1, Theorem 3.1]) is as follows:

Proposition 2.3.1 Let w ∈ Pn be such that ‖w−ws‖1 ≤ µ, where ws is the vector obtained

from w by replacing all but the s largest in magnitude entries in w with zeros, let y be such

that ‖Aw−y‖ ≤ e, and let, finally, x be an approximate solution to the optimization problem

Opt = min
z
{‖z‖1 : ‖Az − y‖ ≤ e, zi ≥ 0 ∀i ∈ P+} . (25)

such that ‖x‖1 ≤ Opt + ν and ‖Ax− y‖ ≤ δ.

1. If A satisfies the condition SGs,β(ξ, θ) with some ξ ∈ (0, 1), β ∈ [0,∞) and θ ∈ [1,∞),

then

‖x− w‖1 ≤
1 + ξ

1− ξ
ν +

2(1 + ξθ)

1− ξ
µ+

2β

1− ξ
(e + δ). (26)
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2. If A satisfies the condition SGs,β(ξ) with some ξ ∈ (0, 1), β ∈ [0,∞), then

‖x− w‖1 ≤
1 + ξ

1− ξ
ν +

2(1 + βα)

1− ξ
µ+

2β

1− ξ
(e + δ). (27)

where α stands for the maximum of ‖ · ‖-norms of the columns in A.

For proof, see Section 2.10.2.

2.4 Verifiable Conditions for s-semigoodness

In this section, our goal is to demonstrate that condition SGs,β(ξ, θ) from Proposition 2.2.1

leads to efficiently computable lower and upper bounds on the level of s-semigoodness.

2.4.1 Lower Bounding the Level of s-semigoodness

2.4.1.1 Origin of Verifiable Sufficient Condition

The essence of obtaining a lower bound on the level of s-semigoodness is in building a

verifiable sufficient condition for the validity of (24), see Proposition 2.2.1.iv. By posi-

tive homogeneity of degree 1 of the convex functions Θ,Ψ participating in (24), the latter

condition is equivalent to verifying

Opt := max
x
{Θ(x) : Ax = 0, x ∈ X} ≤ ξ, where X = {x : Ψ(x) ≤ 1}. (28)

A verifiable sufficient condition for (28) is basically the same as an efficiently computable

upper bound for Opt; the sufficient condition for the validity of (28) associated with such

a bound merely states that the bound is ≤ ξ. Now observe that from the origin of Ψ (see

(24)) it is clear that X has a moderate number, N , of readily available extreme points

x1, ..., xN (in the case of (24), N = 2n), so that the only difficulty in computing Opt exactly

comes from linear constraints Ax = 0. The standard way to circumvent this difficulty and

to efficiently bound Opt from above is to use the Lagrange relaxation: for any v ∈ Rm,

Opt = max
x∈X

{
Θ(x) + vTAx : Ax = 0, x ∈ X

}
≤ max

x

{
Θ(x) + vTAx : x ∈ X

}
= max

1≤i≤N
[Θ(xi) + vTAxi],

and hence the efficiently computable Lagrange relaxation bound infv max1≤i≤N [Θ(xi) +

vTAxi] is an upper bound on Opt. Unfortunately, in our situation this bound can be very
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poor; e.g., when X is symmetric with respect to the origin and Θ is even (as it happens

in (24) when P+ = ∅), it is immediately seen that the bound becomes the trivial bound

Opt ≤ maxx∈X Θ(x) = maxi Θ(xi). In order to strengthen the relaxation, we pass to the

Fenchel-type representation of Θ

Θ(x) = sup
u

[
[Pu+ q]Tx−Θ∗(u)

]
with a proper convex function Θ∗; such a representation, even with Pu + p ≡ u, exists

whenever Θ is a proper convex function (and can be easily found for Θ we are interested

in). We now have for any Y ∈ Rm×n, v ∈ Rm,

Opt = max
x
{Θ(x) : Ax = 0, x ∈ X}

= sup
x,u

{
[Pu+ p]Tx−Θ∗(u) : Ax = 0, x ∈ X

}
= sup

x,u

{
[Pu+ p]T [x− Y TAx] + vTAx−Θ∗(u) : Ax = 0, x ∈ X

}
≤ sup

x,u

{
[Pu+ p]T [x− Y TAx] + vTAx−Θ∗(u) : x ∈ X

}
= max

1≤i≤N
sup
u

{
[Pu+ p]T [xi − Y TAxi] + vTAxi −Θ∗(u)

}
︸ ︷︷ ︸

:=Θi(Y,v)

,

so that the condition

∃(Y ∈ Rm×n, v ∈ Rm) : Θi(Y, v) ≤ ξ, 1 ≤ i ≤ N, (29)

is sufficient for the validity of (28). Note that the functions Θi, by their origin, are convex, so

that the condition (29) is efficiently verifiable, provided that Θi(·) are efficiently computable.

Whenever Θ∗(u) admits a polyhedral representation, the condition (29) can be verified by

solving a linear program, therefore we refer to this procedure and the corresponding bound

as linear programming based condition.

2.4.1.2 Tractable Relaxations for Disjoint Bilinear Programming

It should be stressed that the outlined scheme of Section 2.4.1.1 can be applied to bounding

from above the optimal value of a whatever problem of the form (28) with a convex polytope

X and a proper convex objective Θ; all what matters is that X is given as Conv{x1, ..., xN}

and Θ is efficiently computable. Note also that when X is a polytope given by list of
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M linear inequalities, we can efficiently represent it as the intersection of M -dimensional

standard simplex and an affine plane, so that the outlined scheme is applicable to a whatever

problem of maximizing an efficiently computable proper convex function under a (finite)

system of linear inequality and equality constraints. Therefore we believe that the study of

this new bounding scheme in the following general setting is important.

Here we consider the problem of bounding from above the quantity

Opt = max
x,u

{
xT [Pu+ p] : x ∈ X,Ax = 0, u ∈ U

}
, X = Conv{x1, ..., xN}, (30)

where xi ∈ Rn, the set {x ∈ X : Ax = 0} is nonempty, and U ⊂ Rn is a computationally

tractable compact convex set which contains the origin in its interior.

In this setting the linear programming based relaxation scheme corresponds to

Opt+ = inf
Y,v

max
1≤i≤N

[
max
u∈U

[(I − Y TA)xi]T [Pu+ p] + vTAxi
]
, (31)

and we have seen that Opt ≤ Opt+.

In addition to its simple derivation, Opt+ has a meaningful interpretation given by the

following

Proposition 2.4.1 Whenever X is given as Conv{x1, ..., xN} and U ⊂ Rn is a computa-

tionally tractable compact convex set which contains the origin in its interior

Opt+ = max
V
{Tr(V ) : ∃x̄, ū : [x̄, ū, V ] ∈ W, AV = 0, Ax̄ = 0} ,

where W = Conv{[x, u, x(Pu + p)T ] : x ∈ X,u ∈ U}. Moreover W is a computationally

tractable set given by

W =

(x, u, V ) :
∃(ti, wi) : x =

∑N
i=1 tix

i, u =
∑N

i=1w
i, V =

∑N
i=1 x

i[Pwi + tip]
T ,∑N

i=1 ti = 1, φ(wi) ≤ ti,∀i = 1, . . . , N

 ,

where φ(·) is the Minkowski functional of U , meaning U = {u : φ(u) ≤ 1}.

For proof, see Section 2.10.3.

The disjoint bilinear optimization problem given in (30) has broad range of applications

and developing tractable relaxations for particular forms of it has been studied extensively.
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One of the most commonly studied form is the case when the set U is given as a polytope.

In the polytope case, we present the relation of our bounding schema and other relaxations

such as McCormick Bounds, Sherali-Adams Relaxation and Lovász-Schrijver Relaxation

in Section 2.9. In particular, we show that when U is a polytope, the bound produced

by Opt+ is at least as good as the one given by McCormick Bounds and Sherali-Adams

Relaxation, and a simple addition to our bounding schema makes it at least as strong as

the Lovász-Schrijver Relaxation.

2.4.1.3 Verifiable Sufficient Conditions for s-semigoodness by Linear Programming

The simple and general construction of tractable linear programming based relaxation for

disjoint bilinear programs presented in Section 2.4.1.1 can be combined with the condition

SGs,β(ξ, θ) from Proposition 2.2.1 to obtain an efficiently computable lower bound on the

level of s-semigoodness. In the case we are interested in, the extreme points of X are the

2n vectors −ei for 1 ≤ i ≤ n, ei for i ∈ Pn, and θ−1ei for i ∈ P+, where ei is the i-th basic

orth. Implementing the outlined bounding scheme and adding additional restrictions to get

a control over β, we arrive at the following verifiable sufficient condition, VSGs(ξ, θ, ρ, σ).

Let

Us = {u ∈ Rn : ‖u‖1 ≤ s, ‖u‖∞ ≤ 1} ,

so that Us is the convex hull of all {−1, 0, 1} vectors with at most s nonzero entries, and for

x ∈ Rn, let ‖x‖s,1 be the sum of the s largest magnitudes of entries in x, or, equivalently,

‖x‖s,1 = max
u∈Us

uTx.

Let

(Dθ[x])i =

 [1 + θξ] max[xi, 0], i ∈ P+

(1 + ξ)|xi|, i 6∈ P+

, Φ(x) = ‖Dθ[x]‖s,1.

Suppose ξ ∈ [0, 1), θ ∈ [1,∞) and ρ, σ ∈ [0,∞) are given. Consider the following condition

on an m× n matrix A:

VSGs(ξ, θ, ρ, σ): There exist m×n matrix Y = [y1, ..., yn] and a vector v ∈ Rm
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such that

Φs(−Ci[Y,A]) + (AT v)i ≤ ξ, 1 ≤ i ≤ n (a)

Φs(Ci[Y,A])− (AT v)i ≤ ξ, i 6∈ P+ (b)

Φs(Ci[Y,A])− (AT v)i ≤ θξ, i ∈ P+ (c)

‖yi‖∗ ≤ σ, 1 ≤ i ≤ n (d)

‖v‖∗ ≤ ρ (e)

(32)

where Ci[Y,A] is the i-th column of the matrix I − Y TA.

Observe that this condition is verifiable, since (32) is a system of explicit convex con-

straints on Y and v.

Proposition 2.4.2 Let A satisfy VSGs(ξ, θ, ρ, σ) with some ξ ∈ [0, 1), θ ∈ [1,∞), and

ρ, σ ∈ [0,∞). Then A satisfies SGs,β(ξ, θ) with

β = ρ+ σ max
k+,kn

k+(1 + θξ) + kn(1 + ξ) :

0 ≤ k+ ≤ Card(P+)

0 ≤ kn ≤ Card(Pn)

k+ + kn ≤ s

 ≤ ρ+ σs(1 + θξ). (33)

In particular, A is s-semigood.

For proof, see Section 2.10.4.

Some comments are in order.

Effect of increasing β, θ, ξ. The condition SGs,β(ξ, θ) appearing in Proposition 2.2.1.v

clearly is “monotone” in the parameters β, θ, ξ: whenever A satisfies this condition and

β′ ≥ β, θ′ ≥ θ and ξ′ ≥ ξ, A satisfies the condition SGs,β′(ξ
′, θ′) as well. Proposition 2.4.2

offers a verifiable sufficient condition for the validity of SGs,β(ξ, θ), specifically,

VSG∗s,β(ξ, θ): ∃Y, v ρ, σ satisfying (32) and the relation ρ+ σs(1 + θξ) ≤ β.

A natural question is, whether this verifiable condition possesses the same monotonicity

properties as the “target” condition SGs,β(ξ, θ). In the case of the affirmative answer,

in order to conclude that A is s-semigood, we could check the validity of VSG∗s,β(ξ, θ)

for appropriately large values of β, θ and a close to one value of ξ < 1; if the condition
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is satisfied, A is s-semigood, and error bounds from Proposition 2.3.1 take place. Were

the condition VSG∗s,β(ξ, θ) “not monotone,” to justify the s-semigoodness of A via this

condition would require a problematic and time-consuming search in the space of parameters

β, θ, ξ. Fortunately, the condition VSG∗s,β(ξ, θ) indeed is monotone:

Proposition 2.4.3 Let A satisfy VSG∗s,β(ξ, θ), and let Y, v, σ, ρ be the corresponding cer-

tificate, that is, ρ+ σs(1 + θξ) ≤ β and Y, v, σ, ρ satisfy (32). Then A satisfies VSG∗s,β′(ξ
′, θ′)

whenever β′ ≥ β, θ′ ≥ θ and ξ′ ∈ (ξ, 1), the certificate being (Y ′, v, σ, ρ), where the columns

Y ′i of Y ′ are multiplies of the columns Yi of Y , namely,

Y ′i = aiYi; [0, 1] 3 ai =

 (1 + ξθ)/(1 + ξ′θ′), i ∈ P+

(1 + ξ)/(1 + ξ′), i ∈ Pn

For proof, see Section 2.10.6.

Relation to the sufficient condition for s-goodness from [81] and the Restricted

Isometry Property. The verifiable sufficient condition for s-goodness from [81] requires

from an m× n matrix A the existence of γ < 1/2 and Y = [y1, ..., yn] ∈ Rm×n such that

‖Ci[Y,A]‖s,1 ≤ γ, for all 1 ≤ i ≤ n,

Setting θ = 1 and ξ = γ
1−γ (so that ξ < 1 and γ = ξ

1+ξ ) and taking into account that in the

case of θ = 1 we have Φs(z) ≤ (1 + ξ)‖z‖s,1, the latter condition implies that

Φs(±Ci[Y,A]) ≤ (1 + ξ)γ = ξ, ∀i,

that is, it implies the validity of VSGs(ξ, 1, 0, σ), provided that σ is large enough, specifi-

cally, σ ≥ ‖yi‖∗ for all i.

As it was shown in [81], when A satisfies the Restricted Isometry Property RIP(δ, k)

with parameters δ ∈ (0, 1), k > 1, the above sufficient condition for s-goodness is satisfied

with γ = 1/3 for s as large as O(1)(1 − δ)
√
k; as a result, a RIP(δ, k)-matrix satisfies

VSGs(
1
2 , 1, 0, σ) provided that σ is large enough and s ≤ O(1)(1 − δ)

√
k. Since for large

m,n, m < n, typical random matrices possess, with overwhelming probability, property

RIP(1
2 , k) with k as large as O(1)m/ ln(n/m), we see that our verifiable sufficient condition
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for s-semigoodness can certify the latter property for s as large as O(1)
√
m/ ln(n/m),

provided that the matrix in question is “good enough”.

2.4.2 Upper Bounding the Level of s-semigoodness

Here we address the issue of bounding from above the maximal s = s∗(A) for which A is

s-semigood. The construction to follow is motivated by item (iv) of Proposition 2.2.1. A

necessary and sufficient condition for the s-semigoodness of A is the existence of ξ < 1 and

θ ≥ 1 such that for all x ∈ KerA and any set I of indices with Card(I) ≤ s

∑
i∈I∩P+

max[(1− ξ)xi, (1 + θξ)xi] +
∑

i∈I∩Pn

(1 + ξ)|xi| ≤ ξΨ(x)

where

Ψ(x) =
∑
i∈P+

max[−xi, θxi] +
∑
i∈Pn

|xi|, (34)

or, equivalently,

(!) for every x ∈ KerA and every vector v with at most s nonzero entries

and nonzero entries vi belonging to [1 − ξ, 1 + ξθ] if i ∈ P+ and belonging to

[−1− ξ, 1 + ξ] if i ∈ Pn, one has

vTx ≤ ξΨ(x).

Observe that the convex hull of the vectors v in question is exactly the set

Uξ,θ =

v ∈ Rn :
0 ≤ vi ≤ 1 + θξ, i ∈ P+, |vi| ≤ 1 + ξ, i ∈ Pn,∑

i∈P+

vi
1+θξ +

∑
i∈Pn

|vi|
1+ξ ≤ s

 .

Recalling that P+ = {1, ..., p}, setting q = n− p = Card(Pn) and

U = {u ∈ Rn : ‖u‖1 ≤ s, ‖u‖∞ ≤ 1, ui ≥ 0 for i ∈ P+} (35)

we see that

Uξ,θ = Cξ,θU , where Cξ,θ =

 (1 + ξθ)Ip 0

0 (1 + ξ)Iq

 . (36)
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The condition (!) now reads

max
v∈Uξ,θ

vTx ≤ ξΨ(x) for all x ∈ KerA.

Setting X = {x ∈ KerA : Ψ(x) ≤ 1} the latter condition, by homogeneity reason, is the

same as

Opt = Opt(ξ, θ) := max
v,x

{
vTx : v ∈ Uξ,θ, x ∈ X

}
≤ ξ; (37)

recall that A is s-semigood if and only if there exist θ ≥ 1 and ξ < 1 such that (37) takes

place.

We can use (37) in order to bound s∗(A) from above, as follows. In order to certify

that s∗(A) < s for a given s (s is the input to our algorithm), we fix a large θ and a close

to one ξ < 1 (these are the parameters of the algorithm) and run the iterations

u0 ∈ Uξ,θ 7→ x1 ∈ Argmaxx∈Xu
T
0 x 7→ u1 ∈ Argmaxu∈Uξ,θu

Tx1 7→ ...

initiating them by a picked at random vertex u0 of Uξ,θ. Note that the quantities uTi xi,

i = 1, 2, ... clearly form a nondecreasing sequence of lower bounds on Opt. We terminate

the outlined iterations when the progress in the bounds – the difference uTi xi − uTi−1xi−1

– falls below a given small threshold, and we run this process a predetermined number of

times from different randomly chosen starting points. As a result, we get a set of lower

bounds on Opt of the form uTx, where u is a vertex of Uξ,θ and x ∈ X . If our goal were

merely to certify that (40) is not valid for given s, θ, ξ, we could terminate this process at

the first step, if any, when the current lower bound uTx becomes > ξ (cf. [81, Section 4.1]).

We, however, want to certify that s > s∗(A), or, which is the same by Proposition 2.2.1.iv,

that (40) fails to be true for all θ and all ξ < 1, and not only for those θ, ξ we have selected

for our test. To overcome this difficulty, we accompany every step u 7→ x ∈ Argmaxx∈Xu
Tx

by an additional computation as follows. In our process, u is an extreme point of Uξ,θ, that

is, a point with su ≤ s nonzero entries, let the set of indices of these entries be I. Setting
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εi = sign(ui), we solve the following LP problem

max
x


∑

i∈I∩P+

xi +
∑

i∈I∩Pn

εixi :


xi ≤ 0, i ∈ P+\I

Ax = 0∑
i 6∈I |xi| ≤ 1

 .

If the optimal value in this problem is ≥ 1, we terminate our test and claim that A is not

s-good; by Proposition 2.2.1.ii, this indeed is the case.

As applied to a given input s, the outlined test either terminates with a valid claim

“s > s∗(A)”, or terminates with no conclusion at all, in which case we could pass to testing

a larger value of s.

2.5 Limits of Performance of LP-based Sufficient Conditions for s-
semigoodness

Unfortunately, the condition in question, same as its predecessor from [81], cannot certify

s-semigoodness of an m×n matrix in the case of s > O(1)
√
m, unless the matrix is “nearly

square”. The precise statement is as follows (cf. [81, Proposition 4.2]):

Proposition 2.5.1 Let

n > 2(2
√

2m+ 1)2 (38)

and let ξ < 1, θ ≥ 1, σ ≥ 0, ρ ≥ 0, an integer s and an m × n matrix A be such that A

satisfies VSGs(ξ, θ, ρ, σ). Then

s ≤ 2
√

2m+ 1. (39)

For proof, see Section 2.10.5.

The results from Proposition 2.5.1 show that our verifiable sufficient conditions can only

certify s-semigoodness of an m× n matrix at a suboptimal rate of s ≤ O(1)
√
m, unless the

matrix is “nearly square”. In fact this verifiable bound can still give a very poor impression

on the true largest s = s∗(A) for which A is s-semigood. An instructive example in this

direction is as follows. Consider the case of P+ = {1, ..., n}, let m = 2d+ 1 be odd, and let

the rows of A be comprised of the values of basic trigonometric polynomials

p0(φ) ≡ 1, p2i−1(φ) = cos(iφ), p2i(φ) = sin(iφ), 1 ≤ i ≤ d,
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taken along the regular grid φj = 2πj/n, 0 ≤ j < n, so that Aij = pi(φj), 0 ≤ i < m,

0 ≤ j < n (we enumerate rows and columns starting with 0 rather than with 1). It is well

known [30, 47] that in this case A is s-semigood for s = d. In contrast to this, when A is not

“nearly square”, specifically, when n > 4πd, A can satisfy the condition VSGs(ξ, θ, ρ, σ)

only for s ≤ 2, no matter how large θ, σ, ρ are and how close to 1, ξ < 1 is. The validity of

this claim is readily given by the following

Lemma 2.5.1 For any positive integer d, let n ≥ 4πd, and A be the matrix obtained

from the basic trigonometric polynomials as described in Section 2.5, then the condition

VSGs(ξ, θ, ρ, σ) can hold true for s ≤ 2 only.

For proof, see Section 2.10.7.

2.6 Verifiable Sufficient Conditions for s-semigoodness by Semidefinite
Relaxation

Following d’Aspremont and El Ghaoui [38], we are about to derive another verifiable suf-

ficient condition for s-semigoodness, now - via semidefinite relaxation. The construction

to follow is motivated by the development in the beginning of Section 2.4.2, according to

which s-semigoodness of A is implied by the validity of (37) for θ > 1 and ξ < 1.

Let, as before,

X = {x ∈ KerA : Ψ(x) ≤ 1} and Uξ,θ = {Cξ,θu : u ∈ U},

where Ψ, U and Cξ,θ are defined in, respectively, (34), (35) and (36). The condition (37)

is equivalent to

max
u,x

{
(Cξ,θu)Tx : u ∈ U , x ∈ X

}
≤ ξ. (40)

Observe that for x ∈ X , u ∈ U the matrices Z = xxT , V = xuT and Q = uuT satisfy the
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relations

∃t ∈ Rn, R ∈ S2n,Λ ∈ S2n :

(a) G =


1 xT uT

x Z V

u V T Q

 � 0;

(b)



Q =

[
In −In

]
︸ ︷︷ ︸

:=L

 R11 R12

R12 R11


︸ ︷︷ ︸

:=R

LT ,

0 ≤ Rij ≤ 1
2 , R � 0, R12 = [R12]T , Tr(R) ≤ s,∑

i,j Rij ≤ s2, R12
ij = 0 ∀i, j ∈ P+;

(c) Z =

 −Ip 0 1
θ Ip 0

0 −Iq 0 Iq


︸ ︷︷ ︸

:=F

ΛF T , 0 ≤ Λij , Λ � 0,
∑

i,j Λij ≤ 1;

(d1)

 −ti ≤ Vij ≤
ti
θ , ∀i, j ∈ P+

|Vij | ≤ ti, otherwise;

(d2)
∑

j∈P+
max[−Vij , θVij ] +

∑
j∈Pn |Vij | ≤ sti, ∀i ∈ P+;

(d3)
∑

j |Vij | ≤ sti, ∀i ∈ Pn;

(d4)
∑

i ti ≤ 1;

(e) AZAT = 0

(f) x ∈ X , u ∈ U .

(41)

Besides this,

uT (Cξ,θ)Tx = Tr(Cξ,θV ).

Indeed, the latter relation, same as (41.a), (41.e) and (41.f), is evident. To verify
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(41.b), let u+ = max[u, 0], u− = max[−u, 0], where max is acting coordinate-

wise. Then

Q = L

 u+u
T
+ u+u

T
−

u−u
T
+ u−u

T
−

LT = L

 u−u
T
− u−u

T
+

u+u
T
− u+u

T
+

LT

= L

 1
2 [u+u

T
+ + u−u

T
−] 1

2 [u+u
T
− + u−u

T
+]

1
2 [u−u

T
+ + u+u

T
−] 1

2 [u−u
T
− + u+u

T
+]


︸ ︷︷ ︸

R

LT ,

and the matrix R we have just defined clearly satisfies all requirements from

(41.b). To verify (41.c), observe that the extreme points of the set X+ = {x :

Ψ(x) ≤ 1} ⊃ X are the vectors ±ei, i > p, and −ei, θ−1ei, i ≤ p, so that x = Fλ

with λ ∈ R2n
+ ,
∑

i λi ≤ 1; setting Λ = λλT , we satisfy (41.c). To satisfy (41.d),

it suffices to set ti = |xi| for all i > p and ti = max[−xi, θxi] for i ≤ p and to

take into account that max[−Vij , θVij ] ≥ |Vij | for all i, j due to θ ≥ 1, and that

ui ≥ 0 for i ∈ P+.

It follows that a sufficient condition for (40) is

Optξ,θ := max
Z,Q ∈ Sn, R,Λ ∈ S2n,

V ∈ Rn×n, t ∈ Rn

{
Tr(Cξ,θV ) : (41) is satisfied

}
≤ ξ. (42)

The optimization problem in (42) clearly reduces to a semidefinite maximization program

S; by weak duality, the optimal value in the semidefinite dual D to S is ≥ Optξ,θ. It follows

that the efficiently verifiable condition

Opt(D) ≤ ξ

is a sufficient condition for s-semigoodness of A. Note that the above construction depends

on θ ≥ 1 and ξ < 1 as parameters.

Remark. Consider the case of P+ = ∅, where X = {x ∈ Rn : ‖x‖1 ≤ 1, Ax = 0} ⊃

Z = {x ∈ Rn : ‖x‖1 ≤ 1}. In this case, the standard semidefinite relaxation of the set
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C∗ = Conv{xxT : x ∈ Z} is

C =

Z : Z � 0,
∑
i,j

|Zij | ≤ 1


(cf. [38]). Note that (41.c) uses another semidefinite relaxation of C∗, namely,

C′ =

Z : ∃Λ ∈ S2n :
Λ � 0,Λi,j ≥ 0 ∀i, j,

∑
i,j Λij ≤ 1

Z = [In,−In]Λ[In,−In]T

 .

It is immediately seen that C∗ ⊂ C′ ⊂ C; a surprising fact is that the second of these

inclusions is strict. Thus, the relaxation of C∗ given by C′ is less conservative than the

standard relaxation given by C. As observed by A. d’Aspremont (private communication),

the relaxation C′ can be further improved, namely, by replacing C′ with

C+ =

Z : ∃Λ =

 Λ11 Λ12

Λ21 Λ22

 ∈ S2n :

Λµν ∈ Rn×n, Λ � 0, Λi,j ≥ 0 ∀i, j∑
i,j Λij ≤ 1, Λ12

ii = 0, 1 ≤ i ≤ n

Z = [In,−In]Λ[In,−In]T

 .

Note that this idea can be used to improve the semidefinite relaxation given by C as well.

Specifically, the matrix R as built in the justification of (41) clearly satisfies (R12)ii = 0,

1 ≤ i ≤ n, and we can add these linear constraints on R to (41.b). Similarly, when

representing a vector x ∈ X+ as Fλ with λ ∈ R2n
+ ,
∑

i λi ≤ 1, see the justification of (41),

we clearly can ensure that λiλn+i = 0, 1 ≤ i ≤ n, that is, the matrix Λ we have built in

fact satisfies Λi,n+i = Λn+i,i = 0, 1 ≤ i ≤ n, and we can add these linear constraints on Λ

to (41.c).

Proposition 2.6.1 If VSGs(ξ, θ, ρ, σ) with ρ = σ =∞ holds, then Optξ,θ ≤ ξ.

For proof, see Section 2.10.8.

Although Proposition 2.6.1 states that the verifiable sufficient conditions based on

semidefinite programming are at least as good as the ones based on linear programming,

i.e., VSGs(ξ, θ, ρ, σ), in terms of their computational cost, conditions based on linear pro-

gramming are far more advantageous.
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2.7 Numerical Results

In order to compare the performance of the proposed bounds on the maximal s = s∗(A)

for which a given matrix, A, is s-semigood, with the bounds known from the literature,

we present some preliminary numerical results for relatively small sensing matrices. Our

goal is to see if the sign information on a signal allows to improve the bounds for s∗(A) as

compared to the bounds on the largest s = s0(A) for which A is s-good.

We generate four sets of random matrices, which are normalizations (all columns scaled

to be of ‖ · ‖2-norm 1) of (a) Rademacher matrices (i.i.d. entries taking values ±1 with

probabilities 0.5), (b) Gaussian matrices (i.i.d. N (0, 1) entries), (c) Fourier matrices —

m × n submatrices of the matrix of n × n Discrete Fourier Transform, and (d) Hadamard

matrices — m × n submatrices of the n × n Hadamard matrix2; in the cases (c,d), the

m rows comprising the submatrix were drawn at random from the n rows of the “parent”

matrix. For each type, we set the number of columns to n = 128 and n = 256 and vary the

number of rows, m = 0.5n, . . . , 0.95n.

We bound from below the value s0(A) using the bound s[µ] by mutual incoherence and

the bounds s[α1] and s[αs], computed through the LP-based verifiable sufficient conditions

for s-goodness (see [81, Section 6]).

The lower bound on s∗(A) is computed by invoking condition VSGs(ξ, θ, ρ, σ), where

ρ = σ = ∞ and θ is set to once for ever fixed “large enough” value, and ξ is set to

0.9999, see Section 2.4.1.3 and Propositions 2.4.2, 2.4.3. Note that given a matrix Y , and

setting v = 0, one can compute the largest s satisfying (32) and thus ensuring the validity of

VSGs(ξ, θ, ρ, σ). We first compute the best lower bound s on s∗(A) given by the Y -matrices

generated when bounding s0(A). Then we compute the “improved” lower bound for s∗(A)

as follows: we check whether the condition VSGs(ξ, θ, ρ, σ) holds true for s = s+ 1, if it is

the case, check whether this condition holds true for s = s+ 2, and so on.

While the outlined lower bounds on s∗(A) and s0(A) are efficiently computable via LP

(when σ = ρ =∞, the sufficient condition is easily checked by solving a Linear Programming

2The Hadamard matrix Hd, d = 0, 1, 2, ..., has order 2d × 2d and is given by the recurrence H0 = 1,
Hd+1 = [Hd, Hd;Hd,−Hd].
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Table 1: Comparison of efficiently computable bounds on s∗(A), n = 128, Fourier matrices
Unsigned Nonnegative CPU time (s)

LBs on s0(A) UB LB UB Unsigned Nonnegative
m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

64 2 3 3 6 3 14 0.4 70.0 22.2 258.9 44.9
64 2 3 3 5 3 14 0.2 61.7 13.7 249.4 52.5
76 1 3 3 5 3 21 0.3 163.1 12.0 239.6 22.6
76 2 4 4 6 4 23 0.5 142.2 10.3 237.7 21.7
88 2 4 4 7 4 20 0.2 132.9 31.5 175.4 68.3
88 2 5 5 8 5 28 0.2 63.2 31.7 259.4 25.1
102 3 6 6 11 6 32 0.2 69.9 39.2 223.8 28.3
102 2 5 5 9 5 25 0.5 70.2 35.9 255.1 48.7
114 3 6 6 11 6 34 0.5 52.7 43.7 249.2 57.0
114 3 7 7 12 7 33 0.1 69.4 42.9 228.3 56.1
120 3 7 7 14 7 40 0.2 64.7 42.6 255.3 30.5
120 2 6 6 12 7 34 0.2 79.5 39.6 494.2 29.2

Table 2: Comparison of efficiently computable bounds on s∗(A), n = 128, Hadamard
matrices

Unsigned Nonnegative CPU time (s)
LBs on s0(A) UB LB UB Unsigned Nonnegative

m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

64 2 4 4 6 4 8 0.1 156.3 11.0 237.6 57.6
64 2 3 3 3 4 27 0.1 59.3 1.7 211.4 14.1
76 2 5 5 7 5 7 0.4 76.0 13.6 230.1 23.4
76 3 5 5 7 5 19 0.1 70.4 12.7 253.6 24.5
88 3 6 6 7 6 7 0.0 72.9 15.1 191.1 29.1
88 3 6 6 7 6 9 0.0 99.1 15.2 519.3 43.7
102 4 8 8 13 8 16 0.2 65.1 55.1 240.4 36.2
102 4 9 9 15 9 23 0.1 65.9 37.6 290.1 39.8
114 6 13 13 15 13 30 0.1 125.6 17.5 272.6 37.6
114 6 13 13 15 13 20 0.3 128.6 16.8 276.1 17.8
120 7 15 15 15 15 15 0.3 129.7 5.8 179.3 46.6
120 7 15 15 15 15 23 0.1 129.1 0.6 178.2 36.2

program), the sizes of the resulting LPs are rather large. For instance, when A is m × n,

the LP associated with (32) has a (2n2 + 2n+ 1)× ((m+ 2n)(n+ 1) + 2) constraint matrix

(compared to (2n2 + n) × (n(m + n + 1) + 1) constraint matrices arising when computing

lower bounds for s0(A)). For instance, for m = 230 and n = 256, bounding s∗(A) results

in an LP program of the size 131, 585× 190, 696, while computing a lower bound on s0(A)

requires solving an LP problem of size 131, 328×124, 673. In all the computations, we used

the state-of-the-art commercial LP solver mosekopt [4].

The upper bounds on s∗(A) and on s0(A) are computed by the techniques from Section

2.4.2 and [81, Section 4.1].

The results of our experiments and related CPU times are presented in Tables 1-8. The

computations were carried out on a single core of an 8-core Intel Xeon E5520@2.27GHz

CPU Linux workstation.
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Table 3: Comparison of efficiently computable bounds on s∗(A), n = 128, Rademacher
matrices

Unsigned Nonnegative CPU time (s)
LBs on s0(A) UB LB UB Unsigned Nonnegative

m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

64 1 3 3 7 4 20 3.2 240.6 23.7 690.0 20.9
64 1 3 3 7 4 21 2.9 258.4 24.6 752.7 20.4
76 1 4 4 8 5 29 4.1 226.1 32.7 755.0 23.5
76 1 4 4 9 5 22 3.8 250.2 32.1 830.1 23.2
88 1 5 5 10 6 36 4.7 124.1 63.8 935.6 38.0
88 1 5 5 12 6 37 4.4 115.3 41.7 850.0 28.9
102 1 7 7 15 8 42 5.4 88.9 71.7 927.3 33.4
102 1 6 7 15 8 45 5.2 172.0 70.7 884.0 33.4
114 1 9 11 19 13 51 5.8 222.2 47.1 1492.2 25.0
114 1 9 11 18 13 50 5.8 193.2 46.3 1505.5 50.6
120 2 12 14 22 18 51 6.4 235.6 44.4 2236.1 27.7
120 1 12 14 22 18 52 5.9 231.5 43.4 2192.3 28.1

Table 4: Comparison of efficiently computable bounds on s∗(A), n = 128, Gaussian matri-
ces

Unsigned Nonnegative CPU time (s)
LBs on s0(A) UB LB UB Unsigned Nonnegative

m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

64 1 3 3 6 4 20 3.0 189.9 39.5 904.7 21.6
64 1 3 3 7 4 21 3.1 189.0 25.5 994.0 21.8
76 1 4 4 9 5 34 3.8 217.4 32.9 937.0 23.3
76 1 4 4 9 5 25 3.5 207.6 32.2 781.5 23.9
88 1 5 5 12 6 37 4.2 123.8 44.3 896.1 29.6
88 1 5 5 12 6 36 4.5 128.8 42.6 857.2 28.4
102 1 6 7 16 8 46 5.2 163.2 48.6 988.2 31.7
102 1 6 7 15 8 42 5.0 168.8 52.5 990.9 44.8
114 1 10 11 19 13 49 6.3 336.9 53.8 1547.5 24.0
114 1 9 10 18 13 50 6.3 212.2 50.3 1546.1 36.5
120 1 12 14 23 18 52 5.8 213.9 48.0 2455.3 26.4
120 1 13 15 23 18 52 5.7 199.8 45.2 1768.0 38.6

Table 5: Comparison of efficiently computable bounds on s∗(A), n = 256, Fourier matrices
Unsigned Nonnegative CPU time (s)

LBs on s0(A) UB LB UB Unsigned Nonnegative
m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 3 5 5 12 5 47 0.8 1054.0 146.0 3114.4 172.9
128 3 5 5 11 5 32 0.9 986.0 169.4 2891.5 311.5
152 2 6 6 11 6 49 1.1 898.5 252.5 3680.2 179.6
152 3 6 6 11 6 53 1.3 899.3 161.7 3836.7 183.5
178 2 6 6 12 6 47 1.1 866.5 228.6 3976.0 294.0
178 3 7 7 16 7 42 0.7 484.8 365.2 3216.8 416.9
204 4 8 8 17 8 67 1.0 828.5 235.4 3829.7 209.2
204 3 7 7 15 7 65 1.1 906.8 220.2 3914.4 197.4
230 4 10 10 21 10 70 1.1 1879.9 300.5 4287.6 384.6
230 4 9 9 20 9 65 1.0 856.6 286.5 4040.2 362.0
242 5 11 11 26 11 89 1.7 1425.1 290.5 6444.1 513.0
242 4 10 10 19 10 75 1.2 1920.6 265.3 4069.1 232.8

48



Table 6: Comparison of efficiently computable bounds on s∗(A), n = 256, Hadamard
matrices

Unsigned Nonnegative CPU time (s)
LBs on s0(A) UB LB UB Unsigned Nonnegative

m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 3 5 5 7 5 8 0.2 1148.1 77.8 3007.0 68.5
128 2 5 5 7 5 7 0.3 1297.1 73.4 2894.4 116.8
152 3 7 7 7 7 58 0.3 1224.4 47.9 3997.0 186.8
152 4 7 7 13 7 58 0.2 1205.8 245.0 3962.6 310.4
178 4 9 9 15 9 70 0.2 1269.8 238.9 4828.2 212.0
178 4 9 9 15 9 19 0.3 1340.7 271.1 4923.3 342.8
204 4 12 12 15 12 16 0.5 2908.1 131.2 6409.9 385.4
204 5 12 12 15 12 16 0.4 2996.7 148.9 5507.9 253.9
230 8 18 18 31 19 31 0.3 1860.1 250.8 9046.7 331.1
230 8 18 18 31 18 39 0.4 2100.2 282.8 4081.3 396.8
242 12 26 26 31 27 31 0.3 2015.1 92.7 7478.2 176.2
242 12 26 26 31 26 31 0.3 1976.7 116.8 3597.9 412.0

Table 7: Comparison of efficiently computable bounds on s∗(A), n = 256, Rademacher
matrices

Unsigned Nonnegative CPU time (s)
LBs on s0(A) UB LB UB Unsigned Nonnegative

m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 1 5 5 14 5 53 27.8 1253.1 171.6 3388.7 124.8
128 1 5 5 15 5 48 27.8 1361.5 191.1 3291.6 123.4
152 2 6 6 18 7 65 38.4 1426.3 322.7 9592.1 136.3
152 1 6 6 19 7 66 38.3 1183.0 218.9 9146.3 139.0
178 2 7 8 25 9 78 44.2 2819.1 258.9 8032.1 225.8
178 2 7 8 24 9 78 41.8 2481.7 256.0 8306.3 168.2
204 2 10 11 32 12 92 51.1 1434.2 291.8 9738.5 209.3
204 2 10 11 30 12 90 50.8 1316.6 448.3 9146.8 345.4
230 2 14 16 41 19 107 61.8 2422.9 302.7 15235.2 162.2
230 2 14 16 39 19 107 61.7 2466.2 624.0 15578.4 161.9
242 2 20 23 47 27 116 64.8 3929.4 269.2 19828.7 178.1
242 2 19 23 47 27 111 68.0 4242.4 277.8 20506.7 270.5

Table 8: Comparison of efficiently computable bounds on s∗(A), n = 256, Gaussian matri-
ces

Unsigned Nonnegative CPU time (s)
LBs on s0(A) UB LB UB Unsigned Nonnegative

m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 1 5 5 14 5 44 28.2 852.1 172.4 3283.2 114.7
128 1 4 5 15 5 52 27.7 1913.9 177.7 3712.0 124.6
152 2 6 6 19 7 58 35.4 981.0 214.1 8433.5 392.8
152 1 6 6 19 7 58 38.9 1004.0 242.6 8231.7 373.3
178 2 7 8 24 9 79 43.0 2164.4 393.9 10294.7 368.2
178 2 7 8 25 9 77 47.6 2390.3 263.1 9548.8 374.0
204 2 10 11 32 12 88 58.0 1363.6 293.3 11496.7 274.1
204 2 10 11 32 12 91 51.7 1218.4 293.4 12497.2 529.5
230 2 14 17 41 19 102 70.4 3200.9 339.7 18771.3 431.6
230 2 14 16 39 19 106 61.5 2118.4 485.4 18959.5 435.0
242 2 19 22 46 27 113 73.6 2212.8 277.4 26874.6 269.2
242 2 20 23 47 27 112 65.3 2995.2 426.7 21308.7 191.7
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The results in Tables 1-8 merit some comments. We observe that our LP-based efficiently

computable lower bounds on s0(A) and s∗(A) clearly outperform the bounds based on

mutual incoherence. We notice that for Fourier and Hadamard matrices, the lower bounds

on s∗(A) and s0(A) are nearly always the same, except for three Hadamard instances with

m = 64, m = 230 and m = 242 and one Fourier instance with m = 120. On the other hand,

for Gaussian and Rademacher matrices, as the number of rows m approaches the number

of columns n, the difference between the best certified lower bounds on s∗(A) and on s0(A)

increases (for the sizes we have considered, this difference attains 5 for the Gaussian matrix

with m = 242). While for Gaussian, Rademacher and Fourier matrices, the upper bounds on

s∗(A) become loose (they are twice or three times higher than the upper bounds on s0(A)),

these bounds become tighter in the case of Hadamard matrices. Further, for some matrices

the lower and the upper bound on s0(A) match (e.g., the Hadamard matrix with m = 152),

what allows to identify the exact value of s0(A) . Moreover, we have observed samples

of smaller random Hadamard matrices (with n = 128 and m = 120) for which the lower

bounds and upper bounds on both s∗(A) and s0(A) coincide, which implies s∗(A) = s0(A)

in these cases.

2.8 Matching Pursuit Algorithm

The Matching Pursuit algorithm for signal recovery has been first introduced in [90] and

is motivated by the desire to provide a reduced complexity alternative to the `1-recovery

problem. Several implementations of Matching Pursuit has been proposed in the compressed

sensing literature (see, e.g., the review [21]). All of them are based on successive Euclidean

projections of the signal and the corresponding performance results rely upon the bounds

on mutual incoherence µ(A) of the sensing matrix. We are about to show that the LP-based

verifiable sufficient conditions from the previous section can be used to construct a specific

version of the Matching Pursuit algorithm which we refer to as Non-Euclidean Matching

Pursuit (NEMP) algorithm.
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Suppose that we have in our disposal τ, τ± ≥ 0 and a matrix Y = [y1, ..., yn], such that

(a) −τ− ≤ [I − Y TA]ij ≤ τ+, ∀i ∈ P+, ∀j,

(b) −τ ≤ [I − Y TA]ij ≤ τ, ∀i ∈ Pn, ∀j,

(c) ‖yj‖∗ ≤ σ, ∀j.

(43)

Consider a signal w ∈ Pn such that ‖w − ws‖1 ≤ µ, where ws is the vector obtained

from w by replacing all but s largest magnitudes of entries in w with zeros, and let y and

δ be such that ‖Aw − y‖ ≤ δ.

Suppose that

ρ = smax{τ+, τ−, τ} < 1. (44)

To simplify notation, we denote max[a, b] by a∨b. Consider the following iterative procedure:

Algorithm 1

1. Initialization: Set v(0) = 0, α0 =
‖Y T y‖s,1+sσδ+µ

1−ρ .

2. Step k, k = 1, 2, ...: Given v(k−1) ∈ Rn and αk−1 ≥ 0, compute

(a) u = Y T (y −Av(k−1)) and n segments

Si =

 [ui − τ−αk−1 − σδ, ui + τ+αk−1 + σδ], i ∈ P+,

[ui − ταk−1 − σδ, ui + ταk−1 + σδ], i ∈ Pn.

Define ∆ ∈ Rn by setting

∆i =


[ui − τ−αk−1 − σδ]+, i ∈ P+,

[ui − ταk−1 − σδ]+, i ∈ Pn, ui ≥ 0,

−[|ui| − ταk−1 − σδ]+, i ∈ Pn, ui < 0

(here [a]+ = max[0, a]).

(b) Set v(k) = v(k−1) + ∆ and

αk = s[2τ ∨ (τ− + τ+)]αk−1 + 2sσδ + µ. (45)

and loop to step k + 1.
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3. The approximate solution found after k iterations is v(k).

Proposition 2.8.1 Assume that wi ≥ 0 for i ∈ P+, (44) takes place, and that ‖w−ws‖1 ≤

µ with a known in advance value of µ. Then the approximate solution v(k) and the value

αk after the k-th step of Algorithm 1 satisfy

(ak) for all i v
(k)
i ∈ Conv{0;wi}, (bk) ‖w − v(k)‖1 ≤ αk.

For proof, see Section 2.10.9.

Let

λ = s[2τ ∨ (τ− + τ+)];

if λ < 1, then also ρ < 1, so that Proposition 2.8.1 holds true. Furthermore, by (45) the

sequence αk converges exponentially fast to the limit α∞ := 2sσδ+µ
1−λ :

αk = λk[α0 − α∞] + α∞.

Note that when P+ = ∅, we can set τ− = τ+ = 0 to obtain λ = 2sτ ; in the case of Pn = ∅,

by setting τ = 0, we have λ = s(τ− + τ+).

The bottom line is: if the optimal value in the convex program

Opt = min
τ,τ±,Y

s[2τ ∨ (τ− + τ+)] :

−τ− ≤ [I − Y TA]ij ≤ τ+, ∀i ∈ P+, ∀j

−τ ≤ [I − Y TA]ij ≤ τ, ∀i ∈ Pn, ∀j

τ, τ± ≥ 0


is < 1, the above procedure, as yielded by an optimal solution to the latter problem,

possesses the following properties:

1. All approximations v(k), k = 0, 1, ... of w are supported on the support of w;

2. For i ∈ P+, v
(k)
i ≥ 0 are nondecreasing in k and are ≤ wi for all k;

3. For i ∈ Pn,

• if wi > 0, then 0 ≤ v(k)
i ≤ wi and v

(k)
i are nondecreasing in k;

• if wi < 0, then wi ≤ v(k)
i ≤ 0 and v

(k)
i are nonincreasing in k;
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4. As k grows, the upper bound αk on the `1-error of approximating w by v(k) goes

exponentially fast to

α∞ =
2sσδ + µ

1−Opt
.

Let now ξ ∈ [0, 1), σ ≥ 0 and θ ≥ 1 and suppose that an m × n matrix A satisfies the

following condition:

VSGs(ξ, σ, θ): There exists m × n matrix Y = [y1, ..., yn] such that ‖yi‖∗ ≤ σ

for all i and

− ξ
(1+ξ)s ≤ [I − Y TA]ij ≤ ξ

(1+ξ)s ∀i 6∈ P+, ∀j,

− ξ
(1+ξθ)s ≤ [I − Y TA]ij ≤ ξ

(1+ξθ)s ∀i ∈ P+, ∀j 6∈ P+,

− ξ
(1+ξθ)s ≤ [I − Y TA]ij ≤ ξθ

(1+ξθ)s ∀i, j ∈ P+.

(46)

Observe that (46) is a system of convex inequalities in Y . Further, VSGs(ξ, σ, θ) cer-

tainly implies VSGs(ξ, θ, 0, σ), and is therefore sufficient condition for s-semigoodness of

the matrix A.

When VSGs(ξ, σ, θ) is satisfied with ξ ∈ (0, 1) and θ > 1, by taking

τ− =
ξ

(1 + ξθ)s
, τ+ =

ξθ

(1 + ξθ)s
and τ =

ξ

(1 + ξ)s
,

we obtain

λ = max

(
ξ + ξθ

1 + ξθ
,

2ξ

1 + ξ

)
< 1. (47)

Combining this condition with Proposition 2.8.1 gives:

Corollary 2.8.1 Suppose that A satisfies the condition VSGs(ξ, σ, θ) with certain ξ ∈

(0, 1), σ ≥ 0 and θ ≥ 1. Let w ∈ Pn be a vector with ‖w −ws‖1 ≤ µ where ws is the vector

obtained from w by replacing all but s largest in magnitude entries in w with zeros, and let

y be such that ‖Aw−y‖ ≤ δ. Then the approximate solution v(t) found by Algorithm 1 after

t iterations satisfies v
(t)
i ≥ 0 for all i ∈ P+ and

‖w − v(t)‖1 ≤
2sσδ + µ

1− λ
+ λt

[
‖Y T y‖s,1 + sσδ + µ

1− ρ
− 2sσδ + µ

1− λ

]
,

where λ is given by (47) and ρ = ξθ
1+ξθ .
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It should be noted the NEMP algorithm has several drawbacks as compared with the

`1-recovery. First, the pursuit algorithm requires a priori knowledge of several parameters

(σ, Y , τ , τ−, τ+, s and µ). Second, the value (1 − λ)−1(2sσδ + µ) is a conservative upper

bound on the error of the `1-recovery, but the error bound in Corollary 2.8.1 is exact. On

the other hand, the NEMP algorithm can be an interesting option if the `1-recovery is

to be used repeatedly on the observations obtained with the same sensing matrix A; the

numerical complexity of the pursuit algorithm for a given matrix A may only be a fraction

of that of the `1-recovery, especially when used on high-dimensional data.

Our concluding remark is on the condition

µ(A)

1 + µ(A)
<

1

2s
, (48)

where µ(A) is the mutual incoherence of A (see (13)). This condition is usually used in order

to establish convergence results for the Matching Pursuit algorithms (see, e.g., [44, 53, 22]).

As it is immediately seen, when µ(A) is well defined (i.e., all columns in A are nonzero),

the matrix Y = [y1, ..., yn] with the columns

yi =
Ai

(1 + µ(A))ATi Ai

satisfies for all i = 1, ...,m and j = 1, ..., n the relations

|[I − Y TA]ij | ≤
µ(A)

1 + µ(A)
.

In the case of (48), setting θ = 1 and specifying ξ from the relation ξ
1+ξ = sµ(A)

1+µ(A) , we get

0 < ξ < 1 and meet all inequalities in (46). It follows that Y certifies the validity of the

condition VSGs(ξ, σ, 1) with the outlined ξ and with all σ ≥ max
i

‖Ai‖∗
(1+µ(A))‖Ai‖22

, and thus

the above Y can be readily used in Matching Pursuit. Note that in the situation in question

Corollary 2.8.1 recovers some results from [22, 44, 53].

2.9 Appendix: Connections to Other Tractable Relaxations for Disjoint
Bilinear Programs

Without loss of generality, here we will assume that P is the identity matrix and p = 0 (an

equivalent problem can be defined by redefining the u variables and the set U). We will
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examine various relaxations for the following problem:

Opt = max
x,u

{
xTu : x ∈ X,Ax = 0, u ∈ U

}
, X = Conv{x1, ..., xN}.

Recall that our LP-based relaxation technique of Section 2.4.1.2 leads to the following

tractable relaxation

Opt ≤ Opt+ = max
V
{Tr(V ) : ∃x̄, ū : [x̄, ū, V ] ∈ W, AV = 0, Ax̄ = 0}

where W = Conv{[x, u, xuT ] : x ∈ X,u ∈ U}.

Suppose that the associated polytopes X,U have the following inequality representation

X = {x : Bx ≤ b, `x ≤ x ≤ βx} and U = {u : Cu ≤ c, `u ≤ u ≤ βu}.

McCormick Relaxation: One of the earliest results on bilinear terms is due to Mc-

Cormick [91]. In [91] a single bilinear term is considered and the set Bij = {(xi, uj , zij) : zij =

xiuj , `xi ≤ xi ≤ βxi , `uj ≤ uj ≤ βuj} is studied. Note that B is a nonconvex set, using the

bounds on the variables, the following set of valid relations can be derived:

0 ≤ (βxi − xi)(βuj − uj) = βxiβuj − βujxi − βxiuj + xiuj

0 ≤ (βxi − xi)(uj − `uj ) = −βxi`uj + `ujxi + βxiuj − xiuj

0 ≤ (xi − `xi)(uj − `uj ) = `xi`uj − `ujxi − `xiuj + xiuj

0 ≤ (xi − `xi)(βuj − uj) = −`xiβuj + βujxi + `xiuj − xiuj

By replacing the bilinear term xiuj with zij in the above inequalities, the following convex

(in fact linear) relaxation of B is introduced in [91]:

BMij =


(xi, uj , zij) :

zij ≥ βujxi + βxiuj − βxiβuj ,

zij ≤ `ujxi + βxiuj − βxi`uj ,

zij ≥ `ujxi + `xiuj − `xi`uj ,

zij ≤ βujxi + `xiuj − `xiβuj ,

`xi ≤ xi ≤ βxi , `uj ≤ uj ≤ βuj


Later on Al-Khayyal and Falk in [3] showed that BMij defines the convex hull of Bij .
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In our framework, a relaxation based on the principles of McCormick can be build by

defining a matrix V where the entries Vij will replace the bilinear terms xiuj and introducing

the inequalities given in BMij to relate the matrix variables V with the vectors x and u in

addition to the original constraints stating x ∈ X and u ∈ U . Therefore the McCormick

relaxation for our problem will be:

OptM := max
{

Tr(W ) : Ax = 0, x ∈ X, u ∈ U, (xi, uj ,Wij) ∈ BMij ∀i, j
}
.

Sherali-Adams Relaxation: Generalizing the ideas from McCormick relaxation, Sherali-

Adams relaxation is built as follows:

Step 1 Generate the nonlinear system:

(Ax)(x− `x)T = 0, (Ax)(βx − x)T = 0

(Ax)(u− `u)T = 0, (Ax)(βu − u)T = 0

0 ≤ (b−Bx)(x− `x)T , 0 ≤ (b−Bx)(βx − x)T ,

0 ≤ (x− `x)(x− `x)T , 0 ≤ (x− `x)(βx − x)T ,

0 ≤ (βx − x)(x− `x)T , 0 ≤ (βx − x)(βx − x)T ,

0 ≤ (c− Cu)(u− `u)T , 0 ≤ (c− Cu)(βu − u)T ,

0 ≤ (u− `u)(u− `u)T , 0 ≤ (u− `u)(βu − u)T ,

0 ≤ (βu − u)(u− `u)T , 0 ≤ (βu − u)(βu − u)T ,

0 ≤ (b−Bx)(u− `u)T , 0 ≤ (b−Bx)(βu − u)T ,

0 ≤ (c− Cu)(x− `x)T , 0 ≤ (c− Cu)(βx − x)T ,

0 ≤ (x− `x)(u− `u)T , 0 ≤ (βx − x)(u− `u)T ,

0 ≤ (x− `x)(βu − u)T , 0 ≤ (βx − x)(βu − u)T

Step 2 Define symmetric matrices Z,Q and matrix W . Linearize the system by

substituting Zij for xixj ; Qij for uiuj for all i = 1, . . . , n and for all j ≥ i; and Wij
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for xiuj for all i, j. For ease of reference we will define

Mx =


(x, Z) :

−BZ + bxT +Bx(`x)T − b(`x)T ≥ 0,

BZ − bxT −Bx(βx)T + b(βx)T ≥ 0,

(xi, xj , Zij) ∈ BMij ∀i, j

Z is a symmetric matrix



Mu =


(u,Q) :

−CQ+ cuT + Cu(`u)T − c(`u)T ≥ 0,

CQ− cuT − Cu(βu)T + c(βu)T ≥ 0,

(ui, uj , Qij) ∈ BMij ∀i, j

Q is a symmetric matrix



Mw =


(x, u,W ) :

−BW + buT +Bx(`u)T − b(`u)T ≥ 0,

BW − buT −Bx(βu)T + b(βu)T ≥ 0,

−CW T + cxT + Cu(`x)T − c(`x)T ≥ 0,

CW T − cxT − Cu(βx)T + c(βx)T ≥ 0,

(xi, uj ,Wij) ∈ BMij ∀i, j


Noting that AZ = Ax(`x)T and AZ = Ax(βx)T and Ax = 0, we get AZ = 0, similarly

AW = Ax(`u)T = 0, and therefore the bound from Sherali-Adams relaxation is given

by:

OptSA := max

Tr(W ) :
Ax = 0, AZ = 0, AW = 0, x ∈ X, u ∈ U,

(x, Z) ∈Mx, (u,Q) ∈Mu, (x, u,W ) ∈Mw

 .

Note that in the above relaxation whenever x ∈ X and Ax = 0, it is trivial to

construct Z such that (x, Z) ∈ Mx and AZ = 0 (just define Z = xxT ), therefore

the constraints AZ = 0, (x, Z) ∈ Mx are redundant whenever Ax = 0, x ∈ X are

enforced. Similarly, the constraint (u,Q) ∈Mu is redundant given u ∈ U is enforced.

Therefore Sherali-Adams relaxation can be stated as

OptSA = max

Tr(W ) :
Ax = 0, AW = 0,

x ∈ X, u ∈ U, (x, u,W ) ∈Mw

 .
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Clearly OptSA ≤ OptM , since Sherali-Adams relaxation already contains all of the con-

straints from the McCormick relaxation. Moreover we can compare the quality of Sherali-

Adams relaxation with that of our LP-based bound Opt+.

Lemma 2.9.1 Opt+ ≤ OptSA.

Proof: Let {u1, . . . , uL} be the set of extreme points of U . Let’s consider an optimal

solution to Opt+, say V ∗. Since V ∗ ∈ V, AV ∗ = 0 and there exists x∗, u∗ such that

Ax∗ = 0 and (x∗, u∗, V ∗) ∈ W. From the definition of W, we know that there exists

convex combination weights α∗kl ≥ 0 with
∑

k

∑
l α
∗
kl = 1 such that x∗ =

∑
k

∑
l α
∗
klx

k,

u∗ =
∑

k

∑
l α
∗
klu

l and V ∗ =
∑

k

∑
l α
∗
klx

k(ul)T . In order to finish the proof, it suffices to

show that (x∗, u∗, V ∗) ∈Mw. Let’s consider the first constraint in Mw

−BV ∗ + b(u∗)T +B(x∗)(`u)T − b(`u)T

= −B
∑
k

∑
l

α∗klx
k(ul)T + b

∑
k

∑
l

α∗kl(u
l)T +B

∑
k

∑
l

α∗klx
k(`u)T − b(`u)T

∑
k

∑
l

α∗kl

=
∑
k

∑
l

α∗kl[−Bxk(ul)T + b(ul)T +Bxk(`u)T − b(`u)T ]

=
∑
k

∑
l

α∗kl(b−Bxk)(ul − `u)T ≥ 0

where the last inequality follows from the fact that Bxk ≤ b due to xk ∈ X; ul ≥ `u due to

ul ∈ U and α∗kl ≥ 0 for all k, l. In a similar fashion, it can be shown that (x∗, u∗, V ∗) satisfies

the rest of the inequalities except the ones coming from McCormick relaxation in Mw. For

a given i, j to see that (x∗i , u
∗
j , V

∗
ij) ∈ BMij is also satisfied, consider the first inequality from

BMij

V ∗ij − βujx∗i − βxiu∗j + βxiβuj

=
∑
k

∑
l

α∗klx
k
i u

l
j − βuj

∑
k

∑
l

α∗klx
k
i − βxi

∑
k

∑
l

α∗klu
l
j + βxiβuj

∑
k

∑
l

α∗kl

=
∑
k

∑
l

α∗kl[x
k
i u

l
j − βujxki − βxiulj + βxiβuj ] ≥ 0

where again the last inequality follows the fact that xk ∈ X, ul ∈ U and α∗kl ≥ 0 ∀k, l.

Similarly the other inequalities in BMij are also satisfied by the solution (x∗, u∗, V ∗). Hence

(x∗, u∗, V ∗) is a feasible solution in Sherali-Adams relaxation, proving that Opt+ ≤ OptSA.

�
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Note that Opt+ as compared to OptSA also has the advantage of being somewhat

more efficiently computable especially when X has small number of extreme points. On the

other hand, Sherali-Adams relaxation adds many new variables and inequalities and usually

one would start out with only McCormick inequalities and try to separate the rest of the

violated inequalities in Mw afterwards. Moreover, it is very unlikely to have Opt+ = OptSA

in general since the inequalities in OptSA only use bound information but the corresponding

feasible region in Opt+ is obtained considering the convex hull of the extreme points.

Lovász-Schrijver Relaxation: A Lovász-Schrijver type relaxation for disjoint bilinear

programs can be built in the same way as Sherali-Adams relaxation but in addition to the

given constraints in Mx,Mu,Mw, we introduce an additional requirement connecting all of

the variables x, u, Z,Q,W by stating that the matrix
1 xT uT

x Z W

u W T Q


has to be positive semidefinite.

Unfortunately this new requirement of positive semidefiniteness makes it harder to com-

pare our LP-based bound Opt+ with the bound from Lovasz-Schrijver relaxation. On the

other hand, we can simply note that in the unified bound given by Opt∗, we already have

the very same requirement. Therefore we can conclude that Opt∗ is at least as good as the

bound we can obtain from a Lovász-Schrijver type relaxation for our problem.

2.10 Proofs of Chapter 2

2.10.1 Proof of Proposition 2.2.1

(i)⇒(ii): Let A be s-semigood, and let, in contrast to what is stated by (ii), J be a subset

of {1, ..., n} with Card(J) ≤ s and x ∈ KerA\{0} be such that xi ≤ 0 for all i ∈ P+ \ J and

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≥
∑
i 6∈J
|xi|.

Let I = (J ∩ Pn) ∪ {i ∈ J ∩ P+ : xi ≥ 0} so that I ⊆ J . From the construction of I, we
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have xi ≤ 0 for i ∈ J \ I implying that xi ≤ 0 for i ∈ P+ \ I. Further,

∑
i∈I∩P+

xi +
∑

i∈I∩Pn

|xi| =
∑

i∈J∩P+

xi −
∑
i∈J\I

xi +
∑

i∈J∩Pn

|xi|

≥
∑
i 6∈J
|xi| −

∑
i∈J\I

xi =
∑
i 6∈J
|xi|+

∑
i∈J\I

|xi| =
∑
i 6∈I
|xi|.

Hence I also violates the condition in (ii). Setting ui = xi when i ∈ I and ui = 0 otherwise

and setting v = u − x, we have ui ≥ 0 for any i ∈ I ∩ P+, ui = 0 for any i ∈ P+ \ I, and

vi ≥ 0 for i ∈ P+ \ I, vi = 0 for i ∈ I ∩P+ and
∑

i |ui| ≥
∑

i |vi|. In addition, Au = Av due

to Ax = 0, and u is s-sparse; finally, u 6= v due to x 6= 0. We see that the s-sparse vector

u ∈ Pn is not the unique solution to

min
z

{∑
i

|zi| : Az = Au, zi ≥ 0 ∀i ∈ P+

}
,

which is a desired contradiction.

(ii)⇒(iii): Let A satisfy (ii). Let J be the family of all subsets J of {1, ..., n} of

cardinality ≤ s. For J ∈ J , let

XJ = {x ∈ KerA : ‖x‖1 = 1, xi ≤ 0 ∀i ∈ P+ \ J}.

Assuming that XJ 6= ∅, let x ∈ XJ . By (ii), we have

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| <
∑
i 6∈J
|xi|.

We claim that
∑

i 6∈J |xi| > 0.

Indeed, otherwise xi 6= 0 implies that i ∈ J . Let I+ and I− be the subsets of

J such that xi > 0 for i ∈ I− and xi < 0 for i ∈ I+. At least one of these sets

is nonempty due to x 6= 0. W.l.o.g. we can assume that
∑

i∈I+ xi ≥
∑

i∈I− |xi|

(otherwise we could replace x with −x and swap I+ and I−). Applying (ii) to

x and to I+ in the role of J , we should have

∑
i∈I+∩P+

xi +
∑

i∈I+∩Pn

|xi| =
∑
i∈I+

xi <
∑
i 6∈I+

|xi| =
∑
i∈I−

|xi|,

which is not the case. This contradiction shows that
∑

i 6∈J |xi| > 0 whenever

x ∈ XJ .
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From our claim it follows that the function∑
i∈J∩P+

xi +
∑

i∈J∩Pn |xi|∑
i 6∈J |xi|

is continuous on XJ and is < 1 at every point of this set. Since XJ is compact, we conclude

that when J ∈ J is such that XJ 6= ∅, there exists ξJ < 1 such that

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξJ
∑
i 6∈J
|xi| for any x ∈ XJ .

Setting ξ = max
J∈J :XJ 6=∅

ξJ , we clearly ensure the validity of (iii). The implication (ii)⇒(iii) is

proved.

(iii)⇒(i): Let (iii) take place; let us prove that A is s-semigood. Thus, let u with ui ≥ 0

for all i ∈ P+ be s-sparse; we should prove that u is the unique optimal solution to the

problem

min
z

{∑
i

|zi| : Az = Au, zi ≥ 0 ∀i ∈ P+

}
.

Assume, on the contrary to what should be proved, that the latter problem has an optimal

solution v different from u, and let x = u − v, so that x ∈ KerA and x 6= 0. Setting

I = {i : ui 6= 0}, we have Card(I) ≤ s and xi ≤ 0 when i ∈ P+ \ I, whence by (iii)

∑
i∈I∩P+

xi +
∑

i∈I∩Pn

|xi| ≤ ξ
∑
i 6∈I
|xi| = ξ

∑
i 6∈I
|vi|,

whence also ∑
i∈I∩P+

ui +
∑

i∈I∩Pn

|ui|︸ ︷︷ ︸
=
∑
i∈I |ui|

≤
∑

i∈I∩P+

vi +
∑

i∈I∩Pn

|vi|︸ ︷︷ ︸
=
∑
i∈I |vi|

+ξ
∑
i 6∈I
|vi|. (49)

Since
∑

i |vi| ≤
∑

i |ui| =
∑

i∈I |ui| due to the origin of v, (49) implies that
∑

i 6∈I |vi| = 0,

that is, both u and v are supported on I, so that x is supported on I as well. Now let I+ =

{i ∈ I ∩P+ : xi ≥ 0}, I− = {i ∈ I ∩P+ : xi < 0} and In = I ∩Pn. Replacing, if necessary, x

with −x and swapping I+ and I−, we can assume that
∑

i∈I+ xi =
∑

i∈I+ |xi| ≥
∑

i∈I− |xi|.

Applying (iii) to x and to I+ ∪ In in the role of J , we get

∑
i∈I+

xi +
∑
i∈In

|xi| ≤ ξ
∑
i∈I−

|xi|,
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thereby
∑

i∈I+ xi =
∑

i∈In |xi| =
∑

i∈I− |xi| = 0 due to
∑

i∈I+ xi ≥
∑

i∈I− |xi|. Thus, x = 0,

which is a desired contradiction.

We have proved that the properties (i) – (iii) of A are equivalent to each other.

(iii)⇔(iv): The implication (iv)⇒(iii) is evident. Let us prove the inverse implication.

Thus, let A satisfy (iii) (and thus – (i) – (ii) as well), and let ξ′ ∈ (ξ, 1). Let, as above, J be

the family of all subsets J of {1, ..., n} of cardinality ≤ s. Let X = {x ∈ KerA : ‖x‖1 = 1},

and let J ∈ J . Let x ∈ X. We claim that there exists a neighborhood Ux of x in X and

θJ,x ∈ [1,∞) such that for any u ∈ Ux and θ ≥ θJ,x it holds

∑
i∈J∩P+

ui +
∑

i∈J∩Pn

|ui| ≤ ξ′
 ∑
i∈Pn\J

|ui|+
∑

i∈P+\J

max[−ui, θui]

 . (50)

The claim is clearly true when there exists i ∈ P+ \ J such that xi > 0. Now

assume that xi ≤ 0 for i ∈ P+ \ J . Then
∑

i 6∈J |xi| > 0. Indeed, otherwise

xi = 0 for all i 6∈ J , which combines with s-semigoodness of A and the relation

Ax = 0 to imply that x = 0 (since assuming x 6= 0, we have x = u − v with

s-sparse u ≥ 0, v ≥ 0 with non-overlapping supports, and Au = Av due to

Ax = 0, which of course contradicts the s-semigoodness of A), while x definitely

is nonzero (since ‖x‖1 = 1 due to x ∈ X). Now, since x ∈ KerA and xi ≤ 0,

i ∈ P+ \ J , we have

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ
∑
i 6∈J
|xi| < ξ′

∑
i 6∈J
|xi|

where the first inequality is due to (iii), and the second – due to
∑

i 6∈J |xi| > 0.

The concluding strict inequality clearly implies the validity of (50) with θ = 1,

provided that Ux is a small enough neighborhood of x. Thus, our claim is true.

From the validity of our claim, extracting from the covering {Ux}x∈X of the compact set X

a finite subcovering, we conclude that there exists θJ ∈ [1,∞) such that

∀(x ∈ X, θ ≥ θJ) :
∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ′
 ∑
i∈Pn\J

|xi|+
∑

i∈P+\J

max[−xi, θxi]

 .

Setting θ = maxJ∈J θJ , we see that A satisfies SGs(ξ
′, θ).
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(iv)⇒(v): Let A satisfy SGs(ξ, θ) for certain ξ ∈ (0, 1), θ ∈ [1,∞) and let ‖ · ‖ be a

norm on Rm. Let, further, P be the orthogonal projector of Rn on KerA. Then clearly with

a properly chosen C one has

‖Px− x‖1 ≤ C‖Ax‖

for any x ∈ Rn. Now let J be a subset of {1, ..., n} of cardinality ≤ s, x ∈ Rn and u = Px.

We have

∑
i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤
∑

i∈J∩P+

ui +
∑

i∈J∩Pn

|ui|+
∑
i∈J
|ui − xi|

≤ ξ

 ∑
i∈Pn\J

|ui|+
∑

i∈P+\J

max[−ui, θui]

+
∑
i∈J
|ui − xi|

≤ ξ

 ∑
i∈Pn\J

[|xi|+ |ui − xi|] +
∑

i∈P+\J

[max[−xi, θxi] + θ|xi − ui|]

+
∑
i∈J
|ui − xi|

≤ ξ

 ∑
i∈Pn\J

|xi|+
∑

i∈P+\J

max[−xi, θxi]

+ max[1, θξ]‖x− u‖1

≤ ξ

 ∑
i∈Pn\J

|xi|+
∑

i∈P+\J

max[−xi, θxi]

+ max[1, θξ]C‖Ax‖,

so that A satisfies SGs,β(ξ, θ) with β = max(1, θξ)C. The implication (iv)⇒(v) is proved.

(v)⇒(vi)⇒(iii): These implications are evident. �

2.10.2 Proof of Proposition 2.3.1

Let I be the support of ws, Ī be the complement of I in {1, ..., n}, and let z = w − x. We

denote I+ = {i ∈ I : zi ≥ 0}, Ī+ = {i ∈ Ī : zi ≥ 0}, and I− = I \ I+, Ī− = Ī \ Ī+. Observe

that w is a feasible solution to (25), so that

‖x‖1 ≤ ‖w‖1 + ν. (51)
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Obviously, |xi| − |wi| ≥ −|zi| and |xi| − |wi| ≥ |zi| − 2|wi|. Now using xi, wi ≥ 0 ∀i ∈ P+,

and zi ≥ 0 ∀i ∈ I+, we get

ν ≥
∑
i

[|xi| − |wi|] [by (51)]

≥
∑

i∈I+∩P+

(xi − wi)︸ ︷︷ ︸
=−zi

+
∑

i∈I−∩P+

(xi − wi)︸ ︷︷ ︸
=−zi=|zi|

+
∑

i∈Ī−∩P+

(xi − wi)︸ ︷︷ ︸
=−zi=|zi|

+
∑

i∈Ī+∩P+

(xi − wi)︸ ︷︷ ︸
=−zi≥−wi

+
∑
i∈Pn

(|xi| − |wi|)

≥ −
∑

i∈I+∩P+

zi +
∑

i∈I−∩P+

|zi|+
∑

i∈Ī−∩P+

|zi| −
∑

i∈Ī+∩P+

wi

−
∑

i∈I∩Pn

|zi|+
∑

i∈Ī∩Pn

(|zi| − 2|wi|),

or, equivalently,∑
i∈I−∩P+

|zi|+
∑

i∈Ī−∩P+
|zi|+

∑
i∈Ī∩Pn |zi|

≤ ν +
∑

i∈I+∩P+
zi +

∑
i∈I∩Pn |zi|+

∑
i∈Ī+∩P+

wi + 2
∑

i∈Ī∩Pn |wi|.
(52)

On the other hand, we have

‖Az‖ = ‖Aw −Ax‖ ≤ ‖Aw − y‖+ ‖Ax− y‖ ≤ e + δ. (53)

Then by condition SGs,β(ξ, θ) with (I+ ∩ P+) ∪ (I ∩ Pn) in the role of J , we get∑
i∈I+∩P+

zi +
∑

i∈I∩Pn

|zi|︸ ︷︷ ︸
:=κ

≤ β‖Az‖+ ξ
[∑

i∈Ī∩Pn |zi|+
∑

i∈(Ī∩P+)∪(I−∩P+) ψ(zi)
]

κ ≤ β‖Az‖+ ξ

[∑
i∈Ī∩Pn

|zi|+
∑

i∈I−∩P+

|zi|+
∑

i∈Ī−∩P+

|zi|+ θ
∑

i∈Ī+∩P+

zi︸ ︷︷ ︸
:=τ(θ)

] (54)

Let us derive a bound on τ(θ). Now (52) implies, independently of whether SGs,β(ξ, θ) is

or is not true, the first inequality in the following chain:

τ(θ) ≤ ν +
∑

i∈I+∩P+

zi +
∑

i∈I∩Pn

|zi|+
∑

i∈Ī+∩P+

wi + 2
∑

i∈Ī∩Pn

|wi|+ θ
∑

i∈Ī+∩P+

zi

≤ ν + κ+ (1 + θ)
∑

i∈Ī+∩P+

wi + 2
∑

i∈Ī∩Pn

|wi| [since wi ≥ zi for i ∈ P+]

≤ ν + κ+ (1 + θ)µ, [since θ ≥ 1 and
∑

i∈Ī |wi| ≤ µ], (55)

and, in particular,

τ(1) =
∑

i∈I−∩P+

|zi|+
∑
i∈Ī

|zi| ≤ ν + κ+ 2µ. (56)
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Combining (53), (54) and (55), we obtain

κ ≤ β(e + δ) + ξ [ν + κ+ (1 + θ)µ] ,

and thereby,

κ =
∑

i∈I+∩P+

zi +
∑

i∈I∩Pn

|zi| ≤
β(e + δ) + ξ(ν + (θ + 1)µ)

1− ξ
.

Summing up the latter inequality and (56), we obtain

‖z‖1 =
∑

i∈I∩Pn

|zi|+
∑

i∈I+∩P+

zi +

 ∑
i∈I−∩P+

|zi|+
∑
i∈Ī

|zi|

 ≤ ν + 2µ+ 2κ

≤ ν + 2µ+
2β(e + δ) + 2ξ(ν + (θ + 1)µ)

1− ξ
=

1 + ξ

1− ξ
ν +

2(1 + ξθ)

1− ξ
µ+

2β

1− ξ
(e + δ),

which is (26).

To show (27) observe that increasing e to e′ = e +αµ, we can think that the true signal

underlying the observation y is ws rather than w; note that (51) implies that

‖x‖1 ≤ ‖ws‖1 + ν ′, ν ′ = ν + µ. (57)

We can now repeat the reasoning which follows (51), with (57) in the role of (51), ws in the

role of w, e′ in the role of e and 0 in the role of µ, thus arriving at the following analogy of

the bound (26):

‖x− ws‖1 ≤
1 + ξ

1− ξ
ν ′ +

2β

1− ξ
(e′ + δ),

whence

‖x− w‖1 ≤
1 + ξ

1− ξ
ν ′ +

2β

1− ξ
(e′ + δ) + µ,

which is nothing but (27). �

2.10.3 Proof of Proposition 2.4.1

Let φ(u) be the Minkowski function of U , that is, a positively homogeneous, of order 1,

function on Rn such that U = {u : φ(u) ≤ 1}, let U be the cone {(u, t) : φ(u) ≤ t}. Note

that U is a closed pointed convex cone with a nonempty interior, and its dual cone is

U∗ = {(ω, γ) : φ∗(−ω) ≤ γ}, φ∗(ω) = max
{
ωTu : u ∈ U

}
.
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Now,

Opt+ = inf
Y,v

max
1≤i≤N

[
max
u∈U

[(I − Y TA)xi]T [Pu+ p] + vTAxi
]

= inf
Y,v,τ

{
τ : max

u∈U
uTP T [I − Y TA]xi + [pT (I − Y TA) + vTA]xi ≤ τ, for 1 ≤ i ≤ N

}
= inf

Y,v,τ

{
τ : φ∗(−P T [I − Y TA]xi) + [pT (I − Y TA) + vTA]xi ≤ τ, for 1 ≤ i ≤ N

}
= inf

Y,v,τ,γ

τ :
φ∗(−P T [I − Y TA]xi) ≤ γi, for 1 ≤ i ≤ N

γi + [pT (I − Y TA) + vTA]xi ≤ τ, for 1 ≤ i ≤ N


Since the constraints φ∗(−P T [I−Y TA]xi) ≤ γi imply exactly that (P T [I−Y TA]xi, γi) ∈ U∗,

Opt+ is the optimal value of a conic minimization problem. Moreover it is immediately seen

that this problem is strictly feasible and bounded, so that the dual problem is solvable with

the optimal value Opt+, which amounts to

Opt+ = max
wi,ti


∑
i

Tr(xi[Pwi + tip]
T ) :

A
∑N

i=1 tix
i = 0

A
[∑N

i=1 x
i[Pwi + tip]

]
= 0

φ(wi) ≤ ti, for 1 ≤ i ≤ N∑N
i=1 ti = 1


= max

V ∈V
{Tr(V )},

where

V =

{
V =

N∑
i=1

xi[Pwi + tip]
T : φ(wi) ≤ ti,

N∑
i=1

ti = 1, A

N∑
i=1

tix
i = 0, AV = 0

}
.

Note that V is a computationally tractable convex compact set. Moreover the set V admits

a simple interpretation. Specifically, setting

W = Conv
{

[x, u, x[Pu+ p]T ] : x ∈ X, u ∈ U
}
,

we have

V = {V : ∃x̄, ū : [x̄, ū, V ] ∈ W, AV = 0, Ax̄ = 0} .

Indeed, if V ∈ V, that is, V =
∑N

i=1 x
i[Pwi + tip]

T with φ(wi) ≤ ti,
∑N

i=1 ti = 1 and

AV = 0, A
∑N

i=1 tix
i = 0, then wi = tiu

i with ui ∈ U , so that, setting x̄ =
∑N

i=1 tix
i and

66



ū =
∑N

i=1 tiu
i, we have

[x̄, ū, V ] =

[
N∑
i=1

tix
i,

N∑
i=1

tiu
i,

N∑
i=1

tix
i[Pui + p]T

]
∈ W.

Vice versa, if [x̄, ū, V ] ∈ W and Ax̄ = 0, AV = 0, then [x̄, ū, V ] =
∑K

k=1 λk[x̂
k, ûk, x̂k[Pûk +

p]T ] with ûk ∈ U , x̂k ∈ X and nonnegative λk summing up to 1. Representing x̂k =∑N
i=1 µkix

i with nonnegative µki,
∑N

i=1 µki = 1, we have

[x̄, V ] =
∑K

k=1 λk[x̂
k, x̂k[Pûk + p]T ] =

∑K
k=1

∑N
i=1 λkµki[x

i, xi[Pûk + p]T ]

=
[∑N

i=1 tix
i,
∑N

i=1 x
i[Pwi + tip]

T
]
,

where wi =
∑K

k=1 λkµkiû
k, ti =

∑K
k=1 λkµki. Clearly

∑N
i=1 ti = 1 and since φ(ûk) ≤ 1

and φ(·) is a convex function, we have φ(wi) ≤ ti. Thus, V =
∑N

i=1 x
i[Pwi + tip]

T with

φ(wi) ≤ ti and ti summing up to 1 and such that A
∑N

i=1 tix
i = 0, that is, V ∈ V. �

2.10.4 Proof of Proposition 2.4.2

Let A satisfy VSGs(ξ, θ, ρ, σ), and let Y = [y1, ..., yn] and v satisfy (32). Let, further,

I ⊂ {1, ..., n} be such that Card(I) ≤ s, and let x ∈ Rn. Let u ∈ Rn be given by

ui =



1 + θξ, i ∈ P+ ∩ I, xi ≥ 0

1− ξ, i ∈ P+ ∩ I, xi < 0

(1 + ξ)sign(xi), i ∈ Pn ∩ I

0, i 6∈ I

.

Note that u has at most s nonzero entries, the entries of u with indices from P+ belong

to [0, 1 + θξ], and the modulae of entries in u with indices from Pn are ≤ 1 + ξ, so that
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uT z ≤ Φs(z) for all z. We have

uT [I − Y TA]x =
∑
i

uTCi[Y,A]xi =
∑
i:xi≥0

uTCi[Y,A]xi +
∑
i:xi<0

uT [−Ci[Y,A]]|xi|

≤
∑
i:xi≥0

Φs(Ci[Y,A])xi +
∑
i:xi<0

Φs(−Ci[Y,A])|xi| [since uT z ≤ Φs(z)]

≤
∑

i:xi≥0,i 6∈P+

[ξ + (AT v)i]xi +
∑

i:xi≥0,i∈P+

[θξ + (AT v)i]xi +
∑
i:xi<0

[ξ − (AT v)i]|xi| [by (32)]

= ξ

 ∑
i:xi≥0,i 6∈P+

xi + θ
∑

i:xi≥0,i∈P+

xi +
∑
i:xi<0

|xi|

+ xTAT v

= ξ

∑
i∈P+

max[−xi, θxi] +
∑
i∈Pn

|xi|

+ xTAT v,

whence

uT [I − Y TA]x ≤ ξ

∑
i∈P+

max[−xi, θxi] +
∑
i∈Pn

|xi|

+ ρ‖Ax‖ (58)

(recall that ‖v‖∗ ≤ ρ). On the other hand, recalling the definition of u and that ‖yi‖∗ ≤ σ,

we have

uT [I − Y TA]x = uTx−
∑
i∈I

uiy
T
i Ax

=
∑

i∈I∩P+

max[(1− ξ)xi, (1 + θξ)xi] + (1 + ξ)
∑

i∈I∩Pn
|xi| −

∑
i∈I

uiy
T
i Ax

≥
∑

i∈I∩P+

max[(1− ξ)xi, (1 + θξ)xi] + (1 + ξ)
∑

i∈I∩Pn
|xi|

−σ

 ∑
i∈I∩P+

(1 + θξ) +
∑

i∈I∩Pn

(1 + ξ)


︸ ︷︷ ︸

≤β−ρ

‖Ax‖.

Combining the resulting inequality with (58), we get

∑
i∈I∩P+

[xi + ξmax[−xi, θxi]]+(1+ξ)
∑

i∈I∩Pn

|xi| ≤ β‖Ax‖+ξ

∑
i∈P+

max[−xi, θxi] +
∑
i∈Pn

|xi|


with β given by (33), or, equivalently,

∑
i∈I∩P+

xi +
∑

i∈I∩Pn

|xi| ≤ β‖Ax‖+ ξ

 ∑
i∈P+\I

max[−xi, θxi] +
∑

i∈Pn\I

|xi|

 .
The latter relation holds true for every x ∈ Rn and for every set I ⊂ {1, ..., n} of cardinality

≤ s, so that A satisfies SGs,β(ξ, θ). �
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2.10.5 Proof of Proposition 2.5.1

Proof is based on the following

Lemma 2.10.1 Let Z be a ν × ν matrix of rank m, s > 1 be a positive integer, and

δi ∈ (0, 1], 1 ≤ i ≤ ν, be such that for the columns Ci of the matrix Iν − Z it holds

‖Ci‖s,1 ≤ 1− δi. Assume that

ν > (2
√

2m+ 1)2. (59)

Then

s ≤ 2
√

2m+ 1. (60)

Proof of the lemma. Let σi = Zii, and let γi be the sum of s− 1 largest magnitudes of

the entries in Ci with indices different from i. We have

1− σi + γi ≤ ‖Ci‖s,1 ≤ 1− δi,

consequently σi ≥ δi+γi > 0. Let us set λi = 1
σi

, and let Z̄ be the matrix with the columns

Z̄i = λiZi, where Zi is the i-th column in Z. Note that Z̄ is of the same rank m as Z, and

that Z̄ii = 1 for all i. Recalling that γi < σi, we have also

‖Z̄i‖s−1,1 = λi‖Zi‖s−1,1 ≤ λi[γi + σi] ≤ 2λiσi = 2.

Now let s̄ = min[s− 1, bν1/2c], so that s̄ ≥ 1 due to s > 1. We have ‖Z̄i‖s̄,1 ≤ ‖Z̄i‖s−1,1 ≤ 2

and s̄2 ≤ ν. From the latter inequality and due to ‖Z̄i‖22 ≤ max{1, νs̄−2}‖Z̄i‖2s̄,1 (cf. the

proof of [81, Proposition 4.2]), it follows that ‖Z̄i‖22 ≤ 4νs̄−2. We conclude that ‖Z̄‖22 ≤

4ν2s̄−2, where for a matrix B, ‖B‖2 is the Frobenius norm of B. Setting H = 1
2 [Z̄ + Z̄T ],

we have therefore ‖H‖22 ≤ 4ν2s̄−2. On the other hand, Tr(H) =
∑ν

i=1 Z̄ii = ν, while

rank(H) ≤ 2m, whence, denoting by µi, 1 ≤ i ≤ p ≤ 2m, the nonzero eigenvalues of H, we

have

‖H‖22 =

p∑
i=1

µ2
i ≥ (

p∑
i=1

µi)
2/p = (Tr(H))2/p ≥ ν2/(2m).

We arrive at the inequality 4ν2s̄−2 ≥ ‖H‖22 ≥ ν2/(2m), thereby

s̄2 ≤ 8m. (61)
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Assuming that s̄ = bν1/2c, (61) says that ν ≤ (2
√

2m+ 1)2, which is impossible. The only

other option is that s̄ = s− 1, and we arrive at (60). �

Lemma 2.10.1 ⇒ Proposition 2.5.1: Let Y, v satisfy (32). Consider first the case

when ν := Card(Pn) ≥ n/2. Denoting by Ĉi the ν-dimensional vector comprised of the last

ν entries in Ci = Ci[Y,A] (i.e., entries with indices from Pn). By (32), for every i ∈ Pn and

for every set I ⊂ Pn with Card(I) ≤ s we have

∑
j∈I(1 + ξ)|[Ci]j | ≤ Φs(−Ci) ≤ ξ − (AT v)i,

∑
j∈I(1 + ξ)|[Ci]j | ≤ Φs(Ci) ≤ ξ + (AT v)i,

thus for any i ∈ Pn,

2(1 + ξ)‖Ĉi‖s,1 ≤ Φs(−Ci) + Φs(Ci) ≤ 2ξ,

so that ‖Ĉi‖s,1 < 1/2. We see that the South-Eastern ν × ν submatrix Z of Y TA satisfies

the premise of Lemma 2.10.1, while the size ν of Z satisfies (59) due to (38) and ν ≥ n/2.

Applying the lemma, we arrive at (39).

Now consider the case when Card(Pn) < n/2, that is, ν := Card(P+) ≥ n/2. By (32),

setting Ci = Ci[Y,A], for every set I ⊂ P+ with Card(I) ≤ s and every i ∈ P+ we have

∑
j∈I(1 + θξ) max[−[Ci]j , 0] ≤ Φs(−Ci) ≤ ξ − (AT v)i,∑
j∈I(1 + θξ) max[[Ci]j , 0] ≤ Φs(Ci) ≤ θξ + (AT v)i,

whence ∑
j∈I
|[Ci]j | ≤

ξ(1 + θ)

1 + θξ
< 1.

Since the latter inequality holds true for every subset I of P+ with Card(I) ≤ s, when

denoting by C̄i the part of Ci comprised of the first ν entries (those with indexes from P+),

we have for all i ∈ P+:

‖C̄i‖s,1 < 1.

Now the proof can be completed exactly as in the previous case, with the North-Western

ν × ν submatrix of Y TA in the role of Z. �
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2.10.6 Proof of Proposition 2.4.3

Let Y = [Y1, ..., Yn], v, σ, ρ certify the validity of VSG∗s,β(ξ, θ), and let β′ ≥ β, θ′ ≥ θ and

ξ′ ∈ [ξ, 1). Let us set

λ =
1 + θξ

1 + θ′ξ′
, µ =

1 + ξ

1 + ξ′
.

so that λ, µ ∈ [0, 1], and let Y ′ be as in the assertion to be proved, that is, the columns

of Y ′ are multiples of those of Y : Y ′i = λYi when i ∈ P+ and Y ′i = µYi otherwise. All we

need to prove is that (Y ′, v, σ, ρ) certify the validity of VSG∗s,β′(ξ
′, θ′), and this immediately

reduces to verification of the following fact:

Lemma 2.10.2 Let i, 1 ≤ i ≤ n, be fixed, and let z ∈ Rn for any I ⊂ {1, ..., n} of

cardinality s satisfy the relations

(a) (1 + θξ)
∑

j∈P+∩I
max[zj − δij , 0] + (1 + ξ)

∑
j∈Pn∩I

|zj − δij |+ (Av)i ≤ ξ,

(b) (1 + θξ)
∑

j∈P+∩I
max[δij − zj , 0] + (1 + ξ)

∑
j∈Pn∩I

|zj − δij | − (Av)i

≤ η =

 θξ, i ∈ P+,

ξ, i ∈ Pn,

(62)

where δij =

 0, j 6= i,

1, i = j.
Then for every set I ⊂ {1, ..., n} of cardinality s we have

(a) (1 + θ′ξ′)
∑

j∈P+∩I
max[λzj − δij , 0] + (1 + ξ′)

∑
j∈Pn∩I

|µzj − δij |+ (Av)i ≤ ξ′,

(b) (1 + θ′ξ′)
∑

j∈P+∩I
max[δij − λzj , 0] + (1 + ξ′)

∑
j∈Pn∩I

|µzj − δij | − (Av)i

≤ η+ =

 θ′ξ′, i ∈ P+,

ξ′, i ∈ Pn.

(63)

Proof. Taking into account the definition of λ, µ, in the case of i 6∈ I the relations (63) are

readily given by (62), hence we can assume i ∈ I. Consider two possible cases: i ∈ P+ ∩ I

and i ∈ Pn ∩ I.
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The case of i ∈ P+ ∩ I. In this case (62) reads:

(a) (1 + θξ) max[zi − 1, 0] + (1 + θξ)
∑

j∈P+∩I,j 6=i
max[zj , 0]

+(1 + ξ)
∑

j∈Pn∩I
|zj |+ (Av)i ≤ ξ,

(b) (1 + θξ) max[1− zi, 0] + (1 + θξ)
∑

j∈P+∩I,j 6=i
max[−zj , 0]

+(1 + ξ)
∑

j∈Pn∩I
|zj | − (Av)i ≤ θξ,

(64)

and our goal is to verify that then

(a) (1 + θ′ξ′) max[λzi − 1, 0]

+

=1+θξ︷ ︸︸ ︷
(1 + θ′ξ′)λ

∑
j∈P+∩I,j 6=i

max[zj , 0] +

=1+ξ︷ ︸︸ ︷
(1 + ξ′)µ

∑
j∈Pn∩I

|zj |+ (Av)i ≤ ξ′,

(b) (1 + θ′ξ′) max[1− λzi, 0]

+ (1 + θξ)
∑

j∈P+∩I,j 6=i
max[−zj , 0] + (1 + ξ)

∑
j∈Pn∩I

|zj | − (Av)i︸ ︷︷ ︸
:=R

≤ θ′ξ′.

(65)

We have λzi − 1 ≤ λ(zi − 1) due to λ ≤ 1, consequently

max[λzi − 1, 0] ≤ max[λ(zi − 1), 0] = λmax[zi − 1, 0],

and therefore (65.a) follows from (64.a) due to (1 + θ′ξ′)λ = 1 + θξ and ξ′ ≥ ξ. It remains

to verify (65.b). Assume, first, that λzi ≤ 1. From (64.b) it follows that

(1 + θξ)[1− zi] +R ≤ (1 + θξ) max[1− zi, 0] +R ≤ θξ,

implying zi ≥ 1+R
1+θξ and therefore

1− λzi ≤ 1− 1 +R

1 + θ′ξ′
=
θ′ξ′ −R
1 + θ′ξ′

.

Since we are in the case 1− λzi ≥ 0, we arrive at

(1 + θ′ξ′) max[1− λzi, 0] +R = (1 + θ′ξ′)[1− λzi] +R ≤ (1 + θ′ξ′)
θ′ξ′ −R
1 + θ′ξ′

+R = θ′ξ′,

as required in (65.b). The case of 1−λzi ≤ 0 is trivial, since here the left hand side in (65.b)

clearly is ≤ the left hand side in (64.b), while θ′ξ′ ≥ θξ, so that (65.b) is readily given by

(64.b). Thus, when i ∈ P+ ∩ I, (65) follows from (64).
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The case of i ∈ Pn ∩ I. In this case (62) means that

(a) (1 + θξ)
∑

j∈P+∩I,j 6=i
max[zj , 0] + (1 + ξ)|1− zi|+ (1 + ξ)

∑
j∈Pn∩I,j 6=i

|zj |+ (Av)i ≤ ξ,

(b) (1 + θξ)
∑

j∈P+∩I
max[−zj , 0] + (1 + ξ)|1− zi|+ (1 + ξ)

∑
j∈Pn∩I,j 6=i

|zj | − (Av)i ≤ ξ,

(66)

and our goal is to verify that then

(a) (1 + θ′ξ′)
∑

j∈P+∩I,j 6=i
max[λzj , 0]

+(1 + ξ′)|1− µzi|+ (1 + ξ′)µ
∑

j∈Pn∩I,j 6=i
|zj |+ (Av)i ≤ ξ′,

(b) (1 + θ′ξ′)
∑

j∈P+∩I
max[−λzj , 0]

+(1 + ξ′)|1− µzi|+ (1 + ξ′)
∑

j∈Pn∩I,j 6=i
|µzj | − (Av)i ≤ ξ′.

(67)

Comparing (66.a) with (67.a), and (66.b) with (67.b), we see that all we need in order to

derive (67) from (66) is to verify the following statement: if (1 + ξ)|1 − z| ≤ ξ + a, then

(1 + ξ′)|1− µz| ≤ ξ′ + a. This is immediate: assuming (1 + ξ)|1− z| ≤ ξ + a, the premises

in the following two implication chains hold true:

(1 + ξ)[1− z] ≤ ξ + a⇒ z ≥ 1−a
1+ξ ⇒ µz ≥ 1−a

1+ξ′ ⇒ 1− µz ≤ 1− 1−a
1+ξ′ = ξ′+a

1+ξ′

⇒ (1 + ξ′)[1− µz] ≤ ξ′ + a,

(1 + ξ)[z − 1] ≤ ξ + a⇒ z ≤ 1 + ξ+a
1+ξ ⇒ µz ≤ 1+2ξ+a

1+ξ′ ⇒ µz − 1 ≤ 2ξ−ξ′+a
1+ξ′

⇒ (1 + ξ′)[µz − 1] ≤ 2ξ − ξ′ + a⇒ (1 + ξ′)[µz − 1] ≤ ξ′ + a,

while the resulting inequalities in these chains lead to the desired conclusion (1+ξ′)|1−µz| ≤

ξ′ + a. �

2.10.7 Proof of Lemma 2.5.1

Let L be the n × n permutation matrix corresponding to the cyclic shift ej 7→ ej+ , j+ =

(j+1) modn, of the standard basic orths e0, ..., en−1 in Rn, and R be the m×m orthogonal

block-diagonal matrix with the North-Western block 1 and d additional 2 × 2 diagonal

blocks

 cos(2πi/n) − sin(2πi/n)

sin(2πi/n) cos(2πi/n)

, 1 ≤ i ≤ d. Denoting by Aj the j-th column of

A, 0 ≤ j ≤ n − 1, we clearly have RAj = Aj+ , hence A = RAL−1 and therefore also
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A = RiAL−i for 1 ≤ i ≤ n. Now assume that Y, v satisfy (32) for certain ξ < 1, θ ≥ 1, ρ,

σ. Then

max
i

[Φs(−Ci[Y,A]) + Φs(Ci[Y,A])] ≤ ξ(1 + θ),

in this way, it is immediately seen, maxi ‖Ci[Y,A]‖s,1 ≤ κ := ξ(1+θ)
1+θξ < 1, or, which is the

same,

Γ(I − Y TA) ≤ κ < 1,

where Γ(Z) is the maximum of the ‖ · ‖s,1-norms of columns of Z ∈ Rn×n. Observe that Γ

is a convex function which is symmetric in the sense that Γ(PZP T ) = Γ(Z) whenever P is

a permutation matrix. Now let Ȳ = 1
n

∑n
i=1R

−iY Li. Since Ln = In, R−n = Im, we have

R−1Ȳ L = Ȳ . We claim that

Γ(I − Ȳ TA) ≤ κ.

Indeed, we have

Γ(I − Ȳ TA) = Γ(
1

n

n∑
i=1

[I − L−iY TRiA])

≤ 1

n

n∑
i=1

Γ(I − L−iY TRiA) [since Γ is convex]

=
1

n

n∑
i=1

Γ(L−i
[
I − Y T [RiAL−i]

]
Li)

=
1

n

n∑
i=1

Γ(I − Y TA) [since Γ is symmetric and RiAL−i = A]

= Γ(I − Y TA)

Now let

yj(φ) = Ȳ0j +

d∑
i=1

[Ȳ2i−1,j cos(iφ) + Ȳ2i,j sin(iφ)].

We have R−1Ȳ L = Ȳ , that is, R−1Ȳ = Ȳ L−1. In other words, the columns Ȳj of Ȳ satisfy

the relation Ȳj = RȲj− , where j− = (j − 1) modn. This is nothing but yj(φ) ≡ yj−(φ− δ),

δ = 2π/n, whence yj(φ) = y0(φ− jδ). Observe that the j-th column in Ȳ TA has the entries

Ȳ T
i Aj = yi(jδ) = y0((j − i)δ), 0 ≤ i ≤ n− 1,

meaning that the columns in the matrix I − Ȳ TA are cyclic shifts of each other (so that

the ‖ · ‖s,1-norms of all columns are the same), and the zero column is comprised of the
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values of the trigonometric polynomial 1 − y0(φ) on the grid G = {φj = 2πj
n : 0 ≤ j < n}.

Assuming s > 1, when denoting by γ the sum of s− 1 largest magnitudes of entries in the

(n− 1)-dimensional vector {y0(φi)}n−1
i=1 , we have

1− y0(0) + γ ≤ ‖C0[Ȳ , A]‖s,1 ≤ κ < 1,

thereby µ := y0(0) > γ. Now let M = max
0≤φ≤2π

|y0(φ)|, and let φ̄ ∈ Argmaxφ|y0(φ)|, so that

y′0(φ̄) = 0. By Bernstein theorem, we have |y′′0(φ)| ≤ d2M for all φ, whence |y0(φ)| ≥ M/2

when |φ− φ̄| ≤ 1/d, so that

Card{j : |y0(φj)| ≥M/2} > n

πd
− 1.

It follows that γ ≥ min
[
s− 1, nπd − 2

]
M/2, while µ = y0(0) ≤M . Thus, the relation µ > γ

implies that

min[s− 1,
n

πd
− 2] < 2,

that is, s ≤ 2 provided that n ≥ 4πd. �

2.10.8 Proof of Proposition 2.6.1

We will we consider the more general problem from Section 2.4.1.2 of bounding from above

the quantity given in (30):

Opt = max
x,u

{
xT [Pu+ p] : x ∈ X,Ax = 0, u ∈ U

}
, X = Conv{x1, ..., xN},

where xi ∈ Rn, the set {x ∈ X : Ax = 0} is nonempty, and U ⊂ Rn is a computa-

tionally tractable compact convex set which contains the origin in its interior. Note that,

the only role of ρ and σ in the linear programming based verifiable sufficient condition

VSGs(ξ, θ, ρ, σ) is to get a control over β; and in the case of ρ = σ =∞, VSGs(ξ, θ, ρ, σ)

becomes equivalent to computing the following upper bound on Opt given by Proposition

2.4.1:

Opt+ = max
V
{Tr(V ) : ∃x̄, ū : [x̄, ū, V ] ∈ W, AV = 0, Ax̄ = 0} ,

where W = Conv{[x, u, x(Pu+ p)T ] : x ∈ X,u ∈ U}.
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To examine the connection with SDP based condition. Let X = {x ∈ X : Ax = 0}.

Given x ∈ X and u ∈ U , consider the positive semidefinite matrix

∆(x, u) := [1;x; [Pu+ p]][1;x; [Pu+ p]]T =


1 xT [Pu+ p]T

x xxT xT [Pu+ p]T

[Pu+ p] [Pu+ p]xT [Pu+ p][Pu+ p]T


The convex hull K∗ of these matrices is contained in every set of the form

K =

∆ =


1 xT [Pu+ p]T

x Z V

[Pu+ p] V T Q

 : ∆ � 0, AZ = 0, [x, u, V ] ∈ W, (∗)

 ,

where (∗) is a set of efficiently computable convex constraints on ∆ which are valid for

matrices ∆(x, u) given by x ∈ X , u ∈ U . When ∆ � 0 and AZ = 0, we automatically have

Ax = 0, AV = 0, that is,

K∗ ⊂

∆ =


1 xT [Pu+ p]T

x Z V

[Pu+ p] V T Q

 : ∆ � 0, AZ = 0, V ∈ V, (∗)


where V = {V : ∃x̄, ū : [x̄, ū, V ] ∈ W, Ax̄ = 0, AV = 0}. Let us denote

Opt∗ := max
Z,Q,V,x,u

Tr(V ) : ∆ =


1 xT [Pu+ p]T

x Z V

[Pu+ p] V T Q

 � 0, AZ = 0, V ∈ V, (∗)

 ,

Then Opt∗ is efficiently computable and it follows that Opt ≤ Opt∗ ≤ Opt+.

In our particular case, for the derivation of verifiable sufficient conditions, p = 0 and

P = Cξ,θ which is defined in (36). The extreme points of X are the 2n vectors −ei for

1 ≤ i ≤ n, ei for i ∈ Pn, and θ−1ei for i ∈ P+, where ei is the i-th basic orth. Moreover

U = U as defined in (35). Our LP based verifiable sufficient condition VSGs(ξ, θ, ρ, σ) with

ρ = σ =∞ is exactly Opt+ ≤ ξ. In addition to this, our SDP bound given in (42) is at least

as good as Opt∗ without any inequalities included in (∗). Note that in our case ∆ = HGHT

where H =

 In+1

Cξ,θ

, under this connection it is clear that the objective functions in
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two SDPs are the same. Furthermore, (41.a), i.e., G � 0, holds if and only if ∆ � 0, with

the same transformation, (41.b) and (41.c) correspond to constraints in (∗), (41.d) together

with (41.f) characterize the set W and (41.e) is equivalent to AZ = 0 in Opt∗ .

Hence Optξ,θ ≤ Opt∗ ≤ Opt+ ≤ ξ where the last inequality holds whenever VSGs(ξ, θ, ρ, σ)

with ρ = σ =∞ holds. �

2.10.9 Proof of Proposition 2.8.1

Let us proceed by induction. First, let us show that (ak−1, bk−1) implies (ak, bk). Thus,

assume that (ak−1, bk−1) holds true. Let z(k−1) = w−v(k−1). By (ak−1), z(k−1) is supported

on the support of w and is such that z
(k−1)
i ≥ 0 for i ∈ P+. Note that

z(k−1) − u = w − v(k−1) − Y T (y −Av(k−1)) = (I − Y TA)(w − v(k−1))− Y T e

= (I − Y TA)z(k−1) − Y T e,

where e = y −Aw with ‖Y T e‖∞ ≤ σδ due to (43.c). Then by (43.a,b) for any i ∈ P+,

−τ−

∑
j∈P+

z
(k−1)
j +

∑
j∈Pn

|z(k−1)
j |

− σδ ≤ z(k−1)
i − ui ≤ τ+

∑
j∈P+

z
(k−1)
j +

∑
j∈Pn

|z(k−1)
j |

+ σδ,

consequently,

− γ− := −τ−αk−1 − σδ ≤ z
(k−1)
i − ui ≤ γ+ := τ+αk−1 + σδ. (68)

We conclude that for any i ∈ P+ the interval Si = [ui − γ−, ui + γ+] of the width

`+ = [τ− + τ+]αk−1 + 2σδ,

covers z
(k−1)
i . In the same way for any i ∈ Pn

−γ := −ταk−1 − σδ ≤ z
(k−1)
i − ui ≤ ταk−1 + σδ = γ,

so that the interval Si = [ui − γ, ui + γ] of the width

` = 2ταk−1 + 2σδ,

covers z
(k−1)
i when i ∈ Pn.
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Recalling that z
(k−1)
i ≥ 0 for i ∈ P+, the closest to 0 point of Si is

∆̃i = [ui − γ−]+ for i ∈ P+, ∆̃i = [ui − γ]+ for i ∈ Pn, ui ≥ 0,

∆̃i = −[|ui| − γ]+ for i ∈ Pn, ui < 0,

that is, ∆̃i = ∆i for all i. Since the segment Si covers z
(k−1)
i and ∆i is the closest to 0 point

in Si, while the width of Si is at most ` ∨ `+, we clearly have

(a) ∆i ∈ Conv
{

0, z
(k−1)
i

}
, (b) |z(k−1)

i −∆i| ≤ ` ∨ `+. (69)

Since (ak−1) is valid, (69.a) implies that

v
(k)
i = v

(k−1)
i + ∆i ∈

[
v

(k−1)
i + Conv

{
0, wi − v(k−1)

i

}]
⊆ Conv{0, wi},

and (ak) holds. Further, let I be the support of ws. Relation (ak) clearly implies that

|z(k)
i | ≤ |wi|, and we can write due to (69.b):

‖w − v(k)‖1 =
∑
i∈I
|wi − [v

(k−1)
i + ∆i]|+

∑
i 6∈I
|z(k)
i |

≤
∑
i∈I
|z(k−1)
i −∆i|+

∑
i 6∈I
|wi| ≤ s[` ∨ `+] + µ = αk,

which is (bk). The induction step is justified.

It remains to show that (a0, b0) holds true. Since (a0) is evident, all we need is to justify

(b0). Let

α∗ = ‖w‖1,

and let u = Y T y. Same as above (cf. (68)), we have for all i:

|wi − ui| ≤ max{τ−, τ+, τ}α∗ + σδ =
ρ

s
α∗ + σδ.

Then

α∗ =
∑
i∈I
|wi|+

∑
i 6∈I
|wi| ≤

∑
i∈I

[|ui|+
ρ

s
α∗ + σδ] + µ ≤ ‖u‖s,1 + ρα∗ + sσδ + µ.

Hence

α∗ ≤ α0 =
‖u‖s,1 + sσδ + µ

1− ρ
,

which implies (b0). �
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CHAPTER III

COMPRESSED SENSING SYNTHESIS PROBLEM

3.1 Overview

In this chapter we consider the synthesis problem of compressed sensing as follows:

Given s and an M × n matrix A, extract from it an m × n submatrix Am,

certified to be s-good, with m as small as possible.

One can think, e.g., of a spatial or planar n-point grid E of possible locations of signal

sources and an M -element grid S of possible locations of sensors. A sensor in a given

location measures a known, depending on the location, linear form of the signals emitted

at the nodes of E , and the goal is to place a given number m�M of sensors at the nodes

of S in order to be able to recover the location of sources via the `1-minimization, under

the condition that there are at most s sources. Since the exact verification of s-goodness is

difficult, we will look for a submatrix of the original matrix A for which the s-goodness can

be certified by the sufficient condition (10), introduced in [81]:

∃Y ∈ Rm×n such that ‖In − Y TA‖∞ <
1

2s

where ‖M‖∞ = maxi,j |Mij | for a matrix M .

Suppose that along with A we know an M ×n matrix YM which certifies that the “level

of goodness” of A is at least s, that is, we have

‖In − Y T
MA‖∞ ≤ µ <

1

2s
. (70)

Then we can approach the synthesis problem as follows:

Given M × n matrices YM and A and a tolerance ε > 0, we want to extract

from A m rows (the smaller is m, the better) to get an m × n matrix Am

which, along with properly chosen Ym ∈ Rm×n, satisfies the relation ‖Y T
MA −

Y T
mAm‖∞ ≤ ε.
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Choosing ε < 1
2s−µ and invoking (70), we ensure that the output Am of the above procedure

is s-good. This simple observation motivates our interest to the problem of approximating

a given matrix by a matrix of specified (low rank) in the uniform norm.

Note that in the existing literature on low rank approximation of matrices the emphasis

is on efficient construction when the approximation error is measured in the Frobenius norm

(for the Frobenius norm ‖A‖F =
(∑

i,j A
2
ij

)1/2
). Though the Singular Value Decomposition

(SVD) gives the best rank k approximation in terms of all the norms that are invariant under

rotation (e.g., the Frobenius norm and the spectral norm), its computational cost may be

prohibitive for applications involving large matrices. Recently, the properties of fast low

rank approximations in the Frobenius norm based on the randomized sampling of rows (or

columns) of the matrix (see, e.g., [50, 61]) or random sampling of a few individual entries

(see [1] and references therein) have been studied extensively. Another randomized fast

approximation based on the preprocessing by the Fast Fourier Transform or Fast Hadamard

Transform has been studied in [107]. Yet we do not know explicit bounds available from

the previous literature which concern numerically efficient low rank approximations in the

uniform norm.

The only known to us result on low rank approximation of matrices in uniform norm is

the one in [120]; it states then if W = Y TA ∈ Rm×n and the rows in Y,A are of Euclidean

length at most D, then, for every k, W admits a k-rank approximation Wk = Y T
k Ak

satisfying ‖W − Wk‖∞ ≤ O(1)D2
√

ln(mn)/k, where Yk and Ak are k × m and k × n

matrices with rows that are linear combinations of those in Y , A, respectively. This result

does not help in the synthesis problem, where we want the rows of Ak to be just rows of A,

and not linear combinations of these rows.

The main result of this chapter is as follows. Let W = Y TA, where Y and A are known

M × n matrices. We consider the approximation Wk = Y T
k Ak of W such that the matrices

Yk and Ak of dimension mk×n, mk ≤ k ≤M , are composed of multiples of the rows of the

matrices Y and A respectively1. We show that a fast (essentially, of numerical complexity

1Allowing rows of Ak to be multiples of rows of A in our context is the same as to require the rows of Ak
to be among the rows of A – the corresponding factors can be moved from rows of Ak to those of Yk.
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O(kMn2)) approximation Wk can be constructed which satisfies

‖W −Wk‖∞ = O(1)L(Y,A)

√
ln(n)

k
,

where L(Y,A) =
∑

i ‖yi‖∞‖ai‖∞ and yTi , a
T
i denote the i-th rows of Y and A respectively.

Note that for moderate values of L(Y,A) = O(1) and k < n/2 this approximation is “quasi-

optimal”, as we know (cf., e.g., [81, Proposition 4.2]) that (for certain matrices W ) the

accuracy of such an approximation cannot be better than O(k−1/2). Moreover, in Section

3.2.4, we show that when W is an n×n identity matrix, as in the case of compressed sensing

synthesis problem, the above bound is unimprovable up to a logarithmic factor. See also

Section 3.2.3 for a discussion of how large L(Y,A) can be in the case of A being a Hadamard

matrix. We propose two types of construction of fast approximations: we consider the

randomized construction, for which the accuracy bounds above hold in expectation (or

with significant probability). We also supply “derandomized” versions of the approximation

algorithms which do not require random sampling of matrices and attain the same accuracy

bounds as the randomized method.

3.2 Low Rank Approximation in Compressed Sensing

In this section, we suppose to be given s and an M × n matrix A and our objective is to

extract from A a submatrix Ak which is composed of, at most, k rows of A, with as small k

as possible, which is s-good. We assume that A admits a “goodness certificate” Y . Namely,

we are given an M × n matrix Y such that

µ := ‖In − Y TA‖∞ <
1

2s
, (71)

and we are looking for Ak and the corresponding Yk such that ‖In − Y T
k Ak‖ <

1
2s .

3.2.1 Random Sampling Algorithm

The starting point of our developments is the following simple

Lemma 3.2.1 Let for β > 0, let

Vβ(z) = β ln

(
d∑
i=1

cosh

(
zi
β

))
− β ln d : Rd × R+ → R+. (72)

Then
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(i) we have ‖z‖∞ − β ln(2d) ≤ Vβ(z) ≤ ‖z‖∞;

(ii) if β1 ≤ β2 then Vβ1(z) ≥ Vβ2(z);

(iii) function Vβ is convex and continuously differentiable on Rd. Further, its gradient V ′β

is Lipschitz-continuous with the constant β−1:

‖V ′β(z1)− V ′β(z2)‖1 ≤ β−1‖z1 − z2‖∞, (73)

and ‖V ′β(z)‖1 ≤ 1 for all z ∈ Rd.

For proof, see Section 3.3.1.

Lemma 3.2.1 has the following immediate consequence:

Proposition 3.2.1 Let β ≥ β′ > 0 (non-random) and let ξ1,...,ξk be random vectors in Rd

such that E{ξ1} = 0 and E{ξi|ξ1, ..., ξi−1} = 0 a.s. for all i ∈ {2, . . . , k}, and E{‖ξi‖2∞} ≤

σ2
i <∞ for all i ∈ {1, . . . , k}, and let Sk =

∑k
i=1 ξi and S0 = 0. Then for k ≥ 1

E{Vβ(Sk)} ≤ E{Vβ′(Sk−1)}+
σ2
k

2β
. (74)

As a result,

E {‖Sk‖∞} ≤

√√√√2 ln(2d)
k∑
i=1

σ2
i . (75)

For proof, see Section 3.3.2.

The random sampling algorithm. Denoting yTi and aTi , i = 1, ...,M , i-th rows of Y

and A, respectively, let us set

θi = ‖yi‖∞ ‖ai‖∞, L =
∑
i

θi, πi =
θi
L
, zi =

L

θi
yi, (76)

and let W = Y TA. Observe that

W =
∑M

i=1 πi
(
zia

T
i

)
,

‖ziaTi ‖∞ = L, 1 ≤ i ≤M,∑M
i=1 πi = 1, πi ≥ 0, 1 ≤ i ≤M.

(77)
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Now let Ξ be random rank 1 matrix taking values zia
T
i with probabilities πi, and let Ξ1,Ξ2, ...

be a sample of independent realizations of Ξ. Consider the random matrix

Wk =
1

k

k∑
`=1

Ξ`.

Then Wk is, by construction, of the form Y T
k Ak, where Ak is a random mk × n submatrix

of A with mk ≤ k.

As an immediate consequence of Proposition 3.2.1 we obtain the following statement:

Proposition 3.2.2 One has

E {‖Wk −W‖∞} ≤ 2Lk−1/2
√

2 ln(2n2). (78)

In particular, the probability of the event

E = {Ξ1, ...,Ξk : ‖Wk −W‖∞ ≤ 4Lk−1/2
√

2 ln(2n2)}

is ≥ 1/2, and whenever this event takes place, we have in our disposal a matrix Yk and a

mk × n submatrix Ak of A with mk ≤ k such that

‖In − Y T
k Ak‖∞ ≤ ‖In −W‖∞ + ‖Wk −W‖∞ ≤ µk := µ+ 4Lk−1/2

√
2 ln(2n2). (79)

For proof, see Section 3.3.3.

Discussion. Proposition 3.2.2 suggests a certain approach to the synthesis problem. In-

deed, according to this Proposition, picking at random k rows aTi` , where i1, ..., ik are sampled

independently from the distribution π, we get with probability at least 1/2 a random mk×n

matrix Ak, mk ≤ k, which is provably s-good with s = O(1)(L
√

ln(n)/k + µ)−1. When

L = O(1), this is nearly as good as it could be, since the sufficient condition for s-goodness

stated in (10) can justify s-goodness of an m × n sensing matrix with n > O(1)m only

when s ≤ O(1)
√
m, see [81, Proposition 4.2].

3.2.2 Derandomization

Looking at the proof of Proposition 3.2.1, we see that the construction of Ak and Yk can

be derandomized. Indeed, (74) implies that
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Whenever S ∈ Rn×n and β ≥ β′ there exists i such that

Vβ(S + (zia
T
i −W )) ≤ Vβ′(S) +

2L2

β
.

Specifically, the above bound is satisfied for every i such that

〈V ′β(S), zia
T
i −W 〉 ≤ 0,

and because πi ≥ 0 ∀i and
∑

i πi(zia
T
i −W ) = 0, the latter inequality is certainly

satisfied for some i.

Now assume that given a sequence β0 ≤ β1 ≤ ... of positive reals, we build a sequence of

matrices Si according to the following rules:

1. S0 = 0;

2. Sk+1 = Sk + (vka
T
`k
−W ) with `k ∈ {1, ...,M} and vk ∈ Rn such that

Vβk+1
(Sk+1) ≤ Vβk(Sk) + δk+1, δk+1 ≤

2L2

βk+1
. (80)

Then for every k ≥ 1 the matrix Uk = k−1Sk is of the form Y T
k Ak −W , where Ak is a

mk × n submatrix of A with mk ≤ k, and

‖Sk‖∞ ≤ βk ln(2n2) +

k∑
`=1

δ`,

whence

‖Y T
k Ak − In‖∞ ≤ µ+ k−1

(
βk ln(2n2) +

k∑
`=1

δ`

)
.

In particular, for the choice β` = 2L
√

`
ln(2n2)

, ` = 1, 2, ..., we obtain2

‖Y T
k Ak − In‖∞ ≤ µ+ 4L

√
ln(2n2)

k

One can consider at least the following three (numerically efficient) policies for choosing vk

and `k satisfying (80); we order them according to their computational complexity.

2for a given k, setting β` = L
√

2k
ln(2n2)

, 1 ≤ ` ≤ k, the right hand side in the bound can be reduced to

µ+ 2L

√
2 ln(2n2)

k
.
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A. Given Sk, we test one by one the options `k = i, vk = zi, i = 1, ...,M , until an option

satisfying (80) is met (or test all the n options and choose the one which results in

the smallest Vβk+1
(Sk+1)). Note that accomplishing a step of this scheme requires

O(Mn2) elementary operations.

A′. In this version of A, we test the options `k = i, vk = zi when picking i at ran-

dom, as independent realizations of the random variable ı taking values 1, ...,M

with probabilities πi, until an option with 〈V ′βk+1
(Sk), zia

T
i −W 〉 ≤ 0 is met. Since

E
{
〈V ′βk+1

(Sk), zia
T
i −W 〉

}
≤ 0, we may hope that this procedure will take essentially

less steps than the ordered scan through the entire range 1, ...,M of values of i.

B. Given Sk we solve M one-dimensional convex optimization problems

t∗i ∈ Argmin
t∈R+

Vβk+1
(Sk + tzia

T
i −W ), 1 ≤ i ≤M, (81)

then select the one, let its index be i∗, with the smallest value of Vβk+1
(Sk+t∗i zia

T
i −W ),

and put vk = t∗i∗zi∗ , `k = i∗.

If the bisection algorithm is used to find t∗i , solving the problem (81) for one i to the

relative accuracy ε requires O(n2 ln(1/ε)) elementary operations. The total numerical

complexity of the step of the method is O(Mn2 ln(1/ε)).

C. Given Sk, we solve M convex optimization problems

u∗i ∈ Argmin
u∈Rn

Vβk+1
(Sk + uaTi −W ), 1 ≤ i ≤M, (82)

t hen select the one, let its index be i∗, with the smallest value of Vβk+1
(Sk+u∗i a

T
i −W ),

and set vk = u∗i , `k = i∗.

Note that due to the structure of Vβ to solve (82) it suffices to find a solution to the

system

∑n
`=1 γ` sinh(αj` + γ`uj) = 0,

αj` =
[Sk]j`−[W ]j`

βk
, γ` = [A]`i

βk
, 1 ≤ j, ` ≤ n.

(83)
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Since the equations of the system (83) are independent, one can use bisection to find

the component uj of the solution.3 Finding a solution of relative accuracy ε to each

equation then requires O(n ln(1/ε)) arithmetical operations, and the total complexity

of solving (82) becomes O(Mn2 ln(1/ε)).

Selecting Y and W . Note that the numerical schemes of this section should be initialized

with matrices Y and W = Y TA. We can do as follows:

1. We start with solving the problem

Y ∈ Argmin
Z=[zT1 ;...;zTM ]∈RM×n

{
M∑
i=1

‖zi‖∞‖aTi ‖∞ : ‖In − ZTA‖∞ ≤ µ

}
,

where µ is a certain fraction of 1
2s . Assuming the problem is feasible for the chosen

µ, we get in this way the “initial point” – the matrix W = Y TA.

2. Then we apply the outlined procedure to find Ak and Yk. At each step ` of this

procedure, we get certain m` × n submatrix A` of A and a matrix Y`. When ‖In −

Y T
` A`‖∞ becomes less than 1

2s we terminate. Alternatively, we can solve at each step

` an auxiliary problem min
U∈Rm`×n

‖In−UTA`‖∞ and terminate when the optimal value

in this problem becomes less than 1
2s .

3.2.3 Numerical Illustration

Here we report on preliminary numerical experiments with the synthesis problem as posed

in the introduction. In our experiment, A is square, specifically, this is the Hadamard

matrix H11 of order 2048.

Recall that the Hadamard matrix Hν , ν = 0, 1, ... is a square matrix of order 2ν

given by the recurrence

H0 = 1, Hs+1 =

 Hs Hs

Hs −Hs

 ,
whence Hν is a symmetric matrix with entries ±1 and HT

ν Hν = 2νI2ν .

3Note that due to the convexity of the left-hand side of the equation in (83), even faster algorithm of
Newton family can be used.
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The goal of the experiment was to extract from A = H11 an m× 2048 submatrix Am which

satisfies the relation (cf. (10))

Opt(Am) := min
Ym∈Rm×n

‖In − Y T
mAm‖∞ <

1

2s
, n = 2048 (84)

with s = 10; under this requirement, we would like to have m as small as possible. In

compressed sensing terms, we are trying to solve the synthesis problem with A = H11; in

low rank approximation terms, we want to approximate I2048 in the uniform norm within

accuracy < 0.05 by a rank m matrix of the form Y T
mAm, with the rows of Am extracted

from H11. The advantages of the Hadamard matrix in our context is twofold:

1. The error bound (78) is proportional to the quantity L defined in (76). By the

origin of this quantity, we clearly have ‖Y TA‖∞ = ‖
∑M

i=1 yia
T
i ‖∞ ≤ L, whence

L ≥ 1 − µ > 1 − 1
2s ≥ 1/2 by (71). On the other hand, with A = Hν being an

Hadamard matrix, setting Y = 2−νHν , so that Y TA = I2ν , we ensure the validity of

(71) with µ = 0 and get L = 1, that is, µ is as small as it could be, and L is nearly as

small as it could be.

2. Whenever Am is a submatrix of Hν , the optimization problem in the left hand side of

(84) is easy to solve.

Item 2 deserves an explanation. Clearly, the optimization program in (84) reduces to the

series of n = 2048 LP programs

Opti(Am) = min
y∈Rm

‖ei −ATmy‖∞, 1 ≤ i ≤ n, (85)

where ei is the standard basic orth in Rn, and Opt(Am) = max
i

Opti(Am). The point is

given by

Proposition 3.2.3 Suppose Am is an m× n submatrix of the n× n Hadamard or Fourier

matrix, then Opti(Am) is independent of i, i.e., Opt(Am) = Opt1(Am).

For proof of Proposition 3.2.3, see Section 3.3.4.

In the light of Proposition 3.2.3, checking the inequality in (84) requires solving a single

LP program with m variables rather than solving n LO programs of the same size.
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Table 9: Comparison of algorithms for compressed sensing synthesis problem

s 1 2 3 4 5 6 7 8 9 10

B 15 58 121 197 279 343 427 512 584 662

A 12 47 104 172 246 323 399 469 547 617

The experiment was organized as follows. As it was already mentioned, we used ν = 11

(that is, n = 2048) and s = 10 (that is, the desired uniform norm of approximating I2048

by Y T
mAm was 0.05). We compared two approximation policies:

• “Blind” approximation – we choose a random permutation σ(·) of the indices 1, ..., 2048

and look at the submatrices Ak, k = 1, 2, ... obtained by extracting from H11 rows with

indices σ(1), σ(2), ..., σ(k) until a submatrix satisfying (84) is met. This is a refine-

ment of the Random sampling algorithm as applied to A = H11 and Y = 2−11A, which

results in W = I2048. The refinement is that instead of looking for approximation of

W = I2048 of the form 1
k

∑k
`=1 zi`a

T
i`

, where i1, i2, ... are independent realizations of

random variable ı taking values 1, ..., µ with equal probabilities (as prescribed by (76)

in the case of A = Hν), we look for the best approximation of the form Y T
k A

k, where

Ak is the submatrix of A with the row indices σ(1), ..., σ(k).

• “Active” approximation, which is obtained from algorithm A′ by the same refinement

as in the previous item.

In our experiments, we ran every policy 6 times. The results were as follows:

“Blind” policy B: the rank of 0.05-approximation of W = I2048 varied from 662 to 680.

“Active” policy A: the rank of 0.05-approximation of W varied from 617 to 630.

Note that in both algorithms the resulting matrix Am is built “row by row”, and the

certified levels of goodness of the intermediate matrices A1, A2, ... are computed. In Table

9, we indicate, for the most successful (resulting in the smallest m) of the 6 runs of each

algorithm, the smallest values of k for which Ak was certified to be s-good, s = 1, 2, ..., 10:

Finally, we remark that with A being the Hadamard matrix Hν , the “no refinement”

versions of our policies would terminate according to the criterion ‖In − 1
kA

T
kAk‖∞ < 1

2s ,
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which, on a closest inspection, is nothing but a slightly spoiled version of the goodness test

based on mutual incoherence [43]4. In the experiments we are reporting, this criterion is

essentially weaker that the one based on (84): for the best, over the 6 runs of the algorithms

A and B, 10-good submatrices Am of H11 we got the test based on mutual incoherence

certifies the levels of goodness as low as 5 (in the case of B) and 7 (in the case of A).

3.2.4 Lower Bound

We have seen that if Y TA = W ∈ Rm×n, then the ‖ · ‖∞-error of the best in this norm

approximation of W by a matrix of rank k by selecting rows from Y and A is at most

O(1)L(Y,A)

√
ln(n)
k . We intend to demonstrate that in general this bound is unimprovable,

up to a logarithmic in m and n factor even when we are allowed to use any rank k matrix

in the approximation. Specifically, the following result holds:

Proposition 3.2.4 When n ≥ 2k, the ‖ · ‖∞ error of any approximation of the unit matrix

In by a matrix of rank k is at least

1

2
√
k
. (86)

Proof [cf. [81, Proposition 4.2]] Let α(n, k) be the minimal ‖ · ‖∞ error of approximation

of In by a matrix of rank ≤ k; this function clearly is nondecreasing in n. Let ν be

an integer such that k < ν ≤ n, and W be an ν × ν matrix of rank ≤ k such that

‖Iν −W‖∞ = α := α(ν, k). By variational characterization of singular values, at least ν−k

singular values of Iν −W are ≥ 1, whence Tr([Iν −W ][Iν −W ]T ) ≥ ν − k. On the other

hand, ‖Iν −W‖∞ ≤ α, whence Tr([Iν −W ][Iν −W ]T ) ≤ ν2α2. We conclude that α2 ≥ ν−k
ν2

for all ν with k < ν ≤ n, whence α2 ≥ 1
4k when n ≥ 2k. �

4The mutual incoherence test is as follows: given a k × n matrix B = [b1, ..., bn] with nonzero columns,

we compute the quantity µ(B) = max
i6=j
|bTi bj |/bTi bi and claim that B is s-good for all s such that s < 1+µ(B)

2µ(B)
.

With the Hadamard A, the “no refinement” criterion for our scheme is nothing but s < 1
2µ(Ak)

.
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3.3 Proofs of Chapter 3

3.3.1 Proof of Lemma 3.2.1

Properties (i) and (ii) are immediate consequences of the definition of Vβ given in (72).

Observe that Vβ is convex and continuously differentiable with∣∣∣∣ ddt ∣∣t=0
Vβ(x+ th)

∣∣∣∣ =

∣∣∣∣∣
∑d

i=1 sinh(xi/β)hi∑d
i=1 cosh(xi/β)

∣∣∣∣∣ ≤ ‖h‖∞ ∀h,
whence ‖V ′β(x)‖1 ≤ 1 for x ∈ Rd. Verification of (73) takes one line: Vβ is twice continuously

differentiable with

d2

dt2
∣∣
t=0

Vβ(x+ th) = β−1

∑d
i=1 cosh(xi/β)h2

i∑d
i=1 cosh(xi/β)

− β−1

(∑d
i=1 sinh(xi/β)hi

)2

(∑d
i=1 cosh(xi/β)

)2 ≤ β
−1‖h‖2∞.

�

3.3.2 Proof of Proposition 3.2.1

Let β ≥ β′. By applying items (ii) and (iii) of the lemma for k ≥ 1 we get:

Vβ(Sk) ≤ Vβ(Sk−1) + 〈V ′β(Sk−1), ξk〉+ 1
2β‖ξk‖

2
∞

≤ Vβ′(Sk−1) + 〈V ′β(Sk−1), ξk〉+ 1
2β‖ξk‖

2
∞

When taking the expectation (first conditional to ξ1, ..., ξk−1), due to E{ξk|ξ1, ..., ξk−1} = 0

a.s. for k ≥ 2 and then using E{〈V ′β′(S0), ξ1〉} = 0 (due to E{ξ1} = 0), we obtain for k ≥ 1

E{Vβ(Sk)} ≤ E{Vβ′(Sk−1)}+
E{‖ξk‖2∞}

2β
≤ E{Vβ′(Sk−1)}+

σ2
k

2β
,

which is (74). Now let us set β′ = β =

√∑k
i=1 σ

2
i

2 ln(2d) . Since Vβ(0) = 0 we conclude that

E{Vβ(Sk)} ≤
k∑
i=1

σ2
i

2β
.

On the other hand, by item (i) of Lemma 3.2.1,

E{‖Sk‖∞} ≤ β ln(2d) + E{Vβ(Sk)} ≤ β ln(2d) +
k∑
i=1

σ2
i

2β
≤

√√√√2 ln(2d)
k∑
i=1

σ2
i

proving (75). �
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3.3.3 Proof of Proposition 3.2.2

By (77) we have ‖ziaTi ‖∞ = L for all i, and besides this, treating ı as random index dis-

tributed in {1, ...,M} according to probability distribution π = {πi}Mi=1, we have E{zıaTı } =

W . It follows that ‖Ξ`−W‖∞ ≤ 2L and E{Ξ`−W} = 0. If we denote Si =
∑i

`=1(Ξ`−W ),

when applying Proposition 3.2.1 we obtain

E{‖Sk‖∞} ≤ 2L
√

2k ln(2n2),

and we arrive at (78). �

3.3.4 Proof of Proposition 3.2.3

We claim that if Am is an m× 2ν submatrix of the Hadamard matrix Hν of order n = 2ν ,

then the optimal values in all problems (85) are equal to each other. The explanation is a

s follows. Let G be a finite abelian group of cardinality n. Recall that a character of G is

a complex-valued function ξ(g) such that ξ(0) = 1 and ξ(g+ h) = ξ(g)ξ(h) for all g, h ∈ G;

from this definition it immediately follows that |ξ(g)| ≡ 1. The characters of a finite abelian

group G form abelian group G∗, the multiplication being the pointwise multiplication of

functions, and this group is isomorphic to G. The Fourier Transform matrix associated

with G is the n × n matrix with rows indexed by ξ ∈ G∗, columns indexed by g ∈ G and

entries ξ(g). For example, the usual DFT matrix of order n corresponds to the cyclic group

G = Zn := Z/nZ, while the Hadamard matrix Hν is nothing but the Fourier Transform

matrix associated with G = [Z2]ν (in this case, all characters take values ±1). For g ∈ G let

eg(h) stands for the function on G which is equal to 1 at h = g and is equal to 0 at h 6= g.

Given an m-element subset Q of G∗, consider the submatrix A = [ξ(g)] ξ∈Q
g∈G

of the Fourier

Transform matrix, along with n optimization problems

min
y∈Cm

‖<[eg −AT y]‖∞ = min
yξ∈C

max
h∈G
|<[eg(h)−

∑
ξ∈Q

yξξ(h)]| (Pg)

These problems clearly have equal optimal values, due to

max
h∈G
|<[eg(h)−

∑
ξ∈Q yξξ(h)]| = max

h∈G
|<[e0(h− g)−

∑
ξ∈Q[yξξ(g)]ξ(h− g)]|

= max
f=h−g∈G

|<[e0(f)−
∑

ξ∈Q[yξξ(g)]ξ(f)|.
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As applied to G = Zν2 , this observation implies that all quantities given by (85) are the

same. �
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CHAPTER IV

RANDOMIZED ALGORITHMS FOR LARGE-SCALE

OPTIMIZATION

4.1 Overview

This chapter is motivated by the desire to develop efficient randomized first-order methods

for solving well-structured large-scale convex optimization problems. Our primary (but not

the only) target is the `1-minimization problem

Optp = min
u
{‖u‖1 : ‖Au− b‖p ≤ δ} [A = [A1, ..., An] ∈ Rm×n,m, n > 2], (87)

where p = ∞ (“uniform fit”) or p = 2 (“`2-fit”). We are interested in the large-scale case,

where the sizes m,n of (possibly dense) matrix A are in the range of thousands/tens of

thousands. Efficient solutions to the problems of this type are of paramount importance

for sparsity-oriented signal processing, in particular, in compressed sensing (see [27, 25, 45]

and references therein). To give an overview of our results, here is what our approach yields

for (87):

Proposition 4.1.1 Assume that (87) is feasible, δ is small enough, namely, 2m
1
p δ ≤ ‖b‖p.

Given ε ∈ (0, 1
2Optp‖A‖1,p],1 let our goal be to find an ε-solution to (87), that is, a point

xε satisfying

‖xε‖1 ≤ Optp & ‖Axε − b‖p ≤ δ + ε.

Then, for every tolerance χ ∈ (0, 1/2], the outlined goal can be achieved with probability

≥ 1− χ

(i) in the case of p =∞ (uniform fit) – in at most

O(1)

[√
ln(m) ln(n)‖A‖1→∞Opt∞

ε
ln

(√
ln(m) ln(n)‖A‖1→∞Opt∞

χε

)]2

1Here and below ‖A‖1→p = max
j
‖Aj‖p stands for the norm of the mapping x 7→ Ax induced by the norms

‖ · ‖1 and ‖ · ‖p in the argument and the image spaces, respectively
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steps of a randomized algorithm, with computational effort per step reduced to extracting

from A two columns and two rows, given their indexes, plus “computational overhead” of

O(1)(m+ n) operations.

(ii) in the case of p = 2 (`2 fit) – in at most

O(1)

[
ln(mn)κ(A)‖A‖1→2Opt2

ε
ln

(
ln(mn)κ(A)‖A‖1→2Opt2

χε

)]2

, κ(A) =

√
m‖A‖1→∞
‖A‖1→2

,

steps of a randomized algorithm with the same as in (i) computational effort per step.

Furthermore, there exists a randomized preprocessing of the data [A, b] of the problem

(87) of computational cost not exceeding O(1)mn ln(m), which ensures with probability ≥

1− χ that κ(A) ≤ O(1)
√

ln(mn/χ).

Note that the best known so far complexity of finding ε-solution to a large-scale prob-

lem (87) by a deterministic algorithm is at least O(1)

√
ln(m) ln(n)‖A‖1→∞Opt∞

ε (p = ∞) or
√

ln(n)‖A‖1→2Opt2
ε (p = 2) steps2 with complexity of a step dominated by the necessity to

perform O(1) multiplications x 7→ Ax, y 7→ AT y. When A is dense, the resulting opera-

tions count is, up to logarithmic terms, of order of Ndet = mn
ν , where ν = ε

‖A‖1→pOptp
can

be naturally interpreted as relative accuracy. For the randomized algorithms underlying

Proposition 4.1.1, this count, again, up to logarithmic terms, is of order of Nrand = m+n
ν2

(uniform fit) and Nrand = m+n
ν2

+ mn (`2 fit). We see that when ν � 1 is fixed and m,n

grow, the randomized algorithms eventually outperform the deterministic ones, becoming

more significant as the problem size grows. Numerical results presented in Section 4.5

demonstrate that this acceleration is not a purely academic phenomenon and can be of real

practical interest.

Our approach is based on saddle point reformulation of well-structured convex mini-

mization problems and is applicable when the resulting saddle point problems are bilinear;

in this respect, it goes back to the breakthrough paper of Nesterov [106]. The deterministic

saddle point prototypes of the randomized algorithms we develop here were proposed in

[100] and [101] and the prototypes of our randomization scheme were proposed in [102,

Section 3.3] and [82]. In this chapter, we demonstrate that in the case of a bilinear saddle

2The indicated bounds are attainable, provided Optp is known in advance.
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point problem, a better randomization is possible. The advantage of this new randomization

over those prototypes lies in the immediate possibility to assess, in a computationally cheap

fashion, the quality of the resulting approximate solutions. This possibility is instrumental

when solving parametric bilinear saddle point problems. In particular many important ap-

plications including the problems of the form (87) reduce to the class of parametric bilinear

saddle point problems which we introduce and study in Section 4.2.2. In the hindsight, one

can recognize utilizing a particular case of this randomization technique leads to the sublin-

ear time randomized algorithm for solving matrix games due to Grigoriadis and Khachiyan

[66].

The main body of this chapter is organized as follows. In Section 4.2, we present a saddle-

point-based framework for our developments together with a sample of interesting optimiza-

tion problems fitting this framework. This sample includes, along with `1-minimization, the

(semidefinite relaxation of the) problem of low-dimensional approximation to a collection

of points in Rd and a specific version of the Support Vector Machine problem. Randomized

algorithms for the problems fitting to our framework are developed and analyzed in Sections

4.3 and 4.4. Section 4.5 presents encouraging results of preliminary numerical experiments

aimed at comparing the performance of the proposed randomized algorithm and a state-

of-the-art deterministic algorithm as applied to large-scale `1-minimization problem. All

proofs are relegated to the last section of this chapter.

4.2 Problems and Goals

We start with specifying and motivating two problems to be discussed in this chapter and

our goals.

4.2.1 A Bilinear Saddle Point Problem

4.2.1.1 The problem

The first generic problem we are interested in is a Bilinear Saddle Point (BSP) problem

SV = min
z1∈Z1

max
z2∈Z2

φ(z1, z2),

φ(z1, z2) = υ + 〈a1, z1〉+ 〈a2, z2〉+ 〈z2, Bz1〉 : Z[= Z1 × Z2]→ R,
(S)

95



where Zi are nonempty convex compact sets in Euclidean spaces Ei, i = 1, 2. Recall that

(S) gives rise to two dual to each other convex optimization programs

Opt(P ) = min
z1∈Z1

φ(z1) := max
z2∈Z2

φ(z1, z2) (P )

Opt(D) = max
z2∈Z2

φ(z2) := min
z1∈Z1

φ(z1, z2) (D)
(88)

with Opt(P ) = Opt(D) = SV, and to the variational inequality : find z∗ ∈ Z := Z1 × Z2

such that

〈F (z), z − z∗〉 ≥ 0 for all z ∈ Z, (89)

where F : Z 7→ E1 × E2, is an affine monotone operator given by

F (z1, z2) =

[
F1(z2) =

∂φ(z1, z2)

∂z1
;F2(z1) = −∂φ(z1, z2)

∂z2

]
= a+A[z1; z2],

a = [a1;−a2], A =

 B∗

−B

 ,
(here B∗ stands for the conjugate of B). Note that A is skew-symmetric: A∗ = −A and

〈z,Az〉 = 0 ∀z ∈ E := E1 × E2. (90)

It is well known that the solutions to (S) — the saddle points of φ on Z1×Z2 — are exactly

the pairs z = [z1; z2] comprised of optimal solutions to problems (P ) and (D) in (88), same

as are exactly the solutions to the variational inequality (89). We quantify the accuracy of

candidate solutions z = [z1; z2] ∈ Z to (S) by the saddle point residual

εsad(z) = φ(z1)− φ(z2) =
[
φ(z1)−Opt(P )

]︸ ︷︷ ︸
≥0

+
[
Opt(D)− φ(z2)

]︸ ︷︷ ︸
≥0

. (91)

4.2.1.2 Assumptions and goal

When speaking about a BSP problem (S), our goal is to solve the problem within a given

accuracy ε > 0, that is, to find zε ∈ Z such that εsad(zε) ≤ ε. Deterministic first order

algorithms achieve this goal by working with the values of the associated operator F at the

iterates zt, t = 1, 2, ..., generated by the method. When Z is simple and the problem is

large-scale, computing the values F (zt) is the “leading term” in the computational effort.
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Our goal in this chapter is to replace relatively expensive (in the large-scale case) exact

values F (zt) with their computationally cheap unbiased random estimates. Specifically, we

assume that

[P] every point z ∈ Z is associated with a probability distribution Pz such that

• Pz is supported on Z and Eζ∼Pz{ζ} = z;

• Given z, we can sample from the distribution Pz.

Under these assumptions, in order to get an unbiased estimate of F (zt), it suffices to draw

a ζt ∼ Pzt and to take F (ζt) as a desired estimate of F (zt). In order to make this approach

meaningful, the computational price of generating ζt and subsequent computation of F (ζt)

should be significantly less than the price of a straightforward computation of F (zt). This

requirement guided us in the selection of applications to be considered below as well as in

building the corresponding saddle point reformulations .

Note that the deterministic algorithms remain in the scope of our approach since we

always have an option to define Pz as δz (the unit mass sitting at z).

4.2.1.3 Application example: low dimensional approximation

We consider the following problem (related to a dimension reduction problem in statistics,

see, e.g., [37]): let V = {v1, ..., vN} be a collection of unit vectors in Rn, and d < n be

a positive integer. We want to find a linear subspace E ⊂ Rn of dimension d such that

the deviation δ(V,E) of the collection from E — the maximal, over i, Euclidean distance

between vi and E — is as small as possible.

Letting Πd be the family of all orthogonal projectors of Rn onto d-dimensional linear

subspaces, the problem reads

Opt∗ = max
Π∈Πd

min
1≤i≤N

vTi Πvi

and seems to be computationally intractable. It, however, admits the tractable relaxation

Opt = max
Q∈Pd

min
1≤i≤N

vTi Qvi, Pd = {Q ∈ Sn : 0 � Q � I, Tr(Q) = d}. (92)
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We refer to (92) as to the problem of low dimensional approximation. We clearly have

Opt∗ ≤ Opt ≤ 1, whence δ2 := 1−Opt ≤ δ2
∗ := 1−Opt∗; note that δ∗ is the deviation of V

from the “ideal” d-dimensional space E∗ underlying Opt∗. It is easily seen (see Lemma 4.6.1

of Section 4.6.1) that if Q∗ is an optimal solution to the relaxation (92) and E is spanned

by the d leading eigenvectors of Q∗, then δ(V,E) ≤
√
d+ 1δ∗, that is, approximation (92)

admits some quality guarantees.

Now, (92) is nothing but the BSP problem:

1−Opt = min
Q∈Pd

max
λ∈∆N

[
1− Tr

(
Q
∑N

i=1
λiviv

T
i

)]
, ∆N =

{
λ ∈ RN+ :

∑
i
λi = 1

}
. (93)

In terms of (S), E1 is the space Sn of symmetric n × n matrices with Frobenius inner

product, Z1 = Pd ⊂ E1, E2 = RN , Z2 = ∆N . The associated operator F is

F (z1, z2) = F (Q,λ) =
[
−
∑N

i=1
λiviv

T
i︸ ︷︷ ︸

F1(z2)

; [vT1 Qv1; ...; vTNQvN ]︸ ︷︷ ︸
F2(z1)

]
. (94)

Assuming that vi are dense, the arithmetic cost of computing the value of F at a given

point is O(n2N). Now let us specify the distributions Pz, z = (Q,λ) ∈ Z = Z1 × Z2. In

order to generate ζ ∼ P(Q,λ), we proceed as follows:

• Given Q ∈ Pd, we build the eigenvalue decomposition Q = UDiag{q}UT . Note that

q ∈ ∆n,d = {q ∈ Rn : 0 ≤ qi ≤ 1 ∀i,
∑n

i=1 qi = d}. The extreme points of ∆n,d

are Boolean vectors with exactly d nonzero entries. There exists a simple algorithm

(see Section 4.6.1) which, given as input a vector q ∈ ∆n,d, builds in O(1)dn2 a.o. n

extreme points qj , 1 ≤ j ≤ n, of ∆n,d along with weights µj ≥ 0,
∑

j µj = 1, such

that q =
∑

j µjq
j . We run this algorithm to build {qj , µj}nj=1, pick  ∈ {1, ..., n} at

random, with Prob{ = j} = µj , j = 1, ..., n, and set ζ1 = UDiag{q}UT .

• Given λ ∈ ∆N , we pick ı ∈ {1, ..., N} at random, with Prob{ı = i} = λi, 1 ≤ i ≤ N ,

and set ζı2 := eı, where ei, i = 1, ..., N , are standard basic orths in RN .

• Finally, we set ζ = ζı := [ζ1; ζı2] ∈ Pd ×∆N .

The family of distributions P(Q,λ) clearly satisfies [P]. The “setup costs” for sampling from

P(Q,λ) reduce to those of 1) computing the eigenvalue decomposition of Q, 2) building
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q1, ..., qn, µ1, ..., µn (this cost is O(n3 + dn2) a.o.) and 3) computing the “cumulative dis-

tributions” {µj =
∑j

s=1 µs}nj=1 and {λi =
∑i

s=1 λs}Ni=1 (what amounts to O(n + N) a.o.).

After the setup cost is paid, a sample (ı, ) can be generated at the cost of just O(ln(n+N))

a.o. Now let us look at the cost of computing F (ζı) given ı, . We have

F (ζı) =
[
−vıvTı ; {vTi UDiag{q}UT vi}Ni=1

]
.

Since q has just d nonzero entries, all equal to 1, let the indices of the entries be j1, ..., jd,

we have vTi UDiag{q}UT vi =
∑d

`=1(UTj`vi)
2, where Uj is jth column of U . We see that

computing F (ζı) costs O(n2 + dnN) a.o. Thus, the total cost (including that of the setup)

of drawing a sample ζ from P(Q,λ) and computing F (ζ) is

O(n3 + dn2 + n2 + dnN) = O(n3 + dnN) a.o.

When d � n � N , this cost is much smaller than the cost O(n2N) of computing F (z) at

a “general position” point z = (Q,λ) ∈ Z.

4.2.2 A Generalized Bilinear Saddle Point Problem

4.2.2.1 The problem

Assume that we are given a single-parameter family of bilinear saddle point problems

SV(ρ) = min
z1∈Z1

max
z2∈Z2

φρ(z1, z2) := φ(z1, z2) + ρψ(z1, z2), (95)

where ρ ≥ 0 is a parameter and φ(z1, z2), ψ(z1, z2) are bi-affine in z1 and z2. The Generalized

Bilinear Saddle Point (GBSP) problem associated with this family is, by definition, the

optimization program

ρ∗ = max{ρ ≥ 0 : SV(ρ) ≤ 0} (96)

A highly desirable property of a GBSP problem, relative to our approach, is the convexity

of SV(ρ) as a function of ρ ≥ 0. To ensure this property, we make from now on the following

assumption on the structure of (95):

[A.1] Z1 = Z11×Z12 is the direct product of two convex compact sets, and the

bilinear functions φ(z1, z2), ψ(z1, z2) in (95) are of the form

φ(z1 = [z11; z12], z2) = υ + 〈a11, z11〉+ 〈b, z2〉+ 〈z2, Bz11〉,

ψ(z1 = [z11; z12], z2) = χ+ 〈a12, z12〉+ 〈c, z2〉+ 〈z2, Cz12〉,
(97)
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that is, φ(z1, z2) and ψ(z1, z2) as functions of z1 depend each on its own “block”

of z1, and these blocks z11 and z12, independently of each other, run through

the respective convex compact sets Z11 and Z12.

From now on, we denote by F ρ(z) = Φ(z) + ρΨ(z) the affine monotone operator associated

with φρ according to (89).

Lemma 4.2.1 In the case of A.1 the function SV(ρ) given by (95) is convex in ρ ≥ 0.

From now on we assume, in addition to A.1, that

[A.2] Function SV(ρ) given by (95) is nonpositive somewhere on R++ and tends

to +∞ as ρ→ +∞,

which implies solvability of (96) and positivity of ρ∗.

The goal. Given a GBSP problem (95) – (96) and a tolerance ε > 0, our goal will be to

find an ε-solution to the problem, that is, a pair ρε, z
ε
1 ∈ Z1 such that

ρε ≥ ρ∗ and max
z2∈Z2

φρε(zε1, z2) ≤ ρεε (98)

We are about to point out several important application examples for GBSP problem.

4.2.2.2 Application example: `1-minimization with `p-fit

The problem of interest is

Opt = min
x
{‖x‖1 : ‖Ax− b‖p ≤ δ} [A ∈ Rm×n]. (99)

Different versions of this problem arise in sparsity-oriented signal processing and compressed

sensing. Setting x = ρu, ‖u‖1 ≤ 1, we rewrite the problem equivalently as

1

Opt
= ρ∗ = max

{
ρ : min

‖u‖1≤1
‖Au− ρb‖p − ρδ ≤ 0

}
, (100)

or, which is the same as

1

Opt
= ρ∗ = max

{
ρ : Φ(ρ) = min

‖u‖1≤1, ‖v‖p≤1
‖Au− ρb− ρδv‖∞ ≤ 0

}
.
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This is nothing but the GBSP problem (95) with SV (ρ) = φρ(z), z ∈ Z, given by

φρ(z1(= [z11; z12]), z2) = zT2 J
T
m (AJnz11 − ρ[b+ δz12]) ,

Z1 = ∆2n︸︷︷︸
Z11

×{z12 ∈ Rm : ‖z12‖p ≤ 1}︸ ︷︷ ︸
Z12

, Z2 = ∆2m,
(101)

where we denote Jk = [Ik,−Ik], Ik being k×k identity matrix. This problem satisfies [A.1];

when ‖b‖p > δ (otherwise the optimal solution to (99) is x = 0), the problem satisfies [A.2]

as well. The associated saddle value function is

SV(ρ) = max
z2∈∆2m

min
z11∈∆2n, z12∈Z12

[
zT2 J

T
m (AJnz11 − ρ[b− δz12])

]
= max

w=Jmz2, z2∈∆2m

min
u=Jnz1, z1∈∆2n

min
z12∈Z12

[
wT (Au− ρ[b+ δz12])

]
= max

‖w‖1≤1
min
‖u‖1≤1

min
‖v‖p≤1

[
wT (Au− ρ[b+ δv])

]
= Φ(ρ).

Suppose that we are given an ε-solution ρε, z
ε
1 = [zε11; zε12] to the problem (98), (101) with

ε = εm
− 1
p . When setting xε = ρ−1

ε Jnz
ε
11 and vε = zε12 we get an approximate solution to

(99) such that

‖xε‖1 ≤ Opt & ‖Axε − b‖p ≤ ‖δvε‖p + ‖Axε − b− δvε‖p ≤ δ + εm1/p = δ + ε.

Finally, we associate with z = [z11; z12; z2] ∈ Z = Z1 × Z2 distribution Pz satisfying [P],

namely, as follows. Note that for z ∈ Z, z11 and z2 are vectors from the standard simplices

and thus can be considered as probability distributions on the corresponding index sets

{1, ..., 2n}, {1, ..., 2m}. To generate ζ = [ζ11; ζ12; ζ2] ∼ Pz, we draw at random index ı from

the distribution z11 and make [ζ11]ı = 1 the only nonzero entry in ζ11. ζ2 is built similarly,

with z2 in the role of z11, and ζ12 is nothing but z12. It is immediately seen that it takes

just O(m+ n) a.o. to generate a sample ζ ∼ Pz and to compute the vector F ρ(ζ).

It is worth to mention that in the important case p =∞ the construction of the GBSP

which corresponds to (99) can be substantially simplified. Indeed, one can see immediately

that for p =∞ (100) is equivalent to the GBSP problem on the direct product of just two

unit `1-balls (since ‖Az1 − b‖∞ = max
‖z2‖1≤1

zT2 (Az1 − b)). It is more convenient to pass from

`1-balls to the standard simplexes, as it was done in the case of (101). The resulting GBSP

problem is given by

φρ(z1, z2) = zT2 J
T
mAJnz1 − ρzT2 JTmb− ρδ,

Z1 = Z11 = ∆2n, Z12 = {0}, Z2 = ∆2m,
(102)
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and satisfies [A.1] and [A.2] when δ < ‖b‖∞.

4.2.2.3 Application example: `1 Support Vector Machine.

One of the “statistically solid” SVM models (see [36] and [115, Section 2.3.3]) is as follows.

We are given a training sample — a matrix X ∈ Rm×n with rows representing feature

vectors, and a vector y ∈ Rm with entries ±1 representing labels. Setting R = maxi,j |Xij |,

Y = Diag{y} and 1 = [1; ...; 1] ∈ Rm, we want to solve the margin optimization problem

Opt = max
w,b,ρ
{ρ : ‖w‖1 ≤ 1, ‖[ρ1− Y [Xw + b1]]+‖2 ≤ R} , (103)

where [z]+ is the vector with coordinates [zi]+ := max[zi, 0]. We can convert this problem

into a GBSP one as follows. Observe first that

Opt = max

{
ρ : min
‖w‖1≤1, ‖v‖2≤1

max
1≤i≤m

[ρ1− Y [Xw + b1]−Rv]i ≤ 0

}
= max

{
ρ : min
‖w‖1≤1, ‖v‖2≤1,b

max
u∈∆m

uT [ρ1− Y [Xw + b1]−Rv] ≤ 0

}
.

Assuming that the entries of y contain both 1 and −1 and setting ∆+
m = {u ∈ ∆m : yTu =

0}, we have min
b

max
u∈∆m

uT [ρ1−Y [Xw+ b1]−Rv] = max
u∈∆+

m

uT (ρ1−Y Xw−Rv). Hence, when

setting w = Jns, we come to

Opt = max

{
ρ : min

s∈∆2n,‖v‖2≤1
max
u∈∆+

m

uT [ρ1− Y XJns−Rv] ≤ 0

}
.

We see that (103) is equivalent to the GBSP problem given by

φρ(z1 = [z11 = s; z12 = v], z2 = u) = uT [ρ1− Y XJns−Rv],

Z1 = {[s; v] : s ∈ ∆2n, ‖v‖2 ≤ 1}, Z2 = ∆+
m.

Note that this problem clearly satisfies A.1− 2. Besides this,
√
mmaxi[xi]+ ≥ ‖[x]+‖2, so

that an ε-solution (ρε, z
ε
1 = [sε; vε]) to the GBSP problem induces the approximate solution

(ρε, w
ε = Jns

ε, bε) to (103) such that

ρε ≥ Opt & ‖[ρε1− Y [Xwε + bε1]]+‖2 ≤ R+
√
mρεε,

whence (ρε(1 −
√
mε), wε, bε) is a feasible solution to (103) with the value of the objective

≥ (1−
√
mε)Opt.
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Finally, we associate with z = [z11 = s; z12 = v; z2 = u] ∈ Z = Z1 × Z2 a distribution

Pz on Z = Z1 × Z2 defined as follows. To generate ζ = [ζ11; ζ12; ζ2] ∼ Pz, we pick at

random ı ∈ {1, ..., 2n}, with Prob{ı = i} = [z11]i, 1 ≤ i ≤ 2n, and set ζ11 = eı, ei

being the basic orths in R2n. We always set ζ12 = v. To generate ζ2, we act as follows.

Let I = {i : yi = 1}, J = {i : yi = −1}, and let p :=
∑

i∈I ui =
∑

j∈J uj (recall that∑
i yiui = 0, that is,

∑
i∈I ui =

∑
j∈J uj). Note that p ≤ 1/2 due to

∑m
j=1 uj ≤ 1. We

first flip a coin with probability 1 − 2p to get head; if head appears, we set ζ2 = 0. If tail

appears, we pick at random ı ∈ I with Prob{ı = i} = ui/p, i ∈ I, pick at random  ∈ J

with Prob{ = j} = uj/p, j ∈ J , and set ζ2 = 1
2 [eı + e], ei being the basic orths in Rm. It

is immediately seen that Pz satisfies [P], and that it takes just O(m+ n) a.o. to generate a

sample ζ ∼ Pz and to compute the vector F ρ(ζ).

4.3 Solving Bilinear Saddle Point Problem

We are about to present two randomized first order methods for solving BSPs and hence

will be utilized in solving GBSPs — the Stochastic Approximation (SA) and the Stochastic

Mirror Prox (SMP) algorithms, which are the randomized versions of the methods proposed

in [100] and [101] respectively. Both SA and SMP are directly applicable to a BSP problem,

and this is the situation we are about to consider here; the GBSP case will be considered

in Section 4.4.

4.3.1 The Setup

Both SA and SMP algorithms are aimed at solving a BSP problem (S). The setup for these

methods is given by

• a norm ‖ · ‖ on the Euclidean space E where the domain Z = Z1 × Z2 of (S) lives,

along with the conjugate norm ‖ζ‖∗ = max‖z‖≤1〈ζ, z〉;

• a distance-generating function (d.g.f.) ω(z) which is convex and continuous on Z,

admits continuous on the set Zo = {z ∈ Z : ∂ω(z) 6= ∅} selection ω′(z) of subgradient

(here ∂ω(x) is a subdifferential of ω
∣∣
Z

taken at z), and is strictly convex with modulus
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1 w.r.t. ‖ · ‖:

∀z′, z′′ ∈ Zo : 〈ω′(z′)− ω′(z′′), z′ − z′′〉 ≥ ‖z′ − z′′‖2.

We shall refer to the latter property as to compatibility of ω(·) and ‖ · ‖.

A d.g.f. ω gives rise to several important for us entities:

1. Bregman distance Vz(u) = ω(u)− ω(z)− 〈ω′(z), u− z〉, where z ∈ Zo and u ∈ Z;

2. Prox-mapping Proxz(ξ) = argminw∈Z {〈ξ, w〉+ Vz(w)} : E → Zo; here z ∈ Zo is a

“prox center;”

3. “ω-center” zω = argminz∈Z ω(z) ∈ Zo of Z and the quantities

Ω = max
z∈Z

Vzω(z) ≤ max
z∈Z

ω(z)−min
z∈Z

ω(z), Θ =
√

2Ω. (104)

In the sequel, we set

R := max
z∈Z
‖z − zω‖ ≤ Θ, (105)

where the concluding inequality follows from the fact that for every z ∈ Z one has 1
2‖z −

zω‖2 ≤ Vzω(z) by strong convexity of ω(·). We also denote by L the (‖ · ‖, ‖ · ‖∗)-Lipschitz

constant of F :

‖F (z)− F (z′)‖∗ = ‖A(z − z′)‖∗ ≤ L‖z − z′‖, ∀z, z′; (106)

and set

M∗ = max
z,z′∈Z

‖F (z)− F (z′)‖∗ ≤ 2RL ≤ 2ΘL, (107)

F∗ = max
z∈Z
‖F (z)‖∗ ≤ ‖a‖∗ +M∗ ≤ ‖a‖∗ + 2ΘL. (108)

4.3.2 The SA and SMP Algorithms

Assume we have access to an “oracle” O which, at i-th call (i = 1, 2, ...), returns a vector

ξi ∈ E (this vector can be random with distribution depending on previous calls and, more
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generally, on the history of our computational process before the call). This oracle gives

rise to two conceptual algorithms:

(a) : z1 = zω; {zt, ξt} 7→ {zt+1 = Proxzt(γtξt), ξt+1}, t = 1, 2, ...

(b) : z1 = zω; {zt, ξ2t−1} 7→ {wt = Proxzt(γtξ2t−1), ξ2t} 7→ {zt+1 = Proxzt(γtξ2t), ξ2t+1},

t = 1, 2, ...

(109)

here γ1, γ2, ... are positive stepsizes defined in a non-anticipative fashion, that is, γt depends

on oracle’s answers obtained prior to step t (i.e., γt depends solely on ξ1, ..., ξt−1 in the case

of (a), and solely on ξ1, ..., ξ2t−2 in the case of (b)). We refer to (109.a,b) as the Stochastic

Approximation (SA) and Stochastic Mirror Prox (SMP) schemes, respectively. We will

consider two implementations of these schemes, the basic and the advanced ones.

4.3.2.1 Basic implementation

Recall that we have associated with (S) the affine operator F (z) : Z → E given by (89),

and with every point z ∈ Z — a probability distribution Pz supported on Z satisfying

Eζ∼Pz{ζ} = z. Suppose that

• the stepsizes γt > 0 are chosen in a non-anticipating fashion such that γ1 ≥ γ2 ≥ ...;

• in SA: ζt is drawn at random from the distribution Pzt , and ξt = F (ζt);

• in SMP: ξ2t−1 = F (ηt) with ηt drawn at random from the distribution Pzt , and

ξ2t = F (ζt) with ζt drawn at random from the distribution Pwt .

The approximate solution generated by the short-step SA/SMP in course of t = 1, 2, ...

steps is

zt = t−1
t∑

τ=1

ζτ . (110)

4.3.2.2 Advanced implementation

In Advanced implementation of SA and SMP, same as in the Basic one, the stepsizes γt > 0

still are chosen in a non-anticipating fashion, but the restriction γ1 ≥ γ2 ≥ ... is now lifted.
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To explain how the oracle is built, observe that if u ∈ Z, then

Eζ∼Pu{〈F (ζ), ζ − u〉} = 0

(recall that F (z) = a + Az with skew symmetric A and that Eζ∼Pu{ζ} = u). It follows

that given u and generating one by one independent samples ηs ∼ Pu, s = 1, 2, ..., one with

probability 1 eventually generates ζ such that

〈F (ζ), ζ − u〉 ≤ 0. (111)

At step t of SA, in order to define ξt, the oracle draws one by one samples ηs ∼ Pzt ,

s = 1, 2, ..., until a sample ζt := ηs satisfying (111) with u = zt is generated; when it

happens, the oracle returns ξt = F (ζt). At a step t of SMP, the oracle is invoked twice, first

to generate ξ2t−1 = F (ηt), and then to generate ξ2t = F (ζt). ξ2t−1 is generated exactly as

in the basic implementation — by drawing a sample ηt ∼ Pzt and returning ξ2t−1 = F (ηt).

To generate ξ2t, the oracle draws one by one samples ηs ∼ Pwt , s = 1, 2, ..., until a sample

ζt = ηs satisfying (111) with u = wt is generated; when it happens, the oracle returns

ξ2t = F (ζt).

Finally, in the advanced implementation we replace the rule (110) for generating ap-

proximate solutions with the rule

zt =
1∑t

τ=1 γτ

t∑
τ=1

γτζτ . (112)

4.3.2.3 Quantifying quality of approximate solutions

Observe that by construction at a step τ both ζτ and F (ζτ ) become known. Recalling

that F is affine, it follows that after t steps we have at our disposal both the approximate

solution zt = [zt1; zt2] and the vector F (zt). As a result, with both Basic and Advanced

implementations of both SA and SMP, after t = 1, 2, ... steps we have at our disposal the

quantities

φ(zt1) = υ + 〈a1, z
t
1〉+ max

z2∈Z2

〈z2,−F2(zt1)〉, φ(zt2) = υ + 〈a2, z
t
2〉+ min

z1∈Z1

〈z1, F1(zt2)〉 (113)

(see (89)) and consequently we know the residual εsad(zt) = φ(zt) − φ(zt) of the current

approximate solution zt. As we shall see in Section 4.4, this feature of our algorithms
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becomes instrumental when solving GBSP problems.3 This is in sharp contrast with the

prototypes of the SA and the SMP proposed, respectively, in [102, Section 3.3] and [82].

The approximate solutions zt of those algorithms were computed according to the formula

(112), but with zτ [102] or wτ [82] in the role of ζτ . As a result, in the prototype algorithms

there is no computationally cheap way to quantify the quality of approximate solutions.

4.3.2.4 Efficiency estimates for basic implementation

The accuracy bounds for Basic SA and SMP algorithms are given by the following

Proposition 4.3.1 Let the BSP problem (S) be solved by the short-step SA or SMP algo-

rithm with positive stepsizes γ1 ≥ γ2 ≥ ... chosen in a non-anticipative fashion. Then

(i) For every t ≥ 1, for both SA and SMP one has

εsad(zt) ≤ t−1
[
γ−1
t Ω +Rt + St

]
, Rt :=

t∑
τ=1

rτ , St :=
t∑

τ=1

sτ , (114)

where

rt =

 〈F (ζt), ζt − zt〉 in the case of SA,

〈F (ζt), ζt − wt〉 in the case of SMP,

st =

 〈F (ζt), zt − zt+1〉 − γ−1
t Vzt(zt+1), in the case of SA,

〈F (ζt), wt − zt+1〉 − γ−1
t Vzt(zt+1), in the case of SMP.

We have

st ≤


γt
2 ‖F (ζt)‖2∗, in the case of SA,

γt
2 ‖F (ζt)− F (ηt)‖2∗ − 1

2γt
‖wt − zt‖2, in the case of SMP,

(115)

with

st ≤


γt
2 F

2
∗ , in the case of SA,

γt
2 M

2
∗ , in the case of SMP.

(116)

In particular, if the stepsizes γt > 0 satisfy St ≤ Ω/γt, t = 1, 2, ..., then

εsad(zt) ≤ 2Ω

tγt
+
Rt
t
. (117)

3Of course, computing the quantities in (113) is not completely costless; note, however, that the cost of
this computation is dominated by the cost of computing the prox-mapping(s) at a step and thus is a small
fraction of the overall computational effort.
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(ii) Further, E{Rt} = 0, and in the case of SMP, under additional assumption that

γt ≤ (
√

3L)−1, (118)

we have

st ≤
3γt
2

[
‖A(ζt − wt)‖2∗ + ‖A(ηt − zt)‖2∗

]
, (119)

so that E{st} ≤ 3γtσ
2, where

σ2 = sup
z∈Z

Eζ∼Pz
{
‖A(ζ − z)‖2∗

}
≤M2

∗ . (120)

In particular, if the stepsizes γt > 0 satisfy E{St} ≤ Ω/γt for t = 1, 2, ..., then

E{εsad(zt)} ≤ 2Ω

tγt
.

The bound of Proposition 4.3.1 allows to easily conceive stepsize policies. Let us start

with offline policies, where γt are chosen in advance deterministic reals. If the number of

steps N is fixed in advance, one can use constant stepsizes γ1 = ... = γN = γ. In particular,

when choosing

γ =


1
F∗

√
2Ω
N , in the case of SA (a)

min

{
1
σ

√
Ω

3N ,
1√
3L

}
, in the case of SMP (b)

(121)

(by (116), (108) this choice implies that E{St} ≤ Ω/γt, 1 ≤ t ≤ N), Proposition 4.3.1

implies the efficiency bound

E{εsad(zN )} ≤


F∗

√
2Ω
N , in the case of SA (a)

max

{
2σ
√

3Ω
N ,

2
√

3ΩL
N

}
, in the case of SMP (b)

(122)

When the number of steps is not fixed in advance, one can use the decreasing stepsizes

∀t ≥ 1, γt =


1
F∗

√
Ω
t , in the case of SA,

min

{
1
σ

√
Ω
6t ,

1√
3L

}
, in the case of SMP,

(123)

which result in the accuracy bound

∀t ≥ 1, E{εsad(zt)} ≤


2F∗

√
Ω
t , in the case of SA (a)

max

{
2σ
√

6Ω
t ,

2
√

3ΩL
t

}
, in the case of SMP (b)

(124)

completely similar to (122).
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4.3.2.5 Online stepsize policies

From theoretical viewpoint, the main advantage of the outlined versions of SA and SMP with

the “theoretically optimal” offline stepsize policies (121) and (123) are the explicit (and

in fact — the best known under circumstances) efficiency estimates (122), (124). While

they may appear attractive also from the practical viewpoint because of their apparent

simplicity, their use may present several disadvantages: the quantity σ involved in the

stepsize computation may not be available at hand and should be evaluated. Besides this,

these policies are offline and worst-case oriented; we would prefer more flexible on line

adjustable stepsizes.

A natural way to adjust the stepsizes online would be to choose at each step t ≥ 1 the

largest γt ≤ γt−1 ensuring the balance Ω/γt ≥ St, and thus the bound (117). This idea

cannot be implemented “as is,” since the stepsize policy should be non-anticipative, while

st is not yet available when γt is computed. This difficulty can be easily circumvented by

using instead of st its a priori upper bound, which is either γt
2 F∗ for the SA algorithm or

γt
2 M

2
∗ for the SMP, see (115). Specifically, consider the online policy of choosing γt, t ≥ 1

as follows:

Ωγ−2
t =

 2
∑t−1

τ=1 γ
−1
τ [sτ ]+ + F 2

∗ in the case of SA,

2
∑t−1

τ=1 γ
−1
τ [sτ ]+ + 8ΩL2 in the case of SMP,

(125)

where we set
∑0

τ=1 γ
−1
τ [sτ ]+ = 0. With this policy, one clearly has γ1 ≥ γ2 ≥ ....

Proposition 4.3.2 Let positive stepsizes γt, t = 1, 2, ... of the Basic SA/SMP implemen-

tation be chosen according to (125). Then the approximate solution zt satisfies

εsad(zt) ≤ (1 +
√

2)Ω

tγt
+
Rt
t
. (126)

As a consequence, we have

εsad(zt) ≤


(1+
√

2)
√

Ω
t

(
F 2
∗ +

∑t−1
τ=1 ‖F (ζτ )‖2∗

)1/2
+ Rt

t , in the case of SA (a)

(1+
√

2)
√

Ω
t

(
8ΩL2 +

∑t−1
τ=1 ςτ

)1/2
+ Rt

t

≤ 7ΩL
t + Rt

t + (1+
√

2)
√

Ω
t

√∑t−1
τ=1 ςτ , in the case of SMP (b)

(127)
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where

ςt = 3
[
‖F (ζt)− F (wt)‖2∗ + ‖F (ηt)− F (zt)‖2∗

]
. (128)

Recalling that E{Rt} = 0 and E{ςt} ≤ 6σ2 (see (120)), we arrive at

Corollary 4.3.1 Under the premise of Proposition 4.3.2, for the SMP algorithm one has

E{εsad(zt)} ≤ 7ΩL
t

+
6
√

Ωσ√
t
. (129)

Note that the bounds (127.a) and (129) within an absolute constant factor coincide with

the respective bounds in (124), that is, our online stepsizes policy (which, in contrast to

(123), does not require knowledge of σ) is not worse that the “theoretically optimal” stepsize

policies underlying (124).

4.3.2.6 Discussion

Since F∗ ≥ RL ≥ σ/2 (cf. (105)), the SA efficiency estimate (124.a) is at most within

an absolute constant factor better than the corresponding estimate for the SMP. Besides

this, the SMP bound (124.b) says that when the noise level σ of the oracle is small enough

(specifically, σ2 = O
(

ΩL2
N

)
), then E{εsad(zt)} ≤ O(1)ΩL

N , which, modulo expectation of the

residual instead of the residual itself, coincides with the best known so far efficiency estimate

of the deterministic first order algorithms solving bilinear saddle point problems. On the

other hand, we do have a possibility to make σ small. The trivial way to do so is to use

Pz = δz, which results in σ = 0 and makes SMP a version of the Deterministic Mirror Prox

algorithm (DMP) proposed in [101]. Another, more attractive, option to control σ is as

follows. Given the family of distributions Pz supported on Z and such that Eζ∼Pz{ζ} = z,

and a positive integer k, we can convert Pz into the family of distributions P
(k)
z with the same

property as follows: in order to generate a random vector ζ ∼ P
(k)
z and to compute F (ζ),

we draw a k-element sample ζ1, ..., ζk from the distribution Pz, compute F (ζ1), ..., F (ζk)

and then set ζ = 1
k

∑k
i=1 ζ

i, so that

F (ζ) =
1

k

k∑
i=1

F (ζi).
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If, as in the examples of Section 4.2, drawing ζi ∼ Pz and computing F (zi) is much cheaper

than computing F (z), the outlined procedure with a “reasonably large” value of k is still

significantly cheaper than the direct computation of F (z). At the same time, for “good

enough” norms ‖ · ‖∗, passing from Pz to P
(k)
z can significantly reduce the noise level σ.

Specifically, given a norm ‖·‖∗ on a finite-dimensional Euclidean space E, one can associate

with it its regularity parameter κ ≥ 1 (see Section 2.2, [77] for details) to ensure the

following: whenever k > 0 is an integer and ξ1, ..., ξk are independent vectors from E with

E{ξi} = 0 and E{‖ξi‖2∗} ≤ α2
i and α = max

i
αi, for ξ = 1

k

∑k
i=1 ξi it holds

E{‖ξ‖2∗} ≤ min

[
1

k
,
κ
k2

] k∑
i=1

α2
i ≤ min

[
1,

κ
k

]
α2.

Suppose now that when running SMP we sample ζt, ηt from the distributions P
(k)
z for

some k > 0. It follows that if ‖ · ‖∗ is κ-regular with certain κ, then, passing from Pz

to P+
z = P

(k)
z , we can reduce the “original” value of σ to the value σ+ = min[1,

√κ
k ]σ.

We shall see in a while that in the applications we have mentioned so far, κ is “small”

— at most logarithmic in dimZ. The bottom line is that there is a tradeoff between the

computational cost of a call to a stochastic oracle and the noise level σ. Consequently,

in the case of SMP, it is possible to tradeoff the computational effort per iteration and

the iteration count to obtain an approximate solution of the desired expected quality, and

we can use this tradeoff in order to save on the overall amount of computations. This

option (which is the major advantage of SMP as compared to SA) is especially attractive

when among the two components of our computational effort per iteration — one related

to computing ηt, ζt, F (ηt) F (ζt), and the other aimed at computing the prox mappings –

the second component is essentially more significant than the first one. In such a situation,

we basically can only gain by passing from Pz to P
(k)
z with k chosen to balance the outlined

two components of the computational effort.

4.3.2.7 Large deviations

In the above efficiency estimates, say, in (129), we upper-bounded the expected inaccuracy

of approximate solutions zt. In fact, one can get exponential upper bounds on probabilities
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of large deviations for the inaccuracy of the approximate solution. Though we do not need

such bounds to access the inaccuracy of solutions, they are still useful to provide theoretical

guarantees for the complexity of our algorithms (cf. Theorem 4.4.1 in the next section).

For the sake of definiteness, when presenting large deviation results, we restrict ourselves

to the SMP algorithm and the stepsize strategy (125). Note that one can easily derive a

deviation bound from the bound (129) on the expectation of εsad(zt) in the previous section.

Indeed, let us fix the number t of iterations, run the algorithm m times and select the best,

in terms of εsad(·), of the resulting approximate solutions. The probability that for this

solution εsad(·) is worse than, say, twice the right hand side of (129) is at most 2−m and

thus can be made negligibly small with quite moderate values of m.

We also have the following bound on the deviations of the algorithm without restarts:

Proposition 4.3.3 Assume we are solving problem (S) by Basic implementation of SMP

where ζt, ηt are sampled from the distributions P
(k)
z , k ≥ 1 being a parameter of the con-

struction. Assume also that the norm ‖·‖∗ is κ-regular, and the online stepsize policy (125)

is used. Then there are absolute constants K0, K1 such that the approximate solution zt

satisfies for all t ≥ 1 and λ, Λ ≥ 0

Prob

{
εsad(zt) ≥ K0

[
Θ2L
t

+
κ∗(k,Λ)Θ2L√

kt
+ Θ(‖a‖∗ + ΘL)

√
λ

kt

]}
≤ e−Λt + e−λ, (130)

where κ∗(k,Λ) =
√

min[k, (κ + Λ)]. In particular, one has for all ε > 0:

Prob{εsad(zN ) ≥ ε} ≤ e−ΛN + e−λ for N ≥ Nε, where

Nε = K1Ceil
(

max
[
Θ2Lε−1, κ2

∗(k,Λ)Θ4L2
kε2

, (‖a‖∗+ΘL)2Θ2λ
kε2

])
.

(131)

4.3.3 Efficiency Estimates for Advanced Implementations of SA and SMP

The efficiency of Advanced implementations of SA and SMP stem from the following result

(we use the notation from Section 4.3.1):

Proposition 4.3.4 Let the BSP problem (S) be solved by the advanced-step SA or SMP

algorithms. Then for every t ≥ 1, for both SA and SMP one has

εsad(zt) ≤ Γ−1
t [Ω +Rt + St] = Γ−1

t

[
Ω +

t∑
τ=1

rτ +
t∑

τ=1

sτ

]
, (132)
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where

Γt =
t∑

τ=1

γτ ,

rt =

 γt〈F (ζt), ζt − zt〉 in the case of SA

γt〈F (ζt), ζt − wt〉 in the case of SMP

st =

 [γt〈F (ζt), zt − zt+1〉 − Vzt(zt+1)] , in the case of SA

[γt〈F (ζt), wt − zt+1〉 − Vzt(zt+1)] , in the case of SMP

with rt ≤ 0 and

st ≤


γ2t
2 ‖F (ζt)‖2∗ ≤

γ2t
2 F

2
∗ , in the case of SA

γ2τ
2 ‖F (ζt)− F (ηt)‖2∗ − 1

2‖wt − zt‖
2 ≤ γ2t

2 M
2
∗ , in the case of SMP.

(133)

In order to extract from (132) explicit efficiency estimates, we need to specify a stepsize

policy. In this respect, the advanced implementations offer more freedom than the basic

ones, since now we should not ensure neither the martingale property of the random sums

Rt, nor the monotonicity of the stepsizes. One option here is to use constant stepsize policy

γt =

√
2Ω

N
·


1
F∗
, in the case of SA

1
M∗
, in the case of SMP

, 1 ≤ t ≤ N.

As it is easily seen, with this policy, (132) results in efficiency estimate (cf. (124))

∀t ≥ 1, E
{
εsad(zt)

}
≤ O(1)

 F∗

√
Ω
t , in the case of SA (a)

RL
√

Ω
t , in the case of SMP (b)

(134)

Our preliminary experiments, however, suggest to equip the advanced implementations of

SA and SMP with the online stepsize policy as follows. Let us set

δt =
Θ2

t
, S∗t =

t∑
τ=1

δτ [≤ Θ2(1 + ln t)] (135)

and let us choose γτ according to the “greedy” rule (the larger, the better) under the

restriction that for all t = 1, 2, ... it holds

Rt + St ≤ S∗t , (∗t)

see (132). Specifically, assume that we have already carried out t−1 steps of the algorithm

ensuring the relations (∗τ ), τ ≤ t− 1, and are about to define γt in order to carry out step
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t and to ensure (∗t). At this time, we know Rt−1 ≤ 0 and St−1, same as know for sure that

whatever be our choice of γt > 0, we would have

Rt −Rt−1 = rt ≤ 0, St − St−1 = st ≤ θγ2
t , θ =


F 2
∗
2 , in the case of SA

M2
∗

2 ≤ 2L2R2, in the case of SMP

(see (133)). Thus, we can be sure that St +Rt ≤ [St−1 +Rt−1] + θγ2
t , meaning that when

choosing

γt =
√

[S∗t − St−1 −Rt−1]/θ (136)

we guarantee the validity of (∗t) and the inequality γt ≥
√
δt/θ. This observation combined

with (132) and (∗N ) implies that

∀N ≥ 1 : εsad(zN ) ≤ Θ2/2 +RN + SN∑N
τ=1

√
δτ/θ

≤ O(1)Θ2(1 + lnN)∑t
τ=1

√
δτ/θ

≤ O(1)(1 + lnN) ·

 ΘF∗N
−1/2, in the case of SA,

ΘRLN−1/2, in the case of SMP.
(137)

Observe that (137) is, within the logarithmic in N factor O(1)(1 + lnN), the same as the

bound (134). In fact, we could somehow reduce this logarithmic gap by modifying s∗t , but

we do not think this is necessary; we may hope (and the experiments to be reported in

Section 4.5 fully support this hope) that “in reality” the rule (136) is much better than it

is stated by the above worst-case analysis. The rationale behind this hope is that while we

indeed are conservative when thinking how large could St − St−1 be, we account, to some

extent, for the “past conservatism:” when St−1 + Rt−1 is essentially less than S∗t−1, γt as

given by (136) is essentially larger than its lower bound used in the complexity analysis.

Finally, we remark that the major theoretical disadvantage of the efficiency estimate

(137) as compared to (124) is much more serious than an extra log-factor. While with the

basic implementation, in course of N steps the stochastic oracle is called O(1)N times, the

number of oracle calls in course of N steps of the advanced implementation is random and

can be much larger than O(1)N ; it is unclear why it should be O(1)N even on average.

Though for the time being we cannot support the empirical evidence by a solid theoretical

complexity analysis, in our experiments the advanced implementation by far outperformed

its basic counterpart.
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4.3.4 The Favorable Geometry Case

We are about to present the “favorable geometry” case where we can point out the setup for

SA/SMP which results in (nearly) dimension-independent efficiency estimates. Specifically,

assume that

[G.1] The domain Z of (S) is a subset of the direct product Z+ = B1 × .... × Bp+q of

r = p+ q “standard blocks” as follows:

• for 1 ≤ i ≤ p, Bi is the unit Euclidean ball in Fi = Rni ;

• for 1 ≤ j ≤ q, Bp+j is a subset of the space Fp+j of np+j ×np+j (np+j > 1) symmetric

block-diagonal matrices of a given block-diagonal structure and is the spectahedron

of Fp+j , that is, the set of all positive semidefinite matrices from Fp+j with unit trace.

In particular, Bp+j can be the standard simplex {x ∈ Rk+ :
∑

` x` = 1} (since the

space of diagonal k × k matrices can be naturally identified with Rk).

We equip Fi = Rni , i ≤ p, with the standard Euclidean structure and the associated

Euclidean norm ‖ · ‖(i), and Fp+j – with the Frobenius Euclidean structure and the trace-

norm (the sum of singular values of a matrix) ‖ · ‖(p+j). In particular, the embedding space

E = F1×...×Fr of Z+ becomes equipped with the direct product of the indicated Euclidean

structures. Note that the norm ‖ · ‖(i,∗) conjugate to ‖ · ‖(i) is either the norm ‖ · ‖(i) itself

(this is so when i ≤ p), or is the standard matrix norm (maximal singular value of a matrix)

(this is so when i > p). We denote a vector form on E as x = [x1; ...;xr], where x` is the

F`-component of x.

G.2. The decomposition Z = Z1 × Z2 ⊂ E1 × E2 is compatible with the decomposition

Z = B1 × ... × Br, that is, E1 is the direct product of some of F`, 1 ≤ ` ≤ p + q, and E2

is the direct product of the remaining F`. Besides this, we assume that Z intersects the

relative interior of Z+.

We refer to this case as to the one of favorable geometry and associate with this case

the setup for SA and SMP as follows (cf. [101, Section 5]):
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• The skew-symmetric linear mapping A (see (89)) can be written down as

A[x1; ...;xr] = [

r∑
j=1

A1jxj ; ...;

r∑
j=1

Arjxj ],

where Aij is a linear mapping from Fj to Fi and [Aij ]∗ = −Aji. We denote by Lij an

a priori upper bound on L∗ij := max
xj

{
‖Aijxj‖(i,∗) : ‖xj‖(j) ≤ 1

}
such that Lij = Lji.

4

• Further, we set

ωi(xi) = 1
2x

T
i xi : Bi → R, Ωi = 1

2 , 1 ≤ i ≤ p

ωp+j(xp+j) = 2
∑np+j

`=1 λ`(xp+j) ln(λ`(xp+j)) : Bp+j → R, Ωp+j = 2 ln(nj), 1 ≤ j ≤ q

where λ`(u) are the eigenvalues of a symmetric matrix u taken with their multiplicities.

It is known that ω`(·) is a d.g.f. for B` compatible with the norm ‖ · ‖`, 1 ≤ ` ≤ r.

• Finally, we define the norm ‖ · ‖ on E and the d.g.f. ω(·) for Z according to

µ` =
1

Ω`

∑r
j=1 L`j

√
Ω`Ωj∑r

i,j=1 Lij
√

ΩiΩj

, ‖[x1; ...;xr]‖ =

√√√√ r∑
`=1

µ`‖x`‖2(`), ω(x) =

r∑
`=1

µ`ω`(x`),

(138)

which results in

Ω ≤ 1, R ≤ Θ ≤
√

2, L =
r∑

i,j=1

Lij
√

ΩiΩj , (139)

see [101, Section 5].

Remark 4.3.1 From the results of [77] it follows that the norm ‖ξ‖∗ =
√∑r

`=1 µ
−1
` ‖ξ`‖2(i,∗)

is κ-regular (see discussion in Section 4.3.2.4) with nearly dimension-independent κ, namely,

κ = 3 max
1≤j≤q

ln(np+j).

Note that the applications presented in Sections 4.2.2.2 and 4.2.2.3 are of favorable geome-

try; the same is true for the low dimension approximation problem of Section 4.2.1.3 after

passing from the variable Q to the variable R = d−1Q.

4The latter restriction is natural, since L∗ij = L∗ji due to [Aij ]∗ = −Aji.
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4.4 Solving the Generalized Bilinear Saddle Point Problem

Here we explain how a GBSP problem (95) – (96) can be reduced to a “small series” of BSP

problems; the strategy to follow originates from [84]. From now on we assume, in addition

to A.1-2, that we have an a priori upper bound ρ̄ on the optimal value ρ∗ of (96). For

example, it is immediately seen that when finding an ε-solution to `1-minimization problem

with `p-fit (Section 4.2.2.2) in the only nontrivial case ‖b‖p > δ relation (99) implies that

ρ̄ :=
‖A‖1→p
‖b‖p − δ

≥ ρ∗ :=
1

Opt
, ‖A‖1→p = max

j
‖Aj‖p, (140)

where A1, ..., An are the columns of A. In particular, when finding an ε-solution to `1-

minimization problem with the uniform fit in the only nontrivial case ‖b‖∞ > δ we have

ρ̄ :=
‖A‖1→∞
‖b‖∞ − δ

≥ ρ∗ :=
1

Opt
, ‖A‖1→∞ = max

i,j
|Aij |; (141)

.

For the sake of definiteness, we assume that we are in the Favorable Geometry case,

and that the decomposition Z = Z11 × Z12 × Z2 ⊂ E, see (97), is compatible with the

decomposition E = F1 × ... × Fr, that is, the embedding spaces of Z11, Z12 and Z2 are

products of some of F`’s. To save space, we restrict ourselves with the SMP algorithm;

modifications in the case of SA are straightforward.

The algorithm solves the problem of interest (96) by applying to SV(·) a Newton-type

root finding routine, with (approximate) first order information on SV at a point ρ given by

SMP as applied to the saddle point problem specifying SV(ρ). Specifically, the algorithm

works stage by stage. At a stage s, we have at our disposal an upper bound ρs on ρ∗ and

a piecewise linear function `s−1(ρ) which underestimates SV(·):

SV(ρ) ≥ `s−1(ρ) ∀ρ ≥ 0.

here ρ1 = ρ̄, `0 ≡ −∞. At a stage, we apply SMP to the BSP problem

SV(ρs) = min
z1∈Z1

max
z2∈Z2

φρs(z1, z2) (Ss)

namely, act as follows.
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A. We start stage s with building the setup for SMP as explained in Section 4.3.4. The

affine operator associated with (Ss) is

F ρs(z1 = [z11; z12], z2) = Φ(z1, z2) + ρsΨ(z1, z2)

= [[a11 +B∗z2; ρs(a12 + C∗z2)] ;−b−Bz11 − ρs(c+ Cz12)] ,

see (95), (97). In matrixA = As of the linear part of F ρs , some blocks Aij are independent of

ρs, while the remaining blocks are proportional to ρs. Consequently, the Lipschitz constant

of F ρs as given by (139) is

L = L(ρs) =M+ ρsN , M, N ≥ 0. (142)

An analogous decomposition holds for vector a = as:

‖a‖∗ = µ+ ρsν, µ, ν ≥ 0.

B. We apply to (Ss) either the basic, or the advanced implementation of the SMP. When

running the basic SMP, we use the distributions P
(k)
z , see Section 4.3.2.4 (here k ≥ 1 is

a parameter of the construction) and use the online stepsize policy (125), where we set

L = M + ρsN and Ω = 1 (see (139)). When (Ss) is solved by the advanced SMP, we use

the online stepsize policy (135) – (136), with Θ =
√

2 in (135).

B.1. Let zti = [zti1 , z
ti
2 ] be the approximate solution to (Ss) generated after t steps of stage

s; recall that along with this solution, we have at our disposal the quantities

φ
ts

= maxz2∈Z2 φ
ρs(zts1 , z2) = υ + 〈a11, z

ts
11〉+ ρs[χ+ 〈a12, z

ts
12〉]

+ minz2∈Z2〈z2, b+ ρsc+Bzts11 + ρCzts12〉,

φts = minz1∈Z1 φ
ρs(z1, z

ts
2 ) =

pts︷ ︸︸ ︷
υ + 〈b, zts2 〉+ minz11∈Z11〈a11 +B∗zts2 , z11〉

+ρs

qts︷ ︸︸ ︷[
κ+ 〈c, zts2 〉+ minz12∈Z12〈a12 + C∗zts2 , z12〉

]
(143)

(cf. (113) and see (95), (97)). We set

uts = min
τ≤t

φ
τs
, `ts = max

τ≤t
φτs, `ts(ρ) = max[`s−1(ρ), max

1≤τ≤t
[pτs + qτsρ]].

Note that uts is a nonincreasing in t upper bound on SV(ρs), `
ts is a nondecreasing in t lower

bound on SV(ρs), and `ts(ρ) underestimates SV(ρ) for all ρ ≥ 0. In addition, `ts(ρs) ≥ `ts.
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ρ4

Figure 1: Illustration of the algorithm for solving GBSPP

Note also that after t steps we have at our disposal vectors wts1 ∈ Z1, wts2 ∈ Z2 such that

max
z2∈Z2

φρs(wts1 , z2) = uts ≤ φts, min
z1∈Z1

φρs(z1, w
ts
2 ) = `ts ≥ φts,

meaning that wts = [wts1 ;wts2 ] is a feasible solution to (Ss) and εsad(wts) = uts − `ts ≤

φ
ts − φts = εsad(zts).

B.2. We proceed with solving (Ss) until one of the following two situations occurs:

A) We get uts ≤ ερs. In this case we terminate with the claim that ρs, w
ts
1 is the desired

ε-solution to (95) – (96).

B) We get `ts ≥ 3
4u

ts. When it happens, we set

ρs+1 = max {ρ : `ts(ρ) ≤ 0} , `s(·) ≡ `ts(·) (144)

and pass to the stage s+ 1. An illustration of this algorithm is given in Figure 1.

Theorem 4.4.1 When solving a Generalized Bilinear Saddle Point problem (95) – (96) by

the outlined algorithm:

(i) The algorithm terminates in finite time with probability 1, and the resulting solution

is an ε-solution, as defined in Section 4.2.2, to the GBSP problem in question;

(ii) The number of stages does not exceed the quantity O(1) ln
(
‖φ‖∞+ρ̄‖ψ‖∞

ερ∗
+ 2
)

, where

‖φ‖∞ = maxz∈Z |φ(z)|, ‖ψ‖∞ = maxz∈Z |ψ(z)|, see (95).

119



(iii) The (random) number Ns of steps at every stage s of the basic implementation

satisfies for all ε > 0 the relation

Prob{Ns ≥ N(ε)} ≤ e−ΛN(ε) + eλ,

where

N(ε) = O(1)Ceil

[
M+ ρ∗N

ερ∗
+

κ∗(k,Λ)2

k

(
M+ ρ∗N

ερ∗

)2

+
λ

k

(
µ+ ρ∗ν

ερ∗

)2
]
. (145)

The number of steps at every stage of the advanced implementation of the algorithm does

not exceed

Nadv(ε) = O(1)

[
M+ ρ∗N + 2ερ∗

ερ∗
ln

(
M+ ρ∗N + 2ερ∗

ερ∗

)]2

. (146)

For proof, see Section 4.6.4.

In the case of `1-minimization problems with uniform- and `2-fits, Theorem 4.4.1 as

applied to the basic implementation of SMP with k = 1, initialized according to (141),

resp., (140), after completely straightforward computations implies the complexity bounds

stated in Proposition 4.1.1. The preprocessing mentioned in item (ii) of Proposition is as

follows: we choose an m × m orthogonal matrix U with moduli of entries not exceeding

O(1)/
√
m and such that multiplication of a vector by U takes O(m lnm) operations (e.g.,

U can be the matrix of the Cosine Transform). We then draw at random a ±1 vector ξ

from the uniform distribution on the vertices of the unit m-dimensional box and pass from

the data [A, b] to the data

[A′ = UDiag{ξ}A, b′ = UDiag{ξ}b],

thus obtaining an equivalent reformulation of the problem of interest. Note that this pre-

processing costs O(1)mn ln(m) operations. We clearly have ‖A′‖1→2 = ‖A‖1→2. Applying

the Hoeffding inequality, it is immediately seen that with probability ≥ 1 − χ one has

‖A′‖1→∞ < O(1)
√

ln(mn/χ)m−1/2‖A‖1→2, that is, Γ(A′) ≤ O(1)
√

ln(mn/χ), as stated in

Proposition 4.1.1.
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4.5 Numerical Results

Below we report on a series of numerical experiments aimed at comparing the performances

of the Stochastic Mirror Prox algorithm SMP (in its advanced implementation) and its

prototype — Deterministic Mirror Prox algorithm (DMP) proposed in [101]5. The algo-

rithms were tested on the GBSP problems of `1-minimization with uniform and `2-fits,

see Section 4.2.2.2. The MATLAB 7.10.0 implementation of the algorithms was executed

on an eight-core machine with two quad-core Intel Xeon E5345 CPU@2.33GHz, 8 MB L2

cache per quad-core chip and 12GB FB-DIMM total RAM (the computations were running

single-core and single-threaded).

Test problems we use are of the compressive sensing origin. Specifically, given the sizes

m,n of a test problem, we picked at random an m × n matrix B with i.i.d. entries taking

values ±1 with probabilities 0.5, and a sparse (with Ceil(
√
m) nonzero entries) “true signal”

x∗ normalized to have ‖x∗‖1 = 1, thus giving rise to the test problem

Optp = min
x
{‖x‖1 : ‖Ax− y‖p ≤ δ} , A = m−1/pB, y = Ax∗ + ξ (Pp)

where p = ∞ (uniform fit) or p = 2 (`2-fit). The “observation noise” ξ was chosen at

random and then normalized to have ‖ξ‖p = δ. Our goal is to solve (Pp) within accuracy

ε, i.e., to find xε satisfying ‖xε‖1 ≤ Optp and ‖Axε − y‖p ≤ δ + ε. In all our experiments,

δ = 0.005 and ε = 0.0025 were used.

Implementation of the algorithms. The GBSP reformulations of problems (Pp) were

solved by SMP (in advanced implementation) and DMP according to the scheme presented

in Section 4.4. In the case p = ∞ of uniform fit, both SMP and DMP used the GBSP

problem reformulation given by (102). In the case p = 2 of `2-fit, SMP used the GBSP

reformulation (101), while DMP was applied to the GBSP problem stemming directly from

(100) with p = 2, namely, given by

φρ(z1, z2) = zT2 (AJnz1 − ρb)− ρδ, Z1 = Z11 = ∆2n, Z2 = {‖z2‖2 ≤ 1}. (147)

5DMP is nothing but SMP with precise information (i.e., Pz is the unit mass sitting at z) and on-line
stepsize policy described in [101, Section 6].
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The rationale here is that the GBSP given by (147) “by itself” is easier than the GBSP

given by (101): an ε-solution to the latter problem induces straightforwardly an ε-solution

to the former one, but not vice versa. As a compensation, the problem (101), in contrast

to (147), is better suited for randomization6. The latter fact, which is crucial for SMP, is

irrelevant for DMP, this is why we apply this algorithm to the GBSP given by (147). In

order to make a fair comparison, when running SMP for `2-fit, we terminate the run based

on the `2-residual of the solution.

When implementing SMP, we utilized the option, discussed in Section 4.3.2.4, of building

an estimate F (ζ) of F (z) by generating k samples ζ` ∼ Pz, ` = 1, ..., k, and setting ζ =

1
k

∑k
`=1 ζ

`. The “multiplicity” k was set to 40 for small instances and 100 for large (those

with at least 108 nonzeros in A) instances.

In our implementations, we have tested different policies for choosing the starting point

at each stage and different choices of the distance generating function (d.g.f.) for the sim-

plexes. Specifically, along with the entropy d.g.f. discussed in Section 4.3.4, we tested the

power d.g.f. ω(x) = e
κ(1+κ)

∑n
i=1 x

1+κ
i : {x ∈ Rn+ :

∑
i xi ≤ 1} → R, with κ = 1

ln(n) ; the

theoretical complexity bounds associated with this choice of d.-g.f. coincide, within absolute

constant factors, with those for the entropy. The detailed results comparing the effects of

these policies on the performance are provided in Tables 13 and 14 in Section 4.7. The best

policies we ended up with are as follows:

— for SMP: entropy d.-g.f., restarts from the ω-center of Z (“C00E” implementation);

— for DMP, in the case of uniform fit: power d.-g.f., restarts from the convex combination

of the best (with the smallest εsad) point found so far and the ω-center of Z, the weights

being 0.75 and 0.25, respectively (”B75P” implementation);

— for DMP, in the case of `2-fit: power d.-g.f., restarts from the convex combination of the

last search point of the previous stage and the ω-center of Z, the weights being 0.25 and

6Indeed, in the second problem all nontrivial matrix-vector multiplications required to compute F ρ(z)
are multiplications of vectors from the `1-balls by A and AT ; since a vector from `1-ball is the expectation
of an extremely sparse (just one nonzero entry) random vector taking values in the same ball, the required
matrix-vector multiplications admit cheap randomized versions. In the first problem, some of the required
matrix-vector multiplications involve vectors from the ‖ · ‖2-ball, and such a vector typically cannot be
represented as the expectation of a sparse random vector taking values in the ball.
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0.75, respectively (”L25P” implementation).

The results, I. In order to avoid too time-consuming experimentation, we primarily dealt

with “moderate size” test problems. These problems were split into four groups according

to the total number of nonzeros in A (2 · 106, 8 · 106, 32 · 106, 128 · 106). Every group was

further split into two subgroups according to the ratio n : m (8 and 2). For every one of the

resulting pairs (m,n), we generated 5 instances of problem (P2) and 5 instances of problem

(P∞) and solved them by DMP and SMP. Thus, the methods were compared on totally 70

problems split into 14 series of 5 experiments each, with common for all experiments of a

series sizes m,n and the value of p. The results are presented in Tables 10 (uniform fit)

and 11 (`2-fit). For every series of 5 experiments, we present the corresponding minimal,

maximal and average values of several performance characteristics, specifically

• CPU — the CPU time (sec) of the entire computation

• Calls — the total number of computations of the values of F

• FCalls — the equivalent number of calls to the deterministic oracle for the randomized

algorithm. This quantity is defined as follows. For DMP, computing a value of F at a

point reduces to a pair of matrix-vector multiplications, one involving A and the other

one involving AT ; the cost of this computation is 2mn operations. For SMP invoked with

multiplicity k (see above), the computation of (an unbiased estimate of) F (z) requires

multiplying one vector with ≤ k nonzero entries by A, and another vector with ≤ k nonzero

entries by AT , the total cost of these two computations being k(m+n) operations. Thus, the

“deterministic equivalent” of the randomized computation of F used by SMP is k(m+n)
2mn . The

quantity FCalls is the induced by this definition deterministic equivalent of all randomized

computations of F in a run of the SMP.

The data in Tables 10, 11 and their summaries provided in Figures 2-7 suggest the

following interpretations:

1. As the sizes of instances grow, the randomized algorithm eventually outperforms its

deterministic counterpart in terms of the CPU time, and the corresponding “savings”

grow with the size m × n of the instance, and for instances of a given size – grow as

123



the ratio n/m decreases. Both phenomena are quite natural: the larger is mn and the

smaller is n/m ≥ 1 for a given mn, the smaller is the deterministic equivalent km+n
2mn

of a randomized computation of F .

2. Even for our “not too large” test problems, the savings stemming from randomization

can be quite significant: for the 8000 × 16000 instances, SMP is, at average, nearly

4.6 times faster than the best version of DMP for problems with uniform fit and 2.1

times faster than DMP for problems with `2-fit.

When interpreting the CPU time data one should keep in mind that oracle calls of

DMP make use of very efficient MATLAB implementation of matrix-vector multipli-

cation, while SMP relies upon much less efficient (with respect to, e.g., C language)

implementation of long DO loops.

3. The advantages, if any, of SMP as compared to DMP are more significant in the

case of uniform fit than in the case of `2-fit. This phenomenon is quite natural: as

we have already explained, in the case of `2-fit the methods are applied to different

GBSP reformulations of (P2), and the reformulation DMP works with is easier than

the one processed by SMP.

The results, II. In order to get impression of what happens when the matrix A in (Pp)

is too large to be stored in RAM, we carried out two experiments where the goal was to

solve the `1-minimization problem with uniform and with `2 fits and fully dense (m =

32000) × (n = 64000) matrix A given by a simple analytical expression. This expression

allows to compute a column/a row of A with a given index in O(m), respectively, O(n)

operations. Matrix A = Ap was normalized to have ‖A‖1→p = 1. While the sizes of A make

it impossible to store the matrix in the RAM of the computer we used for the experiments,

we still can multiply vectors by A and AT by computing all necessary columns and rows,

and thus can run DMP and SMP. In our related experiments, we generated at random a

sparse (64 nonzeros) “true” signal x∗ ∈ R64000 with ‖x∗‖1 = 1, computed y = Ax + ξ,

ξ, ‖ξ‖p = δ = 0.005, being observation noise, and ran DMP and SMP in order to find
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an ε-solution xε, ε = 0.0025, to the resulting problem (Pp); in particular, we should have

‖xε‖1 ≤ ‖x∗‖1 = 1 and ‖Axε − b‖ ≤ δ + ε = 0.0075. In every experiment, each of the

methods was allowed to run at most 7,200 sec. The results are as follows.

• In the allowed 7,200 sec, the deterministic algorithms on every one of the two test

problems (p = 2 and p =∞) was able to carry out just about 30 steps with the total

of about 67 computations of F (·); this is by far not enough to get meaningful results,

see Table 12. In contrast to this, the numbers of steps and randomized computations

of F carried out by the randomized algorithm in the same 7,200 sec was in the range

of tens of thousands, which was enough to fully achieve the required accuracy for both

p =∞ and p = 2.

• While the quality of approximation of x∗ by the solution yielded by DMP is basically

non-existing, the SMP produced fairy reasonable approximations of x∗, see Table 12

and Figure 8.

In our opinion, the preliminary numerical results we have reported suggest that “acceleration

via randomization” possesses a significant practical potential when solving extremely large-

scale convex programs of appropriate structure.

4.6 Proofs of Chapter 4

4.6.1 Low Dimensional Approximation

We use the notations of Section 4.2.1.3.

Lemma 4.6.1 Let Q∗ be an optimal solution to (92), λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues

of Q∗, e1, ..., en be the corresponding eigenvectors of Q∗, and E = Lin(e1, ..., ed). Then for

any v ∈ V , dist(v,E) ≤ δ∗
√
d+ 1 (here dist(x,E) stands for the Euclidean distance from v

to E).

7Percents given in the table represent ‖x̂− x∗‖/‖x∗‖ for the corresponding norms ‖ · ‖.
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Table 10: Numerical Results for `1-minimization with ‖ · ‖∞-fit

DMP SMP

Sizes Calls CPU Calls FCalls CPU Calls,DMP
FCalls,SMP

CPU,DMP
CPU,SMP

500 x 4000 Mean (C00E) 2661.6 106.6 10511.0 236.5 57.2 11.89 1.98
Min (C00E) 1683.0 50.0 8159.0 183.6 34.0 6.91 1.16
Max (C00E) 4395.0 179.4 11783.0 265.1 83.4 23.94 4.14
Mean (B25P) 1453.4 104.1 6.15 1.89

1000 x 2000 Mean (C00E) 1830.8 64.0 10568.8 158.5 42.9 11.69 1.54
Min (C00E) 1344.0 41.0 8434.0 126.5 28.8 7.82 1.02
Max (C00E) 2507.0 91.5 11576.0 173.6 70.4 15.83 2.02
Mean (B25P) 1530.6 97.9 9.64 2.48

1000 x 8000 Mean (C00E) 2338.0 227.9 12406.6 139.6 113.2 16.68 1.99
Min (C00E) 1453.0 119.4 11579.0 130.3 88.2 11.15 1.27
Max (C00E) 2739.0 370.2 13895.0 156.3 168.9 18.99 2.39
Mean (B25P) 1545.6 248.9 11.08 2.30

2000 x 8000 Mean (C00E) 2691.6 227.6 12922.8 96.9 74.5 27.93 3.10
Min (C00E) 1132.0 97.7 10934.0 82.0 56.6 12.24 1.37
Max (C00E) 3355.0 313.1 15632.0 117.2 88.8 35.46 4.25
Mean (B25P) 1426.4 207.8 14.74 2.84

2000 x 16000 Mean (C00E) 2384.6 494.2 13174.8 74.1 184.9 32.30 2.68
Min (C00E) 2288.0 486.3 11735.0 66.0 174.4 29.78 2.53
Max (C00E) 2491.0 505.5 14729.0 82.9 195.3 34.66 2.84
Mean (B25P) 1575.2 533.7 21.41 2.89

4000 x 8000 Mean (C00E) 2923.6 798.7 19750.2 74.1 228.4 39.42 3.30
Min (C00E) 2032.0 407.6 17262.0 64.7 159.0 28.86 2.34
Max (C00E) 3895.0 1539.7 22945.0 86.0 343.1 48.61 4.49
Mean (B25P) 1554.6 576.2 21.12 2.63

4000 x 32000 Mean (C00E) 2482.8 2054.3 11973.2 84.2 515.8 29.47 3.98
Min (C00E) 1826.0 1448.9 11331.0 79.7 499.9 22.39 2.90
Max (C00E) 3479.0 2904.2 12715.0 89.4 525.0 42.65 5.70
Mean (B25P) 1604.8 1736.3 19.19 3.36

8000 x 16000 Mean (C00E) 2680.4 2227.7 12474.6 58.5 375.0 45.78 5.92
Min (C00E) 2297.0 1890.1 11493.0 53.9 341.9 41.12 5.44
Max (C00E) 3177.0 2609.0 13759.0 64.5 408.8 49.26 6.48
Mean (B25P) 1615.8 1752.7 12474.6 58.5 375.0 27.57 4.63
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Table 11: Numerical Results for `1-minimization with ‖ · ‖2-fit

DMP SMP

Sizes Calls CPU Calls FCalls CPU Calls,DMP
FCalls,SMP

CPU,DMP
CPU,SMP

500 x 4000 Mean (C00E) 579.8 21.0 4771.6 106.7 24.6 5.91 0.93
Min (C00E) 410.0 14.5 3412.0 76.3 16.9 3.18 0.49
Max (C00E) 722.0 40.3 6868.0 153.5 36.0 8.40 1.94
Mean (L75P) 287.8 16.1 2.95 0.70

1000 x 2000 Mean (C00E) 553.0 19.0 3910.8 54.8 13.6 10.73 1.47
Min (C00E) 463.0 9.1 3315.0 46.4 11.5 5.68 0.52
Max (C00E) 664.0 30.1 5890.0 82.5 17.4 13.56 2.34
Mean (L75P) 282.4 14.1 5.44 1.07

1000 x 8000 Mean (C00E) 617.0 56.6 5148.8 57.5 50.7 11.25 1.17
Min (C00E) 486.0 34.7 3745.0 41.9 36.1 7.68 0.74
Max (C00E) 794.0 87.1 6050.0 67.6 64.8 18.35 1.93
Mean (L75P) 318.8 40.9 5.84 0.86

2000 x 8000 Mean (C00E) 634.8 39.8 5853.6 41.0 47.2 15.94 0.86
Min (C00E) 487.0 30.0 3926.0 27.5 33.1 11.17 0.59
Max (C00E) 796.0 51.0 6869.0 48.1 54.0 20.49 1.12
Mean (L75P) 318.8 25.9 8.05 0.58

2000 x 16000 Mean (C00E) 531.8 150.7 5055.6 28.3 90.0 19.88 1.80
Min (C00E) 438.0 108.3 3947.0 22.1 60.2 11.64 0.87
Max (C00E) 608.0 180.3 6736.0 37.6 125.1 24.80 2.49
Mean (L75P) 346.0 110.6 12.74 1.28

4000 x 8000 Mean (C00E) 675.2 138.5 6504.6 22.8 101.7 29.71 1.36
Min (C00E) 531.0 99.1 5868.0 20.5 83.3 22.71 0.99
Max (C00E) 810.0 193.6 7143.0 25.0 113.9 34.52 1.70
Mean (L75P) 346.4 86.3 15.21 0.85

4000 x 32000 Mean (C00E) 672.2 486.0 5613.4 39.2 287.2 17.66 1.74
Min (C00E) 506.0 382.5 3418.0 23.9 197.2 12.08 1.26
Max (C00E) 817.0 579.1 6611.0 46.2 336.4 22.57 2.15
Mean (L75P) 355.4 311.6 9.39 1.12

8000 x 16000 Mean (C00E) 592.4 591.4 5815.0 25.4 177.6 24.15 3.51
Min (C00E) 509.0 472.4 3765.0 16.5 117.3 16.56 2.36
Max (C00E) 696.0 798.1 7038.0 30.8 214.1 30.90 5.06
Mean (L75P) 329.8 360.2 13.38 2.10

Table 12: Experiments with dense 32, 000× 64, 000 matrices A

CPU
Method p Steps Calls FCalls (sec) ‖Ax̂− b‖p ‖x̂− x∗‖17 ‖x̂− x∗‖2 ‖x̂− x∗‖∞

DMP (C00E) ∞ 30 71 71 7564 0.16018 1.406 (141%) 0.143 (89%) 0.041 (79%)
DMP (B25P) ∞ 31 67 67 7363 0.15975 1.361 (136%) 0.136 (85%) 0.035 (69%)
SMP (C00E) ∞ 7501 22141 25.9 5352 0.00744 0.048 (5%) 0.005 (3%) 0.002 (4%)

DMP (C00E) 2 29 67 67 7471 0.03653 1.455 (146%) 0.135 (84%) 0.035 (68%)
DMP (L75P) 2 30 67 67 7536 0.02480 0.976 (98%) 0.093 (58%) 0.022 (42%)
SMP (C00E) 2 2602 7749 8.5 2350 0.00715 0.264 (26%) 0.021 (13%) 0.004 (7%)
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Figure 2: Number of oracle calls comparison for `∞-fit
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Figure 3: Number of equivalent oracle calls comparison for `∞-fit
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Figure 4: CPU time comparison for `∞-fit
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Proof. Note that 0 ≤ λj ≤ 1 and
∑

j λj = d, so that λj ≤ d
d+1 when j ≥ d+ 1. Denoting

by yj(x) the coordinates of x in the eigenbasis {ej}, we have

dist2(v,E) = 1−
∑d

j=1 y
2
j (v) ≤ 1−

∑d
j=1 λjy

2
j (v) [since λj ≤ 1]

≤ 1−
∑n

j=1 λjy
2
j (v) + λd+1

∑n
j=d+1 y

2
j (v) = 1− vTQv + λd+1dist2(v,E)

⇒ (1− λd+1)dist2(v,E) ≤ 1− vTQv ≤ 1−Opt ≤ 1−Opt∗ = δ2
∗

⇒ dist2(v,E) ≤ (d+ 1)δ2
∗ [since λd+1 ≤ d

d+1 ],

as claimed. �

Representing a vector from ∆n,d as a convex combination of extreme points.

The case of d = n is trivial, thus, let d < n. Let

q ∈ ∆n,d =

{
q ∈ Rn+ : 0 ≤ qi ≤ 1∀i,

n∑
i=1

qi = d

}
.

To represent q as a convex combination of n extreme points of ∆n,d we act as follows:

• Initialization: We set p0 = [1; q], µ0 = 1. Note that p0 ∈ ∆ = {p = [1; p1; ...; pn] ∈

∆n+1,d+1}.

• Step t = 1, 2, ...: Given pt−1 = [1; pt−1
1 ; ...; pt−1

n ] ∈ ∆, we find the d+ 1 largest among

the entries pt−1
i , i = 1, ..., n, let their indexes be i1, ..., id+1, where pt−1

i1
≥ pt−1

i2
≥ ... ≥

pt−1
id+1

.

a) It may happen that pt−1
i`

= 1 for 1 ≤ ` ≤ d; since pt−1 ∈ ∆, rt := pt−1 is a Boolean

vector with exactly d + 1 entries equal to 1, and qt = [pt−1
1 ; ...; pt−1

n ] is an extreme

point of ∆n,d. We set νt = 1, pt = 0 and terminate.

b) When not all pt−1
i`

, 1 ≤ ` ≤ d, are equal to 1, we set νt = min[1−pt−1
id+1

, pt−1
id

], define

rt as Boolean (n+ 1)-dimensional vector with d+ 1 entries equal to 1, the indexes of

the entries being 0, i1, ..., id, set pt = [pt−1 − νtrt]/(1− νt), qt = [rt1; ...; rtn] (note that

qt is an extreme point of ∆n,d) and pass to step t+ 1.

Observe that the algorithm is well defined. Indeed, 0 ≤ νt ≤ 1 by construction, and νt = 1

if and only if pt−1
id+1

= 0 and pt−1
id

= 1, that is, when we terminate at step t according to a).

Thus, pt is well defined at every non-termination step t. Moreover, from b) it is immediately
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seen that at such a step we have pt0 = 1, 0 ≤ pti ≤ 1 for all i and
∑n

i=0 p
T
i = d + 1, that

is, pt ∈ ∆ for all t for which pt is well defined. Beside this, it is immediately seen that

those entries in pt−1 which are zeros and ones remain zeros and ones in pt as well, and that

the total number of these entries increases at every step of the algorithm by at least 1.

The latter observation implies that the algorithm terminates in at most n steps. Finally,

by construction pt−1 = (1− νt)pt + νtr
t, whence, denoting by t̄ the termination step, p0 is

a convex combination of r1, ..., rt̄ with coefficients µt readily given by ν1, ..., νt̄. Discarding

in r1, ..., rt̄ the entries with index 0, we get extreme points q1, ..., qt̄ of ∆n,d such that

q =
∑t̄

i=1 µtq
t. Finally, the computational effort per step clearly does not exceed O(1)dn,

that is, the total computational effort is at most O(1)dn2.

4.6.2 Proof of Lemma 4.2.1

We have

SV(ρ) = max
z2∈Z2

min
z1∈Z1

φρ(z1, z2)

= max
z2∈Z2

min
z11∈Z11,z12∈Z12

[
υ + ρχ+ 〈a11, z11〉+ 〈b, z2〉+ 〈z2, Bz11〉

+ρ [〈a12, z12〉+ 〈c, z2〉+ 〈z2, Cz12〉]
]

= max
z2∈Z2

[
υ + ρχ+ 〈b, z2〉+ ρ〈c, z2〉+ min

z11∈Z11

[
〈a11, z11〉+ 〈z2, Bz11〉

+ρ

g(z2)︷ ︸︸ ︷
min

z12∈Z12

[〈a12 + C∗z2, z12]
]]

= max
z2∈Z2

[
υ + ρχ+ 〈b, z2〉+ ρ〈c, z2〉+ ρg(z2) +

h(z2)︷ ︸︸ ︷
min

z11∈Z11

[〈a11, z11〉+ 〈z2, Bz11〉]
]

= max
z2∈Z2

[
υ + 〈b, z2〉+ h(z2) + ρ [χ+ 〈c, z2〉+ g(z2)]

]
and thus SV(ρ) is the supremum of affine functions of ρ. �

4.6.3 Proofs for Section 4.3

We start with the following

Lemma 4.6.2 [cf. [101], Lemma 3.1.(b)] Given z ∈ Zo, γ > 0 and ξ, η ∈ E, let us set

w = Proxz(γξ) = argminv∈Z {〈γξ − ω′(z), v〉+ ω(v)} ,

z+ = Proxz(γη) = argminv∈Z {〈γη − ω′(z), v〉+ ω(v)} .
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Then w, z+ ∈ Zo, and for every u ∈ Z one has

(a) γ〈η, w − u〉 ≤ Vz(u)− Vz+(u) + γ〈η, w − z+〉 − Vz(z+)

(b) ≤ Vz(u)− Vz+(u) + γ〈η − ξ, w − z+〉 − Vz(w)− Vw(z+)

(c) ≤ Vz(u)− Vz+(u) + γ‖η − ξ‖∗‖w − z+‖ − 1
2

[
‖w − z‖2 + ‖w − z+‖2

]
(d) ≤ Vz(u)− Vz+(u) + 1

2

[
γ2‖η − ξ‖2∗ − ‖w − z‖2

]
.

(148)

Proof. The inclusions w, z+ ∈ Zo are evident (a subgradient of ω(·) at w, taken w.r.t. Z,

is, e.g., ω′(z) − γξ, and similarly for z+). Now let u ∈ Z. z+ is an optimal solution of

certain explicit convex optimization problem; taking into account that ω′(·) is continuous

on Zo, it is easily seen that the necessary optimality condition in this problem reads 〈γη +

ω′(z+)− ω′(z), u− z+〉 ≥ 0, whence γ〈η, w − u〉 ≤ γ〈η, w − z+〉+ 〈ω′(z+)− ω′(z), u− z+〉,

and the latter inequality, after rearranging terms in the right hand side, becomes (a). By

similar reasons, 0 ≤ 〈γξ + ω′(w)− ω′(z), v − w〉 for all v ∈ Z; setting v = z+, summing up

the resulting inequality with (a) and rearranging terms in the right hand side of what we

get, we arrive at (b). (c) follows from (b) due to Va(b) ≥ 1
2‖a− b‖

2 (recall that ω is strongly

convex, modulus 1 w.r.t. ‖ · ‖, on Z). Finally, (d) follows from (c) due to µν − 1
2µ

2 ≤ 1
2ν

2.

�

4.6.3.1 Proof of Proposition 4.3.1

Let us prove the bound (114). Consider first the case of SMP. Applying Lemma 4.6.2 to

z = zτ , γ = γτ , ξ = F (ητ ), η = F (ζτ ), which results in w = wτ and z+ = zτ+1, we get for

all u ∈ Z:

γτ 〈F (ζτ ), wτ − u〉 ≤ Vzτ (u)− Vzτ+1(u) + [γτ 〈F (ζτ ), wτ − zτ+1〉 − Vzτ (zτ+1)]

whence for all u ∈ Z

〈F (ζτ ), ζτ − u〉 ≤ γ−1
τ (Vzτ (u)− Vzτ+1(u)) + rτ + sτ ,

sτ = 〈F (ζτ ), wτ − zτ+1〉 − γ−1
τ Vzτ (zτ+1)

≤ 1
2

[
γτ‖F (ζτ )− F (ητ )‖2∗ − γ−1

τ ‖wτ − zτ‖2
]
, (∗)

rτ = 〈F (ζτ ), ζτ − wτ 〉.

(149)
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with (∗) given by (148). When summing up inequalities (149) over τ and taking into

account that γ1 ≥ γ2 ≥ ..., Vz(u) ≥ 0 and Vz1(u) = Vzω(u) ≤ Ω by definition of Ω, we get

t∑
τ=1

〈F (ζτ ), ζτ − u〉 ≤ γ−1
t Ω +

t∑
τ=1

[sτ + rτ ]. (150)

On the other hand,

t∑
τ=1

〈F (ζτ ), ζτ − u〉 =
t∑

τ=1

〈a+Aζτ , ζτ − u〉

= t〈a, zt − u〉 −
t∑

τ=1

〈Aζτ , u〉 [A is skew symmetric]

= t
[
〈a, zt − u〉 − 〈Azt, u〉

]
= t

[
〈a, zt − u〉+ 〈Azt, zt − u〉

]
= t〈F (zt), zt − u〉.

Thus, for all u ∈ Z it holds

t〈F (zt), zt − u〉 ≤ Ωγ−1
t +

t∑
τ=1

[sτ + rτ ] = γ−1
t Ω + St +Rt. (151)

Setting zt = [zt1; zt2] and u = [u1;u2], we get from (89) 〈F (zt), zt−u〉 = φ(zt1, u2)−φ(u1, z
t
2);

the supremum of the latter quantity over u ∈ Z is nothing that the saddle point residual

εsad(zt). Since the right hand side in (151) is independent of u, we arrive at the SMP-version

of (114).

Now consider the case of SA. Applying Lemma 4.6.2 to γ = γτ , z = zτ , ξ = 0, η = F (ζτ ),

which results in w = zτ and z+ = zτ+1, and acting exactly as in the case of SMP, we arrive

at the SA-version of (114).

Let us prove (ii). The conditional to the “past” (the answers of the oracle prior to the

call for ξ2τ ) distribution of ζτ is Pwτ , which combines with the affinity of F and the facts

that the linear part of F is skew symmetric and the expectation of Pz is z, to imply that

E{〈F (ζτ ), ζτ − wτ 〉} = 〈a,E{ζτ} − wτ 〉+ E{〈Aζτ , ζτ − wτ 〉} = −E{〈Aζτ , wτ 〉}

= E{〈A(wτ − ζτ ), wτ 〉} = 0,

whence E{Rt} = 0 for all t. By completely similar reasoning, E{Rt} = 0 in the case of SA.
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To complete the proof (ii), we need to prove (119). We have

st ≤
γt
2
‖F (ζt)− F (ηt)‖2∗ −

1

2γt
‖wt − zt‖2 [see (115)]

≤ γt
2

[‖F (wt)− F (zt)‖∗ + ‖F (ζt)− F (wt)‖∗ + ‖F (ηt)− F (zt)‖∗]2 −
1

2γt
‖wt − zt‖2

≤
[

3γt
2
L2 − 1

2γt

]
︸ ︷︷ ︸
≤0 by (118)

‖wt − zt‖2 +
3γt
2

[
‖F (ζt)− F (wt)‖2∗ + ‖F (ηt)− F (zt)‖2∗

]
.

It remains to note that ‖F (ζt)− F (wt)‖2∗ + ‖F (ηt)− F (zt)‖2∗ ≤ 2M2
∗ since ζt, wt, ηt, zt ∈ Z

and that the conditional, over the respective pasts, expectations of ‖F (ζt) − F (wt)‖2∗ and

‖F (ηt)− F (zt)‖2∗ do not exceed σ2. �

4.6.3.2 Proof of Proposition 4.3.2

We start with observing that (125) γ1 ≥ γ2 ≥ ....

10. Let us verify first that with the choice (125) of γτ , τ = 1, 2, ... we have for all t = 1, 2, ...,

√
2Ωγ−1

t ≥ St. (152)

Indeed, for t = 2, 3, ... we have (with 2S0 = F 2
∗ in the case of SA and 2S0 = 8ΩL2, ≥ M2

∗

by (107), in the case of SMP)

γ2
t−1

γ2
t

=

∑t−1
τ=1 2[sτ ]+/γτ + 2S0∑t−2
τ=1 2[sτ ]+/γτ + 2S0

≤ 1 +
2[st−1]+/γt−1

2S0
≤ 2 (153)

(recall that 2st/γτ ≤ 2S0 by (116)). On the other hand

γ−2
t − γ

−2
t−1 =

2[st−1]+
Ωγt−1

,

and

γ−1
t − γ

−1
t−1 ≥

γt
2 (γ−2

t − γ
−2
t−1) = γt[st−1]+

γt−1Ω ≥ [st−1]+√
2Ω
⇒
√

2Ω[γ−1
t − γ

−1
t−1] ≥ [st−1]+

where the second inequality in this chain follows from γt−1 ≤
√

2γt which is implied by

(153). By summing up the resulting inequalities in the above chain, we get

√
2Ωγ−1

t ≥
t−1∑
τ=1

sτ +
√

2Ωγ−1
1 . (154)
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In the case of SMP, we have γ1 = (2
√

2L)−1, whence
√

2Ωγ−1
1 = 4ΩL ≥ γ1M

2
∗ ≥ γtM2

∗ (see

(107)), whence
√

2Ωγ−1
1 ≥ st in view of (115), and (154) implies (152). In the case of SA,

we have γ1 =
√

Ω/F∗, whence
√

2Ωγ−1
1 =

√
2
√

ΩF∗ ≥ γ1F
2
∗ ≥ γtF

2
∗ , whence

√
2Ωγ−1

1 ≥ st

by (115), and (152) again is given by (154).

20. Invoking (114), (152) implies (126). Now, by (115) in the case of SA we have 2[sτ ]+/γτ ≤

‖F (ζτ )‖2∗. In the case of SMP we have

2[sτ ]+/γτ ≤ ‖F (ζτ )− F (ητ )‖2∗ − γ−2
τ ‖wτ − zτ‖2 [see (115)]

≤ [‖F (ζτ )− F (wτ )‖∗ + ‖F (wτ )− F (zτ )‖∗ + ‖F (zτ )− F (ητ )‖∗]2 − γ−2
1 ‖wτ − zτ‖2

≤ 3
[
‖F (ζτ )− F (wτ )‖2∗ + ‖F (zτ )− F (ητ )‖2∗

]
+
[
3‖F (wτ )− F (zτ )‖2∗ − γ−2

1 ‖wτ − zτ‖2
]

≤ ςτ := 3
[
‖F (ζτ )− F (wτ )‖2∗ + ‖F (zτ )− F (ητ )‖2∗

]
[by (106) due to γ−1

1 = 2
√

2L]

Invoking (125), we get

γ−1
t ≤ Ω−1/2 ·


(
F 2
∗ +

∑t−1
τ=1 ‖F (ζτ )‖2∗

)1/2
, in the case of SA(

8ΩL2 +
∑t−1

τ=1 ςτ

)1/2
, in the case of SMP

(155)

which combines with (126) to imply (127). �

4.6.3.3 Proof of Proposition 4.3.3

10. Let us denote

ϕt = 8ΩL2 +
t−1∑
τ=1

ςτ ,

where ςt = 3
[
‖F (ζt)− F (wt)‖2∗ + ‖F (ηt)− F (zt)‖2∗

]
(cf. (128)). Let us show that under

the premise of Proposition 4.3.3

∀Λ ≥ 0 : Prob

{
ϕt ≥ O(1)

[
ΩL2 +

M2
∗ t

k
κ2
∗(k,Λ)

]}
≤ exp{−Λt}, (156)

where O(1) is an absolute constant factor. We use the following result (see, e.g., Theorem

2.1 (iii) of [77]): let ξi, ..., ξk be k independent vectors from E with ‖ξi‖∗ ≤ σ and E{ξi} = 0,

where the norm ‖ · ‖∗ is κ-regular, κ ≥ 1. Then for any u ≥ 0

Prob

{
‖

k∑
i=1

ξi‖∗ ≥
[√

2κ + u
√

2
]
σ
√
k

}
≤ exp{−u2/2}.
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When rewriting the above bound for ξi = F (ζi)− F (w) and ξi = F (ηi)− F (z) and taking

into account that ‖ξi‖∗ ≤M∗ we obtain

∀u ≥ 0 : Prob

{
‖

k∑
i=1

ξi‖2∗ ≥M2
∗k(
√

2κ +
√

2u)2

}
≤ exp{−u2/2}.

So, if we denote Probt conditional probability over ζ1, η1, ...., ζt−1, ηt−1 being fixed, we get

∀u ≥ 0 : Probt

{
ςt ≥

24M2
∗

k
(κ + u)

}
≤ 2 exp{−u/2},

where ςt = 3
[
‖F (ζt)− F (wt)‖2∗ + ‖F (ηt)− F (zt)‖2∗

]
(cf. (128)). When setting νt = ςtk

24M2
∗

,

we have for the conditional expectation Et over ζ1, η1, ...., ζt−1, ηt−1 being fixed and 0 ≤ α <

1

Et

{
exp{α

2
νt}
}
≤ e

ακ
2 +

α

2

∫ ∞
κ

e
αu
2 Probt{νt ≥ u}du

≤ e
ακ
2 + α

∫ ∞
κ

exp{−(1− α)u

2
}du =

1 + α

1− α
exp{ακ

2
}

When choosing α∗ = exp{1}−1
exp{1}+1 we get Et

{
exp{α∗νt2 }

}
≤ exp{α∗κ2 + 1}, so that

E

{
exp{

t∑
τ=1

α∗ντ
2
}

}
= E

{
Et

{
exp{

t−1∑
τ=1

α∗ντ
2
} exp{α∗νt

2
}

}}

= E

{
exp{

t−1∑
τ=1

α∗ντ
2
}Et

{
exp{α∗νt

2
}
}}
≤ exp{t(α∗κ

2
+ 1)}

Hence, when applying the Tchebychev inequality we find

∀Λ ≥ 0 : Prob

{
t∑

τ=1

ντ ≥ t
(
κ +

2

α∗
(1 + Λ)

)}
≤ exp{−Λt}.

When recalling that ςt ≤ 6M2
∗ , we conclude that

∀Λ ≥ 0 : Prob

{
t−1∑
τ=1

ςτ ≥ min

[
6M2
∗ t,

24M2
∗ t

k

(
κ +

2

α∗
(1 + Λ)

)]}
≤ exp{−Λt}.

Since κ ≥ 1, κ + 2
α∗

(1 + Λ) ≤ O(1)κ2
∗(k,Λ), and we arrive at (156).

20. We have

∀λ ≥ 0 : Prob

{
Rt
t
≥ O(1)F∗

√
Ωλ

kt

}
≤ e−λ. (157)
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Indeed, since A is skew-symmetric, i.e., 〈Az, z〉 = 0,

rt = 〈F (ζt), ζt − wt〉 = 〈a+Aζt, ζt − wt〉 = 〈a+Awt, ζt − wt〉 = 〈F (wt), ζt − wt〉.

We conclude that

Rt
t

=
1

t

t∑
τ=1

rt =
1

t

t∑
τ=1

〈F (wτ ), ζτ − wτ 〉 =
1

t

t∑
τ=1

〈
F (wτ ),

1

k

k∑
i=1

ζiτ − wτ

〉

=
1

tk

t∑
τ=1

k∑
i=1

〈F (wτ ), ζiτ − wτ 〉 =
1

tk

t∑
τ=1

k∑
i=1

ξiτ ,

where ξiτ := 〈F (wτ ), ζiτ − wτ 〉 is a scalar martingale-difference with |ξiτ | ≤ 2RF∗ ≤ 2ΘF∗

(cf. (105)). Then by the Azuma-Hoeffding inequality [8],

∀λ ≥ 0 : Prob

{
Rt
t
≥ 2ΘF∗

√
2λ

kt

}
≤ e−λ,

which implies (157).

Now we are done – when substituting the bounds (156) and (157) into (127) we get

Prob

{
εsad(zt) ≥ O(1)

[
ΩL
t

+M∗κ∗(k,Λ)

√
Ω

kt
+ ΘF∗

√
λ

kt

]}
≤ e−Λt + e−λ,

which is (130) if we recall that Θ =
√

2Ω and F∗ ≤ ‖a‖∗ + 2ΘL (cf. (108)). �

4.6.3.4 Proof of Proposition 4.3.4

This proof is completely similar to the one of Proposition 4.3.1 and is omitted.

4.6.4 Proof of Theorem 4.4.1

10. From the description of the method it follows that

∀t, s ≥ 1, ρ ≥ 0 : uts ≥ SV(ρs) ≥ `ts, `ts(ρ) ≤ SV(ρ), `ts ≤ `ts(ρs). (158)

Let us prove by induction in s that ρ∗ ≤ ρs ≤ ρ1. The base s = 1 is evident. Now let

ρ∗ ≤ ρs ≤ ρ1, and let stage s+ 1 take place. When passing from stage s to stage s+ 1, we

are in the case B) and thus have uts > ερs, `
ts ≥ 3

4u
ts > 3

4ερs, whence, in view of (158),

`s(ρs) = `ts(ρs) ≥ `ts ≥
3

4
max[ερs,SV(ρs)] & `s(ρs) > 0. (159)
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This combines with `ts(ρ∗) ≤ SV(ρ∗) ≤ 0 and convexity of `ts(·) to imply that ρ∗ ≤ ρs+1 <

ρs. Induction is complete.

Since ρs ≥ ρ∗, uts is an upper bound on SV(ρs) and uts ≥ φρs(wts1 ), we conclude that if

the algorithm terminates at stage s, then the result ρs, w
ts
1 is an ε-solution to the GBSP in

question.

20. Let us prove (ii). The reasoning to follow goes back to [84]; we reproduce it here to

make the chapter self-contained. Let s be such that the stage s+ 1 takes place, and let us

be the last bound uts built at stage s. Observe that

3

4
ερs <

3

4
us ≤ `s(ρs) ≤ SV(ρs) ≤ us. (160)

Since the convex function `s(ρ) is nonpositive at ρ = ρs+1 and is ≥ 3
4us > 0 at ρ = ρs > ρs+1,

we have gs := `′s(ρs) > 0 and

ρs − ρs+1 ≥ `s(ρs)/gs ≥
3

4
us/gs. (161)

Now assume that s > 1 is such that the stage s+1 takes place. Applying (161) and (160) to

s−1 in the role of s, we get ρs−1−ρs ≥ 3
4us−1/gs−1 and 3

4us ≤ `s(ρs), whence, by convexity

of `s(·) and in view of (158), us−1 ≥ SV(ρs−1) ≥ `s(ρs−1) ≥ `s(ρs) + gs(ρs−1 − ρs) ≥
3
4us + gs

3
4
us−1

gs−1
, so that 4

3us−1 ≥ us + gsus−1

gs−1
, or us

us−1
+ gs

gs−1
≤ 4

3 , whence usgs
us−1gs−1

≤

(1/4)(4/3)2 = 4/9. It follows that

√
usgs ≤ (2/3)s−1√u1g1. (162)

We have `s(ρ∗) ≤ SV(ρ∗) = 0, `s(ρs) ≥ 3
4us (see (160)) and `s(ρs) − `s(ρ∗) ≤ gs(ρs − ρ∗)

(convexity of `s(·)), whence gs ≥ 3
4us(ρs − ρ∗)

−1 ≥ 3
4ρ1
us, and (162) implies that

us ≤ (2/3)s−1√u1g1

√
4ρ1/3. (163)

Now, g1 = `′1(ρ1) and `1(ρ) ≤ SV(ρ) ≤ ‖φ‖∞ + ρ‖ψ‖∞, whence g1 ≤ ‖ψ‖∞, and clearly

u1 ≤ ‖φ‖∞ + ρ1‖ψ‖∞. At the same time, us > ερs ≥ ερ∗, so that (163) implies that

ερ∗ ≤ (2/3)s−1[‖φ‖∞ + ρ1‖ψ‖∞]. The resulting upper bound on s implies (ii).
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30. Let us prove (iii). From the description of the algorithm it follows that at every stage

s before termination of the stage the residual of current approximate solutions wts is ≥ 1
4ερs

(since uts > ερs and `ts < 3
4u

ts). In the case of short-step implementation we use the result

of Proposition (4.3.3) with ε = ερs. Let us denote Ns(ε) the corresponding value of Nε as

in (131). We conclude that the number Ns of steps at stage s is finite with probability 1

and satisfies Prob{Ns > Ns(ε)} ≤ exp{−ΛNs(ε)}+ exp{−λ}. As we have seen, ρ∗ ≤ ρs for

all s, and therefore Ns ≤ N(ε) for all s, provided that the absolute constant O(1) in (145)

is properly chosen.

For the aggressive-step implementation, similar reasoning based on the bound (137)

with L =M+ ρsN justifies (146).

40. Combining (ii), (iii) and the concluding claim in item 10 above, we arrive at (i). �

4.7 Detailed Numerical Experiments of Chapter 4

Here we provide detailed results comparing the effects of different policies for choosing the

starting point at each stage and different choices of the distance generating function (d.g.f.)

for the simplexes on the performance of our algorithms. We encode various different policies

with codes “XNNY ” where

• X can be [C]enter of the domain, or a weighted combination of center point with the

[B]est solution or [L]ast solution from the previous stages;

• NN gives the percentage for the convex combination weight used for the given starting

point X and 100−NN is the percentage for the convex combination weight used for

the center of the domain, the possible values tested are 0.[00], 0.[25], 0.[75];

• Y denotes the distance generating function used for simplexes, with the [E]xponential,

[P]ower d.g.f. options.

Thus “B25P” implementation would mean that power d.-g.f. is used, and at each stage the

algorithm restarts from the convex combination of the best (with the smallest εsad) point

found so far and the ω-center of Z, the weights being 0.25 and 0.75, respectively.
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The instances used are the same from Section 4.5 and for each given instance size, the

numbers in the tables are the respective averages for performance of the selected policy on

the corresponding instances.

Table 13: Detailed Results for `1-minimization with ‖ · ‖∞-fit

DMP SMP

Size Option Calls CPU Steps Stages Calls FCalls CPU Steps Stages

500× 4000 C00E 2661.6 106.6 912.2 4.0 10511.0 236.5 57.2 3505.2 4.8

B25E 3157.4 124.9 1080.8 4.6 9235.6 207.8 52.1 3073.0 4.8

B50E 3856.0 156.0 1317.6 4.8 10303.2 231.8 55.3 3421.0 4.8

B75E 4495.4 180.8 1534.0 4.8 10524.4 236.8 55.3 3508.8 4.6

B25P 1453.4 104.1 506.4 4.4 8607.8 193.7 106.4 2880.8 4.6

B50P 1732.0 116.6 602.6 4.8 8708.4 195.9 107.1 2913.0 4.6

B75P 1986.2 132.0 688.2 4.8 10162.2 228.6 115.6 3385.0 4.8

L25P 1326.0 92.5 462.6 4.4 13666.4 307.5 166.3 4569.0 5.2

L50P 1592.8 109.4 553.6 4.8 15013.2 337.8 179.6 4985.2 5.2

L75P 1806.4 123.5 627.0 4.8 14762.2 332.1 181.4 4941.0 5.0

min 1326.0 92.5 462.6 4.0 8607.8 193.7 52.1 2880.8 4.6

max 4495.4 180.8 1534.0 4.8 15013.2 337.8 181.4 4985.2 5.2

1000× 2000 C00E 1830.8 64.0 629.6 4.2 10568.8 158.5 42.9 3536.6 4.8

B25E 2573.4 85.6 881.2 4.4 11136.4 167.1 38.1 3725.2 5.0

B50E 3027.2 90.7 1038.4 4.8 12502.8 187.5 46.4 4185.4 5.0

B75E 3759.2 126.0 1284.8 4.8 10881.6 163.2 41.9 3633.2 5.0

B25P 1530.6 97.9 532.2 4.6 10709.2 160.6 113.3 3593.2 4.8

B50P 1735.0 112.3 603.6 4.6 11285.6 169.3 117.9 3765.0 5.0

B75P 1750.4 109.5 607.8 4.6 11339.4 170.1 117.3 3769.0 5.0

L25P 1260.2 81.1 440.8 4.6 16031.8 240.5 172.6 5341.0 5.2

L50P 1505.6 90.8 524.6 5.0 15116.4 226.7 148.7 5065.0 5.2

L75P 1958.8 121.1 680.2 5.0 18181.4 272.7 198.5 6041.0 5.6

min 1260.2 64.0 440.8 4.2 10568.8 158.5 38.1 3536.6 4.8

max 3759.2 126.0 1284.8 5.0 18181.4 272.7 198.5 6041.0 5.6
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Table 13: Detailed Results for `1-minimization with ‖·‖∞-fit (Continued)

DMP SMP

Size Option Calls CPU Steps Stages Calls FCalls CPU Steps Stages

1000× 8000 C00E 2338.0 227.9 801.6 4.0 12406.6 139.6 113.2 4136.6 5.0

B25E 3212.2 300.9 1100.4 5.0 11324.2 127.4 122.7 3768.6 5.0

B50E 3658.0 349.0 1252.2 5.0 14077.2 158.4 126.6 4700.8 5.0

B75E 4721.4 455.8 1611.4 5.0 14301.2 160.9 137.2 4745.0 5.0

B25P 1545.6 248.9 539.0 4.8 11355.4 127.7 266.0 3785.0 5.0

B50P 2023.4 313.5 701.8 5.0 12386.2 139.3 297.4 4149.0 5.0

B75P 2625.6 427.4 906.6 5.0 12935.0 145.5 299.0 4321.0 5.2

L25P 1441.8 237.1 504.6 5.0 14922.2 167.9 343.0 4989.0 5.2

L50P 1661.4 261.1 579.8 5.0 15944.6 179.4 378.7 5336.8 5.2

L75P 2361.2 395.9 818.2 5.0 17466.4 196.5 425.7 5821.0 5.4

min 1441.8 227.9 504.6 4.0 11324.2 127.4 113.2 3768.6 5.0

max 4721.4 455.8 1611.4 5.0 17466.4 196.5 425.7 5821.0 5.4

2000× 4000 C00E 2691.6 227.6 925.2 4.4 12922.8 96.9 74.5 4293.0 5.0

B25E 2322.4 190.5 800.4 5.0 12303.8 92.3 79.4 4121.0 5.0

B50E 2929.2 245.1 1006.0 5.0 13877.6 104.1 86.0 4613.0 5.2

B75E 3839.6 346.6 1314.4 5.0 16366.0 122.7 109.2 5457.0 5.2

B25P 1426.4 207.8 500.6 5.0 16294.8 122.2 334.5 5457.0 5.4

B50P 1426.4 231.7 500.8 5.0 13462.2 101.0 271.7 4485.0 5.0

B75P 1948.4 295.4 677.4 5.0 16149.8 121.1 311.0 5401.0 5.6

L25P 1183.2 178.2 417.2 5.0 19280.8 144.6 367.2 6433.0 6.0

L50P 1665.4 224.0 582.6 5.2 20075.8 150.6 390.5 6725.2 6.0

L75P 2344.0 309.7 813.0 5.0 20953.8 157.2 413.9 6964.8 6.0

min 1183.2 178.2 417.2 4.4 12303.8 92.3 74.5 4121.0 5.0

max 3839.6 346.6 1314.4 5.2 20953.8 157.2 413.9 6964.8 6.0

2000× 16000 C00E 2384.6 494.2 819.6 4.0 13174.8 74.1 184.9 4405.0 5.0

B25E 3525.0 733.5 1205.6 4.8 15646.8 88.0 221.6 5229.0 5.0

B50E 4303.2 912.2 1471.4 4.8 14498.6 81.6 207.5 4861.0 5.0

B75E 5300.0 1130.6 1809.6 4.8 16908.6 95.1 238.9 5629.2 5.4

B25P 1575.2 533.7 550.0 4.8 14623.4 82.3 599.3 4873.2 5.0

B50P 1915.0 637.1 665.6 4.6 16554.0 93.1 671.9 5541.2 5.2

B75P 2319.2 754.3 803.2 4.8 15903.6 89.5 639.2 5329.0 5.0

L25P 1838.4 615.9 639.4 4.8 18717.0 105.3 773.4 6256.8 5.6

L50P 2245.6 736.7 778.2 5.2 18882.8 106.2 775.1 6289.2 5.4

L75P 2892.8 921.9 996.2 5.2 19391.2 109.1 796.5 6465.0 5.6

min 1575.2 494.2 550.0 4.0 13174.8 74.1 184.9 4405.0 5.0

max 5300.0 1130.6 1809.6 5.2 19391.2 109.1 796.5 6465.0 5.6
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Table 13: Detailed Results for `1-minimization with ‖·‖∞-fit (Continued)

DMP SMP

Size Option Calls CPU Steps Stages Calls FCalls CPU Steps Stages

4000× 8000 C00E 2923.6 798.7 1005.0 4.4 19750.2 74.1 228.4 6589.0 5.4

B25E 3386.8 795.1 1163.6 5.0 20047.2 75.2 215.8 6697.0 5.8

B50E 4332.8 983.3 1482.4 5.2 18337.0 68.8 198.4 6101.0 5.4

B75E 5197.6 1237.1 1778.0 5.2 19546.2 73.3 228.0 6529.0 5.8

B25P 1554.6 576.2 544.4 5.0 19242.2 72.2 748.9 6425.0 5.6

B50P 2068.8 704.1 720.2 5.2 20343.8 76.3 768.8 6781.0 5.8

B75P 2684.8 882.7 928.4 5.4 21494.2 80.6 824.5 7145.0 6.0

L25P 1823.4 641.4 635.0 5.0 20767.0 77.9 799.3 6937.0 6.0

L50P 2433.8 766.7 843.2 5.4 22350.0 83.8 865.4 7465.2 6.4

L75P 3130.0 987.1 1079.2 5.2 24185.8 90.7 934.4 8077.2 6.2

min 1554.6 576.2 544.4 4.4 18337.0 68.8 198.4 6101.0 5.4

max 5197.6 1237.1 1778.0 5.4 24185.8 90.7 934.4 8077.2 6.4

Table 14: Detailed Results for `1-minimization with ‖ · ‖2-fit

DMP SMP

Size Option Calls CPU Steps Stages Calls FCalls CPU Steps Stages

500× 4000 C00E 579.8 21.0 206.2 5.0 4771.6 106.7 24.6 1589.0 4.4

B25E 523.0 18.3 187.4 5.2 5186.0 115.9 27.7 1737.0 5.0

B50E 527.6 19.3 189.2 5.2 5308.4 118.7 29.4 1781.0 5.0

B75E 610.2 22.4 218.8 5.8 5204.4 116.3 28.9 1749.0 5.0

B25P 539.4 30.8 194.6 4.8 5331.6 119.2 67.2 1781.0 5.0

B50P 480.2 29.0 175.0 5.0 5215.0 116.6 61.7 1744.8 5.0

B75P 421.2 24.7 156.2 5.4 5416.6 121.1 65.5 1797.0 5.0

L25P 403.0 23.6 147.0 4.4 5453.8 121.9 64.3 1825.0 5.0

L50P 334.8 19.7 125.2 5.0 5549.6 124.0 64.2 1857.0 5.0

L75P 287.8 16.1 110.2 5.2 5938.4 132.7 66.9 1984.8 5.0

min 287.8 16.1 110.2 4.4 4771.6 106.7 24.6 1589.0 4.4

max 610.2 30.8 218.8 5.8 5938.4 132.7 67.2 1984.8 5.0
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Table 14: Detailed Results for `1-minimization with ‖·‖2-fit (Continued)

DMP SMP

Size Option Calls CPU Steps Stages Calls FCalls CPU Steps Stages

1000× 2000 C00E 553.0 19.0 198.0 5.0 3910.8 54.8 13.6 1296.2 4.2

B25E 531.8 17.3 190.8 5.0 4880.0 68.3 17.2 1612.8 4.8

B50E 534.0 15.5 192.4 5.2 5524.8 77.3 21.6 1849.0 5.0

B75E 780.8 22.4 278.6 6.0 5294.8 74.1 21.6 1765.0 5.0

B25P 465.0 17.7 170.4 4.8 5268.0 73.8 54.9 1757.0 5.0

B50P 440.4 17.7 162.8 5.0 5256.6 73.6 52.6 1753.0 5.0

B75P 431.4 15.9 159.4 5.0 5295.4 74.1 54.5 1772.8 5.0

L25P 467.2 19.4 170.8 5.0 5863.2 82.1 59.4 1941.0 5.0

L50P 374.4 17.6 139.6 5.0 5657.6 79.2 57.7 1885.0 5.0

L75P 282.4 14.1 110.4 5.6 5923.6 82.9 61.7 1977.0 5.0

min 282.4 14.1 110.4 4.8 3910.8 54.8 13.6 1296.2 4.2

max 780.8 22.4 278.6 6.0 5923.6 82.9 61.7 1977.0 5.0

1000× 8000 C00E 617.0 56.6 220.4 5.0 5148.8 57.5 50.7 1716.8 4.6

B25E 493.4 41.4 178.8 5.2 5393.8 60.3 53.3 1797.0 5.0

B50E 433.8 43.6 159.0 5.6 5552.4 62.1 55.0 1857.0 5.0

B75E 597.4 61.5 216.6 6.0 5535.2 61.9 54.2 1825.0 5.0

B25P 535.0 85.9 195.8 5.0 5279.4 59.0 134.6 1765.0 5.0

B50P 471.2 74.9 173.8 5.0 5353.2 59.8 132.7 1789.0 5.0

B75P 460.4 64.3 171.8 5.6 5425.8 60.6 135.0 1809.0 5.0

L25P 438.4 68.4 162.6 5.0 5626.6 62.9 135.9 1881.0 5.0

L50P 391.2 52.4 146.0 5.0 6238.4 69.7 155.1 2081.0 5.2

L75P 318.8 40.9 124.0 5.8 5917.2 66.1 143.9 1957.0 5.0

min 318.8 40.9 124.0 5.0 5148.8 57.5 50.7 1716.8 4.6

max 617.0 85.9 220.4 6.0 6238.4 69.7 155.1 2081.0 5.2

2000× 4000 C00E 634.8 39.8 227.2 5.0 5853.6 41.0 47.2 1952.8 4.8

B25E 720.6 45.9 256.4 5.0 5653.4 39.6 50.3 1897.0 5.0

B50E 617.8 39.3 222.6 5.4 5786.4 40.5 49.7 1937.0 5.0

B75E 755.0 48.1 271.0 6.0 5946.2 41.6 50.4 1985.0 5.0

B25P 427.8 37.0 159.8 5.0 5566.6 39.0 124.4 1845.0 5.0

B50P 430.8 34.2 161.0 5.0 5524.8 38.7 121.2 1856.8 5.0

B75P 479.0 37.8 178.8 5.6 5849.0 40.9 126.8 1941.0 5.0

L25P 497.0 42.1 182.8 5.0 6241.2 43.7 138.6 2081.0 5.0

L50P 383.6 32.0 144.0 5.0 6354.2 44.5 139.6 2105.0 5.0

L75P 318.8 25.9 124.4 5.8 8832.8 61.8 201.3 2957.0 5.4

min 318.8 25.9 124.4 5.0 5524.8 38.7 47.2 1845.0 4.8

max 755.0 48.1 271.0 6.0 8832.8 61.8 201.3 2957.0 5.4
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Table 14: Detailed Results for `1-minimization with ‖·‖2-fit (Continued)

DMP SMP

Size Option Calls CPU Steps Stages Calls FCalls CPU Steps Stages

2000× 16000 C00E 531.8 150.7 192.6 5.0 5055.6 28.3 90.0 1689.0 4.4

B25E 562.0 154.1 202.8 5.0 5802.4 32.4 99.6 1921.0 5.0

B50E 623.8 161.7 224.2 5.0 6061.8 33.9 104.5 2017.0 5.0

B75E 611.4 162.1 220.4 5.4 6049.2 33.8 108.2 2013.0 5.0

B25P 500.4 175.8 184.4 4.8 5488.6 30.7 274.8 1841.0 5.0

B50P 490.4 191.5 181.6 5.0 5820.4 32.5 281.5 1933.0 5.0

B75P 478.6 156.5 179.6 5.6 5744.2 32.1 283.8 1917.0 5.0

L25P 416.6 144.5 156.0 4.8 7620.0 42.6 374.2 2537.0 5.2

L50P 402.8 132.1 151.6 5.0 9525.2 53.2 464.0 3185.0 5.4

L75P 346.0 110.6 133.0 5.4 12614.4 70.5 629.5 4217.2 5.8

min 346.0 110.6 133.0 4.8 5055.6 28.3 90.0 1689.0 4.4

max 623.8 191.5 224.2 5.6 12614.4 70.5 629.5 4217.2 5.8

4000× 8000 C00E 675.2 138.5 242.0 5.0 6504.6 22.8 101.7 2177.0 5.0

B25E 685.8 141.7 245.6 5.0 5782.0 20.2 91.3 1929.0 5.0

B50E 527.4 106.2 191.8 5.0 5894.4 20.6 96.2 1957.0 5.0

B75E 870.4 182.0 312.0 6.0 5899.4 20.6 96.5 1973.0 5.0

B25P 483.0 116.3 180.0 5.0 5439.2 19.0 247.4 1809.0 5.0

B50P 453.2 112.8 169.6 5.0 5635.8 19.7 256.3 1885.0 5.0

B75P 512.4 125.0 190.4 5.4 6126.6 21.4 274.0 2037.0 5.2

L25P 411.2 104.3 155.0 5.0 12948.0 45.3 615.5 4285.0 6.0

L50P 403.8 97.9 152.2 5.0 11588.2 40.6 532.2 3877.0 5.8

L75P 346.4 86.3 135.0 5.8 12099.0 42.3 553.2 4021.0 5.8

min 346.4 86.3 135.0 5.0 5439.2 19.0 91.3 1809.0 5.0

max 870.4 182.0 312.0 6.0 12948.0 45.3 615.5 4285.0 6.0
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CHAPTER V

EFFICIENTLY VERIFIABLE ACCURACY CERTIFICATES FOR

NOISY RECOVERY

The problem we consider in this chapter is to estimate a linear transform Bx ∈ RN of

a vector x ∈ Rn from the observations

y = Ax+ u+ σξ. (164)

Here A is a given m × n sensing matrix, B is a given N × n matrix, and u + σξ is the

observation error; in this error, u is an unknown nuisance known to belong to a given

compact convex set U ⊂ Rm symmetric w.r.t. the origin, σ ≥ 0 is a known noise intensity,

and ξ is random noise with known distribution P .

We assume that the space RN where Bx lives is represented as RN = Rn1 × ...× RnK ,

so that a vector w ∈ RN is a block vector: w = [w[1]; ...;w[K]] with blocks w[k] ∈ Rnk ,

1 ≤ k ≤ K. In particular, Bx = [B[1]x; ...;B[K]x] with nk × n matrices B[k], 1 ≤ k ≤ K.

While we do not assume that the vector x is sparse in the usual sense, we do assume that

the linear transform Bx to be estimated is block sparse, meaning that at most a given

number, s, of the blocks B[k]x, 1 ≤ k ≤ K, are nonzero.

The recovery routines we intend to consider are based on block-`1 minimization, i.e.,

the estimate ŵ(y) of w = Bx is Bẑ(y), where ẑ(y) is obtained by minimizing the norm∑K
k=1 ‖B[k]z‖(k) over signals z ∈ Rn with Az “fitting,” in certain precise sense, the obser-

vations y. Above, ‖ · ‖(k) are given in advance norms on the spaces Rnk where the blocks of

Bx take their values.

In the sequel we refer to the given in advance collection (B,n1, ..., nK , ‖ · ‖(1), ..., ‖ · ‖(K))

as the representation structure. Given such a structure and A, our ultimate goal is to

understand how well one can recover the s-block-sparse transform Bx by appropriately

implementing block-`1 minimization.
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Related compressed sensing research. Our situation and goal form a straightforward

extension of the usual sparse/block sparse compressed sensing framework. Indeed, the stan-

dard representation structure B = In, nk = 1, ‖ · ‖(k) = | · |, 1 ≤ k ≤ K = n, leads to

the standard compressed sensing setting – recovering a sparse signal x ∈ Rn from its noisy

observations (164) via `1-minimization. With the same B = In and nontrivial block struc-

ture {nk, ‖ · ‖(k)}Kk=1, we arrive at block-sparsity and related block-`1-minimization routines

considered in numerous recent papers. Specifically, there is a number of applications where

block-sparsity (with B = In) arises naturally, e.g., in multi-band signals, measurements

of gene expression levels or in the estimation of multiple measurement vectors sharing a

joint sparsity pattern (see [55] and references therein). In addition, in many studies (e.g.,

[54, 55]) it was shown that the block-sparsity model can be used in sampling signals that lie

in a union of subspaces. Moreover, several methods of estimation and selection extending

plain `1-minimization to block sparsity were proposed and investigated recently. Most of

the related research focused so far on block regularization schemes — Lasso-type algorithms

of the form

x̂(y) ∈ Argmin
z=[z1;...;zK ]∈Rn=Rn1×...×RnK

{
‖Az − y‖22 + λ‖z‖`1/`q

}
, ‖z‖`1/`q :=

K∑
k=1

‖zk‖q.

In particular, there is a huge literature on plain Lasso (nk = 1, 1 ≤ k ≤ K = n), see

[23, 24, 75, 78, 87, 93, 94, 123] and references therein, there is a significant counterpart on

group Lasso (arbitrary nk, q = 2), see, e.g., [9, 14, 33, 51, 54, 55, 65, 70, 85, 92, 96, 108,

109, 121, 131], and references therein. Another avenue of research here [75, 86] deals with

block-sparse analogies of the Dantzig selector originating from [29]. Most of the cited papers

focus on bounding recovery errors in terms of magnitude of the observation noise and “s-

concentration” of the true signal x (that is, its `1/`q distance from the space of signals with

at most s nonzero blocks) or algorithms to solve block-`1 regularization problems. Typically,

these results deal with the case of q = 2 and rely on natural block analogy (“Block RIP,”

see, e.g., [55]) of the celebrated Restricted Isometry Property (RIP) introduced by Candés

and Tao [27, 26], or on block analogies [88] of the Restricted Eigenvalue Property introduced

in [18].
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Contributions of this chapter. The first (and by itself, minor) novelty in our problem

setting is in the presence of matrix B; we are not aware of any preceding work handling the

case of a “nontrivial” (i.e., different from the identity) B. Introducing this matrix seems to

be natural and adds some useful flexibility (and costs nearly nothing, as far as the theoretical

analysis is concerned). In addition to this, there are a number of important applications

where a nontrivial B arises naturally. As a simple example consider the standard image

reconstruction with Total Variation (TV) regularization, where one wants to recover an

image x from noisy observations of its convolution with a given kernel. The rationale

behind TV regularization stems from the fact that the (discretized) gradient field Bx of the

image, not the image x itself, is (nearly) sparse. Note that this example leads to a block

sparsity setting, since Bx is naturally split into 2-dimensional blocks representing gradients

at the grid points, and TV is just the sum of `2 norms of these blocks. Another example

is when x is the solution of a linear finite-difference equation with sparse right hand side

(“evolution of a linear plant corrected from time to time by impulse control”); in this case,

B is the matrix of the corresponding finite-difference operator.

We believe, however, that the major novelty in what follows is the emphasis on verifiable

conditions on A and the representation structure which guarantee good recovery of trans-

forms Bx from noisy observations of Ax, provided that the transforms are nearly s-sparse,

and the observation noise is low. In this respect, this chapter continues the line of research

started in [81, 76, 79], where `1-recovery of the usual sparse vectors was considered (in

the first two papers – in the case of uncertain-but-bounded observation errors, and in the

third – in the case of Gaussian observation noise). To give an impression of the approach,

we present here a summary of our major results. To streamline this summary, we restrict

ourselves for the time being with the case where (a) the random noise ξ in (164) is standard

Gaussian: ξ ∼ N (0, I), and (b) all the norms ‖ · ‖(k) are just ‖ · ‖r-norms, with r common

for all values of k. In this case, an (incomplete) summary of our (somehow simplified)

constructions and results is as follows. Let s be a given positive integer — an a priori upper

bound on the number of nonzero blocks B[k]x in the transforms we intend to recover well,

and ε� 1 be the a given tolerance. We fix an m×n sensing matrix A and a representation
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structure (B,n1, ..., nK , ‖ · ‖r, ..., ‖ · ‖r).

A.1. Given s and q ∈ [1,∞] and the norm ‖ · ‖, we introduce a condition Qs,q on an

m×N contrast matrix H, specifically, the condition

∀(x ∈ Rn) : Ls,q(Bx) ≤ s
1
q ‖HTAx‖+

s
1
q
−1

3
L1(Bx)

where for w = [w[1]; ...;w[K]] ∈ RN and p ∈ [1,∞], Lp(w) = ‖[‖w[1]‖r; ...; ‖w[K]‖r]‖p is

the `p/`r norm of w, and Ls,p(w) is the norm of w obtained as follows: we zero out all but

the s largest in “magnitude” ‖w[k]‖r blocks in w, and take the Lp-norm of the resulting

s-block-sparse vector. For example, Ls,∞(w) is, independently of s, just the maximum of

magnitudes ‖w[k]‖r of blocks in w.

A.2. Given an m×N contrast matrix H, we introduce two recovery routines:

• regular L1-recovery (cf. (block) Dantzig selector)

x̂reg(y) ∈ Argmin
z∈Rn

{
L1(Bz) : ‖HT (y −Az)‖ ≤ ν(H)

}
,

where ν(H) := max
1≤j≤N

[
max
u∈U

uThj + σErfinv( ε
2N )‖hj‖2

]
and Erfinv(δ) is the inverse

error function1, and,

• penalized L1-recovery (cf. (block) Lasso)

x̂pen(y) ∈ Argmin
z∈Rn

[
L1(Bz) + 2s‖HT (y −Az)‖

]
.

Note that the regular L1-recovery can be undefined; this happens when the corresponding

optimization problem is infeasible. The penalized recovery always is well defined.

A.3. Our main related result is as follows (see Theorems 5.3.1, 5.3.2): Let a contrast

matrix H satisfy the condition Qs,q. Then there exists a set Ξ of realizations of ξ such that

Prob{ξ ∈ Ξ} ≥ 1− ε and for all ξ ∈ Ξ, x ∈ Rn and u ∈ U , x̂reg(Ax+ u+ ξ) is well defined,

and for both x̂ = x̂reg(Ax+ u+ σξ) and x̂ = x̂pen(Ax+ u+ σξ) one has

∀p ∈ [1, q] : Lp(Bx̂−Bx) ≤ O(1)s
1
p
[
ν(H) + s−1υs(Bx)

]
(165)

1i.e., t = Erfinv(δ) means that 1√
2π

∫∞
t
e−p

2/2dp = δ.
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where O(1) is an absolute constant, and υs(w) is the “s-concentration of w,” that is, the

sum of magnitudes ‖w[k]‖r of all but the s largest in magnitude blocks in w.

Note that for the case of the standard representation structure, the corresponding construc-

tions and the result in A were developed in [79].

B.1. Similarly to the plain and block Restricted Isometry/Eigenvalue Properties, con-

dition Qs,q seems to be computationally intractable – given a candidate contrast matrix H,

it is difficult to verify whether it satisfies Qs,q or not; not speaking about designing the best

— with the smallest ν(H) — contrast matrix satisfying this condition, if any exists. We,

however, can point out a verifiable sufficient condition for H to satisfy Qs,q. Specifically,

we demonstrate (Proposition 5.4.3) that H definitely satisfies Qs,q, if there exists an N ×N

matrix V (which we treat as a K ×K block matrix with nk × n` blocks V k`) such that

(a) : B = V B+HTA, and (b) : ‖[‖V 1`‖r→r; ‖V 2`‖r→r; ...; ‖V K`‖r→r]‖s,q ≤
s

1
q
−1

3
, (166)

where ‖V k`‖r→r = maxu`∈Rn`
{
‖V k`u`‖r : ‖u`‖r ≤ 1

}
, and ‖u‖s,p is the norm on RK defined

as follows: we zero out all but the s largest in magnitude entries in vector u, and take the

‖ · ‖p-norm of the resulting vector.

One can use this sufficient condition in order to build a “suboptimal” contrast matrix,

specifically, by minimizing ν(H) over pairs (V,H) satisfying the system of convex constraints

(166) (provided, of course, that this system of constraints is feasible). The resulting problem

is computationally tractable, provided that the norms ‖ · ‖r→r are efficiently computable,

which indeed is the case when r = 1, or r = 2, or r =∞.

B.2. In general, the verifiable (at least for r ∈ {1, 2,∞}) sufficient condition for H

to satisfy Qs,q stated in B.1 is not necessary, and the condition Qs,q itself seems to be

intractable. There exists, however, a notable exception – this is the case of q = ∞ and

r = ∞. We show (Proposition 5.4.1) that here the verifiable sufficient condition stated in

B.1 is necessary and sufficient for H to satisfy Qs,∞. Moreover, the latter condition is

“fully computationally tractable,” meaning that one can optimize efficiently the quantity

ν(H) over the contrast matrices H satisfying Qs,∞, thus ending up with an optimal, as far

as the error bound (165) is concerned, recovery routines. Note that when q =∞, the bound
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(165) holds true in the largest possible range 1 ≤ p ≤ ∞ of values of p.

Note that in the case of the standard representation structure, the sufficient condition in

B.1 reduces to the verifiable sufficient condition for the validity of `1-recovery established

in [81]. It should further be mentioned that to the best of our knowledge, the only known so

far verifiable sufficient condition for the validity of block-`1 recovery of block-sparse signals

is the “mutual block-incoherence condition” [54] (slightly extended in [56]) dealing with the

case of B = In and r = 2; this is a block analogy of the usual mutual incoherence condi-

tion originating from [43]. We show in Section 5.4.3.1 that the mutual block-incoherence

condition is covered by the case of B = In, r = 2 of condition B.1.

B.3. As the majority of good error bounds in compressed sensing, the error bound

(165) expresses a quite intuitive fact, specifically, as follows: imagine that instead of implicit

observations (164) of a transform w = Bx, we were observing this transform directly with

random error ∆w such that with probability ≥ 1 − ε one has L∞(∆w) ≤ ν(H). It is

easily seen that in the latter case, in the range υs(Bx) ≤ sν(H) of s-concentrations of the

transforms w = Bx, the best (1− ε)-reliable bound on the Lp(·)-norm of the recovery error

of Bx coincides, within an absolute constant factor, with the right hand side of (165). Thus,

a natural interpretation of the error bound (165) is that as far as recovery of transforms

Bx with s-concentration υs(Bx) ≤ sν(H) is concerned, everything is as if we were given

their direct observations of Bx contaminated by noise of typical L∞-magnitude ≤ ν(H).

One of the main results presented in this chapter is that to some extent, the opposite also

is true, provided that r = ∞ and thus the error bounds in (165) holds true in the entire

range 1 ≤ p ≤ ∞ of values of p. Specifically, we prove (see Proposition 5.4.2) the following.

Let all the norms ‖ · ‖(k) be the ‖ · ‖∞-norms, and let the observation error be present (that

is, either σ > 0, or U contains a neighborhood of the origin). Let, further, for some integer

S and positive ν there exist a routine ŵ(y) ≡ Bx̂(y) for recovering Bx from observations

(164) such that

∀(u ∈ U , x ∈ Rn : S−1υS(Bx) ≤ ν) :

Probξ∼N (0,I){L∞(B[x− x̂(Ax+ u+ σξ)] ≤ 8[ν + S−1υS(Bx)]} ≥ 1− ε.

152



(cf. (165) with p = ∞). Then for every integer s, 1 ≤ s ≤ S
51 there exists an N × N

contrast matrix H and a certificate V = [V k`]Kk,`=1 ∈ RN×N such that B = V B + HTA,

‖V k`‖∞→∞ ≤ 1
3s , 1 ≤ k, ` ≤ K, and ν(H) ≤ ν+ := 17ν

Erfinv( ε
2N

)

Erfinv( ε
2

) . In other words, when ε

is small, the condition B.1 is satisfied by appropriate s,H such that s and ν(H) coincide,

within absolute constant factors, with S and ν, respectively.

The main body of this chapter is organized as follows. Section 5.1 contains detailed

problem statement, Section 5.2 describes the condition Qs,q(κ), Section 5.3 presents the

regular and the penalized `1 recoveries and an analysis of their performance under condition

Qs,q(κ). Advanced properties of this condition are subject of Section 5.4, and its relations

to the RIP from traditional compressed sensing are investigated in Section 5.5. In the

concluding section, we present a Block Matching Pursuit “counterpart” of the regular and

penalized recoveries.

All proofs are placed in the last section of this chapter.

5.1 Problem Statement

Notation. In the sequel, we deal with

• signals – vectors x = [x1; ...;xn] ∈ Rn, and a m× n sensing matrix A;

• representations of signals – block vectors w = [w[1]; ...;w[K]] ∈ W := Rn1 × ...×RnK ,

and the representation matrix B = [B[1]; ...;B[K]], B[k] ∈ Rnk×n; the representation

of a signal x ∈ Rn is the block vector w = Bx with the blocks B[1]x,...,B[K]x.

The dimension ofW is denoted by N where N = n1 + ...+nK . The factors Rnk of the space

W of representations are equipped with the norms ‖ · ‖(k); the conjugate norms are denoted

by ‖·‖(k,∗). A vector w = [w[1]; ...;w[K]] fromW is called s-sparse, if the number of nonzero

blocks w[k] ∈ Rnk in w is at most s. We refer to the collection (B,n1, ..., nK , ‖·‖(1), ..., ‖·‖(K))

as the representation structure.

For w ∈ W, we call the number ‖w[k]‖(k) as the magnitude of k-th block in w, and

denote by ws the representation vector obtained from w by zeroing out all but the s largest

in magnitude blocks in w (with the ties resolved arbitrarily). For w ∈ W and 1 ≤ p ≤ ∞,
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we denote by Lp(w) the ‖ · ‖p-norm of the vector [‖w[1]‖(1); ...; ‖w[K]‖(K)], so that Lp(·) is

a norm on W with the conjugate norm L∗p(w) = ‖[‖w[1]‖(1,∗); ...; ‖w[K]‖(K,∗)]‖p∗ , p∗ = p
p−1 .

Given positive integer s ≤ K, we set Ls,p(w) = Lp(w
s); note that Ls,p(·) is a norm on W.

We define the s-block concentration of a vector w = Bx as the sum of magnitudes

‖w[k]‖r of all but the s largest in magnitude blocks in w, and denote it by υs(w) :=

L1(w)− Ls,1(w).

Problem of interest is as follows: given an observation

y = Ax+ u+ σξ, (167)

of unknown signal x ∈ Rn, we want to recover x and the representation Bx of x, knowing

in advance that this representation is s-sparse, for some given s. In (167), the term u+ σξ

is the observation error; in this error, u is an unknown nuisance known to belong to a given

compact convex set U ⊂ Rm symmetric w.r.t. the origin, σ ≥ 0 is a known noise intensity,

and ξ is random noise with known distribution P .

A recovery routine is a Borel function x̂(y) : Rm → Rn and we characterize the perfor-

mance of such a routine by its risk

RiskBp (x̂(·)|s, σ, υ, ε)

= inf

{
d : Probξ∼P {ξ : Lp (B[x̂(Ax+ u+ σξ)− x]) ≤ d ∀(u ∈ U , x ∈ Rn : υs(Bx) ≤ υ)}

≥ 1− ε
}

;

(168)

here 0 ≤ ε ≤ 1 and 1 ≤ p ≤ ∞. Thus, RiskBp (x̂(·)|s, σ, υ, ε) ≤ d if and only if there exists a

set Ξ ∈ Rm such that P (Ξ) ≥ 1 − ε and Lp (B[x̂(Ax+ u+ σξ)− x]) ≤ d whenever ξ ∈ Ξ,

u ∈ U and whenever x ∈ Rn is such that Bx can be approximated by s-sparse representation

vector within accuracy υ (measured in L1(·)), i.e., υs(Bx) ≤ υ.

5.2 Condition Qs,q(κ)

Let a sensing matrix A and a representation structure (B,n1, ..., nK , ‖ · ‖(1), ..., ‖ · ‖(K)) be

given, and let s ≤ K be a positive integer, q ∈ [1,∞] and κ > 0. We say that a pair (H, ‖·‖),
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where H ∈ Rm×M and ‖ · ‖ is a norm on RM , satisfies the condition Qs,q(κ) associated with

the matrices A,B and the representation structure, if

∀x ∈ Rn : Ls,q(Bx) ≤ s
1
q ‖HTAx‖+ κs

1
q
−1
L1(Bx). (169)

The following is an evident observation

Observation 5.2.1 Given A and a representation structure (B,n1, ..., nK , ‖ · ‖(1), ..., ‖ ·

‖(K)), let (H, ‖·‖) satisfy Qs,q(κ). Then (H, ‖·‖) satisfies Qs,q′(κ
′) for all q′ ∈ (1, q) and κ′ ≥

κ. Besides this, if s′ ≤ s is a positive integer, ((s/s′)
1
qH, ‖ · ‖) satisfies Qs′,q((s

′/s)
1− 1

q κ).

Whenever (B,n1, ..., nK , ‖ · ‖(1), ..., ‖ · ‖(K)) is the standard representation structure,

meaning that B is the identity matrix and n1 = ... = nK = 1 and ‖ · ‖(k) = | · | for all k, the

condition Qs,q(κ) reduces to the condition Hs,q(κ) introduced in [79].

5.3 Recovery Routines

We are about to introduce two new recovery routines.

Regular L1-recovery is

x̂reg(y) ∈ Argmin
u

{
L1(Bu) : ‖HT (Au− y)‖ ≤ ρ

}
, (170)

where H ∈ Rm×M , ‖ · ‖ and ρ > 0 are parameters of the construction.

Theorem 5.3.1 Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0, 1/2). Let also ε ∈ (0, 1).

Assume that the parameters H, ‖ · ‖, ρ of the regular L1-recovery are such that

A. (H, ‖ · ‖) satisfies the condition Qs,q(κ) associated with matrices A,B;

B. There exists a set Ξ such that P (Ξ) ≥ 1− ε and

‖HT (u+ σξ)‖ ≤ ρ ∀(u ∈ U , ξ ∈ Ξ). (171)

Then for 1 ≤ p ≤ q and ∀(ξ ∈ Ξ, u ∈ U , x ∈ Rn),

Lp(B[x̂reg(Ax+ u+ σξ)− x]) ≤ (4s)
1
p

2ρ+ s−1L1(Bx− [Bx]s)

1− 2κ
. (172)
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Penalized L1-recovery is

x̂pen(y) ∈ Argmin
u

{
L1(Bu) + 2s‖HT (Ax− y)‖

}
, (173)

where H ∈ Rm×M , ‖ · ‖ and a positive integer s are parameters of the construction.

Theorem 5.3.2 Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0, 1/2). Let also ε ∈ (0, 1).

Assume that the parameters H, ‖·‖, s of the penalized recovery and a ρ ≥ 0 satisfy conditions

A, B from Theorem 5.3.1. Then, similar to Theorem 5.3.1, we have

Lp(B[x̂pen(Ax+ u+ σξ)− x]) ≤ 2(2s)
1
p

2ρ+ s−1L1(Bx− [Bx]s)

1− 2κ
, (174)

for 1 ≤ p ≤ q and ∀(ξ ∈ Ξ, u ∈ U , x ∈ Rn) cf. (172).

5.4 Properties of Condition Qs,∞(κ)

In general, given a sensing matrix A and a representation structure (B,n1, ..., nK , ‖·‖(1), ...‖·

‖(K)), it seems to be difficult even to verify that a pair (H, ‖ · ‖) satisfies condition Qs,q(κ)

associated with A,B, not speaking about synthesis of (H, ‖ ·‖) satisfying this condition and

resulting in the best possible error bounds (172), (174) for the regular and the penalized `1

recoveries. We are about to demonstrate that when all ‖ · ‖(k) are the uniform norms ‖ · ‖∞

and, in addition, q =∞ (which, by Observation 5.2.1, corresponds to the strongest among

the conditions Qs,q(κ) associated with A and a given representation structure and ensures

the validity of (172), (174) in the largest possible range 1 ≤ p ≤ ∞ of values of p), the

condition Qs,q(κ) becomes “fully computationally tractable.” We intend to demonstrate

also that this condition Qs,∞(κ) is in fact necessary for the bounds of the form (172), (174)

to be valid when p =∞.

5.4.1 Condition Qs,∞(κ): Tractability

In the sequel, given π, θ ∈ [1,∞] and a matrix M , we denote by ‖M‖π→θ the norm of

the linear operator u 7→ Mu induced by the norms ‖ · ‖π and ‖ · ‖θ at the origin and the

destination spaces:

‖M‖π→θ = max
u:‖u‖π≤1

‖Mu‖θ.
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Consider the situation where ‖ · ‖(k), for all k, are the `∞ norms. We claim that in this case

the condition Qs,∞(κ) becomes fully tractable. Specifically, we have the following

Proposition 5.4.1 Let ‖ · ‖(k) = ‖ · ‖∞ for all k ≤ K, and let a positive integer s and reals

κ > 0, ε ∈ (0, 1) be given.

(i) Assume that a triple (H, ‖ · ‖, ρ), where H ∈ RM×m, ‖ · ‖ is a norm on RM , and

ρ ≥ 0, is such that

(!) (H, ‖ · ‖) satisfies Qs,∞(κ) and the set Ξ = {ξ : ‖HT [u + σξ]‖ ≤ ρ ∀u ∈ U}

is such that P (Ξ) ≥ 1− ε.

Then there exist N = n1+...+nK vectors h1, ..., hN in Rm and N×N matrix V = [V k`]Kk,`=1

(the blocks V k` are nk × n` matrices) such that

(a) B = V B + [h1, ..., hN ]TA,

(b) ‖V k`‖∞→∞ ≤ s−1κ ∀k, ` ≤ K,

(c) P

(
Ξ+ := {ξ : max

u∈U
uThi + σ|ξThi| ≤ ρ, 1 ≤ i ≤ N}

)
≥ 1− ε.

(175)

(ii) Whenever vectors h1, ..., hN ∈ Rm and a matrix V = [V k`]Kk,`=1 with nk × n` blocks

V k` satisfy (175), the m×N matrix Ĥ = [h1, ..., hN ], the norm ‖ · ‖∞ on RN and ρ form a

triple satisfying (!).

Discussion. Let a sensing matrix A ∈ Rm×n and a representation structure (B,n1, ..., nK ,

‖ ·‖(1), ..., ‖ ·‖(K)) with all ‖ ·‖(k) being the `∞ norms be given, along with a positive integer

s, an uncertainty set U , a distribution P of ξ and quantities σ, ε. Theorems 5.3.1, 5.3.2 say

that if a triple (H, ‖ · ‖, ρ) is such that (H, ‖ · ‖) satisfies Qs,∞(κ) with κ < 1/2 and H, ρ are

such that for the set

Ξ = {ξ : ‖HT [u+ σξ]‖ ≤ ρ ∀u ∈ U}

it holds P (Ξ) ≥ 1 − ε, then for all υ ≥ 0, for the regular L1-recovery associated with

(H, ‖ · ‖, ρ) and for the penalized L1-recovery associated with (H, ‖ · ‖, s) the following

holds:

RiskBp (x̂|s, σ, υ, ε) ≤ 2(2s)
1
p

2ρ+ s−1υ

1− 2κ
, 1 ≤ p ≤ ∞ (176)
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for all x such that υs(Bx) ≤ υ. Proposition 5.4.1 states that when applying this result,

we loose nothing by restricting ourselves with triples H = [h1, ..., hN ] ∈ Rm×N , N =

n1 + ... + nK , ‖ · ‖ = ‖ · ‖∞, ρ ≥ 0 which can be augmented by an appropriately chosen

matrix N×N matrix V to satisfy relations (175). In the rest of this discussion, it is assumed

that we are speaking about triples (H, ‖ · ‖, ρ) satisfying the just defined restrictions.

Now, as far as bounds (176) are concerned, they are completely determined by two

parameters — κ (which should be < 1/2) and ρ; the smaller are these parameters, the

better are the bounds. In what follows we address the issue of efficient synthesis of matrices

H with “as good as possible” values of κ and ρ.

Observe, first, that H = [h1, ..., hN ] and κ should admit an extension by a matrix V to

a solution of the system of convex constraints (175). In the case of σ = 0, the best choice

of ρ, given H, is

ρ = max
i
µU (hi), where µU (h) = max

u∈U
uTh.

Consequently, in this case the “achievable pairs” ρ, κ form a computationally tractable

convex set

Gs =

{
(κ, ρ) : ∃H = [h1, ..., hN ] ∈ Rm×N , V = [V k` ∈ Rnk×n` ]Kk,`=1 :

B = V B +HTA, ‖V k`‖∞→∞ ≤ κ
s , µU (hi) ≤ ρ, 1 ≤ i ≤ N

}
.

When σ > 0, the situation is complicated by the necessity to maintain the validity of the

restriction

P (Ξ+) := P
{
ξ : µU (hi) + σ|ξThi| ≤ ρ, 1 ≤ i ≤ N

}
≥ 1− ε, (177)

which is a chance constraint in variables h1, ..., hN , ρ and as such can be “computationally

intractable.” Let us consider the “most standard” case of Gaussian zero mean noise ξ, that

is, assume that ξ = Cη with η ∼ N (0, Im). Then (177) implies that

ρ ≥ max
i

[
µU (hi) + σErfinv(

ε

2
)‖CThi‖2

]
and is implied by

ρ ≥ max
i

[
µU (hi) + σErfinv(

ε

2N
)‖CThi‖2

]
, 1 ≤ i ≤ N.
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Ignoring the “gap” between Erfinv(ε/2) and Erfinv( ε
2N ), we can safely model the restriction

(177) by the system of convex constraints

µU (hi) + σErfinv(
ε

2N
)‖CThi‖2 ≤ ρ, 1 ≤ i ≤ N. (178)

Thus, the set Gs of admissible κ, ρ can be safely approximated by the computationally

tractable convex set

G∗s =

(κ, ρ) : ∃

 H = [h1, ..., hN ] ∈ Rm×N

V = [V k` ∈ Rnk×n` ]Kk,`=1

 :


B = BV +HTA, ‖V k`‖∞→∞ ≤ κ

s , 1 ≤ k, ` ≤ K

max
u∈U

uThi + σErfinv
(
ε

2N

)
‖CThi‖2 ≤ ρ,

1 ≤ i ≤ N

 .

(179)

5.4.2 Condition Qs,∞(κ): Necessity

In addition to the earlier assumption that for all k, ‖·‖(k) are the `∞ norms, we now assume

ξ is a zero mean Gaussian noise: ξ = Cη with η ∼ N (0, Im). From the above discussion

we know that if, for some κ < 1/2 and ρ > 0, there exist H = [h1, ..., hN ] ∈ Rm×N and

V = [V k` ∈ Rnk×n` ]Kk,`=1 satisfying (175), then regular and penalized `1 recoveries with

appropriate choice of parameters ensure that

Prob{‖B[x− x̂(Ax+ u+ σξ)]‖∞ ≤ 2
2ρ+ s−1L1(Bx− [Bx]s)

1− 2κ
} ≥ 1− ε (180)

for all (x ∈ Rn, u ∈ U).

We are about to demonstrate that this implication can be “nearly inverted:”

Proposition 5.4.2 Let a sensing matrix A, a representation structure (B,n1, ..., nK , ‖ ·

‖(1), ..., ‖ · ‖(K)), the uncertainty set U , and reals κ > 0, ε ∈ (0, 1) be given, with all ‖ · ‖(k)

being `∞-norms. Assume also that the observation error “is present,” specifically, that for

every r > 0, the set {u+ σCe : u ∈ U , ‖e‖2 ≤ r} contains a neighborhood of the origin.

Given a positive integer S, assume that there exists a recovering routine x̂ satisfying an

error bound of the form (180), specifically, the bound

∀(x ∈ Rn, u ∈ U) : Prob{‖B[x− x̂(Ax+ u+ σξ)]‖∞ ≤ α+ cS−1L1(Bx− [Bx]S)} ≥ 1− ε.

(181)
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where α and c are some positive constants. Then for every s ≤ S
6.3c there exist H =

[h1, ..., hN ] ∈ Rm×N and V = [V k` ∈ Rnk×n` ]Kk,`=1 such that hi ∈ Rm, vi ∈ Rk, 1 ≤ i ≤ k,

satisfying

(a) B = V B +HTA,

(b) ‖V k`‖∞→∞ ≤ 1
3s ∀k, ` ≤ K,

(c) with ρ := max
1≤i≤N

[
max
u∈U

uThi + σErfinv( ε
2N )‖CThi‖2

]
≤ 2.1α

Erfinv( ε
2N

)

Erfinv(ε)

and ξ = Cη, η ∼ N (0, Im),

one has

P

(
Ξ+ := {ξ : max

u∈U
uThi + σ|ξThi| ≤ ρ, 1 ≤ i ≤ N}

)
≥ 1− ε,

(182)

meaning that (see Proposition 5.4.1) (H, ‖·‖∞) satisfies Qs,∞(1/3) for s “nearly as large as

S,” namely, s ≤ S
6.3c , and H = [h1, ..., hk], ρ satisfy conditions (178) (and thus – condition

B from Theorem 5.3.1), with ρ being “nearly α’, namely, ρ ≤ 2.1α
Erfinv( ε

2N
)

Erfinv(ε) .

5.4.3 A Sufficient Condition for Qs,q(κ)

Proposition 5.4.3 Let a sensing matrix A, a representation structure (B,n1, ..., nK , ‖ ·

‖(1), ..., ‖ · ‖(K)) be given. Let N = n1 + ...+nK , and let N ×N matrix V = [V k`]Kk,`=1 (V k`

are nk × n`) and m×N matrix H satisfy the relation

B = V B +HTA. (183)

Let

ν∗s,q(V ) = max
1≤`≤K

max
w`∈Rn` :‖w`‖(`)≤1

Ls,q

(
[V 1`w`; ...;V K`w`]

)
. (184)

Then for all s ≤ K and all q ∈ [1,∞], we have:

Ls,q(Bx) ≤ s
1
qL∞(HTAx) + ν∗s,q(V )L1(Bx) ∀x. (185)

In particular, whenever there is an upper bounding function νs,q(V ) satisfying ν∗s,q(V ) ≤

νs,q(V ) for all s ≤ K, q ∈ [1,∞] and matrix V such that

νs,q(V ) ≤ s
1
q
−1
κ, (186)

holds, then the pair (H,L∞(·)) satisfies Qs,q(κ).
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Let Colk(Ω) is k-th column of Ω and ‖u‖s,q is the `q-norm of the vector obtained from u

by zeroing all but the s largest entries in u and ‖P‖(`)→(k) is the norm of the linear mapping

u 7→ Pu : Rn` → Rnk induced by the norms ‖ · ‖(`), ‖ · ‖(k) on the argument and on the

image spaces. Then

ν∗s,q(V ) ≤ ν̂s,q(V ) = max
1≤k≤K

‖Colk[Ω]‖s,q where Ω = [‖V k`‖(`)→(k)]
K
k,`=1. (187)

When all ‖ · ‖(k) are the `∞-norms and q = ∞, Proposition 5.4.3 recovers Proposi-

tion 5.4.1. In the general case, Proposition 5.4.3 suggests a way to synthesize matrices

H ∈ Rm×N which provably satisfy the condition Qs,q(κ), along with a certificate V for

this fact: H and V should satisfy a system of linear equations (183) and, in addition, V

should satisfy (187) and (186), which is a system of convex constraints on V . Whenever

these constraints are efficiently computable, we get a computationally tractable sufficient

condition on H to satisfy Qs,q(κ) – a condition which is expressed by an explicit system of

efficiently computable convex constraints on H and additional matrix variable V . Now, ef-

ficient computability of the constraints (186) is the same as efficient computability of norms

‖ · ‖(k)→(`). Assuming that ‖ · ‖(k) = ‖ · ‖πk for every k, the computability issue becomes

the one of efficient computation of the norms ‖ · ‖π`→πk . The norm ‖ · ‖π→θ is known to be

generically efficiently computable in just three cases:

1. θ = ∞, where ‖M‖π→∞ = ‖MT ‖1→ π
π−1

= max
i
‖RowT

i (M)‖ π
π−1

, where Rowi(M) is

i-th row of M ;

2. π = 1, where ‖M‖1→θ = max
j
‖Colj(M)‖θ;

3. π = θ = 2, where ‖M‖2→2 is the usual spectral norm of a matrix M .

Assuming for the sake of simplicity that in our representation structure ‖ · ‖(k) are π-norms

with common value of π, let us look at three “tractable cases” as specified by the above

discussion – those of π =∞, π = 1 and π = 2.

The case of π =∞ was considered in full details in Section 5.4.1. In this case, we have

νs,q|π=∞(V ) = max
1≤k,`≤K

‖V kl‖∞→∞.
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The case of π = 1. When all ‖ · ‖(k) are the `1 norms, the quantity ν∗s,q(V ) is easy to

compute:

νs,q|π=1(V ) = ν∗s,q(V ) = max
1≤k≤K

Ls,q(Colk(V )).

The bottom line is that when ‖ · ‖(k) for all k are `1 norms, a verifiable sufficient condition

of an m×N matrix H and the norm L∞(·) on RN to satisfy Qs,q(κ) is the existence of an

N ×N matrix V such that

B = V B +HTA & max
1≤k≤K

Ls,q(Colk(V )) ≤ s−1κ, (188)

which is a system of efficiently computable convex constraints in variables V,H.

The case of π = 2. Now assume that all ‖ · ‖(k) are `2 norms, one has

ν∗s,q(V ) = max
1≤`≤K

max
w∈Rn` :‖w‖2≤1

‖[‖V 1`w‖2; ‖V 2`w‖2; ...; ‖V K`w‖2]‖s,q. (189)

In order to convert (189) into a verifiable sufficient condition for H to satisfy Qs,q(κ), we

need an efficiently computable and convex in V upper bound on the quantity ν∗s,q(V ). To

this end it suffices to find an efficiently computable upper bound on the function µs,q(U) of

a block matrix U = [U1; ...;UK ] with nk × q blocks Uk defined as follows:

µs,q(U) = max
w∈Rq :‖w‖2≤1

‖[‖U1w‖2; ‖U2w‖2; ...; ‖UKw‖2]‖s,q.

A trivial efficiently computable upper bound on µs,q(U) is ‖[‖U1‖2→2; ...; ‖UK‖2→2]‖s,q; this

bound brings us back to the function ν̂s,q(V ). Note that this bound is exact when q = ∞

(same as when s = 1, since µ1,q(U) = µK,∞(U) = max
k
‖Uk‖2,2). A less trivial bound can

be derived when q = 1.

The case of π = 2, q = 1. Let Z = {z ∈ W : ‖z[k]‖2 ≤ 1 ∀k ≤ K,
∑K

k=1 ‖z[k]‖2 ≤ s}, so

that for every vector w ∈ W we have Ls,1(w) = max
z∈Z

zTw. We have

µ2
s,1(U) = max

w:‖w‖2≤1
‖[‖U1w‖2; ‖U2w‖2; ...; ‖UKw‖2]‖2s,1 = max

w:‖w‖2≤1

[
max
z∈Z

zTUw

]2

= max
w:‖w‖2≤1

max
z∈Z

wTUT zzTUw = max
z∈Z

[
max

w:‖w‖2≤1
wTUT zzTUw

]
= max

z∈Z
Tr(UT zzTU) [since UT zzTU is of rank 1]
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whence

µs,1(U) = max
z∈Z

√
Tr(UT zzTU). (190)

Now, when z ∈ Z, the matrix Z = zzT is a block matrix: Z = [Zk`]Kk,`=1 with nk × n`

blocks Zk` = z[k](z[`])T , and ‖z[k]‖2 ≤ 1 for all k,
∑

k ‖z[k]‖2 ≤ s. As a result, Z possesses

the following properties:

(a) Z = ZT � 0

(b) ∃tk, 1 ≤ k ≤ K :


‖Zk`‖∗ ≤ tk, 1 ≤ k, ` ≤ K∑K

`=1 ‖Zk`‖∗ ≤ stk, 1 ≤ k ≤ K

tk ≤ 1, 1 ≤ k ≤ K,
∑K

k=1 tk ≤ s︸ ︷︷ ︸
(∗)

(191)

where ‖ · ‖∗ is the nuclear norm (the sum of singular values) of a matrix.

Indeed, (a) is evident; to ensure (∗), it suffices to set tk = ‖z[k]‖2, 1 ≤ k ≤ K.

Now let Z+ be the set of all N ×N matrices Z = [Zk`]Kk,`=1 satisfying (191), and let

µ̂s,1(U) =
√

max
Z∈Z+

Tr(UTZU) (192)

Observing that µ̂s,1(U) is an upper bound on µs,1(U) (by (190) and due to zzT ∈ Z+ when

z ∈ Z) and it is a convex efficiently computable function of U 2; we have reached our

goal – building an efficiently computable upper bound on µs,1(·). It is easily seen that this

bound is never worse than the simpler bound µ̃s,1(U) := ‖[‖U1‖2→2; ...; ‖UK‖2→2]‖s,1;3 and

numerical experiment shows that the ratio µ̃/µ̂ can be quite significant. �

2Convexity follows from the fact that with Z � 0,
√

Tr(UTZU) is the Frobenius norm of ‖Z1/2U‖, com-
putability - from the fact that Z+ is a computationally tractable convex set, so that maximizing Tr(UTZU)
over Z+ is a tractable task.

3Here is the justification: Let Z ∈ Z+ and t` be such that (191.b) takes place, and let uk = ‖Uk‖2→2.
Observe that

(!) whenever τ ∈ RK and σ ∈ R are such that |τ`| ≤ σ, 1 ≤ ` ≤ K, and
∑
` |τ`| ≤ sσ, we have

|τTw| ≤ σ‖w‖s,1 for all w.

We now have

Tr(UTZU) =
∑K
k,`=1 Tr([Uk]TZk`U `) =

∑k
k,`=1 Tr(Zk`U `[Uk]T ) ≤

∑K
k,`=1 ‖Z

k`‖∗‖Uk[U `]T ‖2→2

≤
∑K
k,`=1 ‖Z

k`‖∗uku` =
∑K
k=1 uk

[∑K
`=1 ‖Z

k`
∗ ‖u`

]
≤(a)

∑K
k=1 uktk‖u‖s,1 ≤(b) ‖u‖2s,1

where ≤(a) and ≤(b) are given by (!) combined with (191.b).
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5.4.3.1 Proposition 5.4.3 and Mutual Block-Incoherence

We have mentioned in Introduction section that, to the best of our knowledge, the only

previously proposed verifiable sufficient condition for the validity of block-`1 recovery is

the “mutual block incoherence condition” [54]; our local goal is to demonstrate that this

condition is covered by Proposition 5.4.3.

The mutual block incoherence condition deals with the case where B = In, nk = d,

‖ · ‖(k) = ‖ · ‖2, 1 ≤ k ≤ K, and the columns of A are normalized to have Euclidean lengths

equal to 1. The condition is as follows: let A[`] be consecutive m× d submatrices of m× n

matrix A. We set

α = max
1≤`≤K

max
1≤j<j′≤d

|ColTj (A[`])Colj′(A[`])|, µ = max
1≤k<`≤K

σmax(AT [k]A[`]) (193)

where σmax stands for the maximal singular value and Colj(A) denotes the j-th column of

the matrix A. [54] states that under the condition

s <
1− (d− 1)α+ σ

2σ
(194)

the block-`1/`2 recovery x̂(y) ∈ Argminz

{∑K
`=1 ‖z`‖2 : Az = y

}
(z` are consecutive d-

dimensional blocks in z ∈ Rn) in the case of noiseless observations is exact on all s-block-

sparse signals x. In the case of noisy observations, certain error bound for a (properly

modified) block-`1/`2 recovery of nearly s-block-sparse signals is provided. We are about

to demonstrate that these results of [54], are, essentially, covered by Proposition 5.4.3 and

Theorems 5.3.1, 5.3.2 due to the following observation:

Proposition 5.4.4 Given m × n sensing matrix A with unit Euclidean lengths of the

columns and the representation structure B = In, nk = d, ‖·‖(k) = ‖·‖2, 1 ≤ k ≤ K = n/d,

let α, σ > 0 be defined according to (193), and let a positive integer s be such that (194) holds

true (the latter clearly implies that 1 − (d − 1)α ≥ σ). Then the matrices B` = AT [`]A[`]

are positive definite for all `, and setting

H = θ[B−1
1 A[1], B−1

2 A[2], ..., B−1
K A[K]], θ =

1− (d− 1)α

1− (d− 1)α+ σ
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we get a contrast matrix which, along with the norm L∞(·), satisfies the condition Qs,∞(κ)

with

κ =
σs

1− (d− 1)α+ σ
< 1/2.

The Euclidean lengths of the columns in H do not exceed 1
1−(d−1)ρ .

5.4.3.2 Sufficient Condition for Qs,q(κ): Limits of Performance

Consider the situation where all the norms ‖ · ‖(k) are ‖ · ‖π, with π ∈ {1, 2,∞}. Here

Proposition 5.4.3 offers a verifiable sufficient condition for a pair (H ∈ Rm×N , L∞(·)) to

satisfy the condition Qs,q(κ). A natural question is, what are “limits of performance” of this

sufficient condition, specifically, how large could be the values of s for which the condition

can be satisfied by at least one contrast matrix. Here is a partial answer to this question:

Proposition 5.4.5 Let A be an m × n sensing matrix with m < n, let B = In and let

nk = d, ‖ · ‖(k) = ‖ · ‖π, 1 ≤ k ≤ K = n/d, with π ∈ {1, 2,∞}. Whenever an m× n matrix

H and n× n matrix V satisfy the conditions

In = V +HTA and max
1≤`≤K

‖[‖V 1`‖π→π; ‖V 2`‖π→π; ...; ‖V K`‖π→π]‖s,q ≤ s
1
q
−1
/2 (195)

(cf. (183), (187), and (186)), one has

s ≤ n

2
√
d(n−m)

(196)

provided that either (a) q ≥ 2, or (b) q = 1 and A is “essentially non-square,” namely,

m < 3n/4.

Discussion. Let the representation structure in question be the same as in Proposition

5.4.5, and let m×n sensing matrix A which is “sufficiently non-square,” that is, m ≤ γn for

some γ < 1. Proposition 5.4.5 says that in this case, verifiable sufficient condition, stated

by Proposition 5.4.3, for satisfiability of Qs,q(κ) with κ < 1/2 has rather restricted scope

— it cannot certify the satisfiability of Qs,q(κ), κ ≤ 1/2, when s >
√
n

2
√
d(1−γ)

, at least in

the case of q ≥ 2; when q = 1, the conclusion still holds true provided that γ ≤ 3/4).

Note that in fact the condition Qs,q(κ) can be satisfiable in a much larger range of values
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of s; e.g., when the representation structure in question is the standard one, and A is a

random Gaussian m× n matrix, the matrix 2A satisfies, with overwhelming probability as

m,n grow, the condition Qs,2(1/3) for s as large as O(1)m/
√

ln(2n/m), see Proposition

5.5.1 below. There is, however, an important case where the “limits of performance” of

our verifiable sufficient condition for the satisfiability of Qs,q(κ) implies severe restrictions

on the range of values of s in which the “true” condition Qs,q(κ) is satisfiable – this is the

case when q = ∞ and π = ∞. Combining Propositions 5.4.1 and 5.4.5, we conclude that

in the case of representation structure from Proposition 5.4.5 with π =∞ and “sufficiently

non-square” (m ≤ 3n/4) m × n sensing matrix A, the associated condition Qs,∞(1/2) is

unsatisfiable, provided that s >
√
n

2
√
d(1−γ)

. Invoking Proposition 5.4.2, we conclude that

with the representation structure in question, assuming ξ ∼ N (0, Im) and σ > 0, for every

pair of constants α,C > 0, the error bound

∀(x ∈ Rn, u ∈ U) : Prob
{
‖x̂(Ax+ u+ σξ)− x‖∞ ≤ α+ Cs−1L1(x− xs)

}
≥ 1− ε

is not achievable for any estimate x̂(·), unless s ≤ O(1)C
√
n/d. Informally speaking, at the

(block) sparsity level
√
m “something happens” – in particular, the nice picture “everything

is as in the case of direct observations” outlined in item B of Introduction section ceases to

exist, provided the approximation error is measured in the uniform norm.

5.5 RIP and Condition Qs,q(κ)

In this section, we restrict ourselves with the standard representation structure, meaning

that B = In, K = n, n1 = ... = nK = 1 and all ‖ · ‖(k) are just the standard norms | · | on

the real axis.

Recall that a sensing matrix A ∈ Rm×n satisfies the Restricted Isometry Property

RIP(δ, k) (here δ ≥ 0 and k is a positive integer) if for every x ∈ Rn with at most k

nonzero entries one has

(1− δ)‖x‖22 ≤ xTATAx ≤ (1 + δ)‖x‖22 (197)
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Proposition 5.5.1 Let A ∈ Rm,n satisfy RIP(δ, 2s) for some δ < 1 and positive integer s.

Then

(i) The pair
(
H = s−1/2

√
1−δ Im, ‖ · ‖2

)
satisfies the condition Qs,2

(
δ

1−δ

)
associated with A

and the standard representation structure.

(ii) The pair
(
H = 1

1−δA, ‖ · ‖∞
)

satisfies the condition Qs,2

(
δ

1−δ

)
associated with A

and the standard representation structure.

(iii) Let ŝ = Floor
(

(1−δ)
√
s

3δ

)
. Then one can build efficiently a matrix H = [h1, ..., hn] ∈

Rm×n such ‖hi‖2 ≤ 1√
1−δ for all i and the pair (H, ‖ · ‖∞) satisfies the condition Qŝ,∞(1

3)

associated with A and the standard representation structure.

(iv) Let m, s, n be such that 1 ≤ s ≤ m ≤ n, n ≥ 1000, and

36s
√

ln(n)/m ≤ 1, (198)

and let A satisfy RIP(4

√
s ln(n)
m , s). Then (H = 3

2A, ‖ · ‖∞) satisfies Qs,∞(1
3). Besides this,

a Gaussian A (i.e., random m × n matrix with independent N (0, 1/m) entries) satisfies

RIP(4

√
s ln(n)
m , s) with probability at least 1− 1/n.

Combining Theorems 5.3.1, 5.3.2 and Proposition 5.5.1, we arrive at the following con-

clusion:

Corollary 5.5.1 Let A = [A1, ..., An] ∈ Rm×n, δ < 1/3 and positive integer s be such that

A satisfies RIP(δ, 2s), and let the representation structure be standard.

(i) Let R > 0 be such that for the set Ξ = {ξ : ‖σξ + u‖2 ≤ R ∀u ∈ U} one has

P (Ξ) ≥ 1− ε. Let H = s−1/2
√

1−δ Im, ‖ · ‖ = ‖ · ‖2 and

ρ =
s−1/2R√

1− δ
.

Then for the regular `1-recovery associated with H, ‖ · ‖2, ρ and for the penalized `1-recovery

associated with H, ‖ · ‖2, s one has

∀(x ∈ Rn, u ∈ U , ξ ∈ Ξ) :

‖x̂(Ax+ u+ σξ)− x‖p ≤ 3s
1
p

2
√

1−δs−1/2R+(1−δ)s−1‖x−xs‖1
1−3δ , 1 ≤ p ≤ 2.

(199)

(ii) Let

ρi = σmin
{
d : Probξ∼P {(1− δ)−1|ATi ξ| > d} ≤ ε/n

}
,
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so that with Ξ = {ξ : (1 − δ)−1|ATi ξ| ≤ ρi, 1 ≤ i ≤ n} one has P (Ξ) ≥ 1 − ε. Let also

H = 1
1−δA and

ρ = max
i

[
(1− δ)−1 max

u∈U
uTAi + ρi

]
.

Then for the regular `1-recovery associated with H, ‖ · ‖∞, ρ, and the penalized `1-recovery

associated with H, ‖ · ‖∞, s, and for all 1 ≤ p ≤ 2 one has

∀(x ∈ Rn, u ∈ U , ξ ∈ Ξ) : ‖x̂(Ax+ u+ σξ)− x‖p ≤ 3s
1
p

(1− δ)[2ρ+ s−1‖x− xs‖1]

1− 3δ
. (200)

Discussion. I. Let U = {u ∈ Rm : ‖u‖2 ≤ r} and σ = 0. In the situation of Corollary

5.5.1.i with ε = 0 we get R = r, ρ = s−1/2r/
√

1− δ, the recoveries are

x̂reg(y) ∈ Argminu {‖u‖1 : ‖Au− y‖2 ≤ r} ,

x̂pen(y) ∈ Argminu

{
‖u‖1 + 2 s1/2√

1−δ‖Au− y‖2
}
,

(201)

and the bound (199) reads

‖x̂(Ax+ u)− x‖p ≤ 3s
1
p

2
√

1− δs−1/2r + (1− δ)s−1‖x− xs‖1
1− 3δ

, (202)

∀(x ∈ Rn, u : ‖u‖2 ≤ r) and 1 ≤ p ≤ 2.

Note that this bound is not completely evident even in the case of direct observations

m = n, A = In (in this case, RIP(0, 2s) holds true whenever 2s ≤ n). As p grows from

1 to 2, the right hand side in the bound decreases from 32
√
s
√

1−δr+(1−δ)‖x−xs‖1
1−3δ (p = 1) to

32
√

1−δr+(1−δ)s−1/2‖x−xs‖1
1−3δ (p = 2). We clearly have

‖x̂(Ax+ u)− x‖p ≤ ‖x̂(Ax+ u)− x‖2 ≤ 3
2
√

1− δr + (1− δ)s−1/2‖x− xs‖1
1− 3δ

, 2 ≤ p ≤ ∞.

II. Let σ ∼ N (0, Im) and U = {u : ‖u‖2 ≤ r}. In the situation of Corollary 5.5.1.ii with

ε ∈ (0, 1) we get

ρ = (1− δ)−1ρ̄, where ρ̄ = max
i

[r‖Ai‖2 + σErfinv(ε/n)‖Ai‖2] ≤
√

1 + δ[r + σErfinv(ε/n)],

and the recoveries are

x̂reg(y) ∈ Argminu
{
‖u‖1 : ‖AT (Au− y)‖∞ ≤ ρ̄

}
,

x̂pen(y) ∈ Argminu
{
‖u‖1 + 2s(1− δ)−1‖AT (Au− y)‖∞

}
,

(203)
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and the bound (200) reads

∀(x ∈ Rn, u ∈ U , ξ ∈ Ξ := {ξ : |ATi ξ| ≤ Erfinv(ε/n), 1 ≤ i ≤ n}) :

‖x̂(Ax+ u+ σξ)− x‖p ≤ 3s
1
p

2
√

1+δ[r+σErfinv(ε/n)]+(1−δ)s−1‖x−xs‖1
1−3δ , 1 ≤ p ≤ 2.

(204)

5.5.1 `∞-error of Dantzig Selector.

We continue to consider the case of the standard representation structure. If ln(m) =

O(ln(n)) and A is an m × n Gaussian matrix, Proposition 5.5.1.iv states that when s ≤

O(1)
√
m/ ln(m) with an appropriately chosen O(1), the probability for (3

2A, ‖ · ‖∞) to

satisfy the condition Qs,∞(1/3) approaches 1 as n → ∞. Since for ln(m) = O(ln(n)), the

Euclidean norms of columns in A are bounded by 1.1 with probability approaching 1 as

n→∞, we conclude from our results on regular `1-recovery that

(!) When s ≤ O(1)
√
m/ ln(m), for n large and a typical realization of Gaussian

A, the Dantzig selector

y = Ax+ σξ 7→ x̂D,ε(y) ∈ Argmin
u

{
‖u‖1 : ‖AT (Au− y)‖∞ ≤ 6σ

√
2 ln(n/ε)

}
under the standard Gaussian noise, ξ ∼ N (0, Im), satisfies

Prob{ξ : ‖x− x̂D,ε(Ax+ σξ)‖∞ ≤ O(1)σ
√

2 ln(n/ε)} ≥ 1− ε for all s-sparse x.

The question is, to which extent the bound s ≤ O(1)
√
m/ ln(m) is important here. Specif-

ically, let us pose the following question:

(?) Consider Dantzig Selector recovery x̂D,ε(·), and let us fix ε, say, ε = 0.01.

Given a constant C > 0, how large, for n large, ln(m) = O(ln(n)) and a typical

Gaussian A ∈ Rm×n, are those s for which the following holds

Prob
{
‖x̂− x‖∞ ≤ Cσ

√
2 ln(n/ε)

}
> 1− ε = 0.99 (205)

for every s-sparse signal x?

The answer is given by the following
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Proposition 5.5.2 For given C, ε and for large m,n with ln(m) = O(1) ln(n), a typ-

ical Gaussian m × n sensing matrix ensures (205) for every s-sparse x only when s ≤

O(1) max[C,C2]
√
m ln(m).

Thus, the restriction s ≤ O(1)
√
m/ ln(m) in (!) indeed is important: when s is by a

logarithmic in m factor greater than this bound, the Dantzig selector associated with a

typical Gaussian A stops to work properly in the `∞-norm.

5.6 Non-Euclidean Matching Pursuit Algorithm for Block Sparsity

The Matching Pursuit algorithm for sparse recovery is motivated by the desire to provide

a reduced complexity alternative to the algorithms using `1-minimization. Several imple-

mentations of Matching Pursuit has been proposed in the compressed sensing literature

including the ones for block-sparse recovery [10, 14, 54, 55]. In this section, we aim to

show that for a given sparsity level s, whenever ‖ · ‖(k) = ‖ · ‖∞ for all k = 1, . . . ,K, the

verifiable condition Qs,∞ can be used to design a specific version of the Matching Pursuit

algorithm which we refer to as Block Non-Euclidean Matching Pursuit (BNEMP) algorithm

for recovering vectors obeying a block sparsity structure. In this section, we will assume

that the matrix B is invertible.

Suppose that we have in our disposal κ > 0 such that the condition Qs,∞ is satisfied by

some pair (Ĥ, ‖ · ‖). For the given ε ∈ (0, 1), let

ν(Ĥ) := inf
{
ρ : Prob{ξ : ‖ĤT [u+ σξ]‖ ≤ ρ ∀u ∈ U} ≥ 1− ε

}
,

and by invoking Proposition 5.4.1, in this case, we can efficiently find N = n1 + ... + nK

vectors h1, ..., hN in Rm and N × N matrix V = [V k`]Kk,`=1 (the blocks V k` are nk × n`

matrices) such that

(a) B = V B + [h1, ..., hN ]TA

(b) ‖V k`‖∞→∞ ≤ κ
s ∀k, ` ≤ K

(c) Prob

(
Ξ := {ξ : max

u∈U
uThi + σ|ξThi| ≤ ν(H), 1 ≤ i ≤ N}

)
≥ 1− ε.

(206)

In the remaining of this section, we will denote γ̄ = s−1κ, H = [h1, ..., hN ] be the collection

of vectors satisfying (206) and ω∗(γ̄) = ν(H). Let υ ≥ 0 be a given upper bound on the
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“s-block tail” of the linear transform, Bx, to be recovered. Consider the following BNEMP

algorithm:

Algorithm 2

1. Initialization: Set v(0) = 0, α0 =
Ls,1(HT y)+sω∗(γ̄)+v

1−sγ̄ .

2. Step k, k = 1, 2, ...: Given v(k−1) ∈ Rn and αk−1 ≥ 0, compute

(a) g = HT (y −Av(k−1)) and vector ∆ ∈ Rn by setting

∆i = sign(gi)[|gi| − γ̄αk−1 − ω∗(γ̄)]+, 1 ≤ i ≤ n

(here [a]+ = max[0, a]).

(b) Set v(k) = v(k−1) +B−1∆ and

αk = 2sγ̄αk−1 + 2sω∗(γ̄) + v. (207)

and loop to step k + 1.

3. The approximate solution found after k iterations is v(k).

Proposition 5.6.1 Let v ≥ 0 be given and assume that sγ̄ < 1 is such that (206) takes

place. Then there exists a set Ξ ⊆ Rm, Prob{ξ ∈ Ξ} ≥ 1 − ε, of “good” realizations of

ξ such that whenever ξ ∈ Ξ, for every x ∈ Rn satisfying L1(Bx − [Bx]s) ≤ v and every

u ∈ U , the approximate solution w(k) := Bv(k) for Bx and the value αk after the k-th step

of Algorithm 2 satisfy

(ak) for all 1 ≤ i ≤ K and 1 ≤ j ≤ ni, w(k)[i]j ∈ Conv{0; (Bx)[i]j},

(bk) L1(Bx− w(k)) ≤ αk and L∞(Bx− w(k+1)) ≤ 2γ̄αk + 2ω∗(γ̄).

Note that if κ < 1/2, i.e., 2sγ̄ < 1, then also sγ̄ < 1, so that Proposition 5.6.1 holds

true. Furthermore, by (207) the sequence αk converges exponentially fast to the limit

α∞ := 2sω∗(γ̄)+v
1−sγ̄ :

L1(Bv(k) −Bx) ≤ αk = (2sγ̄)k[α0 − α∞] + α∞.
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Along with the second inequality of (bk) this implies the bounds:

L∞(Bv(k) −Bx) ≤ 2γ̄αk−1 + 2ω∗(γ̄) ≤ αk
s
,

and since Lp(w) ≤ L1(w)
1
pL∞(w)

p−1
p for 1 ≤ p ≤ ∞, we have

Lp(Bv
(k) −Bx) ≤ s

1−p
p (2sγ̄)k[α0 − α∞] + α∞.

The bottom line here is as follows:

Corollary 5.6.1 Let γ̄ < 1/(2s) be such that Qs,∞ takes place, so that we can find effi-

ciently contrast matrices H,V satisfying (206). The recovery of Bx where υs(Bx) ≤ υ with

Algorithm 2 associated with H,V , one ensures that for every t = 1, 2, . . ., the approximate

solution v(t) found after t iterations satisfies

RiskBp (v(t)|s, σ, υ, ε)

≤ s
1
p

(
2ω∗(γ̄) + s−1v

1− 2sγ̄
+ (2sγ̄)t

[
s−1(Ls,1(HT y) + v) + ω∗(γ̄)

1− sγ̄
− 2ω∗(γ̄) + s−1v

1− 2sγ̄

])
,

for all 1 ≤ p ≤ ∞ (cf. (176)).

5.7 Proofs of Chapter 5

5.7.1 Proof of Theorem 5.3.1

Let us fix x ∈ Rn, u ∈ U and ξ ∈ Ξ, and let us set η = u + σξ, x̂ = x̂reg(Ax + η). Let

also I ∈ {1, ...,K} be the set of indexes of the s largest in magnitude blocks in Bx, J be

the complement of I in {1, ...,K}, and let for w ∈ W, wI and wJ be the vectors obtained

from w by zeroing blocks w[k] with indices k 6∈ I and k 6∈ J , respectively, and keeping the

remaining blocks intact. Finally, let z = x̂− x.

10. By B and due to ξ ∈ Ξ, u ∈ U , we have

‖HT ([Ax+ η]−Ax)‖ ≤ ρ, (208)
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so that x is a feasible solution to the optimization problem specifying x̂, whence L1(Bx̂) ≤

L1(Bx). We therefore have

L1([Bx̂]J) = L1(Bx̂)− L1([Bx̂]I) ≤ L1(Bx)− L1([Bx̂]I)

= L1([Bx]I) + L1([Bx]J)− L1([Bx̂]I)

≤ L1([Bz]I) + L1([Bx]J),

whence

L1([Bz]J) ≤ L1([Bx̂]J) + L1([Bx]J) ≤ L1([Bz]I) + 2L1([Bx]J).

It follows that

L1(Bz) = L1([Bz]I) + L1([Bz]J) ≤ 2L1([Bz]I) + 2L1([Bx]J). (209)

Further, by definition of x̂ we have ‖HT ([Ax + u + σξ] − Ax̂)‖ ≤ ρ, which combines with

(208) to imply that

‖HTA(x̂− x)‖ ≤ 2ρ. (210)

20. Since (H, ‖ · ‖) satisfies Qs,q(κ), it satisfies Qs,1(κ) as well (Observation 5.2.1), that is,

Ls,1(Bz) ≤ s‖HTAz‖+ κL1(Bz).

By (210), it follows that Ls,1(Bz) ≤ 2sρ + κL1(Bz), which combines with the evident

inequality L1([Bz]I) ≤ Ls,1(Bz) and with (209) to imply that

L1([Bz]I) ≤ 2sρ+ κL1(Bz) ≤ 2sρ+ 2κL1([Bz]I) + 2κL1([Bx]J),

whence

L1([Bz]I) ≤
2sρ+ 2κL1([Bx]J)

1− 2κ
.

Invoking (209), we conclude that

L1(Bz) ≤ 4sρ+ 2L1([Bx]J)

1− 2κ
. (211)

30. Since (H, ‖ · ‖) satisfy Qs,q(κ), we have

Ls,q(Bz) ≤ s
1
q ‖HTAz‖+ κs

1
q
−1
L1(Bz),
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which combines with (211) and (210) to imply that

Ls,q(Bz) ≤ 2s
1
q
ρ+ κs−1L1([Bx]J)

1− 2κ
. (212)

Let λ be the (s + 1)-st largest among the magnitudes of blocks in Bz, and let w =

Bz − [Bz]s. We have Lq(w) ≤ L∞(w)
q−1
q L1(w)

1
q ≤ λ

q−1
q L1(Bz)

1
q ≤ λ

q−1
q

[
4sρ+2L1([Bx]J )

1−2κ

] 1
q
,

where the concluding inequality is given by (211). Besides this, (212) implies that λ ≤

2ρ+κs−1L1([Bx]J )
1−2κ ≤ 2ρ+s−1L1([Bx]J )

1−κ (note that κ < 1/2), whence Lq(w) ≤ (2s)
1
q

2ρ+s−1L1([Bx]J )
1−2κ .

Taking into account (212) and the fact that the supports of [Bz]s and w do not intersect,

we get

Lq(Bz) ≤ 2
1
q max[Lq([Bz]

s), Lq(w)] = 2
1
q max[Ls,q(Bz), Lq(w)]

≤ 2
2
q s

1
q

2ρ+ s−1L1([Bx]J)

1− 2κ
.

This relation combines with (211), Hölder inequality and the relation ‖[Bx]J‖ = ‖Bx −

[Bx]s‖ to imply (172). �

5.7.2 Proof of Theorem 5.3.2

Same as in the proof of Theorem 5.3.1, let us fix x ∈ Rn, u ∈ U and ξ ∈ Ξ, and let us set

η = u+σξ, x̂ = x̂pen(Ax+η). Let also I ⊂ {1, ...,K} be the set of indices of the s largest in

magnitude blocks in Bx, J be the complement of I in {1, ...,K}, and for w ∈ W let wI , wJ

be the vectors obtained from w by zeroing out all blocks with indexes not in I, respectively,

not in J . Finally, let z = x̂− x.

10. We have

L1(Bx̂) + 2s‖HT (Ax̂−Ax− η)‖ ≤ L1(Bx) + 2s‖HT η‖

and

‖HT (Ax̂−Ax− η)‖ = ‖HT (Az − η)‖ ≥ ‖HTAz‖ − ‖HT η‖,

whence

L1(Bx̂) + 2s‖HTAz‖ ≤ L1(Bx) + 4s‖HT η‖ ≤ L1(Bx) + 4sρ, (213)

where the concluding inequality follows from the fact that u ∈ U , ξ ∈ Ξ due to B. We have

L1(Bx̂) = L1(Bx+Bz) = L1([Bx]I + [Bz]I) + L1([Bx]J + [Bz]J)

≥ L1([Bx]I)− L1([Bz]I) + L1([Bz]J)− L1([Bx]J),
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which combines with (213) to imply that

L1([Bx]I)− L1([Bz]I) + L1([Bz]J)− L1([Bx]J) + 2s‖HTAz‖ ≤ L1(Bx) + 4sρ,

or, which is the same,

L1([Bz]J)− L1([Bz]I) + 2s‖HTAz‖ ≤ 2L1([Bx]J) + 4sρ. (214)

Since (H, ‖ · ‖) satisfies Qs,q(κ), (H, ‖ · ‖) satisfies Qs,1(κ) as well, whence

L1([Bz]I) ≤ Ls,1(Bz) ≤ s‖HTAz‖+ κL1(Bz),

or, which is the same,

(1− κ)L1([Bz]I)− κL1([Bz]J)− s‖HTAz‖ ≤ 0. (215)

Taking weighted sum of (214) and (215), the weights being 1, 2, respectively, we get

(1− 2κ) [L1([Bz]I) + L1([Bz]J)] ≤ 2L1([Bx]J) + 4sρ,

that is,

L1(Bz) ≤ 4sρ+ 2L1([Bx]J)

1− 2κ
, (216)

exactly as in (211). Further, by (213) we have

2s‖HTAz‖ ≤ L1(Bx)− L1(Bx̂) + 4sρ ≤ L1(Bz) + 4sρ,

which combines with (216) to imply that

2s‖HAT z‖ ≤ 4sρ+ 2L1([Bx]J)

1− 2κ
+ 4sρ =

4sρ(2− 2κ) + 2L1([Bx]J)

1− 2κ
. (217)

From Qs,q(κ) it follows that

Ls,q(Bz) ≤ s
1
q ‖HTAz‖+ κs

1
q
−1
L1(Bz),

which combines with (217) and (216) to imply that

Ls,q(Bz) ≤ s
1
q
−1 [

s‖HTAz‖+ κL1(Bz)
]

≤ s
1
q
−1
[

4sρ(1− κ) + L1([Bx]J)

1− 2κ
+
κ[4sρ+ 2L1([Bx]J)]

1− 2κ

]
= s

1
q

4ρ+ 2s−1L1([Bx]J)

1− 2κ
.

175



It remains to repeat the reasoning following (212) in item 30 of the proof of Theorem 5.3.1.

Specifically, denoting λ the (s+1)-st largest magnitude of entries in Bz, the above inequality

results in

λ ≤ s−1/qLs,q(Bz) ≤
4ρ+ 2s−1L1([Bx]J)

1− 2κ
, (218)

so that for the vector w = Bz − [Bz]s one has

Lq(w) ≤ λ
1− 1

qL1(w)
1
q ≤ λ1− 1

qL1(Bz)
1
q

≤
[

4ρ+2s−1L1([Bx]J )
1−2κ

] q−1
q
[

4sρ+2L1([Bx]J )
1−2κ

] 1
q

[by (218) and (216)]

= s
1
q

4ρ+2s−1L1([Bx]J )
1−2κ ,

whence, invoking (217) and taking into account that [Bz]s and w have non-intersecting

supports,

Lq(Bz) ≤ 2
1
q max[Lq([Bz]

s), Lq(w)] = 2
1
q max[Ls,q(Bz), Lq(w)] ≤ 2(2s)

1
q

2ρ+ s−1L1([Bx]J)

1− 2κ
.

This combines with (216) and Hölder inequality to imply (174). �

5.7.3 Proof of Proposition 5.4.1

(i): Let H ∈ Rm×M , ‖ · ‖, ρ satisfy (!). Then for every k ≤ K and every i ≤ ni, denoting

by wki i-th entry in w[k], w ∈ W, we have

|[Bx]ki| ≤ ‖HTAx‖+ s−1κL1(Bx),

or, which is the same by homogeneity,

min
x

{
‖HTAx‖ − [Bx]ki : L1(Bx) ≤ 1

}
≥ −s−1κ.

Equivalently the optimal value Optki in the conic optimization problem

Optki = min
x,t

{
t− [eki]TBx : ‖HTAx‖ ≤ t, L1(Bx) ≤ 1

}
,

where eki ∈ W is the vector with the only nonzero entry, equal to 1, placed at i-th position

of the k-th block, is ≥ −s−1κ. Let ‖ · ‖∗ is the norm conjugate to ‖ · ‖. Since the problem

clearly is strictly feasible, this is the same as to say that the dual problem

max
µ∈R,g∈W,η∈RM

{
−µ : ATHη +BT g = BT eki, ‖g[`]‖1 ≤ µ, 1 ≤ ` ≤ K, ‖η‖∗ ≤ 1

}
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has a feasible solution with the value of the objective ≥ −s−1κ. It follows that there exists

η = ηki and g = gki such that

(a) BT eki = AThki +BT gki,

(b) hki := Hηki, ‖ηki‖∗ ≤ 1

(c) ‖gki[`]‖1 ≤ s−1κ, 1 ≤ ` ≤ K.

(219)

Denoting by hi i-th column in the matrix [h1,1, ..., h1,n1 , h2,1, ..., h2,n2 , ..., hK,1, ..., hK,nK ],

defining V k` as the nk × n` matrix with the rows (gki[`])T , i = 1, ..., nk, and setting V =

[V k`]Kk,`=1, (219.a,c) ensure the validity of (175a,b) (note that ‖M‖∞→∞ is nothing but the

maximum of ‖ · ‖1-norms of the rows in M). Besides this, by (219.b) and the definition of

Ξ (see (!)) we have

ξ ∈ Ξ ⇒ ‖HT [u+ σξ]‖ ≤ ρ ∀u ∈ U

⇒a |[hki]T [u+ σξ]| ≤ ρ ∀u ∈ U

⇒b max
u∈U

uThki + σ|ξThki| ≤ ρ

where the implication ⇒a is due to the fact that |[hki]T ζ| = |[ηki]THT ζ| ≤ ‖HT ζ‖ for all

ζ because of ‖ηki‖∗ ≤ 1, and the implication ⇒b is due to the fact that U is symmetric

w.r.t. the origin. We conclude that Ξ ⊂ Ξ+ and thus P (Ξ+) ≥ P (Ξ) ≥ 1 − ε, as required

in (175.c). (i) is proved.

(ii): Let Ĥ = [h1, ..., hN ], V = [V k`]Kk,`=1, ρ satisfy (175). Then for every x ∈ Rn we have

w := Bx = V Bx+ ĤTAx = V w + ĤTAx︸ ︷︷ ︸
v

,

whence w[k] =
∑K

`=1 V
k`w[`] + v[k], so that

‖w[k]‖(k) = ‖w[k]‖∞ ≤
K∑
`=1

‖V k`‖∞→∞‖w[`]‖∞ + ‖v[k]‖∞ ≤ s−1κL1(w) + ‖ĤTAx‖∞,

that is,

Ls,∞(Bx) = max
k
‖w[k]‖(k) ≤ ‖ĤTAx‖∞ + s−1κL1(Bx)

for all x, meaning that (Ĥ, ‖ · ‖∞) satisfies Qs,∞(κ). Further, we have

Ξ :=
{
ξ : ‖ĤT [u+ σξ]‖ ≤ ρ ∀u ∈ U

}
=
{
ξ : |[hi]T [u+ σξ]| ≤ ρ ∀u ∈ U , ∀i ≤ N

}
=

{
ξ : max

u∈U
uThi + σ|[hi]T ξ| ≤ ρ ∀i ≤ N

}
= Ξ+,
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whence P (Ξ) = P (Ξ+) ≥ 1− ε. Thus, Ĥ, ‖ · ‖∞, ρ satisfy (!). �

5.7.4 Proof of Proposition 5.4.2

Notation. Let 1 ≤ k ≤ K and 1 ≤ i ≤ nk. For a vector w ∈ W, we set [w]ki to be i-th

coordinate in w[k]. For a vector u ∈ Rnk , we set ‖u‖i∞ = maxj 6=i |uj |, with the convention

that the latter maximum is 0 when nk = 1. Further, let eki be the vector from W such that

[eki]`j = 1 when ` = k and j = i and [eki]`j = 0 for all remaining pairs `, j. Finally, let

B = [B1; ...;BK ] with nk × n matrices Bk.

00. Let us fix k, i, 1 ≤ k ≤ K, 1 ≤ i ≤ nk, and set

M = α
c S, a = 1.1α+ S−1cM = 2.1α,

Xki
+ = {x ∈ Rn : [Bkx]i = a, ‖Bkx‖i∞ +

∑
` 6=k ‖B`x‖∞ ≤M}, Xki

− = −Xki
+ ,

Y ki
+ = AXki

+ , Y
ki
− = AXki

− = −Y ki
+

and let V = 2U + 2σ {Cη : ‖η‖2 ≤ Erfinv(ε)}.

00. It may happen that Xki
± = ∅. This is exactly the same as to say that the optimal

value in the strictly feasible conic optimization problem

max
x

[eki]TBx : ‖Bkx‖i∞ +
∑
` 6=k
‖B`x‖∞ ≤M


is < a, meaning that the dual problem

min
v∈W,t

{
Mt : [v]ki = 0,

K∑
`=1

[B`]T v[`] = BT eki, max
1≤`≤K

‖v[`]‖1 ≤ t

}

is< a, whence there exists vki ∈ W such that [vki]ki = 0, BT vki = BT eki andM max
`
‖vki[`]‖1 <

a, that is, max
`
‖vki[`]‖1 < a/M = 2.1cS−1. Thus, when Xki

± is empty, setting hki = 0 ∈ Rm,

we get vectors hki ∈ Rm and vki ∈ W such that there exists vki ∈ W such that

(aki) BT vki +Ahki = BT eki,

(bki) vkiki = 0, max
1≤`≤K

‖vki[`]‖1 ≤ 2.1cS−1,

(cki) max
u∈U

uThki + σErfinv(ε)‖CThki‖2 ≤ 2.1α

(220)
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10. Assume now that Xki
± 6= ∅. Then Y ki

± are nonempty convex sets. We claim that

whenever 0 < θ < 1, the convex compact set θV does not intersect the convex set 2Y ki
+ .

Indeed, if the opposite is true, there exists v ∈ U and e, ‖e‖2 ≤ Erfinv(ε), such that

θ(v + σCe) = Az with z ∈ Xki
+ . Now consider two hypotheses on the distribution of a

random vector ζ ∈ Rm: the first, H+, states that ζ ∼ P+, where P+ is the distribution

of θσCe + σCη, η ∼ N (0, Im), and the second, H−, states that ζ ∼ P−, where P− is

the distribution of −θσCe + σCη, η ∼ N (0, Im). Consider the following procedure for

distinguishing between these two hypotheses: given ζ, we compute x̂(ζ) and accept H+

when [Bx̂(ζ)]ki > 0, otherwise we accept H−. We claim that this procedure rejects the true

hypothesis with probability ≤ ε. Indeed, applying (181) to u = −θv and x = z, we get

Probη∼N (0,Im){‖B[z − x̂(Az − θv + σCη)]‖∞ ≤ α+ cS−1L1(Bz − [Bz]S)} ≥ 1− ε.

Since Az = θv+ θσCe and L1(Bz− [Bz]S) ≤
∑

` 6=k ‖B`z‖∞ ≤M , we get α+ cS−1L1(Bz−

[Bz]S) ≤ α + cS−1M = 2α, while [Bz]ki = a = 2.1α; it follows that ‖B[z − x̂(Az − θv +

σCη)]‖∞ ≤ α + cS−1L1(Bz − [Bz]S) implies that 2.1α − [Bx̂(θσCe + σCη)]ki ≤ 2α and

thus implies that [Bx̂(θσCe+ σCη)]ki > 0. We see that

Probη∼N (0,Im){[Bx̂(θσCe+ σCη)]ki > 0} ≥ 1− ε,

that is, our rule for distinguishing between H+ and H− rejects H+ when this hypothesis is

true with probability ≤ ε. Similarly, applying (181) to u = θv and x = −z, we get

Probη∼N (0,Im){‖B[−z − x̂(−Az + θv + σCη)]‖∞ ≤ α+ cS−1L1(Bz − [Bz]S)} ≥ 1− ε.

Since −Az = −θv − θσCe, we, same as above, conclude that ‖B[−z − x̂(−Az + θv +

σCη)]‖∞ ≤ α+ cS−1L1(Bz − [Bz]S)1 implies that [Bx̂(−θσCe+ σCη)]ki < 0, and thus

Probη∼N (0,Im){[Bx̂(−θσCe+ σCη)]ki < 0} ≥ 1− ε

that is, the probability to reject H− when the hypothesis is true is ≤ ε. On the other

hand, to distinguish between the hypotheses H± via observation ζ distributed according to

the respective distribution P+/P− is the same as to distinguish between the distributions

N (−θe, Im) and N (θe, Im); to do it with probabilities ≤ ε to reject the true distribution is
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possible only when ‖θe‖2 ≥ Erfinv(ε), which is not the case due to ‖e‖2 ≤ Erfinv(ε) and

0 < θ < 1. The resulting contradiction demonstrates that θV does not intersect 2Y ki
+ .

20. Since θV does not intersect 2Y ki
+ when θ < 1, the sets V and 2Y ki

+ can be separated by a

linear form, which can be normalized to be ≥ 2 on 2Y ki
+ and ≤ 2 on V (recall that 0 ∈ intV).

In other words, there exists g = gki ∈ Rm such that max
v∈V

gT v ≤ 2 and inf
y∈2Y ki+

gT y ≥ 2.

Recalling the origin of V, the first relation amounts to

max
u∈U

uT g + σErfinv(ε)‖CT g‖2 ≤ 1, (221)

while the relation gT y ≥ 2 for all y ∈ 2Y ki
+ = 2AXki

+ amounts to fTx ≥ 1 for all x ∈ Xki
+ ,

where f = AT g. Recalling the definition of Xki
+ , it follows that

min
x

fTx : (eki)TBx = a, ‖Bkx‖i∞ +
∑
`6=k
‖B`x‖∞ ≤M

 ≥ 1.

Passing to the dual problem, the latter inequality results in

∃(t ∈ R, y ∈ W) : f = BT y, ayki −Mt ≥ 1,
∑
j 6=i
|ykj | ≤ t, max

`6=k
‖y[`]‖1 ≤ t. (222)

For the above t, y we have 0 ≤ t ≤ (ayki − 1)/M , so that yki > 0; setting

[vki]`j =

 0, ` = k, j = i

−[y]`j/yki, otherwise
, and hki = y−1

ki g,

(222) combines with f = AT g to imply that BT eki = BT vki + Ahki. Besides this, by

construction we have [vki]ki = 0. Further, by (222) we have ‖vki[`]‖1 ≤ t/yki ≤ a/M =

2.1cS−1, so that vki, hki satisfy (220.(aki),(bki)). Besides this, by (222) we have 0 < 1/yki ≤

a, which combines with (221) to imply (220.(cki)).

40. The bottom line is that for every k, 1 ≤ k ≤ K, and every i, 1 ≤ i ≤ nk, there exist

vectors hki ∈ Rm and vki ∈ V satisfying (220). Setting

H = [h1,1, ..., h1,n1 , h2,1, ..., h2,n2 , ..., hK,1, ..., hK,nK ],

V = [(v1,1)T ; ...; (v1,n1)T ; (v2,1)T ; ...; (v2,n2)T ; ...; (vK,1)T ; ...; (vK,nK )T ],

we get (182) as an immediate consequence of (220) and the relation s ≤ S
6.3c . �
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5.7.5 Proof of Proposition 5.4.4

The diagonal entries in B` are equal to 1, and the moduli of the off-diagonal entries are ≤ α.

This implies, quite straightforwardly, that the minimal eigenvalue of B` is ≥ 1−(d−1)α, and

in our situation the latter quantity is ≥ σ > 0 (otherwise the right hand side in (194) were

≤ 0, which is not the case. Setting V = I −HTA, it is immediately seen that the minimal

eigenvalue of B is ≥ 1− (d− 1)α > 0, so that the matrices B` indeed are positive definite,

H is well defined, and the Euclidean lengths of columns in H do not exceed 1/(1− (d−1)α.

Now let us set V = I − HTA. The d × d blocks V k` in V are as follows: when k = `,

we have V k` = (1 − θ)Id; since clearly θ < 1, the ‖ · ‖2→2 norms of these blocks are equal

to 1 − θ. The ‖ · ‖2→2 norms of the off-diagonal blocks V k` = θB−1
k AT [k]A[`] clearly do

not exceed θσ/(1 − (d − 1)α) by the definition of σ and since, as we have already seen,

‖B−1
k ‖2→2 ≤ 1/(1− (d− 1)α). It remains to note that 1− θ = θσ

1−(d−1)α , that is, the ‖ · ‖2→2

norms of all blocks V k` do not exceed β := 1 − θ = σ
1−(d−1)α+σ . Setting κ = βs, we get

κ < 1/2 by (194). By construction, q =∞, H, V and ‖V k`‖2→2 ≤ s−1κ satisfy (183), (184),

whence, by Proposition 5.4.3, (H,L∞(·)) satisfies Qs,∞(κ). �

5.7.6 Proof of Proposition 5.4.5

Let H,V satisfy (195). We have V = In−HTA, and the rank of HTA is ≤ m; therefore at

least n−m singular values of V are ≥ 1, and therefore the squared Frobenius norm ‖V ‖2F

of V is at least n − m. On the other hand, let us upper-bound this quantity as follows.

For π = {1, 2,∞}, it is immediately seen that, for every d × d block V k` in V we have

‖V k`‖F ≤
√
d‖V k`‖π→π :=

√
dΩk`. The columns C` of the K × K matrix Ω = [Ωk`]

K
k,`=1

satisfy ‖C`‖s,k ≤ α := s
1
q
−1
/2 by (195). Now, it is immediately seen that for every K-

dimensional vector f one has ‖f‖22 ≤ max
[
K
s2/q

, 1
]
‖f‖2s,q. We now have

n−m ≤ ‖V ‖2F =
K∑
`=1

K∑
k=1

‖V k`‖2F ≤ d
K∑
`=1

K∑
k=1

‖V k`‖2π→π = d
K∑
`=1

‖C`‖22

≤ d
K∑
`=1

max

[
K

s2/q
, 1

]
‖C`‖2s,q ≤ max

[
K

s2/q
, 1

]
dKα2

=
1

4
nmax

[
d−1ns−2, s

2
q
−2
]
.
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The resulting inequality, as it is immediately seen, implies the desired conclusion. �

5.7.7 Proof of Proposition 5.4.3

Let V ` = [V 1`; ...;V K`], 1 ≤ ` ≤ K. Given x ∈ Rn and setting w = Bx, and using the

relation (183), we have

w = Bx = [V B +HTA]x = V w +HTAx,

whence,

Ls,q(w) = Ls,q(V w +HTAx)

≤ Ls,q(V w) + Ls,q(H
TAx)

= Ls,q

(
K∑
`=1

V `w[`]

)
+ s

1
qL∞(HTAx)

≤
K∑
`=1

‖[‖V 1`w[`]‖(1); ...; ‖V K`w[`]‖(K)]‖s,q + s
1
qL∞(HTAx)

≤
K∑
`=1

ν∗s,q(V )‖w[`]‖(`) + s
1
qL∞(HTAx)

= ν∗s,q(V )L1(w) + s
1
qL∞(HTAx)

proving (185).

To verify (187), note that for every k and every `, we have

0 ≤ ‖V k`w[`]‖(k) ≤ ‖w[`]‖(`) max
w∈Rnl :‖w‖(`)≤1

‖V k`w‖(k) = ‖w[`]‖(`)‖V k`‖(`)→(k) = ‖w[`]‖(`)Ωk`.

Since for any two nonnegative vectors, a, b satisfying ai ≤ bi ∀i, we have ‖a‖s,q ≤ ‖b‖s,q, we

get

‖[‖[V 1`w[`]‖(1); ...; ‖V K`w[`]‖(K)]‖s,q ≤ ‖w[`]‖(`)‖Col`[Ω]‖s,q.

By taking the maximum of both sides first with respect to w[`] subject to the constraint that

‖w[`]‖(`) ≤ 1, and then over 1 ≤ ` ≤ k, we arrive at (187) implying that ν∗s,q(V ) ≤ ν̂s,q(V ).

�
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5.7.8 Proof of Proposition 5.5.1

Let x ∈ Rn, and let x1, ..., xq be obtained from x by the following construction: x1 is

obtained from x by zeroing all but the s largest in magnitude entries; x2 is obtained by the

same procedure applied to x− x1, x3 – by the same procedure applied to x− x1 − x2, and

so on; the process is terminated at the first step q when it happens that x = x1 + ...+ xq.

Note for j ≥ 2 we have ‖xj‖∞ ≤ s−1‖xj−1‖1 and ‖xj‖1 ≤ ‖xj−1‖1, whence also ‖xj‖2 ≤√
‖xj‖∞‖xj‖1 ≤ s−1/2‖xj−1‖1. Recall that if A is RIP(δ, 2s), then for every two s-sparse

vectors u, v with non-overlapping support we have

|uTATAu| ≤ δ‖u‖2‖v‖2. (∗)

(i): We have

‖Ax1‖2‖Ax‖2 ≥ [x1]TATAx = ‖Ax1‖22 −
∑q

j=2[x1]TATAxj

≥ ‖Ax1‖22 − δ
∑t

j=2 ‖x1‖2‖xj‖2 [by (∗)]

≥ ‖Ax1‖22 − δs−1/2‖x1‖2
∑q

j=2 ‖xj−1‖1 ≥ ‖Ax1‖22 − δs−1/2‖x1‖2‖x‖1

⇒ ‖Ax1‖22 ≤ ‖Ax1‖2‖Ax‖2 + δs−1/2‖x1‖2‖x‖1

⇒ ‖x1‖2 = ‖x1‖2
‖Ax1‖22

‖Ax1‖22 ≤
‖x1‖2
‖Ax1‖2 ‖Ax‖2 + δs−1/2

(
‖x1‖2
‖Ax1‖2

)2
‖x‖1

⇒ ‖x‖s,2 = ‖x1‖2 ≤ 1√
1−δ‖Ax‖2 + δs−1/2

1−δ ‖x‖1 [by RIP(δ, 2s)]

and we see that the pair
(
H = s−1/2

√
1−δ Im, ‖ · ‖2

)
satisfies Qs,2( δ

1−δ ), as claimed in (i).

(ii): We have

‖x1‖1‖ATAx‖∞ ≥ [x1]TATAx = ‖Ax1‖22 −
∑q

j=2[x1]TATAxj

≥ ‖Ax1‖22 − δs−1/2‖x1‖2‖x‖1 [exactly as above]

⇒ ‖Ax1‖22 ≤ ‖x1‖1‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1

⇒ (1− δ)‖x1‖22 ≤ ‖x1‖1‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1 [by RIP(δ, 2s)]

≤ s1/2‖x1‖2‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1

⇒ ‖x‖s,2 = ‖x1‖2 ≤ s1/2

1−δ ‖A
TAx‖∞ + δ

1−δs
−1/2‖x‖1,

and we see that the pair
(
H = 1

1−δA, ‖ · ‖∞
)

satisfies the condition Qs,2

(
δ

1−δ

)
, as required

in (ii).
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(iii): By (i) we have

∀x ∈ Rn : ‖x‖s,2 ≤
1√

1− δ
‖Ax‖2 +

δ

1− δ
s−1/2︸ ︷︷ ︸
ω

‖x‖1,

whence for every i it holds

∀x : eTi x ≤
1√

1− δ
‖Ax‖2 + ω‖x‖1 ∀x,

that is,

Opt(P ) = min
x,t

{
t− eTi x : t ≥ 1√

1− δ
‖Ax‖2, ‖x‖1 ≤ 1

}
≥ −ω.

The conic optimization problem in the right hand side of the latter relation clearly is strictly

feasible and bounded, whence by Conic Duality Theorem the dual problem

Opt(D) = max
g,f,s

{
−s : − 1√

1− δ
AT g − f = ei, ‖g‖2 ≤ 1, ‖f‖∞ ≤ s

}
is solvable with optimal value Opt(D) = Opt(P ) ≥ −ω. Thus, there exist vectors gi and

f = f i such that

− 1√
1− δ

AT gi − f i = ei, ‖gi‖2 ≤ 1, ‖f i‖∞ ≤ ω.

Setting hi = − 1√
1−δg

i and H = [h1, ..., hn], we get ‖hi‖2 ≤ 1√
1−δ and ‖AThi − ei‖∞ ≤ ω,

whence for every x ∈ Rn it holds |xi| ≤ |xTAThi|+ ω‖x‖1, so that

‖x‖∞ ≤ ‖HTAx‖∞ + ω‖x‖1 =
δ

1− δ
s−1/2‖x‖1 ≤ ‖HTAx‖∞ +

1

3ŝ
‖x‖1. �

(iv): We start with proving the fact about Gaussian matrices mentioned in (iv).

Lemma 5.7.1 Let 1 ≤ s ≤ m ≤ n be such that n ≥ 1000 and δ := 4

√
s ln(n)
m ≤ 1/3, and

let A be a Gaussian m × n random matrix (i.e., random m × n matrix with independent

N (0, 1/m) entries). Then

Prob {A does not satisfy RIP(δ, s)} ≤ 1/n. (223)

Proof. 10. Let I be an s-element subset of {1, ..., n}, let x be a ‖ · ‖2-unit vector supported

on I, let θ = 0.005, ∆ = (1 − 4θ)δ, and let Ax = {A ∈ Rm×n : 1 −∆ ≤ ‖Ax‖22 ≤ 1 + ∆}.

Then

Prob{A 6∈ Ax} ≤ 2 exp{−mκ∆2}, κ = 3(1− 3 ln(4/3))/2. (224)
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Indeed, ζ =
√
mAx is a vector with independent N (0, 1) entries. Therefore , setting

f(γ) = ln

(
1√
2π

∫
exp{γs2} exp{−s2/2}ds

)
= −1

2
ln(1− 2γ),

for −1/2 < γ < 1/2, and applying Bernstein bounding scheme, we get

∀γ ∈ [0, 1/2) :

ln(p+) := ln
(
Prob{‖Ax‖22 > (1 + ∆)}

)
= ln

(
Prob{‖ζ‖22 ≥ m(1 + ∆)}

}
≤ mf(γ)− γm(1 + ∆) = −m

2
ln(1− 2γ)− γm(1 + ∆)

⇒ ln(p+) ≤ inf
0≤γ<1/2

[
−m

2
ln(1− 2γ)− γm(1 + ∆)

]
= m

[
1

2
ln(1 + ∆)−∆/2

]
≤ −mκ∆2,

∀γ ∈ (−1/2, 0) :

ln(p−) := ln
(
Prob{‖Ax‖22 < (1−∆)}

)
= ln

(
Prob{‖ζ‖22 ≤ m(1−∆)}

}
≤ mf(γ)− γm(1−∆) = −m

2
ln(1− 2γ)− γm(1−∆)

⇒ ln(p−) ≤ inf
−1/2<γ≤0

[
−m

2
ln(1− 2γ)− γm(1−∆)

]
= m

[
1

2
ln(1−∆) + ∆/2

]
≤ −mκ∆2,

and (224) follows; note that we have used the evident fact 1
2 ln(1 + s)− 1

2s ≤ −κs
2, −1/3 <

s ≤ 1/3.

20. Let I be a subset of {1, ..., n} of cardinality s, let S = {u ∈ Rs : ‖u‖2 = 1}, let ε = µδ,

and let S be a minimal ε-net, w.r.t. ‖ · ‖2, in S, and N be the cardinality of S. Finally, let

AI be the submatrix of A comprised of columns with indices in I, and let B = ATI AI . We

claim that

{
(1−∆) ≤ uTBu ≤ (1 + ∆) ∀u ∈ S

}
⇒
{

(1− δ) ≤ uTBu ≤ (1 + δ) ∀u ∈ S
}
. (225)

Indeed, let the premise in (225) hold true. Let β be the spectral norm of the positive

semidefinite symmetric matrix B, and ū ∈ S be such that uTBu = β. There exists v ∈ S

such that ‖u − v‖2 ≤ ε, whence β = uTBu ≤ 2βε + vTBv ≤ 2βε + 1 + ∆ (since the

quadratic form zTBz is Lipschitz continuous, with constant 2β w.r.t. ‖ · ‖2, on S), whence

β ≤ 1+∆
1−2ε ≤ 1+δ, where the concluding inequality is given by a straightforward computation.
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Thus, zTBz ≤ 1 + δ for all z ∈ S. By similar reasons, if u ∈ S, and if v ∈ S is such that

‖u−v‖2 ≤ ε, we have uTBu ≥ vTBv−2βε ≥ 1−∆−2(1+δ)ε = 1−δ. Thus, the conclusion

in (225) holds true.

30 We can straightforwardly build an ε-net S ′ in S in such a way that the ‖ · ‖2-distance

between every two distinct points of the net is > ε, so that the balls Bv = {z ∈ Rs :

‖z − v‖2 ≤ ε/2} with v ∈ S are mutually disjoint. Since the union of these balls belongs to

B = {z ∈ Rs : ‖z‖2 ≤ 1+ε/2}, we get Card(S ′)(ε/2)s ≤ (1+ε/2)s, that is, N ≤ Card(S ′) ≤

(1+2/ε)s = (1+2/(µδ))s. Invoking (224), we see that the probability of violating the premise

in (225) for a given I does not exceed exp{−mκδ2 + ln(2) + s ln(1 + 2/(µδ))}. The number

of M of s-element subsets of {1, ..., n} does not exceed exp{s ln(n)}, and we conclude that

the probability for A be such that xTATAx 6∈ [1− δ, 1 + δ] for a ‖ · ‖2-unit vector x with at

most s nonzero entries does not exceed

p = exp{−mκδ2 + ln(2) + s ln(n(1 + 2/(µδ)))}.

It is immediately seen that with the just defined δ and in the range 1 ≤ s ≤ m ≤ n,

n ≥ 1000, we get p ≤ 1/n. �

Let A ∈ Rm×n satisfy RIP(δ, s). Let x1 be the vector obtained from x by zeroing all but

the s largest in magnitude entries in x, x2 is obtained by the same procedure from x− x1,

x3 obtained by the same procedure from x − x1 − x2, and so on, until a vector xq with at

most s nonzero entries is built. Let, further, h ∈ Rn be supported on the support of x1. We

have

j ≥ 2 ⇒ ‖xj‖∞ ≤ s−1‖xj−1‖1

⇒ ‖xj‖2 ≤ ‖xj‖1/2∞ ‖xj‖
1/2
1 ≤ ‖xj‖1/2∞ ‖xj−1‖1/21 ≤ s−1/2‖xj−1‖1.
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Moreover,

‖h‖1‖ATAx‖∞ ≥ hTATAx ≥ hTATAx1 −
q∑
j=2

hTATAxj

≥ hTATAx− δ
q∑
j=2

‖h‖2‖xj‖2

≥ hTATAx1 − δs−1/2
q−1∑
j=1

‖h‖2‖xj‖1

≥ hTATAx1 − δs−1/2‖h‖2‖x‖1

Now let I be the support of x1, AI be the submatrix of A comprised of columns with indexes

from I, and B = ATI AI . Since h is supported on I, we have hTATAx1 = hTBx1. Now

let i∗ ∈ I be the index of the largest in magnitude entry in x1, and h be i∗-th basic orth

times sign(xi∗). Observing that the spectral norm of the difference D of B and the unit

s × s matrix does not exceed δ, we have hTBx1 ≥ hTx1 − hTDx1 = hTx1 − ‖Dx1‖2 =

|xi∗ | − δ‖x1‖2 ≥ |xi∗ | − δ
√
s|xi∗ |, we get

δ
√
s < 1 ⇒ ‖x‖∞(1− δ

√
s) ≤ hTATAx1 ≤ ‖h‖1‖ATAx‖∞ + δs−1/2‖h‖2‖x‖1

⇒ ‖x‖∞ ≤
1

1− δ
√
s
‖ATAx‖∞ +

δs−1/2

1− δ
√
s
‖x‖1.

Now let δ = 4

√
s ln(n)
m ; recall that when n ≥ 1000 and 4

√
s ln(n)
m ≤ 1/3, the probability for a

Gaussian m×n matrix to satisfy RIP(δ, s) is at least 1− 1/n. When A is RIP(4

√
s ln(n)
m , s)

and δ
√
s ≤ 1/3, the above computation shows that

∀x : ‖x‖∞ ≤
3

2
‖ATAx‖∞ +

3

2
δs−1/2‖x‖1 =

3

2
‖ATAx‖∞ + 12

√
ln(n)/m‖x‖1,

so that in the case of (198) (3
2A, ‖ · ‖∞) satisfies Qs,q(1/3). �

5.7.9 Proof of Proposition 5.5.2

By homogeneity reasons, it suffices to consider the case of σ = 1, which we assume from

now on.

Assume that (205) takes place for every s-sparse x, and let ρ =
√

2 ln(n/ε).
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00. For a typical Gaussian A ∈ Rm×n with ln(m) = O(1) ln(n) and m,n large, we have

(a) 0.99 ≤ ‖Ai‖22 ≤ 1.01, 1 ≤ i ≤ n,

(b) µ(A) := max1≤i<j≤n |ATi Aj | ≤ O(1)
√

ln(m)/m.

From now on we assume that these relations hold true.

10. Let I be a subset of {1, ..., n} including 1 and of cardinality ≤ s, and let XI = {x ∈

Rn : x1 ≥ 2Cρ, xi = 0∀i 6∈ I} and Y I = ATAXI . We claim that

min
y∈Y I

‖y‖∞ > ρ.

Indeed, otherwise we could find s-sparse signal x̄ with x̄1 ≥ 2Cρ such that ‖ATAx̄‖∞ ≤ ρ,

meaning that

‖AT (Ax̄+ ξ)‖ ≤ 2ρ

for a typical realization of ξ. For such a ξ, we clearly have x̂ = 0, whence ‖x̂ − x̄‖∞ > Cρ

for a typical ξ, which is impossible, since by (205) for a typical ξ the opposite inequality

takes place.

Thus, the convex set Y I is at ‖ · ‖∞ distance from the origin at least ρ, meaning that

there exists yI ∈ Rm with ‖yI‖1 = 1 such that [yI ]TATAx ≥ ρ for all x ∈ XI , or, which is

the same,

〈
n∑
i=1

yIiAi, A`〉 =

 0, 2 ≤ ` ∈ I

cI ≥ (2C)−1, ` = 1
,

Setting λIi = yIi /cI , we conclude that there exists vector λI ∈ Rn such that

(a) ‖λI‖1 ≤ 2C

(b) 〈AλI , A1〉 = 1

(c) 〈AλI , A`〉 = 0, ` ∈ I\{1}

(226)

20. Let I be as above. When ` = 1, we have

1 = 〈AλI , A1〉 = λI1‖A1‖22 +
∑
i>1

λIiA
T
i A1

and |
∑

i>1 λ
I
iA

T
i A1| ≤ ‖λ‖1µ(A), whence

|1− λI1‖A1‖22| ≤ 2Cµ(A),
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whence 0.98 ≤ λI1 ≤ 1.02, provided m is large enough. Similarly, for every ` ∈ I\{1} we

have

0 = 〈AλI , A`〉 = λI`‖A`‖22 +
∑
i 6=`

λIiA
T
i A`

and |
∑

i 6=` λ
I
iA

T
i A`| ≤ ‖λI‖1µ(A). Thus, we can assume that

(a) 0.98 ≤ λI1 ≤ 1.02,

(b) 1 6= ` ∈ I ⇒ |λI` | ≤ O(1)C
√

ln(m)/m.
(227)

30. Let k = s/2 be integer, and let I∗ = {1, ..., k}. Let

Λ = {λ ∈ Rn : ‖λ‖1 ≤ 2C, 〈Aλ,A`〉 =

 1, ` = 1

0, 2 ≤ ` ≤ k


so that Λ is a closed convex set in Rn which is nonempty (indeed, by (226) we have λI

∗ ∈ Λ).

For λ ∈ Λ, let λ− be the vector obtained from λ by zeroing the first k coordinates, and let

γ = min
λ∈Λ
‖λ−‖∞.

We claim that

γ ≤ O(1)C
[
1/s+

√
ln(m)/m

]
(228)

Indeed, assuming γ > 0, there exists e ∈ Rn, ‖e‖1 = 1, with e1 = e2 = ... = ek = 0, such that

eTλ ≥ γ for every λ ∈ Λ. Let i1, ..., ik be the indexes of the k largest in magnitude entries

in e. Setting I = {1, 2, ..., k}∪{i1, ..., ik} and invoking (226) and (227), we have λI ∈ Λ and

therefore we should have γ ≤ eT [λI ]− ≤
∑k

`=1 ei` [λ
I ]i` + ‖λI‖1 maxi 6∈{i1,...,ik} |ei|. Invoking

(227) and taking into account that ‖e‖1 = 1, we get
∑k

`=1 ei` [λ
I ]i` ≤ O(1)C

√
ln(m)/m,

while ‖λI‖1 maxi 6∈{i1,...,ik} |ei| ≤ 2C/k due to λI ∈ Λ and ‖e‖1 = 1, and (228) follows.

From (228) it follows that there exists λ̄ ∈ Λ such that

|λ̄i| ≤ O(1)C
[
1/s+

√
ln(m)/m

]
, i > k

Besides this, from λ̄ ∈ Λ it follows that ‖λ̄‖1 ≤ 2C and

〈Aλ̄,Ai〉 =

 1, i = 1

0, 2 ≤ i ≤ k
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whence, applying the reasoning which led us to (227) to λ̄ in the role of λI and I∗ in the

role of I,

0.98 ≤ λ̄1 ≤ 1.02, |λ̄i| ≤ O(1)C
√

ln(m)/m, 2 ≤ i ≤ k,

provided m is large enough. Thus,

(a) ‖λ̄‖1 ≤ 2C

(b) 0.98 ≤ λ̄1 ≤ 1.02

(c) |λ̄i| ≤ O(1)C
[
1/s+

√
ln(m)/m

]
, 2 ≤ i ≤ n

(d) 〈Aλ̄,Ai〉 = 0, 2 ≤ i ≤ k.

(229)

40. Let f be the orthogonal projection of A1 onto the linear span L of A2, ..., Ak. Since A

is a Gaussian matrix, the typical Euclidean norm of f is ≥ O(1)
√

(k − 1)/m = O(1)
√
s/m.

Now consider the vector

g =
∞∑
i=2

λ̄iAi = Aλ̄− λ̄1A1.

Note that by (229.d) the orthogonal projection of Aλ̄ onto L is zero. It follows that the

orthogonal projection of g onto L is −λ̄1f , whence

gT g ≥ λ̄2
1f

T f ≥ O(1)s/m.

On the other hand, g =
∑

i λiAi with ‖λ‖1 ≤ 2C and ‖λ‖∞ ≤ δ := O(1)C[1/s+
√

ln(m)/m],

whence

gT g =
∑

i,j λiλiA
T
i Aj ≤

∑
i λ

2
i ‖Ai‖22 +

∑
i 6=j |λi||λj |µ(A)

≤ 1.01‖λ‖1‖λ‖∞ + ‖λ‖21µ(A) ≤ O(1)C2
[
[1/s+

√
ln(m)/m] +

√
ln(m)/m

]
,

and we arrive at the inequality

s/m ≤ O(1)C2[1/s+
√

ln(m)/m],

whence

s ≤ O(1) max[C,C2]
√

ln(m)m. �
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5.7.10 Proof of Proposition 5.6.1

The proof below follows the lines of the proofs of Proposition 7 of [76] and Proposition 10

of [79]. Given ε ∈ (0, 1), let Ξ = {ξ : maxu∈U h
T
i u + σ|hTi ξ| ≤ ν(H), 1 ≤ i ≤ N}, so that

Prob{ξ ∈ Ξ} ≥ 1 − ε. Let us fix ξ ∈ Ξ, u ∈ U and x ∈ Rn such that L1(Bx − [Bx]s) ≤ v.

For η = y −Ax = u+ σξ, using the definition of Ξ and the fact that U is a symmetric set,

we have

‖HT η‖∞ = max
i
|hTi u+ σhTi ξ| ≤ max

i
{|hTi u|+ σ|hTi ξ|}

≤ max
i

{
max
u∈U

hTi u+ σ|hTi ξ|
}
≤ ν(H) = ω∗(γ̄).

We will proceed by induction. First, let us show that (ak−1, bk−1) implies (ak, bk).

Thus, assume that (ak−1, bk−1) holds true. Let z(k−1) = x − v(k−1). By (ak−1), Bz(k−1) is

supported on the support of Bx. Note that

Bz(k−1) − g = Bx−Bv(k−1) −HT (y −Av(k−1)) = (B −HTA)(x− v(k−1))−HT η

= V Bz(k−1) −HT η,

where the last equality follows from B = V B +HTA.

‖(Bz(k−1) − g)[i]‖∞ = ‖(V Bz(k−1) −HT η)[i]‖∞

≤ ‖(V Bz(k−1))[i]‖∞ + ‖HT η[i]‖∞

≤ ‖
∑
`

V i`(Bz(k−1))[`]‖∞ + ω∗(γ̄)

≤
∑
`

‖V i`‖∞→∞‖(Bz(k−1))[`]‖∞ + ω∗(γ̄)

≤ γ̄L1(Bz(k−1)) + ω∗(γ̄),

consequently,

‖(Bz(k−1) − g)[i]‖∞ ≤ γ̄αk−1 + ω∗(γ̄) := γ. (230)

We conclude that for any 1 ≤ i ≤ K and any 1 ≤ j ≤ ni, the interval S[i]j = [g[i]j −

γ, g[i]j + γ] of the width ` = 2γ̄αk−1 + 2ω∗(γ̄), covers (Bz(k−1))[i]j and the closest to 0
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point of S[i]j is

∆̃[i]j = [g[i]j − γ]+ g[i]j ≥ 0,

∆̃[i]j = −[|g[i]j | − γ]+ g[i]j < 0,

that is, ∆̃[i]j = ∆[i]j for all 1 ≤ i ≤ K and 1 ≤ j ≤ ni. Since the segment S[i]j covers

(Bz(k−1))[i]j and ∆[i]j is the closest to 0 point in S[i]j , while the width of S[i]j is at most

`, we clearly have

(a) ∆[i]j ∈ Conv
{

0, (Bz(k−1))[i]j
}
, (b) L∞(Bz(k−1) −∆) ≤ `. (231)

Since (ak−1) is valid, (231.a) implies that

(Bv(k))[i]j = (Bv(k−1) + ∆)[i]j ∈
[
(Bv(k−1))[i]j + Conv

{
0, (Bx−Bv(k−1))[i]j

}]
︸ ︷︷ ︸

⊆Conv{0,(Bx)[i]j}

,

and (ak) holds. Further, let I ⊂ {1, ...,K} be the set of indices of the s largest in magnitude

blocks in Bx and Ī = {1, . . . ,K} \ I. Relation (ak) clearly implies that ‖(Bz(k))[i]‖∞ ≤

‖(Bx)[i]‖∞, and we can write due to (231.b):

L1(Bx−Bv(k)) = L1([Bx−Bv(k−1) −∆]I) + L1([Bz(k)]Ī)

≤
∑
i∈I
‖(Bz(k−1) −∆)[i]‖∞ +

∑
i 6∈I
‖(Bx)[i]‖∞ ≤ s`+ v = αk.

Since by (231.b)

L∞(Bx−Bv(k)) = L∞(Bx−Bv(k−1) −∆) ≤ ` = 2γ̄αk−1 + 2ω∗(γ̄),

we conclude that (bk) is satisfied. The induction step is justified.

It remains to show that (a0, b0) holds true. Since (a0) is evident, all we need is to justify

(b0). Let

α∗ = L1(Bx),

and let g = HT y. Same as above (cf. (230)), we have for all i:

L∞(Bx− g) ≤ 2γ̄α∗ + 2ω∗(γ̄).
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Then

α∗ = L1(Bx) = L1([Bx]I) + L1(Bx− [Bx]s)

≤
∑
i∈I

[‖g[i]‖∞ + γ̄α∗ + ω∗(γ̄)] + v ≤ Ls,1(g) + sγ̄α∗ + sω∗(γ̄) + v.

Hence

α∗ ≤ α0 =
Ls,1(g) + sω∗(γ̄) + v

1− sγ̄
,

which implies (b0). �
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis we have investigated new techniques for both analysis and design of tractable

relaxations and efficient algorithms with good performance guarantees in large-scale sparsity-

oriented optimization. In terms of developing tractable relaxations, we have

• developed a unifying framework for building tractable relaxations for disjoint bilinear

programs, based on linear and semidefinite programming;

• investigated the benefits of using additional information given in the form of sign

restrictions for sparse `1-recovery, and presented necessary and sufficient as well as

verifiable sufficient conditions which generalize their previous counter parts from the

literature and analyzed their limits of performance;

• demonstrated that our verifiable sufficient conditions can be utilized in the efficient

design of a measurement matrix with performance guarantees on the quality of recov-

ery;

• investigated conditions and proposed new recovery methods for a more general sparse

estimation problem –estimating a signal from its undersampled observations corrupted

with nuisance and stochastic noise under the assumption that a known linear trans-

form of the signal admits a good block-sparse approximation in a given block rep-

resentation structure. We have shown that all our previous results on goodness of

`1-recovery can be extended to this setting.

Motivated by the specific convex optimization problems arising in compressed sensing,

we have introduced and investigated the notion of a generalized bilinear saddle point prob-

lem (GBSP). Specifically:

• We have shown that many interesting classes of problems from compressed sensing

recovery and machine learning can be cast as GBSPs.
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• We have suggested efficient first-order methods for solving GBSPs equipped with de-

terministic and stochastic oracles. These methods admit explicit theoretical efficiency

estimates which for numerous applications, including those in compressed sensing and

machine learning, are the best known so far.

• Through numerical experiments, we have shown that our algorithms with stochastic

oracles besides achieving sublinear time behavior, exhibit excellent computational

performance.

• We have investigated the effect of using previous information in our algorithms through

testing different continuation schemas paired with new distance generating functions.

Compressed sensing is an emerging field with active research particularly because of its

great promise for acquiring and processing massive data efficiently and accurately. Yet, its

solid theoretical foundation is still evolving. Optimization techniques will play a key role

in the development of this foundation. A few topics that are worth mentioning for future

studies can be categorized as follows:

Efficient Algorithms for Block-Sparse Recovery: In Chapter 5, we have suggested

new algorithms with provable accuracy certificates for a more general sparse estimation

problem with stochastic noise. One of the important features of this problem is that it

assumes the signals are block-sparse with respect to a given representation structure and

specifically considers the problem of estimating a linear transform Bx ∈ RN of a vector

x ∈ Rn, where Bx is assumed to be block sparse, from the observations

y = Ax+ u+ σξ.

Consequently in all of the resulting recovery procedures, a norm of this linear transform Bx,

e.g., L1(Bx), appears in the objective. When the representation matrix, B is identity, these

recovery procedures more or less reduces to the `1 regularization problems and we arrive

back at the setting of Chapter 4. On the other hand, handling the general representation

matrix B is a nontrivial and important task. There are a number of important applications
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where a nontrivial B arises naturally such as standard image reconstruction with Total

Variation regularization or finding the solution of a linear finite-difference equation with

sparse right hand side. However the algorithms in Chapter 4 are explicitly making use of

the `1 objective function and similar transformations for norms involving nontrivial B will

no longer lead to “easy to solve” subproblems utilized in the state of the art first-order

methods (or at least we don’t know it yet). Therefore it will be an interesting task to

develop efficient first-order methods for solving these estimation problems.

Verifiable Sufficient Conditions for Nuclear Norm Minimization: Minimizing the

rank of a matrix subject to constraints is a challenging problem that arises in many applica-

tions in machine learning, control theory, and discrete geometry. This class of optimization

problems, known as rank minimization, is NP-hard, and for most practical problems there

are no efficient algorithms that yield exact solutions. A popular heuristic replaces mini-

mizing the rank function of a matrix with minimizing its nuclear norm –the sum of the

singular values. This practical approach has been shown to provide the optimal low rank

solution in a variety of scenarios. The necessary and sufficient condition that character-

izing when nuclear norm minimization finds the minimum rank matrix subject to linear

matrix inequalities have been established in [114]. Despite the fact that the probabilistic

performance bounds on the rank as a function of the matrix dimension and the number of

constraints, for which the nuclear norm minimization succeeds with overwhelming probabil-

ity are provided in the literature (see [52, 113, 114]), there is no tractable way of verifying

these conditions. It will be interesting to provide verifiable sufficient conditions in this set-

ting. The main difficulty in extending the previous work and ideas from `1-recovery to this

setting lies in the fact that in the space of matrices, the unit ball in the nuclear norm is not

a polyhedral set, i.e., it has infinitely many extreme points, as opposed to the `1-ball in Rn.

Parallel Implementation of Efficient Algorithms for Compressed Sensing and

Their Applications: The first-order methods presented in Chapter 4 provide excellent

theoretical (they exhibit sublinear time behavior) and practical performance, yet they don’t
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take advantage of the emerging parallel and/or distributed computing architectures. Design-

ing and implementing algorithms with parallel/distributed computing in mind to achieve

both superb practical performance (thus satisfying the increasing demand for handling

larger instances faster) and optimal rate of convergence, and conducting more computa-

tional studies for large-scale first-order methods in these settings will be very rewarding.
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