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SUMMARY

In this thesis, we develop tractable relaxations and efficient algorithms for large-scale
optimization. Our developments are motivated by a recent paradigm, Compressed Sensing,
which covers a multitude of large-scale, sparsity-oriented convex optimization problems.
Compressed sensing is focused on the recovery of sparse or well-concentrated signals from
possibly noisy observations in a low-dimensional space. Nowadays, this theory is success-
fully utilized in many fields ranging from MRI image processing to machine learning, from
biology to statistics. In the first chapter of this thesis, we provide a general introduction to
compressed sensing and its applications and cover some of the earlier results.

The majority of results in compressed sensing theory rely on the ability to design/use
projection matrices with good recoverability properties. In the second chapter of this thesis,
we study the conditions for good recoverability properties of a sensing matrix. We propose
necessary and sufficient conditions for a sensing matrix to allow for exact ¢i-recovery of
sparse signals with at most s nonzero entries while utilizing a priori information given in
the form of sign restrictions on part of the entries. We express error bounds for imperfect ¢;-
recovery in terms of the characteristics underlying these conditions. These characteristics,
although difficult to evaluate, lead to two different verifiable sufficient conditions, which
can be efficiently computed via linear programming (LP) and/or semidefinite programming
(SDP) and thus generate efficiently computable lower bounds on the level of sparsity, s,
for which a given sensing matrix is shown to allow for exact ¢1-recovery. We analyze the
connection between our LP- and SDP- based verifiable sufficient conditions, examine their
properties, describe their limits of performance and provide numerical examples comparing
them with other verifiable conditions from the literature. Even though our LP- and SDP-
based relaxations are presented in CS framework, these techniques are generic and applicable
in the case of disjoint bilinear programs.

In the third chapter, we study the compressed sensing synthesis problem — selecting the
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minimum number of rows from a given matrix, so that the resulting submatrix possesses
certifiably good recovery properties. Starting from the verifiable sufficient conditions, we
express the synthesis problem as the problem of approximating a given matrix by a ma-
trix of specified low rank in the uniform norm. We develop a randomized algorithm for
efficient construction of rank k approximation of matrices of size m x n achieving accuracy
bounds O(l)\/m which hold in expectation or with high probability. We supply a
derandomized version of our approximation algorithm and provide numerical results on its
performance for the synthesis problem.

Chapter 4 is dedicated to efficient first-order algorithms for large-scale, well-structured
convex optimization problems. Saddle point reformulation is proven to be an effective tool
to exploit problem structure for designing computationally efficient algorithms. Building
upon their strength, we first demonstrate that the solutions to many large-scale problems
arising from compressed sensing recovery, high-dimensional statistical inference, and ma-
chine learning can be obtained through solving a series of Bilinear Saddle Point problems
(BSPs). We accelerate the solution of associated single-parametric BSP’s by utilizing the
Mirror Prox algorithm from [101] as a prototype and by replacing precise first order oracle
(which becomes quite time-consuming in the extremely large-scale case) by its computa-
tionally cheap randomized counterpart. In the overall solution of parametric BSPs, cheap
online assessment of solution quality is crucial. Our randomized algorithms come with ex-
act guarantees on solution quality and achieves sublinear time behavior to solve large-scale
parametric BSPs. Extensive simulations show that our randomized first-order methods are
capable of handling very large-scale applications and improve considerably over the state-
of-the-art deterministic algorithms, with benefits amplifying as the sizes of the problems
grow.

In the fifth chapter, we examine a more general sparse estimation problem —estimating
a signal from its undersampled observations corrupted with nuisance and stochastic noise.
Instead of the standard sparse signal framework, here we work under the assumption that
a priori information is presented via a block representation structure of a known linear

transform of the signal, and the signal achieves a good approximation in block sparse sense
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in this representation structure. There are a number of important applications where such
a nontrivial sparsifying representation arises naturally such as standard image reconstruc-
tion with Total Variation regularization or finding the solution of a linear finite-difference
equation with sparse right hand side (“evolution of a linear plant corrected from time to
time by impulse control”). We show that an extension of the standard compressed sens-
ing results from [79] to this framework is possible. Particularly, we introduce a family of
conditions, suggest two new methods of recovery based on block-¢; minimization and study
the most common cases of the block representation structure under which these estimators
have efficiently verifiable guaranties of performance. We link our performance estimations
to the well known results of compressed sensing by providing connections between our con-
ditions and Restricted Isometry Property. This also establishes connections between new
techniques and classical methods such as Lasso and Dantzig Selector.

We present a summary of conclusions of our study and provide future research directions

in the last chapter.
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CHAPTER I

INTRODUCTION

In this thesis, we develop tractable relaxations and efficient algorithms for large-scale op-
timization. Our developments are motivated by a recent paradigm, Compressed Sensing,
which covers a multitude of large-scale, sparsity-oriented convex optimization problems.
The traditional approach of reconstructing signals or images from measured data follows
the well-known Shannon sampling theorem [126], which states that the sampling rate must
be twice the highest frequency. Arisen from a recent breakthrough in signal processing,
compressed sensing (also referred to as compressive sampling) is currently reshaping the
way people work with large and high-dimensional data sets. Data is compressible in most
cases; i.e., the number of salient features hidden in massive data is usually much smaller
than its dimension and therefore can be recovered from what was previously believed to
be highly incomplete measurements. Exploiting this fact, compressed sensing suggests a
paradigm change by acquiring directly low-dimensional linear projections of data, possibly
corrupted with noise, and then using sophisticated ¢1-recovery procedures for reconstruction
of the original data when needed.

The idea of making inferences about the data from a few of its measurements dates back
to group testing method suggested in [19] during World War II. In the late 1970s and 1980s
geophysicists used ¢;-minimization in reflection seismology [117, ]. In the 1990s, the
work of [128] introduced the recovery of sparse Fourier spectra from a few samples in the
context of Nuclear Magnetic Resonance spectroscopy and this area of research has attracted
vast attention since then. Originating from [1106], total variation minimization, which is
closely related to compressed sensing, has been widely applied in image processing since the
1990’s. In statistics, with the work of Tibshirani [123], use of ¢;-regularization and related
methods, specifically Lasso (Least Absolute Shrinkage and Selection Operator) estimator,

gained great popularity in model selection and sparse estimation areas. {1-recovery was also



proposed in computational harmonic analysis for extracting a sparse signal representation
from highly overcomplete dictionaries (see [32]). Nowadays, compressed sensing theory is
successfully utilized in many fields ranging from magnetic resonance image (MRI) processing
to machine learning, from biology to statistics. A few of these direct application areas
with references describing the setup of the problems are as follows: Imaging including
MRI [21, 89, ) |, radar [69], error correction [27], biology including microarray gene
expression studies [25, 95, | and even a nonparametric approach to modeling customer
choice from limited data in revenue management [57]. We refer the interested reader to

[11, 39] and [59] for a broader description of compressed sensing applications with details.

1.1 Owverview of Compressed Sensing

1.1.1 Preliminaries and Notation

Let x € R™ and || - || be any norm. For 1 < p < oo, we denote by || - ||, the usual £,-norm
given by

n 1/p

[l = (Z Il‘ilp> ,

i=1

and [|z|lec = max |z;|. For 0 < p <1, | ||, defined above becomes a quasi-norm. For a
i=1,...,n

given norm || - ||, its conjugate norm is defined as

||« = mgx{uTa: el <1}

For a subset I C {1,...,n}, we denote by z; € R™ the vector which coincides with
x € R™ on the entries in I and is zero outside of I. While Card(I) represents the cardinality
of the set I, the subset I := {1,...,n} \ I denotes the complement of I. The kernel
(nullspace) of a matrix is defined as Ker(A) = {u: Au = 0}.

Given an m x n matrix A, we use ||A|[,—, to denote the operator norm associated with

norms | - ||, and || - || in the argument and image spaces respectively, namely:
[Allp—q = max {[[Az(lq : [[zfl, <1}

Unless otherwise stated, I,, denotes the n x n identity matrix and e; is the ith basic orth.



1.1.2 Sparsity and Compression

Compressed sensing is based on the empirical observation that many types of real-world sig-
nals and images have a sparse expansion of a suitable basis, for example a wavelet expansion
provides sparse representation for certain types of images. This means that the expansion
has only a small number of significant terms, or in other words, that the coefficient vector
can be well-approximated with one having only a small number of nonzero entries.

We say that an n-dimensional signal (vector) x is s-sparse if it has s or fewer nonzero

coordinates, i.e., ||z|lo < s < n where
[[z]|o := Card(supp(z))

and supp(z) = {j : ; # 0} denotes the support of z. Although || - |9, which counts the
number of nonzero coordinates of a vector, is not even a quasi-norm, it is usually referred
as fp-norm.

Signals encountered in practice are often not exactly sparse, but their coeflicients decay

rapidly following a power law:
|$[k]\ x k(—l/q)’

where z is the k-th largest in magnitude entry in z and 0 < ¢ < 1. This class of signals
is referred to as compressible signals. In addition to covering sparse signals as a subclass,
compressible signals exhibit the nice property that they can be well approximated by sparse
signals. We will denote by x°, the best s-sparse approximation of the vector x, which is
obtained by setting to zero all but the s largest in magnitude entries in x and we will refer
to ||z — z%||; as the s-tail of the vector z. For any positive integer s and 1 < p < oo, we will

define the (s, p)-norm, denoted by || - ||sp, of a vector x as follows:

[]ls.p == ll2*[lp-

Traditionally in order to compress a vector x, one may simply store its s largest en-
tries and their locations. When reconstructing = from its compressed version the missing

entries are simply set to zero leading to a small reconstruction error whenever the signal



is compressible. This observation paired with the suitable sparsifying basis plays the key
role in many commonly used compression algorithms for visual and audio signals such as
JPEG, JPEG-2000, MP3, and MP4. However we should emphasize that the procedure of
obtaining the compressed version of x is adaptive and nonlinear since it requires the search
of the largest entries of x in absolute value. In particular, the location of the nonzeros is a

nonlinear type of information.
1.1.3 Compressed Sensing

The adaptive compression of a signal x by only keeping its largest coefficients as described
before is certainly valid only when full information on x is available. Note that especially
when the signal first has to be acquired or measured by a somewhat costly or lengthy pro-
cedure, this compression seems to be a waste of resources. At first, large efforts are made to
acquire the full signal and then most of the data is thrown away in the compression process.
Alternatively, in compressed sensing, one tries to avoid this waste of effort in acquisition
phase as much as possible. The key objective in compressed sensing is to reconstruct a
signal accurately and efficiently from a small set of non-adaptive (possibly noisy) linear
measurements.

A collection of m linear measurements of a signal x € R™, corresponds to applying an
m X n measurement or (sensing) matrix A. In other words, given an m x n measurement
matrix A, we only have access to a vector of observations (also referred as measurements),

b, obtained in the following way
b=Azx+e (1)

where x is the signal to be estimated, and if present, e € R™, is the vector for observation

error. The two most popular assumptions for modeling observation error, e, are as follows:

(B) e is “uncertain-but-bounded” i.e., all we know about e is that ||e|| < ¢ for a given ¢

and norm || - ||, or

(S) e = o& where £ is a stochastic r.v. with known distribution P, and o is the noise

intensity level.



Depending on the application area, there are a number of closely related goals including
the recovery of x, the recovery of the support of x or recovery of a linear transform Bz of
x from the measurements b.

Regardless of the choice of noise model, the undersampled estimation problem is usually
the main focus of research, i.e., m < n, where there are more columns than rows in matrix
A. In the undersampled case, even when there is no noise, i.e., e = 0, we are dealing
with a highly underdetermined system of equations and hence (1), if solvable, will have
infinitely many solutions, and thus one cannot effectively distinguish the true underlying
signal among them without further information.

Compressed sensing exploits the fact that there is some structure and redundancy in
the majority of interesting signals —they are not pure noise. In particular, most signals are
sparse, that is, they contain many coefficients close to or equal to zero, when represented in
appropriate basis. Instead of working with the general class of all signals, one can achieve
satisfactory results in reconstructing signals from specific signal classes such as sparse or
compressible.

In this setting, one way of incorporating the a priori sparsity information in the recovery
of a vector x from its observations b is simply to use it in guiding the search. In the case of
uncertain-but-bounded noise model (B), this approach leads to the ¢y-minimization problem

given by
7 = argmin{|lz]o : Az — b] <o}, (2)

which searches for the sparsest signal consistent with the observations within the noise level.
A similar sparsity promoting estimator for the stochastic noise model (S) (£ is assumed to

be a Gaussian r.v. in most of the literature) is suggested as
Z = argmin{|| Az — b3 + Allz[lo}, (3)
z

where ) is a regularization parameter depending on noise intensity level o.
Whenever there is no observation error/noise, i.e., e = 0, x is s-sparse and A is one-

to-one on all 2s-sparse vectors, the unique minimizer to (2) is the original vector z (true



signal). On the other hand both of these fy-regularized minimization problems are neither
stable with respect to observation errors nor easy to solve. In fact, for a general matrix A
and vector b, it is NP-hard to solve (2) (see [97]).

The computational difficulty in fyp-regularized optimization problems is due to the non-
convex, in fact discrete, nature of the objective function. Tractable alternatives are obtained
by replacing the fy-norm in the objective with ¢1-norm. When noise is modeled as in (B),

the following ¢1-minimization problem, also referred as basis pursuit is obtained
T = argmin{||z||; : ||Az —b| < d}. (4)
z

Similarly, in the stochastic noise setting, (\S), there is a computationally efficient alternative

to problem (3), namely the Lasso estimator, {1-penalized least squares from [123]:
Zr, = argmin{|| Az — b3 + Allz[|1}. (5)
z

Another commonly used estimator in the stochastic noise setting is given by Dantzig selector

from [29], given by
Zp = argmin{||z[l1 : [|[AT (A2 = b)l|l < p}, (6)

where p is a parameter of the algorithm. In high dimensional statistical inference, par-
ticularly model selection area (variable selection in linear regression models from a small
number of noisy observation), both Lasso estimator and Dantzig selector have gained a lot
of popularity, e.g., see [17, 18, 23, 29, | and also the references cited therein.

Various characterizations of conditions on the matrix A and the sparsity of the signal
of interest have been proposed to guarantee that the suggested estimators ¥ recovers (or at
least is close to) the true solution x. In general, with ¢;-regularization, while we attain an
easy-to-solve alternative, we pay a price by requiring a stronger condition on the sensing
matrices A to guarantee the perfect recovery for all signals that are “sparse enough.” In
the next section, we will examine some of these most commonly studied conditions from

the literature.



1.2 Summary of Previous Results for (1-recovery

1.2.1 Conditions for /i-recovery

The compressed sensing theory offers strong results which state, in particular, that if the
signal x is s-sparse (or compressible) and the matrix, A, possesses a certain well-defined
property, then the £1-recovery of z is close to the true signal, provided the observation error,
e in (1), has a small norm or noise intensity level. In this section, we will cover some of the
major results in this respect.

We start by characterizing the conditions for exact ¢1-recovery when there is no noise
in the observations (i.e., e = 0 and thus b = Az). Here we are mainly interested to answer

the following question:

Whether the matriz A is such that whenever the true signal x in (1) is s-

sparse, the {1-recovery in (4) with e = 0 recovers x exactly as the unique solution.

If the answer is positive, the matrix A is said to be s-good.

Various sufficient, and necessary and sufficient conditions for s-goodness are proposed in
the literature. Moreover the quality of the ¢; estimators guaranteed by these conditions in
the “imperfect settings”— when observation error is present and the signal is compressible,

but not exactly s-sparse, has been an active research area.
1.2.1.1 Nullspace Property

A well known necessary and sufficient condition for s-goodness is as follows:

Definition 1.2.1 (see [78, 81]). A matriz A is said to satisfy Nullspace Property at level
s, where s is a positive integer, if for all x € Ker(A) and for all subsets I C {1,...,n} with

Card(I) < s, there exists 45(A) € (0,3) such that

Dzl <Fs(A)|z1- (7)

i€l
This condition has been investigated extensively. Donoho and Huo [15] proved that
the matrix A is s-good if A satisfies Nullspace property with 75(A) < % The necessity of

Nullspace property with 75(A4) < % for s-goodness has been established in [12]. Note that



this condition also appears in the literature under the name of strict s-balancedness (see
[132, 134)).

Nullspace property can be used to determine the quality of the estimate from ¢;-recovery
under “imperfect conditions” — where the signal is approximately sparse, there is bounded
noise in the observations (noise model (B)) and ¢;-minimization in (4) is approximately

solved (see Proposition 3.1 in [31] or [34]):

Theorem 1.2.1 Consider the uncertain-but-bounded noise model (B) with norm || - ||. Let

x € R™, and the sensing matriz A satisfy Nullspace property with 7 := 74(A) < % and T be

a v-optimal solution to (4), meaning
2]} < min{{[2][1 - [[Az = b]| < J} +v.

Then

lz =2l < 7 [466 + 2[|x — =[x + ¥/ (8)

%5
where B is a constant depending on only A and norm || - ||.

On the negative side, verifying the Nullspace property turns out to be a hard optimiza-
tion problem. Starting from the Nullspace property, efficiently verifiable sufficient condi-

tions based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations

are proposed in [81] and [38] respectively. In both papers, the goal is to efficiently bound
7s(A) in (7) from above. In particular, in [$1], the following LP-based verifiable sufficient

condition for A to be s-good is stated:

1
There exists Y € R™ " s. t. max ||(I, — YT A)e;||s1 < 3 (9)

where I, denotes the n X n identity matrix and e; is the it" basic orth. This condition can
be further relaxed to obtain another verifiable sufficient condition for A to be s-good given

by the following (cf. [31]):

1
There exists Y € R™ ™ such that || I, — Y7 Al|s < % (10)
s

where || X || o = max |X;;| and X;; are the elements of the matrix X.
z?J



Unfortunately, tractability has a price: the limits of performance of the verifiable suffi-
cient conditions from [38] and [21] have been established as follows: for an m X n matrix A,
the LP-based conditions cannot verify s-goodness for levels of s > 2v/2m provided A is not
“nearly square,” specifically n > (1 4+ 2v/2m)? (see [31]). This bound is much worse than
the O(m/In(n/m))-level of goodness bound which is theoretically achievable for random
matrices. Moreover the SDP-based verifiable sufficient condition of [38], despite its signifi-
cantly higher numerical complexity as compared to the LP-based condition of [31], shares

the same asymptotic performance limit.
1.2.1.2  Restricted Isometry Property

Some particularly impressive results in compressed sensing literature make use of the suffi-

cient condition for s-goodness:

Definition 1.2.2 (see [25, 26]) An m xn matriz A satisfies the Restricted Isometry Prop-

erty with parameters v € (0,1) and s, where s is a positive integer, RIP(~, s), if
(L=l < [|Az]3 < (1 +7)]]3. (11)
holds for all s-sparse x € R".

In other words, RIP(7, s) states that A should be well conditioned when acting on signals
of interest. RIP condition provides uniform recovery guarantees over all sparse signals of
interest for many convex optimization approaches such as ¢1-minimization, Dantzig selector
or Lasso estimator. For instance, the following result due to Candés et al. for the bounded

noise model of (B) is well known (see Theorem 1.2 in [26] or Theorem 4.1 in [25]):

Theorem 1.2.2 Let x € R™ and || - || be the la-norm in the ¢1-recovery given in (4), and
let the sensing matriz A satisfy RIP(v,2s) with v < /2 — 1. Then
- 2
Jo = 3lh € ———= [20/TF 5+ (1 =7+ V2l = 2|1 | (12)
1—y—v2y
Theorem 1.2.2 establishes the stability of £1-recovery with respect to uncertain-but-bounded

observation error, §, and approximate sparsity of the signals under RIP(~, 2s) condition.



The RIP based results regarding levels of achievable compression in compressed sens-
ing is even more impressive. There are m X n sensing matrices A which possess, say, the
RIP(3, s)-property for “large” sparsity levels s as large as O(W) (this bound is tight).
For instance, for normalized (all columns have Euclidean length equal to 1) random ma-
trices where entries are sampled from i.i.d. standard Gaussian distribution or Rademacher
distribution (entries are +1 with equal probability), this is the case with overwhelming
probability (i.e., probability 1 — O(e™™) for some 7 > 0) (see [25, 28]). Similar results also
exist for normalizations of randomly selected submatrices of the Fourier transform or other
orthogonal matrices such as Hadamard.

On the negative side, random matrices are the only known matrices which possess the
RIP(~, s) property for such large s. Yet, in practical applications, random matrices are usu-
ally undesirable due to storage limitations, computational considerations, or the mismatch
of such matrices with certain measurement architectures. For all known deterministic fam-
ilies of m x n matrices provably possessing the RIP (v, s) property, one has s ~ O(y/m) (we
discuss the known deterministic constructions and achievable levels of sparsity in detail in
Section 1.2.2), which is essentially worse than the bound s = O(W) promised by the RIP
based theory. Furthermore there are known lower bounds on the number of rows of a sparse
matrix satisfying RIP(vy, s); particularly in [31], it is shown that for a 0 — 1 matrix to satisfy
RIP(~, s), the number of rows, m should be “large,” i.e., m > min{<m>2827 mn}
Moreover RIP (v, s) itself is “intractable” (see [111] for a discussion of the hardness of this
problem) — the only currently available technique to verify the property for an m x n matrix
amounts to test all its m x s submatrices. In other words, given a large sensing matrix A,
verifying RIP (7, s)-property with a given s > 1 is almost impossible in a reasonable amount
of time.

The link between the Nullspace property and RIP condition is studied in [34]; it is
shown that whenever A satisfies the RIP(+, 3s), then A satisfies the Nullspace property of

order 2s and 7a5(A) Also in [31], it was shown that whenever matrix A

_ Vity
V20 +V/IH
is, say RIP(1/4,m) (so the true level of s-goodness of A is O(1)'m), the LP-based sufficient

'Tn this thesis, we will use the notation O(1) to denote absolute constants.
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conditions do certify that A is O(1)/m-good —e.g., they guarantee “at least the square root

of the true level of goodness.”
1.2.1.8 Mutual Incoherence

To the best of our knowledge, the earliest efficiently verifiable condition for s-goodness
offered by the existing compressed sensing theory is the sufficient condition based on the

mutual incoherence:

Definition 1.2.3 (see [/2, /5, 90]). The mutual incoherence of a given matriz A is the

largest absolute normalized inner product between different columns from A. It is given by

A7 A,

(13)
where A; are columns of A (assumed to be nonzero).

The mutual incoherence aims to characterize the dependence between columns of the matrix
A. For a unitary matrix, columns are pairwise orthogonal, and so the mutual incoherence
is zero. For general matrices with more columns than rows, m < n, u(A) is necessarily
strictly positive, and one would seek for the smallest possible value so as to get as close as
possible to the behavior exhibited by unitary matrices. In particular, we have the following

theorem (cf. [12]):

Theorem 1.2.3 Let A has the mutual incoherence value, u(A), as defined in (48), then A

1 s-good for any sparsity level s satisfying

S<;<1+M(1A)>' (14)

Clearly, the mutual incoherence can be easily computed even for large matrices. On the
other hand, in [81], it is shown that the “level of goodness” estimate of a sensing matrix based
on mutual incoherence given in Theorem 1.2.3 is usually too conservative. In particular,
whenever the mutual incoherence condition from Theorem 1.2.3 verifies the sparsity level
s, LP-based verifiable sufficient conditions proposed in [31] for the same sparsity level s are

automatically satisfied (in particular the simple condition given in (10) is satisfied).

11



1.2.2 Deterministic Construction of Compressed Sensing Matrices

There is significant interest in the construction of structured sensing matrices and alterna-
tive reconstruction algorithms. One of the earliest results on deterministic construction of
compressed sensing matrices with provably good recovery properties is due to [11]. Using
finite fields, [11] provides deterministic constructions of cyclic 0-1-valued matrices satisfy-
ing RIP(s,v) with m = 0(5210%22(”)). The analysis in [11] is based on mutual incoherence
property and the resulting matrices are provably s-good for the values of s = O(y/m). The
recent work of [20] manage to break through the y/m “barrier” using techniques from ad-
ditive combinatorics: they construct RIP matrices of order s = O(n'/?*<) where ey > 0
is an unspecified “explicit constant.” Note that this is still far from the order achieved by
probabilistic constructions.

In recent years, building on the connection with coding theory, adjacency matrices of
unbalanced expander graphs originating from [119] have gained increased popularity in
compressed sensing field (see [15, 10, 62, 72, 73, 74, | and the references therein). An
expander graph is a regular bipartite graph for which every pair of subsets of nodes in one
side of the partition with sufficiently small size has a small number of colliding edges and a

significant number of unique neighbors on the other side:

Definition 1.2.4 A simple bipartite graph G = (U, V, E) with vertices partitioned into two
groups U and V', and edge set E, is said to be a d-regular (s, €)-unbalanced expander graph
if each vertex in the left partition, say U, has degree d and the graph is such that for any set
X C U with |X| < s, the set of neighbors N(X) CV of X has size IN(X)| > (1 — e)d| X].

Using probabilistic techniques, the existence of left-regular (s, €)-unbalanced expander

graphs with n left vertices and m = O(%Q"/S)) right vertices and the left degree d =

O(w) is shown (see [15, 72] and the references therein). No explicit construction with
the aforementioned parameters are known, however [15] provides an explicit construction
of these matrices with d = 200g(0e()/€)) and m = sd/e?(). Moreover explicit deter-

ministic construction of expander graphs based on Parvaresh-Vardy codes [110] exists and

in the recent work of [68], the associated explicit construction parameters are stated as

12



d= O(l)(M)Hi and m = s'7%d? for any fixed a > 0.

€

The increased interest in the adjacency matrices of expander graphs is due to their stable
recovery properties, the sparseness of the associated matrices and the specialized efficient

recovery algorithms. Let ® be the adjacency matrix of a d-regular, (2s,¢)-unbalanced

expander graph with € < % and define A = % to be the normalized adjacency matrix,

2¢
1—2¢

< 1 (see Lemma 16 in [15]).

then A satisfies the Nullspace property with 75(A) =
Combined with Theorem 1.2.1 this validates ¢1-recovery under imperfect conditions (another
validation, adjusted to the specific matrices in question, is given in [15]). Furthermore, in
[15], it is demonstrated that the empirical behavior of randomly generated binary sparse
matrices is consistent with the analytic performance analysis (phase transition behavior)
of random Gaussian matrices. On the algorithmic side, there are specialized algorithms
exploiting the combinatorial structure of expander graphs: Expander Matching Pursuit
of [72] works in the noise-free setting and achieves O(nlog?) computational complexity;
Sequential Sparse Matching Pursuit of [16] requires slightly higher (by a logarithmic factor)

running time yet handles the bounded noise model of (B).

1.3 Efficient Algorithms for (1-recovery
1.3.1 Convex Optimization Methods

The ¢1-regularized optimization problems stated in (4)-(6) are convex optimization prob-
lems, and as such, they can be solved to arbitrarily high accuracy by theoretically and
practically efficient polynomial-time algorithms for convex optimization. In addition to the
convexity, there is a nice transparent structure in the ¢;-minimization problem of (4): when
|| - || is a polyhedral norm such as || - ||oc or || - |1, (4) reduces to Linear Programming (LP),
and when || - || = || - |2, the most popular choice in compressed sensing, it becomes a Conic
Quadratic Programming (CQP). Problems of this type are amenable for the most advanced
polynomial-time Interior Point methods (IPMs) known so far. In particular, both LP and
CQP are especially well suited for IPMs, and nowadays commercial software packages such
as CPLEX[35], Gurobi[67] and Mosek[!] are capable of solving LPs and CQPs to high

accuracy within a moderate number of Newton-like iterations.
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However in the case of large-scale LP/CQP problems with dense constraint matrices
(e.g., matrix A in (4)), the practical scope of IPMs is restricted to problems with at most
few thousands of decision variables. This restriction comes from the fact that IPMs have
“computationally demanding” iterations unless problem’s data possess favorable sparsity
structure. The computational cost, e.g., the number of arithmetic operations (a.o0.), of an
iteration of standard IPMs grows nonlinearly, in the dense case as O(n?), with the design
dimension, n, of the problem. In the problems originating from real-life decision making,
the constraint matrices reflect dependencies between various elements/processes such as in
production facilities, inventory and/or supply chain systems, and it is difficult to imagine
such a system where “everything influences everything else.” Therefore it is usual to have
LPs and/or CQPs with sparsity structure in these problems. On the other hand, it is easy to
arrive at dense large-scale problems in signal processing and machine learning applications,
where the matrices are usually given analytically due to their “mathematical origin.” Such
an example is readily given in compressed sensing when A matrix in (4) is a subsampled
Fourier transform.

Fast -cubic- growth of computational effort per iteration makes standard IPMs prac-
tically too expensive or even unable to handle dense problems with tens and hundreds of
thousands of design variables. Fuast convergence in terms of iteration count of IPMs, does
not help much when the very first iteration “lasts forever.” In situations like this, high accu-
racy offered by standard IPMs turns out to be computationally too expensive and it becomes
necessary to have the complexity of each iteration having at most a linear growth of the
design dimension n, i.e., O(n). At the present level of our knowledge, the latter requirement
rules out all known polynomial-time routines and, as far as constrained problems like (4)
are concerned, leaves us the only option —computationally cheap “black-box-oriented” first-
order methods (FOMs) like gradient descent, conjugate gradient, quasi-Newton methods

with restricted memory.
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1.3.1.1 Review of First-Order Methods and Their Limits of Performance

In order to provide sufficient background and put our results into perspective, here we
review some of the literature on first-order convex programming and related complexity
theory. Our review is mainly based on a summary of results relevant to us from [30], we
refer the reader to [30, , | for full details on the subject and further discussions.

We restrict our attention to the convex programs of the form

Opt(f) = min /() (15)

xe

where X' is a nonempty compact convex subset of R and f is known to belong to a
given family F of convex and (at least) Lipschitz continuous functions? on X. Clearly the
feasibility and compactness of X combined with continuity of f implies that the optimum
value in (15) is attained, i.e., (15) is solvable.

While solving (15), a FOM knows in advance what X and F are, but does not know
the particular objective function f € F is. It is restricted to “learn” f via subsequent
calls to a first-order oracle — a “black-box” routine which, given as an input a point x €
X, outputs the value f(x) and a (sub)gradient f/(x) of f at z. For a given particular
objective function f and a required accuracy ¢ > 0, a FOM generates a finite sequence
of search points xy € X, t = 1,2,... by calling the first-order oracle. Upon termination,
the algorithm outputs an approximate solution Z € X which should be e-optimal, i.e.,
f(@) — Opt(f) < e. Thus a FOM, in fact, is a collection of rules for generating subsequent
search points, termination criteria and building the approximate solution. These rules,
in principle, can be arbitrary, with the only limitation of being non-anticipating, i.e., the
“output” of a rule is uniquely defined by X and the first-order information on f accumulated
before the rule is applied. Consequently, for a given FOM and X, x; is independent of f,

x9 depends solely on f(x1), f'(21), and so on. Moreover both the termination rule and the

>The function f(z) is said to be Lipschitz continuous with Lipschitz constant L with respect to norm || - ||
if
|f(z) = f(y)| < Lllz —y]
holds for all x, y.
3Informally speaking, this setting implicitly assumes that the domain X is “simple” (like box, or ball, or
standard simplex), while f can be complicated.
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construction of approximate solution should also be non-anticipating, depending only on X
and the previous information on f collected at the search points.

In this framework, given target accuracy e, the lower complexity bound of a problem
family (X, F), denoted by Ny(X, F,¢€), is defined as the minimum number of iterations, N,
of any FOM capable to solve every problem of type (15) with every possible function f € F
within accuracy €. An upper bound on complexity can be obtained by demonstrating a
FOM and its associated worst case performance on the outlined problem family. Whenever
there exists a FOM capable of solving all problems of type (15) with functions f € F within
accuracy € with a worst case performance that is within an absolute factor of Ny(X, F,e€),
then that algorithm is referred as an optimal method for the given problem class. Limits of
performance of black-box-oriented FOMs are established by Information-Based Complexity
Theory in [103]. Several instructive examples for specific classes of X and F are given in

[103], the following are of particular interest:

(a) [Nonsmooth case] Let X = {z € R" : ||z|, < R}, where p € {1,2}, and let F, be
comprised of all convex functions f which are Lipschitz continuous w.r.t. || - ||, with
a given constant L. Then Ny(X,Fp,€) is at least O(1) min[n, L2?R?/€*]. This lower
complexity bound remains true when F is restricted to be the family of all functions
of type f(x) = max [e;Lx; + a;] with e, = 1. Moreover, an optimal FOM suggested
in [103] is Capab_le_of solving all problems of the outlined type within accuracy € in

O(1)(In(n))?/P~1L2R?/€* steps.

(b) [Smooth case] Let X = {x € R™ : ||z|]]2 < 1}, and let F be comprised of all convex
functions f which have Lipschitz continuous gradients w.r.t. || - |2, with a given con-
stant L. Then Ny(X,F,e¢) is at least O(1) min[n, /LR?/e]. This lower complexity
bound remains true when F is restricted to be the family of convex quadratic func-
tions of form f(x) = %a:TAx +b”x with positive semidefinite symmetric matrices A of
spectral norm (maximal singular value) not exceeding L. Nesterov’s optimal algorithm
for smooth convex minimization (see [104, 100]) is capable of solving all problems of

the outlined type within accuracy € in O(1)y/LR? /e steps.
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(c) [Structured nonsmooth case] Let X = {x € R™ : ||z|]2 < 1}, and let F be comprised of
all convex functions of the form f(x) = || Az — b||2 where the spectral norm of A* does
not exceed L. Here we extend the “power” of the first-order oracle slightly and assume
that at a step of a FOM we are allowed to carry out O(1) matrix-vector multiplications
involving A and A7, yet we don’t have direct access to A. In this setup, Ny (X, F,¢) is
at least O(1) min[n, LR/¢€|. Again, this lower complexity bound is “nearly achievable:”
there exist a FOM, (in particular, Nesterov’s optimal algorithm from [106] as applied

to the quadratic form ||Ax — b||3) achieves the desired accuracy in O(1)LR/e steps.

In the case of large-scale convex optimization, where the problem’s design dimension,
n, is large, the results stated above bring us bad news: unless the number of steps exceeds
n (which is of no interest in large-scale case), a FOM can exhibit only sublinear rate of
convergence if no additional structural restrictions on the objective function are imposed.
Specifically, if we let ¢ denote the number of steps required to get accuracy e, the complexity
of O(l)w in the case of (a) is really slow; in the case of (b), the complexity
given by O(l)Lt—]z}22 is much better but minimization of a smooth function over a simple
domain is a rare commodity; and the complexity of O(1)£E in (c) is “in between” (a) and
(b). Therefore FOMs are poorly suited for building high-accuracy solutions to large-scale
convex problems.

On the positive side, for problems with favorable geometry (e.g., those in (a) — (c)),
good FOMs exhibit nearly dimension-independent rate of convergence®, which is of utmost
importance in large-scale applications.® Moreover, in all of the above cases, whenever X
is simple, the implementation of the optimal algorithms nearly achieving the complexity
bounds is quite simple with cheap iterations — modulo computations “hidden” in the oracle,

an iteration costs just O(n) a.o. where n = dim(X). For details of these algorithms and

more discussion on the topic, we refer the reader to [30]. As a consequence, FOMs are well

“In this setting A is no longer restricted to be positive semidefinite.

Supto log(n) factor dependency involved in the complexity bounds

50n a side note, this nearly dimension-independent performance of FOMs heavily depends on the as-
sumption p € {1,2}. In this nonsmooth setting, when minimization is over a box, i.e., p = 0o, the upper and
lower complexity bounds become O(1)nlog(LR/¢€) provided that LR/e > 2, demonstrating the significant
dependence on the dimension.
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suited for finding medium-accuracy solutions to large-scale convex problems with “favorable
geometry.”

Coming back to the origin of our interest in FOMs, it is easy to note that none of the
{1-regularized optimization procedures fits into the “favorable geometry” settings described

above. However a close relative given by
min{|[Az = bl : [[z[ly < R} (16)

fits into the structured nonsmooth optimization over a simple domain setting as discussed
in case (¢). It can be shown that the optimal solution to the ¢;-recovery problem given
in (4) can be obtained by solving a sequence of problems of the form (16) (see Section
4.2.2.2 in Chapter 4). Therefore algorithms for the structured nonsmooth setting described
in (c) are fundamental in our developments. The recent development in FOMs as described
in case (c), is due to Nesterov’s breakthrough paper of [106]. Nesterov in [106] showed
that typical problems of nonsmooth convex minimization usually can be reformulated (and
this is where problems structure is exploited) as smooth (often just bilinear) convex-concave
saddle point problems, and the latter can be solved by appropriate black-box oriented FOMs
with O(1/t) rate of convergence. For a slightly more general class of problems, utilizing
the bilinear saddle point reformulation, Nemirovski in [101] suggested a new FOM — Mirror
Prox (MP) algorithm — achieving the same O(1/t) rate of convergence.

The deterministic first-order oracle in both algorithms of [106] and [101] for solving
problems of type (16) requires just several matrix-vector multiplications (by A and AT ) plus
O(n) “overhead.” This feature of FOMs working with only matrix-vector products rather
than the full matrix as required by standard IPMs serves especially advantageous when it is
not even possible to store the full matrix in memory or when A matrix admits fast routines
for matrix-vector multiplication, which are available for instance in the case of subsampled
Fourier matrices. Moreover, when the norm || - || in (16) is simple such as {s-norm or
ly-norm, and the problem is large-scale with dense A matrix (which is the case in many
machine learning and signal processing applications), these matrix-vector multiplications

dominate the computational cost of an iteration of a FOM. As the sizes of A matrix grow,
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these multiplications can become prohibitively time consuming. Further acceleration of
FOMs is possible by replacing precise deterministic first-order oracles, which can become
too time-consuming in the extremely large-scale case, with their computationally cheap
properly designed stochastic counterparts. The main idea behind the stochastic first-order
oracle is that matrix-vector multiplications is easy to randomize —reducing to just extracting
from A a row and a column, which, in the large-scale dense matrix case, can be several
orders of magnitude cheaper than exact matrix-vector multiplication. This randomization,
under favorable circumstances, allows for dramatic acceleration of FOMs in the extremely
large-scale case.

Above results on FOMs lead to another important conclusion: unlike polynomial time
IPMs, the limits of performance of FOMs heavily depend on the size R of the feasible
domain; in particular, boundedness of X" is of paramount importance, at least theoretically,
for the success of FOMs. In this respect, unconstrained settings, like Lasso estimator given
by (5) are less preferable than their “bounded domain” counterparts, like (16). There are a
number of papers suggesting FOMs for typical compressed sensing problems and reporting
good empirical results (see [2, 5, 06, 7, 12, 13, 63, (4, ] and references therein). Some
of these papers specifically deal with the unconstrained versions despite this theoretical

concern.
1.3.2 Greedy Algorithms for /;-recovery

Motivated by the desire to provide a reduced complexity alternative to the ¢;-recovery prob-
lem, many greedy methods are suggested in the compressed sensing literature. These greedy
methods include matching pursuit algorithms and iterative thresholding. The Matching
Pursuit algorithm for signal recovery is first introduced in [90], several variants are pro-
posed since then including orthogonal matching pursuit [90, , |, Stagewise Orthogonal
Matching Pursuit (StOMP) [18], Compressive Sampling Matching Pursuit (CoSaMP) [95],
Regularized Orthogonal Matching Pursuit [99] (see, e.g., the review [21]) and iterative hard
thresholding [19, 58, 60]. Majority of these approaches are aimed at calculating the support

of the signal iteratively. At each iteration of the algorithm, based on successive Euclidean
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projections of the signal, one or several coordinates of the signal is selected for testing. Al-
though greedy approaches are relatively fast as compared to the exact ¢1-minimization, both
in theory and in practice; most of them deliver smaller recoverable sparsity levels and lack
provable uniform recoverability guarantees, i.e., the possibility to recover all sparse signals
and stability w.r.t. noise and/or small perturbations of the signal. Most of the performance
results on the matching pursuit algorithms rely upon the bounds on mutual incoherence
w(A) of the sensing matrix. Recently there has been efforts on analyzing different variants
of matching pursuit algorithms to provide uniform recovery bounds for matrices satisfying

RIP property at the expense of allowing smaller sparsity levels (see [71, 98, 99]).

1.4 Organization of the Thesis
1.4.1 Chapter 2

As discussed before, the availability of a priori sparsity information plays the key role
in making compressed sensing possible. In Chapter 2, we extend the current theory by
characterizing what might be achievable if a priori information beyond the sparsity of the
signal, given in the form of sign restrictions on part of the entries, is available. We study
the conditions for good recoverability properties of a sensing matrix in this setting, in
particular our results generalize and subsume the corresponding results from [31] and [38]
as our framework allows one to have no additional information on sign restrictions of the
entries of the signal.

We start by proposing necessary and sufficient conditions for a sensing matrix to allow
for exact £1-recovery of s-sparse signals while utilizing a priori information given in the form
of sign restrictions on part of the entries (Proposition 2.2.1). We express error bounds for
imperfect ¢1-recovery in terms of the characteristics underlying these conditions (Proposition
2.3.1). These characteristics, although difficult to evaluate, lead to two different verifiable
sufficient conditions, which can be efficiently computed via LPs and/or SDPs and thus
generate efficiently computable lower bounds on the level of sparsity, s, for which a given
sensing matrix is shown to allow exact ¢1-recovery (Sections 2.4.1.3 and 2.6). Although our

LP-based verifiable condition mimics those given in [¢1] and thus share similar limits of
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performance (Proposition 2.5.1), we show that in the case when a priori sign information
is available, a better SDP-based verifiable sufficient condition can be constructed which we
can no longer prove to have the same limits of performance of its predecessor from [38]
(see Remark in Section 2.6). Moreover, we analyze the connection between our LP- and
SDP-based verifiable sufficient conditions (Proposition 2.6.1). We show that our LP-based
condition has dual representation of the form close to the one of the SDP-based condition
and hence they can be unified, leading to a stronger verifiable condition (Section 2.10.8).

Even though our LP- and SDP-based relaxations are presented in compressed sensing
framework, these techniques are generic and applicable in the development of tractable re-
laxations for disjoint bilinear programs. We discuss the relation of our relaxation schemes
with other tractable relaxations for disjoint bilinear programs from the literature including
McCormick bounds [91], and Sherali-Adams [115] type and Lovész-Schrijver type relax-
ations, and we show that our LP-based bound is at least as good as the first two and our
unified bound is no worse than the latter one (Section 2.9).

We also present a comparison of our LP-based verifiable condition with other verifi-
able conditions for s-goodness from the literature (Section 2.4.1.3 and Lemma 2.5.1), and
provide numerical results indicating the value of sign information in the recovery of sparse
signals (Section 2.7). We close this chapter, by proposing and analyzing a new greedy type
algorithm for /¢i-recovery, non-Euclidean Matching Pursuit, which utilizes our LP-based

sufficient conditions for goodness (Section 2.8).
1.4.2 Chapter 3

In Chapter 3, we study the compressed sensing synthesis problem — selecting the minimum
number of rows from a given matrix, so that the resulting submatrix possesses certifiably
good recovery properties. Starting from the LP-based verifiable sufficient condition given
in (10), we express the synthesis problem as the problem of approximating a given ma-
trix by a matrix of specified low rank in the uniform norm (maximum absolute values of
entries in the matrix). We develop (Section 3.2.1) a randomized algorithm for efficient

construction of rank k approximation of matrices of size m x n achieving accuracy bounds
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O(1)y/In(n)/k which hold in expectation or with high probability. We supply (Section
3.2.2) a derandomized version of our approximation algorithm and provide numerical re-
sults on its performance for the synthesis problem (Section 3.2.3). We also prove that
the O(1)4/In(n)/k-accuracy bound is unimprovable up to a logarithmic factor (Proposi-
tion 3.2.4). During these developments based on the condition (10), we also establish that
for certain structural matrices including subsampled Hadamard and Fourier matrices, the

computational cost of verifying (10) can be further reduced (Section 3.3.4).
1.4.3 Chapter 4

Chapter 4 is dedicated to efficient first-order algorithms for large-scale, well-structured con-
vex optimization problems. As discussed in Section 1.3.1.1, saddle point reformulation is
proven to be an effective tool to exploit problem structure for designing computationally
efficient algorithms. Building upon their strength, we first demonstrate that many large-
scale problems arising from compressed sensing recovery (Section 4.2.2.2); high-dimensional
statistical inference (Section 4.2.1.3), and machine learning (Section 4.2.2.3) can be ob-
tained through solving a series of bilinear saddle point problems (BSPs), which we refer
to as Generalized Bilinear Saddle Point Problem (GBSPP). In Section 4.4, we suggest an
algorithm for solving GBSPP which reduces the problem to a one-dimensional root-finding
for an implicitly defined function. The latter problem is solved by a Newton-type root
finding routine, with the (approximate) first-order information for this routine yielded by
approximately solving a single-parametric BSP. Our developments are motivated by the
need for efficient sublinear time algorithms to solve large-scale GBSPPs. To achieve this,
we accelerate the solution of associated single-parametric BSP’s by utilizing the Mirror
Prox algorithm from [101] as a prototype which we further modify by replacing precise
first-order oracle (which becomes quite time-consuming in the extremely large-scale case)
by its computationally cheap randomized counterpart. We provide the details of the pro-
posed algorithms and their efficiency estimates in Section 4.3, in particular we show that
our randomized algorithms have O(1/+/f) rate of convergence. In our developments the

stochastic oracle is constructed by randomizing the matrix-vector products, thus reducing
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the complexity of the oracle from O(mn) to O(m + n) a.o. In this respect, our stochastic
FOMs have close relatives proposed in [82, 83, ]. The advantage of the algorithms being
proposed here over those from [32, 83, | lies in the immediate possibility to assess, in a
computationally cheap fashion, the quality of the resulting approximate solutions. This pos-
sibility is instrumental when solving parametric bilinear saddle point problems of GBSPP
form. Although the deterministic algorithms to solve BSPs in this setup achieve O(1/t) rate
of convergence, we show that due to their high cost of iteration O(mn), the randomized al-
gorithms developed here achieving O(1/+/t) rate of convergence with O(m +n) cost of each
iteration, outperform the deterministic ones significantly, for every fixed required accuracy,
provided that the problem is large-scale. Overall for certain range of parameters, our ran-
domized algorithms achieve sublinear-time behavior, i.e., they produce reliable solutions by
inspecting a negligible part of the data (i.e., of entries in the sensing matrix A). Extensive
simulations provided in Section 4.5 show that our stochastic first-order methods are capable
of handling very large-scale applications and improve considerably over the state-of-the-art

deterministic algorithms, with benefits amplifying as the sizes of the problems grow.

1.4.4 Chapter 5

In Chapter 5 we study a more general sparse estimation problem with stochastic noise. So
far, in this thesis, we have worked with uncertain-but-bounded noise model of (B). How-
ever, in statistical estimation framework, it is natural to have random mnoise with known
distribution, as in noise model (S). In addition to this, instead of studying estimation of
signals, we introduce and study estimation of signals that are block-sparse with respect to a
given representation structure. Specifically, we consider the problem of estimating a linear

transform Bz € RY of a vector x € R™ from the observations
y=Azx +u+of. (17)

Here A is a given m x n sensing matrix, B is a given N X n representation matrix, and
u + o€ is the observation error; in this error, u is an unknown nuisance known to belong to
a given compact convex set U C R™ symmetric w.r.t. the origin, ¢ > 0 is a known noise

intensity, and £ is random noise with known distribution P. Note that the observation
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model combines (B) and (), with u being the “uncertain-but-bounded,” and ¢¢ being the
“stochastic” component of the observation error.

We assume that the space RY where Bz lives is represented as RY = R™ x ... x R"K,
so that a vector w € RY is a block vector: w = [w[1];...;w[K]] with blocks w[k] € R,
1 <k < K. In particular, Bx = [B[1]z; ...; B[K]z] with ng x n matrices B[k], 1 < k < K.
While we do not assume that the vector x is sparse in the usual sense, we do assume that the
linear transform Bx to be estimated is block sparse, meaning that at most a given number,
s, of the blocks Blk]z, 1 < k < K, are nonzero.

We consider recovery routines based on block-f1 minimization, i.e., the estimate w(y)
of w = Bz is BZ(y), where z(y) is obtained by minimizing the norm Zszl | B[k]2]|(x) over
signals z € R” with Az “fitting,” in certain precise sense, the observations y. Above, || - ||
are given in advance norms on the spaces R™ where the blocks of Bz take their values. We
refer to the given in advance collection (B, n1, ..., || - |1y, -+ | [|(x)) as the representation
structure. Given such a structure and sensing matrix A, our ultimate goal is to understand
how well one can recover the s-block-sparse transform Bz by appropriately implementing
block-¢1 minimization.

Note that in this framework, the standard representation structure, B = I, ny = 1,
Iy =11, 1 <k < K =n, leads to the standard compressed sensing setting — recovering
a sparse signal = € R" from its noisy observations (17) via ¢;-minimization. In this respect,
our results generalize the recent work in [79].

As notation, for block vector w = [wl[l];...;w[K]], we let L,(w) be the || - ||,-norm of the
vector [[|w([1][|1); - |w[K]||(x)] and Ls p(w) is the block || -||s -norm obtained by taking the
L,-norm of the vector obtained from w by zeroing out all but the s largest in “magnitude”
|w(k]||(x) blocks in w.

In Section 5.2, we introduce a parametric family of conditions, Qs 4(k) for 1 < s < K

and ¢ € [1, 00|, linking sensing matrix A € R™*™ and contrast matriz H € R™*M.

We say that a contrast matrix H € R™*M along with a norm || -|| on RM satisfy
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the condition Qg 4(k), if

Vo € R": Ly, (Bx) < s¢||H Az + ws1 Ly (Bz).

We suggest (Section 5.3) two recovery routines (Zyeg(-) for regular recovery and Zpen(-)
for penalized recovery) utilizing the contrast matrices, and establish their performance
guarantees under condition Q, 4(x) with x € (0, 3). In particular, let = and p be such that
P(E) > 1—cand [H (u+ 0€)| < pV(u € U,& € E); then under condition Qs 4(k), for
all ¢ € Z,u € U, and = € R”, both recovery procedures achieve the following accuracy

(Theorems 5.3.1, 5.3.2):

12p+ s tug(Bx)

Ly(B[E(Az + u + 0€) — z]) < 4(s) T

, Vp e [l,q],

where vs(w) is the “s-concentration of w,” that is, the sum of magnitudes [[w[k]||() of all
but the s largest in magnitude blocks in w.

In Section 5.4, we study the properties of our family of conditions Qg 4(x). Similar to the
Nullspace condition and RIP, the condition Q 4(x) seems to be computationally intractable.
Nonetheless, in Section 5.4.1, we establish that when all [|-[|(;) are the uniform norms || - ||,
then the condition Qg o (%), the strongest among our family of conditions Qg 4(k) (see Ob-
servation 5.2.1), becomes “fully computationally tractable” (Proposition 5.4.1). Moreover,
in Section 5.4.2, we establish the “necessity” of condition Qg o (k) (Proposition 5.4.2): when
error is measured in Lo, norm and all norms | - [|(x) = || [|o, & is @ Gaussian r.v. and obser-
vation error “is present,” then whenever the error bounds of the above form is valid for some
sparsity level S, then there exists (and can be efficiently built) a contrast matrix H € R™*¥
which, along with the norm || - | on R¥, satisfies the condition Qs o for block-sparsity
level s which is nearly as large as S: s = O(S). In Section 5.4.3, under the condition that all
of the norms || -|[(4) = [|-[[x with m € {1,2, 00}, we derive verifiable sufficient alternatives for
condition Qg 4(x) with general g € [1, 00] (see Proposition 5.4.3). In the literature, mutual
block-incoherence condition of [54] is the only known so far verifiable sufficient condition
for the validity of block-f1 recovery, and is defined specifically for the case of B = I, and

all blocks having Euclidean norms, i.e., || - [[x) = [/ - [[2. We show in Section 5.4.3.1 that
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the mutual block-incoherence condition is more conservative than our verifiable sufficient
condition for the validity of Qs oo (k). We establish (Proposition 5.4.5) limits of performance
for our verifiable sufficient condition when ¢ € {1,2}, B = I, all blocks have equal size
nj = d and common norms || - [[xy = || - ||z with 7 € {1,2,00}: unless m < 3n/4, we cannot

verify block sparsity levels s beyond ?

In Section 5.5, we restrict our attention to the standard representation structure for

sparse recovery and study the relation between condition Qs 4(x) and RIP. These relations
allow us to establish new, and in certain cases efficiently verifiable, accuracy certificates
for Lasso estimator and Dantzig selector. In addition to this, in the case of no-nuisance
(U = {0}) and Gaussian observation noise (§ ~ N(0, I,,)), for a Gaussian m x n matrix A
with In(m) = O(1) In(n), with overwhelming probability as m,n grow, the Dantzig selector

satisfies
Prob{¢ : ||z — Zp(Ax 4+ 0&)||ec < O(1)o/2In(n/e)} > 1 —¢

for all s-sparse z with s < O(1 \/m/T In contrast to this, when s > O(1)y/mIn(m),
the above error bound, for typical Gaussian A, does not hold for some s-sparse signals
x. This establishes that the restriction s < O(1)\/m/In(m) indeed is necessary (upto
logarithmic factors) to achieve small recovery errors measured in the /,-norm: when s is
by a logarithmic in m factor greater than this bound, the Dantzig selector associated with
a typical Gaussian sensing matrix stops to work properly.

Finally in Section 5.6, under the common norm || - ||z) = [ - [l for all blocks, assuming
satisfiability of the (verifiable!) condition Qg (), we develop a computationally cheap
alternative, block Non-Euclidean Matching Pursuit algorithm, to the regular/penalized re-
coveries for signals with block sparse structure.

In the last chapter, we provide brief conclusions of the current work and outline future

research directions.

26



CHAPTER II

VERIFIABLE SUFFICIENT CONDITIONS FOR COMPRESSED
SENSING

2.1 Overview

Compressed sensing uses the most basic structural information of the signal to be recovered,
its sparsity, in order to successfully recover it from a few of its observations. In practice,
a priori information about the signal to be recovered often exists and will be beneficial if
taken into account in the recovery procedure. In this chapter, we suppose that the a prior:
information about a sparse signal w € R™ amounts to the sign restrictions, and is given as
the subsets Py and P_ of {1,...,n}, Py NP_ = (), such that w; > 0 for i € P, and w; < 0 for

i € P_. Therefore we address the following recovery problem: given an observation y € R™,
y = Aw + u, (18)

where A € R™*"™ (in this context m < n) is a given matrix, u € R™ is the uncertain-but-
bounded observation error, assess a sparse signal w € R" satisfying sign restrictions.
A celebrated solution to the problem is given by the fi-recovery, which amounts to

taking, as an estimate of w, an optimal solution w to the optimization problem
w € Argmin {|[z[}; : [|[Az —y| <e, 2, >0Vie Py, 2; <0Viec P_} (19)
X

(here e is an a priori bound on the norm ||u|| of the observation error, ||- || being some norm
on R™). When there are no sign restrictions (i.e., Py = P_ = (}), we arrive at the estimator
playing the central role in the compressed sensing theory. The central result here is that
when signal w is s-sparse (i.e., with at most s nonzero entries) and the matrix A possesses a
certain well-defined (although difficult to verify) property, then the ¢;-recovery w is close to
w, provided the error bound e is small (for a comprehensive survey see [25] and references

therein). Our goal here is to propose efficiently verifiable sufficient conditions on A which
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allow for similar ‘consistency” results, with emphasis on the case where sign restrictions are
present.

To outline our results and to position them with respect to what is already known, let
us start with noiseless recovery (i.e., e = 0 and y = Aw). Here we are interested to answer

the question:

Whether A is such that whenever the true signal w in (18) is s-sparse and

satisfies the sign constraints w; > 0,1 € Py, w; <0, i € P_, the {1-recovery
w € Argmin{||z|1: Az =y, x; >0Vie Py, ; <0Vie P_} (20)
X
recovers w ezxactly.

If the answer is positive, we say that A is s-semigood'.

The first characterization of s-semigoodness for the case when w is nonnegative (i.e.,
P, ={1,...,n}) was proposed in the founding paper of Donoho and Tanner [17] in terms
of neighboring properties of the polytope AS, S being the standard simplex S = {z € R":
x>0, > .x; <1}. This paper contains also several important examples of m x n matrices
which are |7 |-semigood (here [a] stands for the integer part of a) and demonstrates that
various types of randomly generated matrices possess this property with overwhelming
probability. Extending the results from Donoho and Huo [15], an equivalent characterization
of s-semigoodness has been provided in the nonnegative case by Zhang in [133, |, where it
is shown that A is s-semigood if and only if the kernel of A, KerA, is strictly half s-balanced,

meaning that for any set I C {1,...,n} of cardinality < s it holds

Z zi < Z |zi| for any z € KerA such that z; <0, for alli & I. (21)
il il
It should be mentioned that the necessary and sufficient conditions for s-semigoodness

from (7), (21) and [17, 16] share a common drawback — they seemingly cannot be verified

in a computationally efficient way.

The contributions of this chapter, which follow the approach developed in [%1], are as
follows.
We use the term “s-semigoodness” to comply with the terminology of [81], where we used the name

s-goodness to indicate that £1-recovery as in (20) without the sign restrictions is exact.
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1. Taking existing characterizations of (semi)goodness (7), (21) as a starting point, we
develop in Section 2.2, several equivalent necessary and sufficient conditions for s-
semigoodness of a matrix A in the case of general-type sign restrictions. Then in
Section 2.3, we establish error bounds for inexact ¢1-recovery (noisy observation (18),
imprecise optimization in (19), nearly-sparse true signals); these bounds are expressed
in the same terms as the necessary and sufficient conditions for s-semigoodness from
Section 2.2. These bounds can be seen as an extension to the sign restricted case of
bounds of Section 3 in [81] and as a special case of the bounds provided in Theorem 4.1
of [134]. To the best of our knowledge, these bounds that incorporate sign information

of the signal are new.

2. The major goal of this chapter is to use the LP relaxation techniques from [¢1] to derive
novel efficiently verifiable sufficient conditions for s-semigoodness. These conditions
allow one to build, in a computationally efficient fashion, lower bounds on the “level
of s-semigoodness” of a given matrix A, that is, on the largest s = s.(A) for which A
is s-semigood with respect to given Py. Some properties of these verifiable conditions,
same as limits of their performance, are studied in Sections 2.4, 2.5, where we provide
also a computationally efficient scheme for upper bounding of s,(A). In Section 2.6,
we develop another efficiently computable lower bound for s.(A) by applying the SDP
relaxation, similar to the approach developed in [38] for the “unsigned” case Py = ().
In Section 2.7, we report on numerical experiments aimed at comparing the “power”
of our LP-based sufficient conditions for s-semigoodness, their “unsigned” prototypes
from [31], and conditions based on mutual incoherence. We show that incorporating
the sign information can improve the bounds on the level of s-semigoodness, and that
the bounds based on LP relaxations clearly outperform the bounds based on mutual

incoherence.

3. It turns out that our verifiable sufficient conditions for s-semigoodness can be ex-
pressed in terms of specific properties of the linear recovery @™ = YTy associated

with an appropriate m x n matrix Y. In Section 2.8, we propose and justify a new
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non-Euclidean Matching Pursuit algorithm associated with this linear recovery.
2.2 Necessary and Sufficient Conditions for s-semigoodness

Let A be an m X n matrix, let s, 1 < s < m, be an integer, and let Py, P_ and P, be a
partition of {1,...,n} into three non-overlapping subsets. We say that A is s-semigood, if
for every vector w with at most s nonzero entries satisfying w; > 0 for ¢ € Py, and w; < 0

for i € P_, w is the unique optimal solution to the problem
Opt = min{||z]|1 : Az = Aw, z;, >0Vie Py, 2z, <0Vie P_}. (22)
z

Our primary goals are to find necessary and sufficient and verifiable sufficient conditions
for A to be s-semigood.

Note that without loss of generality we may assume P_ = (). Indeed, by replacing the
partition Py, P_, P, with the partition P, = P, UP_,P_ = (), P,, = P, and matrix A —
with the matrix A obtained from A by multiplying the columns with indices i € P_ by —1, s-
semigoodness of A with respect to the original sign restrictions given by Py, P, is equivalent
to the s-semigoodness of the new matrix A with respect to the new sign restrictions. By
this reason, we assume from now on that P_ = (). Besides this, we assume without loss of
generality that P, = {1,...,p} and P, = {p+1,...,n} for some p. From now on, we denote

by P, the set of all signals satisfying the sign restrictions:
Pn={weR":w; >0 Vie P}
Note that since P_ = (), (22) simplifies to
Opt:mzin{HzHl Az =Aw, z; >0Vie PL}. (23)

Let us fix a norm || - || on R™, and let || - ||« be the conjugate norm.

Proposition 2.2.1 Let m,n,s and Py be given. The following sixz conditions on an m X n
matriz A are equivalent to each other:

(i) A is s-semigood;
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(ii) For every subset J of {1,...,n} with Card(J) < s, and any x € KerA\{0} such that
x; <0 for alli € Py \ J one has
om0l <)l
ieJNPy icJNP, idJ
(iii) There exists £ € (0,1) such that for every subset J of {1,...,n} with Card(J) < s
and any x € KerA such that x; <0 for alli € Py \ J one has
STomit Y w8 |l
ieJNPy i€JNPn igJ
(iv) There exist £ € (0,1) and 0 € [1,00) such that A satisfies the condition SG4(&,0)
as follows:

for every x € KerA and every subset J of {1,...,n} with Card(J) < s, one has

Somit > fml <& D] w4+ D w(w) |, (t) = max[—t,061],

i€eJNPy i€JNP, i€P\J i€PL\J

or, equivalently: for all v € KerA, O(x) < £¥(x) where

O(z) := max [ZieJmP+ max[(1 — &)z, (1 4+ 0&)x;] + Eiejﬁpn(l + §)|:BZ|}

Card ()2 (24)

U(x) := > ep, max[—z;, 0xi] + 3, p, @il
(v) There exist £ € (0,1), 6 € [1,00) and B € [0,00) such that A satisfies the condition
SG; 3(&,0) as follows:

for every x € R™ and every subset J of {1,...,n} with Card(J) < s, one has

Z Ti + Z |2 < Bl|Az|| + £ Z |zi| + Z P(x;) |, ¥(t) = max[—t, 0t].

1€JNPy 1€JNP, 1€EP\J 1€PL\J
(vi) There exist & € (0,1) and § € [0,00) such that A satisfies the condition SG; (&)

as follows:

for every J C {1,...,n} with Card(J) < s and any x € R"™ such that z; <0 for alli € Py\J,

one has

S+ Y lal < BlAe] 4¢3 el

i€JNPy i€JNPy igJ
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We provide the proof of Proposition 2.2.1 in Section 2.10.1.

As we have already mentioned in Introduction, when P, = () or Py = (), the charac-
terizations (i)—(iv) of s-semigoodness are not completely new. For instance, when P, = (),
a necessary and sufficient condition for s-semigoodness of A in the form (ii) has been es-
tablished in [133] (compare (ii) to the definition (21) of half s-balancedness of KerA). On
the other hand, the equivalent formulation of this characterization in terms of conditions
SG;3(&,0) and SG, (&) seems to be new. We are about to demonstrate that the latter
two conditions allow to control the error of £;-recovery in the case when the vector w € R"

is not s-sparse and the problem (23) is not solved to exact optimality.
2.3 Error Bounds for Imperfect (,-recovery

We have seen that the conditions provided in Proposition 2.2.1 are responsible for s-
semigoodness of a sensing matrix A, that is, for the exactness of f1-recovery in the “ideal
case” when the true signal w is s-sparse, there is no observation error, and the optimization
problem (23) is solved to exact optimality. Below we demonstrate that these conditions
control also the error of f1-recovery in the case when the signal w € P, is not exactly
s-sparse, there is observation noise and problem (23) is not solved to exact optimality. The

corresponding error bound (cf [31, Proposition 3.1, Theorem 3.1]) is as follows:

Proposition 2.3.1 Let w € P, be such that ||w—w®||; < pu, where w® is the vector obtained
from w by replacing all but the s largest in magnitude entries in w with zeros, let y be such

that ||[Aw—y|| < e, and let, finally, x be an approzimate solution to the optimization problem
Opt = min {||z]|y : [Az —y[| <e, 2, >0Vie Py}. (25)
z
such that ||z|l1 < Opt+ v and ||[Azx — y|| < 0.

1. If A satisfies the condition SGs g(&, 0) with some & € (0,1), 5 € [0,00) and 6 € [1,00),

then

Hx—wH1§itgy_i_Q(ii‘g@)u_i_lef( +9). (26)
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2. If A satisfies the condition SGy 5(§) with some & € (0,1), 5 € [0,00), then

1 2(1 2
fo—ulh < oev+ 2R 2ot @)

where « stands for the maximum of || - ||-norms of the columns in A.

For proof, see Section 2.10.2.
2.4 Verifiable Conditions for s-semigoodness

In this section, our goal is to demonstrate that condition SG; g(§, ) from Proposition 2.2.1

leads to efficiently computable lower and upper bounds on the level of s-semigoodness.

2.4.1 Lower Bounding the Level of s-semigoodness

2.4.1.1 Origin of Verifiable Sufficient Condition

The essence of obtaining a lower bound on the level of s-semigoodness is in building a
verifiable sufficient condition for the validity of (24), see Proposition 2.2.1.iv. By posi-
tive homogeneity of degree 1 of the convex functions ©, ¥ participating in (24), the latter

condition is equivalent to verifying
Opt :==max{O(z) : Azr =0,z € X} <&, where X ={z: ¥(z) <1}. (28)

A verifiable sufficient condition for (28) is basically the same as an efficiently computable
upper bound for Opt; the sufficient condition for the validity of (28) associated with such
a bound merely states that the bound is < £&. Now observe that from the origin of ¥ (see
(24)) it is clear that X has a moderate number, N, of readily available extreme points
z', ..., 2V (in the case of (24), N = 2n), so that the only difficulty in computing Opt exactly

comes from linear constraints Az = 0. The standard way to circumvent this difficulty and

to efficiently bound Opt from above is to use the Lagrange relaxation: for any v € R™,

Opt = max{O(z) + vl Az Az =0,z € X}
rzeX

< max {O(z) +vT Az 2 € X} = 1r<nzz?]<\[[@(ac’) + vl Az,

and hence the efficiently computable Lagrange relaxation bound inf, max;<;<y[O(z%) +

vT Az?] is an upper bound on Opt. Unfortunately, in our situation this bound can be very
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poor; e.g., when X is symmetric with respect to the origin and © is even (as it happens
in (24) when Py = 0), it is immediately seen that the bound becomes the trivial bound
Opt < max,gcy O(x) = max; O(x'). In order to strengthen the relaxation, we pass to the

Fenchel-type representation of ©
O(z) = sup [[Pu + qTx — 0. (u)]

with a proper convex function ©,; such a representation, even with Pu + p = wu, exists
whenever © is a proper convex function (and can be easily found for © we are interested

in). We now have for any Y € R™*" v € R™,

Opt = max{O(z): Az =0,z € X}
= sup {[Pu+p|Tz—O.(u): Az =0,7 € X}
= S;;}f’ {[Pu+p|"[x—YTAz] + v Az — O,(u) : Az = 0,z € X}
< s;’lg {[Pu+p)"[x—YTAz] + v" Az — O,(u) 12 € X}

_ Tii_ vT g T pi_
= 123%)5\[sgp{[13u+p] [z — YT Az'] + v Az’ — ©,(u)},

:=0,;(Y,v)

so that the condition
Y eR™ " v eR™):0;(Y,v) <& 1<i<N, (29)

is sufficient for the validity of (28). Note that the functions O;, by their origin, are convex, so
that the condition (29) is efficiently verifiable, provided that ©;(-) are efficiently computable.
Whenever ©,(u) admits a polyhedral representation, the condition (29) can be verified by
solving a linear program, therefore we refer to this procedure and the corresponding bound

as linear programming based condition.
2.4.1.2 Tractable Relazations for Disjoint Bilinear Programming

It should be stressed that the outlined scheme of Section 2.4.1.1 can be applied to bounding
from above the optimal value of a whatever problem of the form (28) with a convex polytope
X and a proper convex objective ©; all what matters is that X is given as Conv{z!, ..., 2™V}

and O is efficiently computable. Note also that when X is a polytope given by list of
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M linear inequalities, we can efficiently represent it as the intersection of M-dimensional
standard simplex and an affine plane, so that the outlined scheme is applicable to a whatever
problem of maximizing an efficiently computable proper convex function under a (finite)
system of linear inequality and equality constraints. Therefore we believe that the study of
this new bounding scheme in the following general setting is important.

Here we consider the problem of bounding from above the quantity
Opt = max {:UT[Pu +plixe X, Az =0,u € U} . X = Conv{z', ..., 2™}, (30)
T,

where ' € R”, the set {z € X : Az = 0} is nonempty, and U C R" is a computationally
tractable compact convex set which contains the origin in its interior.

In this setting the linear programming based relaxation scheme corresponds to

Optt = inf I-YTA)"[P T Az’ 31
p inf max Teal}([( )x']" [Pu+ p| +v" Az’ , (31)

and we have seen that Opt < Opt™.
In addition to its simple derivation, Opt™ has a meaningful interpretation given by the

following

Proposition 2.4.1 Whenever X is given as Conv{z!,...,zN} and U C R" is a computa-

tionally tractable compact convex set which contains the origin in its interior
Optt = max {Te(V): 3z,u:[z,u,V] e W,AV =0, Az = 0},

where W = Conv{[z,u,z(Pu+p)T] : * € X,u € U}. Moreover W is a computationally

tractable set given by

(ts, wh) 1z = Zf\il tixt, u = ZZ]\LI wh V= Zf\il 2 [Pw® + t;p]T,
W=< (z,u,V): ' ’
fo\;lt’b = 17¢(wl) < t’MVl = 17"'7N

where ¢(-) is the Minkowski functional of U, meaning U = {u : ¢(u) < 1}.

For proof, see Section 2.10.3.
The disjoint bilinear optimization problem given in (30) has broad range of applications

and developing tractable relaxations for particular forms of it has been studied extensively.
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One of the most commonly studied form is the case when the set U is given as a polytope.
In the polytope case, we present the relation of our bounding schema and other relaxations
such as McCormick Bounds, Sherali-Adams Relaxation and Lovasz-Schrijver Relaxation
in Section 2.9. In particular, we show that when U is a polytope, the bound produced
by Opt™ is at least as good as the one given by McCormick Bounds and Sherali-Adams
Relaxation, and a simple addition to our bounding schema makes it at least as strong as

the Lovéasz-Schrijver Relaxation.
2.4.1.8 Verifiable Sufficient Conditions for s-semigoodness by Linear Programming

The simple and general construction of tractable linear programming based relaxation for
disjoint bilinear programs presented in Section 2.4.1.1 can be combined with the condition
SG; 3(&,0) from Proposition 2.2.1 to obtain an efficiently computable lower bound on the
level of s-semigoodness. In the case we are interested in, the extreme points of X are the
2n vectors —e; for 1 < i < n, e; for i € P,, and 6~ e; for i € P, where e; is the i-th basic
orth. Implementing the outlined bounding scheme and adding additional restrictions to get
a control over (3, we arrive at the following verifiable sufficient condition, VSG,(&, 0, p, o).
Let

Us ={u e R": fluly <5, [Julloo <1},

so that Uy is the convex hull of all {—1,0, 1} vectors with at most s nonzero entries, and for

x € R", let ||z||s,1 be the sum of the s largest magnitudes of entries in x, or, equivalently,

)51 = maxu”z.
UGZ/{S
Let
[1+4 0¢] max[z;,0], i€ Py
(Dol])i = , o ®(2) = [ Dgla]]ls1-
(1 + &)l i ¢ Py

Suppose £ € [0,1), 8 € [1,00) and p, o € [0,00) are given. Consider the following condition

on an m X n matrix A:

VSG;(&,6,p,0): There exist m x n matrix Y = [y1, ..., yn] and a vector v € R™
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such that

O, (—Ci[Y, A]) + (ATv); < € 1<i<n (a)

O, (Gi[Y, A]) = (ATv); < & ig Py (D)

D, (Ci[Y, A]) — (ATv); < 0¢, ie Py (c) (32)
lyill« < o, 1<i<n (d)
ol < p ()

where C;[Y, A] is the i-th column of the matrix I — YT A.

Observe that this condition is verifiable, since (32) is a system of explicit convex con-

straints on Y and wv.

Proposition 2.4.2 Let A satisfy VSGs(&,0,p,0) with some § € [0,1), 8 € [1,00), and

p,o € [0,00). Then A satisfies SGs (&, 0) with

0 < k4 < Card(Py)
B =ptomax qki(1+60) +ka(l+8): 0<k, <Card(P,) ¢ <p+os(l+08). (33)
—+shn

k‘++kn§8

In particular, A is s-semigood.

For proof, see Section 2.10.4.

Some comments are in order.

Effect of increasing (3,60,¢. The condition SG; 5(&,0) appearing in Proposition 2.2.1.v
clearly is “monotone” in the parameters (,60,&: whenever A satisfies this condition and
B> 3,0 >0 and & > ¢, A satisfies the condition SG, g(¢,0’) as well. Proposition 2.4.2

offers a verifiable sufficient condition for the validity of SG; g(&, ), specifically,
VSG; 45(£,0): FY,v p, o satisfying (32) and the relation p + os(1 + 6£) < 3.

A natural question is, whether this verifiable condition possesses the same monotonicity
properties as the “target” condition SG;(§,6). In the case of the affirmative answer,
in order to conclude that A is s-semigood, we could check the validity of VSGg (&, 0)

for appropriately large values of 5,0 and a close to one value of & < 1; if the condition
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is satisfied, A is s-semigood, and error bounds from Proposition 2.3.1 take place. Were
the condition VSG{ 5({,9) “not monotone,” to justify the s-semigoodness of A via this
condition would require a problematic and time-consuming search in the space of parameters

B,0,§. Fortunately, the condition VSGF 5(§, 0) indeed is monotone:

Proposition 2.4.3 Let A satisfy VSG:W@(§,9), and let Y,v,o, p be the corresponding cer-
tificate, that is, p + os(1 + 0§) < 8 and Y, v, 0, p satisfy (32). Then A satisfies VSGY 5 (&', 0")
whenever B > 3, 0" > 6 and &' € (£, 1), the certificate being (Y',v, 0, p), where the columns

Y/ of Y are multiplies of the columns Y; of Y, namely,

(14+£60)/(1+¢€9), ic Py
(1+8/+¢), ieh,

Y/ = a;Y;; [0, 1] > a; =

(2

For proof, see Section 2.10.6.

Relation to the sufficient condition for s-goodness from [81] and the Restricted
Isometry Property. The verifiable sufficient condition for s-goodness from [31] requires

from an m x n matrix A the existence of v < 1/2 and Y = [y1, ..., yn] € R™*" such that
|Ci[Y, A]||lsq <7, forall 1 <i<mn,

Setting # = 1 and { = 2= (so that £ <1 and v = %Jrg) and taking into account that in the

5
case of # =1 we have ®4(z) < (14 &)]|2]|s,1, the latter condition implies that
O (£G[Y, A]) < (14 &y =&, Vi,

that is, it implies the validity of VSG,(&, 1,0, 0), provided that o is large enough, specifi-
cally, o > ||y;||« for all s.

As it was shown in [81], when A satisfies the Restricted Isometry Property RIP (0, k)
with parameters ¢ € (0,1), k > 1, the above sufficient condition for s-goodness is satisfied
with v = 1/3 for s as large as O(1)(1 — 6)Vk; as a result, a RIP(6, k)-matrix satisfies
VSG,(3,1,0,0) provided that o is large enough and s < O(1)(1 — 6)v/k. Since for large
m,n, m < n, typical random matrices possess, with overwhelming probability, property

RIP(3, k) with k as large as O(1)m/ In(n/m), we see that our verifiable sufficient condition
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for s-semigoodness can certify the latter property for s as large as O(1)y/m/In(n/m),

provided that the matrix in question is “good enough”.
2.4.2 Upper Bounding the Level of s-semigoodness

Here we address the issue of bounding from above the maximal s = s,(A) for which A is
s-semigood. The construction to follow is motivated by item (iv) of Proposition 2.2.1. A
necessary and sufficient condition for the s-semigoodness of A is the existence of £ < 1 and
6 > 1 such that for all x € KerA and any set I of indices with Card([) < s
> max|(1— &z, (14 68)a] + > (1+ 8| < EW(x)
i€elNPy i€INPy,

where

U(z) = > max[—x;, 0z + Y i, (34)

1€Py 1€P,

or, equivalently,

(1) for every x € KerA and every vector v with at most s nonzero entries
and nonzero entries v; belonging to [1 — &,1 + £6] if ¢ € P, and belonging to

[-1—-¢& 1+¢]ifi € P, one has
vle < EW(z).

Observe that the convex hull of the vectors v in question is exactly the set

0<v; <146 i€ Py, ‘Ui|§1+€,i€Pn,

v |vi
D iep, T4pe T 2icp, 96 < 8

U ={veRr":

Recalling that Py = {1, ..., p}, setting ¢ = n — p = Card(P,) and
U={ueR": |u|1 <s, |lu]lo <1, u; >0forie P} (35)

we see that

(1+£0)1,

0 ‘ (1491,

0

U = Uy, where %9 =
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The condition (!) now reads

max vl 2 < £¥(x) for all z € KerA.
veus?

Setting X = {x € KerA : ¥(z) < 1} the latter condition, by homogeneity reason, is the

samme as

Opt = Opt (¢, 0) := max {vTa? T ve Z/{f’e, x € X} <& (37)

)

recall that A is s-semigood if and only if there exist # > 1 and £ < 1 such that (37) takes
place.

We can use (37) in order to bound s.(A) from above, as follows. In order to certify
that s.(A) < s for a given s (s is the input to our algorithm), we fix a large 6 and a close

to one £ < 1 (these are the parameters of the algorithm) and run the iterations
£,0 T T
ug € US> = x1 € Argmax,c pug x — up € Argmax, qe0u” o1 > ..

initiating them by a picked at random vertex ug of U$?. Note that the quantities uZT:z:,-,
i = 1,2, ... clearly form a nondecreasing sequence of lower bounds on Opt. We terminate
the outlined iterations when the progress in the bounds — the difference u;[xl — ugll:ni,l
— falls below a given small threshold, and we run this process a predetermined number of
times from different randomly chosen starting points. As a result, we get a set of lower

Ty, where u is a vertex of U$? and z € X. If our goal were

bounds on Opt of the form
merely to certify that (40) is not valid for given s, 6, &, we could terminate this process at
the first step, if any, when the current lower bound u’z becomes > ¢ (cf. [$1, Section 4.1]).
We, however, want to certify that s > s,(A), or, which is the same by Proposition 2.2.1.iv,
that (40) fails to be true for all 8 and all £ < 1, and not only for those 6, { we have selected
for our test. To overcome this difficulty, we accompany every step u — = € Argmax, wulz

by an additional computation as follows. In our process, v is an extreme point of 4%?, that

is, a point with s, < s nonzero entries, let the set of indices of these entries be I. Setting
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€; = sign(u;), we solve the following LP problem

x; <0, l€P+\I

max Z T; + Z €T : Ax =0

ieInPy i€lnp,
Doigr Tl <1

If the optimal value in this problem is > 1, we terminate our test and claim that A is not
s-good; by Proposition 2.2.1.ii, this indeed is the case.

As applied to a given input s, the outlined test either terminates with a valid claim
“s > s4(A)”, or terminates with no conclusion at all, in which case we could pass to testing

a larger value of s.

2.5 Limits of Performance of LP-based Sufficient Conditions for s-
semigoodness

Unfortunately, the condition in question, same as its predecessor from [31], cannot certify
s-semigoodness of an m x n matrix in the case of s > O(1)y/m, unless the matrix is “nearly

square”. The precise statement is as follows (cf. [31, Proposition 4.2]):

Proposition 2.5.1 Let
n > 2(2v2m +1)? (38)

and let £ < 1,0 > 1,0 > 0,p > 0, an integer s and an m X n matriz A be such that A
satisfies VSGg(&,0,p,0). Then

s < 2V2m + 1. (39)

For proof, see Section 2.10.5.

The results from Proposition 2.5.1 show that our verifiable sufficient conditions can only
certify s-semigoodness of an m x n matrix at a suboptimal rate of s < O(1)y/m, unless the
matrix is “nearly square”. In fact this verifiable bound can still give a very poor impression
on the true largest s = s,(A) for which A is s-semigood. An instructive example in this
direction is as follows. Consider the case of Py = {1,...,n}, let m = 2d 4+ 1 be odd, and let

the rows of A be comprised of the values of basic trigonometric polynomials

po(@) =1, p2i-1(9) = cos(i), pa(¢) = sin(i¢), 1<i<d,
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taken along the regular grid ¢; = 27j/n, 0 < j < n, so that A;; = pi(¢;), 0 < i < m,
0 < j < n (we enumerate rows and columns starting with 0 rather than with 1). It is well
known [30, 47] that in this case A is s-semigood for s = d. In contrast to this, when A is not
“nearly square”, specifically, when n > 47d, A can satisfy the condition VSGg(¢, 6, p, o)
only for s < 2, no matter how large 6, o, p are and how close to 1, £ < 1 is. The validity of

this claim is readily given by the following

Lemma 2.5.1 For any positive integer d, let n > 4nd, and A be the matriz obtained
from the basic trigonometric polynomials as described in Section 2.5, then the condition

VSG;(&,0,p,0) can hold true for s <2 only.
For proof, see Section 2.10.7.

2.6 Verifiable Sufficient Conditions for s-semigoodness by Semzidefinite
Relaxation

Following d’Aspremont and El Ghaoui [38], we are about to derive another verifiable suf-
ficient condition for s-semigoodness, now - via semidefinite relaxation. The construction
to follow is motivated by the development in the beginning of Section 2.4.2, according to
which s-semigoodness of A is implied by the validity of (37) for 6 > 1 and £ < 1.

Let, as before,
X={zecKerd: U(z) <1} and U’ ={C% : uel},

where ¥, U and C%? are defined in, respectively, (34), (35) and (36). The condition (37)

is equivalent to
max{(Cg’eu)Tx: uel, 336/'\,’} <& (40)

uU,x

Observe that for © € X, u € U the matrices Z = za”, V = 2u” and Q = uu” satisfy the
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relations

JteR", ReS?" AecS?:

e)

(
(
(ds)
(
(f)

N

1|27 |u

G=\|z| Z |V | =0

11 | pl2
} R R T

R12 Rll
—
=R

—t; <Vij <Y, Vi,jePy
\Vij| < ti, otherwise;
Yjep, max[=Vi;, 0Vil + > icp |Vij| < sti, Vi € Py;
2051 Vigl < sti, Vi € Py
it <L
AZAT =0

re X, uel.

Besides this,

Indeed, the latter relation, same as (41.a), (41.e) and (41.f), is evident. To verify

ul (C8) Tz = Tr(C5V).
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(41.b), let uy = max[u,0], u— = max|[—u, 0], where max is acting coordinate-

wise. Then
o wed [ua? | [t et |

= L L~ =1L L
u,uz ‘ ufur‘f ’LL+UZ ‘ U+’UJ£
1 T 1|1 T T

_ slupul +u_ul] | Slupul +u_ul] T

- )
1 T T | 1 T T
slu—ul +ugul] | Flu—ul +uqpul]

R

and the matrix R we have just defined clearly satisfies all requirements from
(41.b). To verify (41.c), observe that the extreme points of the set X* = {z :
U(z) < 1} D X are the vectors te;, i > p, and —e;, 07 Le;, i < p, so that x = FA
with A € R, >~ \; < 1; setting A = M we satisfy (41.c). To satisfy (41.d),
it suffices to set t; = |z;| for all i > p and ¢; = max[—x;, fz;] for i < p and to
take into account that max[—Vj;, 8V;;] > |Vi;| for all 4, j due to # > 1, and that

u; > 0 for i € Py.
It follows that a sufficient condition for (40) is

Opt&? := max Te(CSOV) : (41) is satisﬁed} <E&. (42)
Z,Q € S", R,A €8,
V e RMXn ¢ € R™

The optimization problem in (42) clearly reduces to a semidefinite maximization program
S: by weak duality, the optimal value in the semidefinite dual D to S is > Opt&?. It follows

that the efficiently verifiable condition
Opt(D) <¢

is a sufficient condition for s-semigoodness of A. Note that the above construction depends

on # > 1 and £ <1 as parameters.

Remark. Consider the case of Py = (), where X = {z € R" : ||z|; < 1,Az = 0} D

Z ={z € R" : ||z|1 < 1}. In this case, the standard semidefinite relaxation of the set
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Ci = Conv{xzT :x € Z} is

C=37:2=0,> |Zy| <1

.3

(cf. [38]). Note that (41.c) uses another semidefinite relaxation of C,, namely,

C'={7Z:3Ae8™: Az 0,Aij >0 Vi, g, 32 ;A <1
Z = [In, — LA, — )7

It is immediately seen that C, C C’ C C; a surprising fact is that the second of these
inclusions is strict. Thus, the relaxation of C, given by C’ is less conservative than the
standard relaxation given by C. As observed by A. d’Aspremont (private communication),

the relaxation C’ can be further improved, namely, by replacing C' with

AW e R A =0, Am‘ >0Vi,j
All A12
Ct=<{Z:3A= €S YA <1, A2=0,1<i<n
A2l A22 J
Z = [I,, —I,)A[IL,, —1I,]"

Note that this idea can be used to improve the semidefinite relaxation given by C as well.
Specifically, the matrix R as built in the justification of (41) clearly satisfies (R'?); = 0,
1 < i < n, and we can add these linear constraints on R to (41.b). Similarly, when
representing a vector x € X as FA with A € R?", 3. \; < 1, see the justification of (41),
we clearly can ensure that A\jA,4+; = 0, 1 < i < n, that is, the matrix A we have built in

fact satisfies Aj i = Anyis =0, 1 < ¢ < n, and we can add these linear constraints on A

to (41.c).

Proposition 2.6.1 If VSG(£,0,p,0) with p= 0 = oo holds, then Opt®? < ¢.

For proof, see Section 2.10.8.

Although Proposition 2.6.1 states that the verifiable sufficient conditions based on
semidefinite programming are at least as good as the ones based on linear programming,
ie., VSG4(,0,p,0), in terms of their computational cost, conditions based on linear pro-

gramming are far more advantageous.
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2.7 Numerical Results

In order to compare the performance of the proposed bounds on the maximal s = s,(A)
for which a given matrix, A, is s-semigood, with the bounds known from the literature,
we present some preliminary numerical results for relatively small sensing matrices. Our
goal is to see if the sign information on a signal allows to improve the bounds for s.(A) as
compared to the bounds on the largest s = so(A) for which A is s-good.

We generate four sets of random matrices, which are normalizations (all columns scaled
to be of || - ||2-norm 1) of (a) Rademacher matrices (i.i.d. entries taking values +1 with
probabilities 0.5), (b) Gaussian matrices (i.i.d. N(0,1) entries), (c) Fourier matrices —
m x n submatrices of the matrix of n x n Discrete Fourier Transform, and (d) Hadamard
matrices — m x n submatrices of the n x n Hadamard matrix?; in the cases (c,d), the

¢

m rows comprising the submatrix were drawn at random from the n rows of the “parent”
matrix. For each type, we set the number of columns to n = 128 and n = 256 and vary the
number of rows, m = 0.5n,...,0.95n.

We bound from below the value so(A) using the bound s[u] by mutual incoherence and
the bounds s[a;] and s[as], computed through the LP-based verifiable sufficient conditions
for s-goodness (see [81, Section 6]).

The lower bound on s.(A) is computed by invoking condition VSG(&, 0, p, o), where
p = o = oo and 6 is set to once for ever fixed “large enough” value, and £ is set to
0.9999, see Section 2.4.1.3 and Propositions 2.4.2, 2.4.3. Note that given a matrix Y, and
setting v = 0, one can compute the largest s satisfying (32) and thus ensuring the validity of
VSG;(&, 0, p,0). We first compute the best lower bound s on s,(A) given by the Y-matrices
generated when bounding so(A). Then we compute the “improved” lower bound for s,(A)
as follows: we check whether the condition VSG,(&, 0, p, o) holds true for s = s + 1, if it is
the case, check whether this condition holds true for s = s 4+ 2, and so on.

While the outlined lower bounds on s.(A) and so(A) are efficiently computable via LP

(when o = p = o0, the sufficient condition is easily checked by solving a Linear Programming

2The Hadamard matrix Hy, d = 0,1,2, ..., has order 2¢ x 2% and is given by the recurrence Hy = 1,
Hy1 = [Hg,Ha; Hq, —Ha].
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Table 1: Comparison of efficiently computable bounds on s.(A), n = 128, Fourier matrices

Unsigned Nonnegative CPU time (s)

LBs on sg(A) UB LB UB Unsigned Nonnegative
m s[u] T sloa]  s[ow] 5 slas] 3 sloa]  slas] [ slas] [ 5
64 2 3 3 6 3 14 0.4 70.0 22.2 | 258.9 | 44.9
64 2 3 3 5 3 14 0.2 61.7 13.7 | 2494 | 52.5
76 1 3 3 5 3 21 0.3 163.1 | 12.0 | 239.6 | 22.6
76 2 4 4 6 4 23 0.5 142.2 | 10.3 | 237.7 | 21.7
88 2 4 4 7 4 20 0.2 1329 | 31.5 | 175.4 | 68.3
88 2 5 5 8 5 28 0.2 63.2 31.7 | 25694 | 25.1
102 3 6 6 11 6 32 0.2 69.9 39.2 | 223.8 | 28.3
102 2 5 5 9 5 25 0.5 70.2 35.9 | 255.1 | 48.7
114 3 6 6 11 6 34 0.5 52.7 | 43.7 | 249.2 | 57.0
114 3 7 7 12 7 33 0.1 69.4 | 42.9 | 228.3 | 56.1
120 3 7 7 14 7 40 0.2 64.7 42.6 | 255.3 | 30.5
120 2 6 6 12 7 34 0.2 79.5 39.6 | 494.2 | 29.2

Table 2: Comparison of efficiently computable bounds on s.(A), n = 128, Hadamard
matrices

Unsigned Nonnegative CPU time (s)

LBs on sg(A) UB LB UB Unsigned Nonnegative
m su] T sloa]  s[ow] 3 slas] 5 sfoa]  slag] [ sla] | 5
64 2 4 4 6 4 8 0.1 156.3 | 11.0 | 237.6 | 57.6
64 2 3 3 3 4 27 0.1 59.3 1.7 211.4 | 14.1
76 2 5 5 7 5 7 0.4 76.0 13.6 | 230.1 | 23.4
76 3 5 5 7 5 19 0.1 70.4 12.7 | 253.6 | 24.5
88 3 6 6 7 6 7 0.0 72.9 15.1 | 191.1 | 29.1
88 3 6 6 7 6 9 0.0 99.1 15.2 | 519.3 | 43.7
102 4 8 8 13 8 16 0.2 65.1 55.1 | 240.4 | 36.2
102 4 9 9 15 9 23 0.1 65.9 37.6 | 290.1 | 39.8
114 6 13 13 15 13 30 0.1 125.6 | 17.5 | 272.6 | 37.6
114 6 13 13 15 13 20 0.3 128.6 | 16.8 | 276.1 | 17.8
120 7 15 15 15 15 15 0.3 129.7 | 5.8 179.3 | 46.6
120 7 15 15 15 15 23 0.1 129.1 0.6 178.2 | 36.2

program), the sizes of the resulting LPs are rather large. For instance, when A is m x n,
the LP associated with (32) has a (2n2 +2n+1) x ((m +2n)(n + 1) + 2) constraint matrix
(compared to (2n2 4+ n) x (n(m 4+ n + 1) + 1) constraint matrices arising when computing
lower bounds for sg(A)). For instance, for m = 230 and n = 256, bounding s.(A) results
in an LP program of the size 131,585 x 190,696, while computing a lower bound on sp(A)
requires solving an LP problem of size 131,328 x 124,673. In all the computations, we used
the state-of-the-art commercial LP solver mosekopt [1].

The upper bounds on s,(A) and on sg(A) are computed by the techniques from Section
2.4.2 and [%1, Section 4.1].

The results of our experiments and related CPU times are presented in Tables 1-8. The
computations were carried out on a single core of an 8-core Intel Xeon E5520@2.27GHz

CPU Linux workstation.
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Table 3: Comparison of efficiently computable bounds on s.(A), n = 128, Rademacher

matrices
Unsigned Nonnegative CPU time (s)
LBs on sg(A) UB LB UB Unsigned Nonnegative

m s[u] [ slaa]  slas) 3 slas] 3 slaa] slas] [ 3 slas] [ 5
64 1 3 3 7 4 20 3.2 240.6 | 23.7 | 690.0 20.9
64 1 3 3 7 4 21 2.9 258.4 | 24.6 752.7 20.4
76 1 4 4 8 5 29 4.1 226.1 | 32.7 755.0 23.5
76 1 4 4 9 5 22 3.8 250.2 | 32.1 830.1 23.2
88 1 5 5 10 6 36 4.7 124.1 | 63.8 935.6 38.0
88 1 5 5 12 6 37 4.4 115.3 | 41.7 850.0 28.9
102 1 7 7 15 8 42 5.4 88.9 1.7 927.3 33.4
102 1 6 7 15 8 45 5.2 172.0 | 70.7 | 884.0 33.4
114 1 9 11 19 13 51 5.8 222.2 | 47.1 | 1492.2 | 25.0
114 1 9 11 18 13 50 5.8 193.2 | 46.3 | 1505.5 | 50.6
120 2 12 14 22 18 51 6.4 235.6 | 44.4 | 2236.1 | 27.7
120 1 12 14 22 18 52 5.9 231.5 | 43.4 | 2192.3 | 28.1

Table 4: Comparison of efficiently computable bounds on s,(A), n = 128, Gaussian matri-

ces

Unsigned Nonnegative CPU time (s)
LBs on sg(A) UB LB UB Unsigned Nonnegative

m sp] T slaa]  s[ow] 5 slas] 5 sloa]  slas] [ sla] T 5
64 1 3 3 6 4 20 3.0 189.9 | 39.5 904.7 21.6
64 1 3 3 7 4 21 3.1 189.0 | 25.5 994.0 21.8
76 1 4 4 9 5 34 3.8 217.4 | 329 937.0 23.3
76 1 4 4 9 5 25 3.5 207.6 | 32.2 781.5 23.9
88 1 5 5 12 6 37 4.2 123.8 | 44.3 896.1 29.6
88 1 5 5 12 6 36 4.5 128.8 | 42.6 857.2 28.4
102 1 6 7 16 8 46 5.2 163.2 | 48.6 988.2 31.7
102 1 6 7 15 8 42 5.0 168.8 | 52.5 990.9 44.8
114 1 10 11 19 13 49 6.3 336.9 | 53.8 | 1547.5 | 24.0
114 1 9 10 18 13 50 6.3 212.2 | 50.3 | 1546.1 | 36.5
120 1 12 14 23 18 52 5.8 2139 | 48.0 | 2455.3 | 26.4
120 1 13 15 23 18 52 5.7 199.8 | 45.2 | 1768.0 | 38.6

Table 5: Comparison of efficiently computable bounds on s,(A), n = 256, Fourier matrices

Unsigned Nonnegative CPU time (s)

LBs on sg(A) UB LB UB Unsigned Nonnegative
m s[u] | slaa]  s[ow] 3 slas] 3 slaa] slas] T 5 slas] T 5
128 3 5 5 12 5 47 0.8 1054.0 | 146.0 | 31144 | 1729
128 3 5 5 11 5 32 0.9 986.0 169.4 | 2891.5 | 311.5
152 2 6 6 11 6 49 1.1 898.5 252.5 | 3680.2 | 179.6
152 3 6 6 11 6 53 1.3 899.3 161.7 | 3836.7 | 183.5
178 2 6 6 12 6 47 1.1 866.5 228.6 | 3976.0 | 294.0
178 3 7 7 16 7 42 0.7 484.8 | 365.2 | 3216.8 | 416.9
204 4 8 8 17 8 67 1.0 828.5 235.4 | 3829.7 | 209.2
204 3 7 7 15 7 65 1.1 906.8 220.2 | 3914.4 | 1974
230 4 10 10 21 10 70 1.1 1879.9 | 300.5 | 4287.6 | 384.6
230 4 9 9 20 9 65 1.0 856.6 286.5 | 4040.2 | 362.0
242 5 11 11 26 11 89 1.7 1425.1 | 290.5 | 6444.1 | 513.0
242 4 10 10 19 10 75 1.2 1920.6 | 265.3 | 4069.1 | 232.8
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Table 6: Comparison of efficiently computable bounds on s.(A), n = 256, Hadamard

matrices
Unsigned Nonnegative CPU time (s)

LBs on sg(A) UB LB UB Unsigned Nonnegative
m s[u] | slaa]  s[ow] 5 slas] 5 sfoa]  sfes] [ 3 slas] T 5
128 3 5 5 7 5 8 0.2 1148.1 77.8 3007.0 68.5
128 2 5 5 7 5 7 0.3 1297.1 73.4 2894.4 | 116.8
152 3 7 7 7 7 58 0.3 1224.4 47.9 3997.0 | 186.8
152 4 7 7 13 7 58 0.2 1205.8 | 245.0 | 3962.6 | 310.4
178 4 9 9 15 9 70 0.2 1269.8 | 238.9 | 4828.2 | 212.0
178 4 9 9 15 9 19 0.3 1340.7 | 271.1 | 4923.3 | 342.8
204 4 12 12 15 12 16 0.5 2908.1 | 131.2 | 6409.9 | 385.4
204 5 12 12 15 12 16 0.4 2996.7 | 148.9 | 5507.9 | 253.9
230 8 18 18 31 19 31 0.3 1860.1 | 250.8 | 9046.7 | 331.1
230 8 18 18 31 18 39 0.4 2100.2 | 282.8 | 4081.3 | 396.8
242 12 26 26 31 27 31 0.3 2015.1 92.7 7478.2 | 176.2
242 12 26 26 31 26 31 0.3 1976.7 | 116.8 | 35979 | 412.0

Table 7: Comparison of efficiently computable bounds on s.(A4), n = 256, Rademacher
matrices

Unsigned Nonnegative CPU time (s)

LBs on so(A) UB LB UB Unsigned Nonnegative
m spl [ slar]  slas] 5 slas] 5 slai] slas) [ 5 slas] [ 5
128 1 5 5 14 5 53 27.8 1253.1 | 171.6 3388.7 124.8
128 1 5 5 15 5 48 27.8 1361.5 | 191.1 3291.6 123.4
152 2 6 6 18 7 65 38.4  1426.3 | 322.7 | 9592.1 136.3
152 1 6 6 19 7 66 38.3 1183.0 | 218.9 9146.3 139.0
178 2 7 8 25 9 78 44.2 2819.1 | 258.9 8032.1 225.8
178 2 7 8 24 9 78 41.8  2481.7 | 256.0 8306.3 168.2
204 2 10 11 32 12 92 51.1 1434.2 | 291.8 9738.5 209.3
204 2 10 11 30 12 90 50.8 1316.6 | 448.3 9146.8 345.4
230 2 14 16 41 19 107 61.8 2422.9 | 302.7 | 15235.2 | 162.2
230 2 14 16 39 19 107 61.7  2466.2 | 624.0 | 15578.4 | 161.9
242 2 20 23 47 27 116 64.8 3929.4 | 269.2 | 19828.7 | 178.1
242 2 19 23 47 27 111 68.0 4242.4 | 277.8 | 20506.7 | 270.5

Table 8: Comparison of efficiently computable bounds on s.(A), n = 256, Gaussian matri-

ces
Unsigned Nonnegative CPU time (s)

LBs on sg(A) UB LB UB Unsigned Nonnegative
m spl [ slal]  slas] 5 slas] 5 slai] slas) [ 5 slas] [ 5
128 1 5 5 14 5 44 28.2 852.1 172.4 3283.2 114.7
128 1 4 5 15 5 52 27.7 1913.9 | 177.7 3712.0 124.6
152 2 6 6 19 7 58 35.4 981.0 214.1 8433.5 392.8
152 1 6 6 19 7 58 38.9 1004.0 | 242.6 8231.7 373.3
178 2 7 8 24 9 79 43.0 2164.4 | 393.9 | 10294.7 | 368.2
178 2 7 8 25 9 T 47.6  2390.3 | 263.1 9548.8 374.0
204 2 10 11 32 12 88 58.0 1363.6 | 293.3 | 11496.7 | 274.1
204 2 10 11 32 12 91 51.7 1218.4 | 293.4 | 12497.2 | 529.5
230 2 14 17 41 19 102 70.4  3200.9 | 339.7 | 18771.3 | 431.6
230 2 14 16 39 19 106 61.5  2118.4 | 485.4 | 18959.5 | 435.0
242 2 19 22 46 27 113 73.6 22128 | 2774 | 26874.6 | 269.2
242 2 20 23 47 27 112 65.3 2995.2 | 426.7 | 21308.7 | 191.7
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The results in Tables 1-8 merit some comments. We observe that our LP-based efficiently
computable lower bounds on s¢(A) and s.(A) clearly outperform the bounds based on
mutual incoherence. We notice that for Fourier and Hadamard matrices, the lower bounds
on s,(A) and so(A) are nearly always the same, except for three Hadamard instances with
m = 64, m = 230 and m = 242 and one Fourier instance with m = 120. On the other hand,
for Gaussian and Rademacher matrices, as the number of rows m approaches the number
of columns n, the difference between the best certified lower bounds on s, (A) and on so(A)
increases (for the sizes we have considered, this difference attains 5 for the Gaussian matrix
with m = 242). While for Gaussian, Rademacher and Fourier matrices, the upper bounds on
s«(A) become loose (they are twice or three times higher than the upper bounds on s¢(A)),
these bounds become tighter in the case of Hadamard matrices. Further, for some matrices
the lower and the upper bound on so(A) match (e.g., the Hadamard matrix with m = 152),
what allows to identify the exact value of so(A) . Moreover, we have observed samples
of smaller random Hadamard matrices (with n = 128 and m = 120) for which the lower
bounds and upper bounds on both s,(A) and so(A) coincide, which implies s.(A) = s¢(A)

in these cases.
2.8 Matching Pursuit Algorithm

The Matching Pursuit algorithm for signal recovery has been first introduced in [90] and
is motivated by the desire to provide a reduced complexity alternative to the f1-recovery
problem. Several implementations of Matching Pursuit has been proposed in the compressed
sensing literature (see, e.g., the review [21]). All of them are based on successive Euclidean
projections of the signal and the corresponding performance results rely upon the bounds
on mutual incoherence ;(A) of the sensing matrix. We are about to show that the LP-based
verifiable sufficient conditions from the previous section can be used to construct a specific
version of the Matching Pursuit algorithm which we refer to as Non-Fuclidean Matching

Pursuit (NEMP) algorithm.
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Suppose that we have in our disposal 7,71 > 0 and a matrix Y = [y1, ..., y»], such that
(a’) —7- < [I - YTA]Z] < T+, Vi € P+7 VJ,
(b) —T<[I-YTAl; <1, Vi€ P, Vj (43)
(@ llyjll« <o, vj.

Consider a signal w € P,, such that ||w — w*||; < p, where w?® is the vector obtained

from w by replacing all but s largest magnitudes of entries in w with zeros, and let y and

d be such that ||Aw — y|| < 6.

Suppose that
p = smax{ry, 7,7} < 1. (44)

To simplify notation, we denote max[a, b by aVVb. Consider the following iterative procedure:

Algorithm 1

e YTy 5
1. Initialization: Set v(0) = 0, ag = ”ynlw

2. Step k, k=1,2,...: Gwen v*=1) € R” and a1 > 0, compute

(a) u=YT(y— Av*=D) and n segments

g — [u; — T—ag—1 — 00, u; + Trak_1 + 0d], i€ Py,
[u; — Tag—1 — 0d, u; + Tag_1 + od], 1€ P,.
Define A € R™ by setting
[wi — T—ag—1 — 0dly, i€ Py,
Ay = [u; — Tag_1 —odly, i€ Py, u; >0,
—[lwi| — Tag—1 — 0]+, i€ Py, u; <0

(here [a]+ = max[0, a]).

(b) Set v®) =vE=1) L A and
ar = S[27 V (7= + 74 )]ag—1 + 2500 + L. (45)

and loop to step k + 1.
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3. The approzimate solution found after k iterations is v(¥).

Proposition 2.8.1 Assume that w; > 0 fori € Py, (44) takes place, and that ||w —w®||; <

w with a known in advance value of p. Then the approzimate solution v'*) and the value

ay, after the k-th step of Algorithm 1 satisfy

(ar) for alli o) e Conv{0; w; }, (br)  |lw—v®|; < oy

i
For proof, see Section 2.10.9.
Let
A=s[27V (- +714)];

if A < 1, then also p < 1, so that Proposition 2.8.1 holds true. Furthermore, by (45) the

sequence qy converges exponentially fast to the limit aq := %:

= )\k[ao — Oéoo] + Qo

Note that when P, = (), we can set 7 = 7, = 0 to obtain A = 2s7; in the case of P, = 0),
by setting 7 = 0, we have A = s(7_ + 7).

The bottom line is: if the optimal value in the convex program
- <[I-YTA;j <71y, ViePy,Vj
Opt = min ¢ s27V (r-+7)]:  —r <[I-YTAl; <7, Vie P, Vj
T,7+,Y

T, T+ >0

is < 1, the above procedure, as yielded by an optimal solution to the latter problem,

possesses the following properties:
1. All approximations v®), k = 0,1, ... of w are supported on the support of w;
2. Fori e Py, fugk) > 0 are nondecreasing in k and are < w; for all k;
3. Fori e P,

o if w; > 0, then 0 < vz(k) < w; and vgk) are nondecreasing in k;

k)

o if w; <0, then w; < UZ( <0 and vl(k) are nonincreasing in k;
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4. As k grows, the upper bound oy on the f;-error of approximating w by v*¥) goes

exponentially fast to
2500 +
1—Opt "

Ao =

Let now £ € [0,1), 0 > 0 and € > 1 and suppose that an m x n matrix A satisfies the

following condition:

VSG;(&,0,0): There exists m x n matrix Y = [y1, ..., yn] such that ||y;||« < o

for all © and

_ﬁ < [T-YTAJj; < (1f§)s Vi g Py, Vj,
~tres S U - YAl < 5%y Vi€ P, Wi € Pa (46)

£ T
~ras SV Al <

iy Vini € Py

Observe that (46) is a system of convex inequalities in Y. Further, VSG,(¢, 0,6) cer-
tainly implies VSG4(&,0,0,0), and is therefore sufficient condition for s-semigoodness of
the matrix A.

When VSG; (&, 0, 0) is satisfied with € € (0,1) and 6 > 1, by taking

T_ = s T4 = _8 and T = ¢
T (140 T (1+€0)s (1+¢&)s’
we obtain
_ £+80  2¢
)\—max<1+£9, 1—|-§)<L (47)

Combining this condition with Proposition 2.8.1 gives:

Corollary 2.8.1 Suppose that A satisfies the condition VSG(£,0,0) with certain & €
(0,1), c >0 and 0 > 1. Let w € P,, be a vector with ||w — w*||; < p where w® is the vector
obtained from w by replacing all but s largest in magnitude entries in w with zeros, and let
y be such that ||Aw —yl|| <. Then the approximate solution v® found by Algorithm 1 after

t iterations satisfies vgt) >0 for alli € Py and

2500 + p v 1Y Ty||s1 + 506 + p 2800 +p

—_ O, <
fo ="l < =3 1—p 1-x |

where X is given by (47) and p = %.
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It should be noted the NEMP algorithm has several drawbacks as compared with the
£1-recovery. First, the pursuit algorithm requires a priori knowledge of several parameters
(0,Y, 7,7, 74, s and u). Second, the value (1 — \)~!(2s0 + i) is a conservative upper
bound on the error of the ¢1-recovery, but the error bound in Corollary 2.8.1 is exact. On
the other hand, the NEMP algorithm can be an interesting option if the f;-recovery is
to be used repeatedly on the observations obtained with the same sensing matrix A; the
numerical complexity of the pursuit algorithm for a given matrix A may only be a fraction
of that of the /i-recovery, especially when used on high-dimensional data.

Our concluding remark is on the condition

1(A) 1
Tt u(d) 25 .

where p(A) is the mutual incoherence of A (see (13)). This condition is usually used in order
to establish convergence results for the Matching Pursuit algorithms (see, e.g., [14, 53, 22]).
As it is immediately seen, when u(A) is well defined (i.e., all columns in A are nonzero),

the matrix Y = [y1, ..., yn] with the columns

A;
YT (A AT 4

satisfies for all i = 1,...,m and j = 1,...,n the relations
A

- yTa < A

1+ p(A)

& _ su(A)
T4 — T+u(A)’

0 < £ < 1 and meet all inequalities in (46). It follows that Y certifies the validity of the

In the case of (48), setting 6 = 1 and specifying £ from the relation

we get

s Ta : . . [[Aill«
condition VSGg(&,0,1) with the outlined ¢ and with all o > MaX [ AR and thus
the above Y can be readily used in Matching Pursuit. Note that in the situation in question

Corollary 2.8.1 recovers some results from [22, 11, 53].

2.9 Appendix: Connections to Other Tractable Relaxations for Disjoint
Bilinear Programs

Without loss of generality, here we will assume that P is the identity matrix and p = 0 (an

equivalent problem can be defined by redefining the w variables and the set U). We will
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examine various relaxations for the following problem:
Opt = max{a:Tu cx € X, Ar =0,u € U} , X = Conv{z!, ... z"}.
T,u

Recall that our LP-based relaxation technique of Section 2.4.1.2 leads to the following

tractable relaxation
Opt < Optt = max {Tx(V): 3z,u:[z,u,V]eW,AV =0, Az = 0}

where W = Conv{[z,u,ru’]: 2z € X,u € U}.
Suppose that the associated polytopes X, U have the following inequality representation

X={z: Be<b lpy<zx<Bytand U={u: Cu<c, b, <u<py}.

McCormick Relaxation: One of the earliest results on bilinear terms is due to Mec-
Cormick [91]. In [91] a single bilinear term is considered and the set B;; = {(z4, uj, 2ij) : 2ij =
T, by < @ < By buy; < uj < By} is studied. Note that B is a nonconvex set, using the

bounds on the variables, the following set of valid relations can be derived:

0 < (Buy — i) (Bu; —uj) = B, Bu; — Bu;xi — Buyuj + viuj
0 < (B — i) (uj — Llu;) = =B lu; + lu;Ti + Bouj — Tiuj
0 < (@ = b)) (uj — byy) = layly; — buywi — Layuy + Tiu;

By replacing the bilinear term x;u; with 2;; in the above inequalities, the following convex

(in fact linear) relaxation of B is introduced in [91]:

zij 2 Bu;Ti + Bauj — Bai Buy,

zij < bu; i+ Buytj — Briluy,
M .

Bl-j = (xi7uj7zij) Yoz 2 fujiﬂi + loyuj — éxi“guj’

Zij < Bu]'xi + Exzu] - Exiﬂujw

Later on Al-Khayyal and Falk in [3] showed that Bf\f defines the convex hull of B;;.
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In our framework, a relaxation based on the principles of McCormick can be build by
defining a matrix V where the entries V;; will replace the bilinear terms x;u; and introducing
the inequalities given in B{‘f to relate the matrix variables V' with the vectors x and « in
addition to the original constraints stating € X and w € U. Therefore the McCormick

relaxation for our problem will be:

OptM := max {Tr(W) A =0, z € X, ueU, (x;,u;, W) € Bf\;j W,j}.

Sherali-Adams Relaxation: Generalizing the ideas from McCormick relaxation, Sherali-

Adams relaxation is built as follows:

Step 1 Generate the nonlinear system:

(Az)(z = )" =0, (Az)(By —2)" =0

(Az)(u — )" =0, (Az)(By —u)" =0
0 < (b— Bx)(z —£:)", 0< (b~ Bx)(B: — )",
0< (x—L)(x— )", 0< (2 =€) (Br — )",
0<(Be —a)(@—L£:)", 0< (B —2)(Be — )7,
0 < (c—Cu)(u—£)", 0< (e~ Cu)(By —u)",
0 < (u—Ly)(u—L,)", 0< (u—Ly,)(By —u)T,
0 < (Bu—u)(u—£u)", 0< (B —uw)(Bu —u)",
0 < (b— Bx)(u—£,)", 0< (b— Bz)(By —u)7,
0 < (c—Cu)(z —£)", 0 < (c—Cu)(By — )",
0 < (z =) (u—€)", 0< (B —a)(u—£,)7,

0 < (z—4z)(Bu— U)T: 0<(Be —x)(Bu — U)T

Step 2 Define symmetric matrices Z,Q and matrix W. Linearize the system by

substituting Z;; for x;x;; Q;; for w;u; for all i = 1,...,n and for all j > ¢; and W;;
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for x;u; for all 7, j. For ease of reference we will define

“BZ +ba" + Ba(t)” — b(6,)T >0, |

BZ — bxl — Bx B T4y B TZO,
I P (o) +b(6)

Z is a symmetric matrix

—CQ + cul + Cu(ly,)T —c(t,)T >0,

CQ — cu” — Cu(B)T + e(B)T >0,
Mu = (u7 Q) :

@ is a symmetric matrix

—BW + bul + Bz (£,)T — b(£,)T >0,
BW —bu® — Bx(B,)T + b(B.)T >0,
My =4 (x,u, W) o —CWT + ca” + Cu(ly)" — e(t)" >0,
OWT —ca™ — Cu(Bz)" + c(B)" 2 0,

(CL’@,U],WU) EB% V’L,j )
Noting that AZ = Az ()T and AZ = Az(B,)T and Az = 0, we get AZ = 0, similarly
AW = Ax(¢,)T = 0, and therefore the bound from Sherali-Adams relaxation is given

by:

5A Ar =0, AZ =0, AW =0, z€ X, ueUl,
Opt”* :=max ¢ Tr(W) :
(x,2) € My, (u,Q) € My, (x,u, W) € M,

Note that in the above relaxation whenever x € X and Ax = 0, it is trivial to
construct Z such that (z,Z) € M, and AZ = 0 (just define Z = zal), therefore
the constraints AZ = 0, (z,Z) € M, are redundant whenever Az = 0, = € X are
enforced. Similarly, the constraint (u, Q) € M, is redundant given u € U is enforced.

Therefore Sherali-Adams relaxation can be stated as
Ax =0, AW =0,

Opt®4 = max { Tr(W) :
reX, uel, (x,u, W) € M,
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Clearly Opt®4 < Opt™, since Sherali-Adams relaxation already contains all of the con-
straints from the McCormick relaxation. Moreover we can compare the quality of Sherali-

Adams relaxation with that of our LP-based bound Opt™.

Lemma 2.9.1 Opt™ < Opt®4.

Proof: Let {uj,...,ur} be the set of extreme points of U. Let’s consider an optimal
solution to Opt™, say V*. Since V* € V, AV* = 0 and there exists z*,u* such that
Az* = 0 and (z*,u*,V*) € W. From the definition of W, we know that there exists
convex combination weights af, > 0 with Y, >, af; = 1 such that 2* = >, >, ajaF,
ut =3 S akul and V=3, 3 af2%(ul)T. In order to finish the proof, it suffices to

show that (z*,u*,V*) € M,,. Let’s consider the first constraint in M,
—BV* + b(u*)T + B(a*)(6)T — b(£,)T
= B S et @ 03 an) + BY S apa(6)” - b(6)” S S iy
k1 k1 k1 ko1
= Z Z oy [~ Ba* (uhT + b(uh)T + Bk (0,)T — b(£,)7T]
kool

= > ) opb-Baf)u - £,)" >0

k l
where the last inequality follows from the fact that Bz* < b due to z*F € X; u! > ¢, due to

ul € U and ajf; > 0 for all k,{. In a similar fashion, it can be shown that (z*,u*, V*) satisfies
the rest of the inequalities except the ones coming from McCormick relaxation in M,,. For

T

a given i, j to see that (z, J,Vij) € Bf\f is also satisfied, consider the first inequality from

B
k1l k !
S 2D BTN 3 DITERTN 35 DETIRR NN 3 B
. w1kl k I
= D> onleiul — Bual — Bau + Bu,Bu;] 2 0
E

where again the last inequality follows the fact that 2* € X, v! € U and ap; > 0 VEk, L.
Similarly the other inequalities in Bf‘f are also satisfied by the solution (z*,u*,V*). Hence
(x*,u*, V*) is a feasible solution in Sherali-Adams relaxation, proving that Opt* < Opt®4.

O
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Note that Opt™ as compared to OptS4

also has the advantage of being somewhat
more efficiently computable especially when X has small number of extreme points. On the
other hand, Sherali-Adams relaxation adds many new variables and inequalities and usually
one would start out with only McCormick inequalities and try to separate the rest of the
violated inequalities in M,, afterwards. Moreover, it is very unlikely to have Opt™ = Opt®4

in general since the inequalities in Opt°4 only use bound information but the corresponding

feasible region in Opt™ is obtained considering the convex hull of the extreme points.

Lovasz-Schrijver Relaxation: A Lovész-Schrijver type relaxation for disjoint bilinear
programs can be built in the same way as Sherali-Adams relaxation but in addition to the
given constraints in M,., M,,, M,,, we introduce an additional requirement connecting all of

the variables x,u, Z, Q, W by stating that the matrix

1 2T T
x 7 w
v W Q

has to be positive semidefinite.

Unfortunately this new requirement of positive semidefiniteness makes it harder to com-
pare our LP-based bound Opt™ with the bound from Lovasz-Schrijver relaxation. On the
other hand, we can simply note that in the unified bound given by Opt*, we already have
the very same requirement. Therefore we can conclude that Opt* is at least as good as the

bound we can obtain from a Lovéasz-Schrijver type relaxation for our problem.

2.10 Proofs of Chapter 2
2.10.1 Proof of Proposition 2.2.1

(i)=(ii): Let A be s-semigood, and let, in contrast to what is stated by (ii), J be a subset

of {1,...,n} with Card(J) < s and = € KerA\{0} be such that z; <0 for all i € P, \ J and

i€JNPy i€JNP, idJ

Let I = (JNP,)U{i e JNPy:x; >0} sothat I C J. From the construction of I, we
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have x; <0 for ¢ € J \ I implying that x; <0 for i € Py \ I. Further,

Z x; + Z |zs| = Z i — in‘f‘ Z |z

icINPy icINP, icJNPy ieJ\I i€JNPy
2D leil = 3 wi=3 lwl+ ) lnil =3 Jail.
igJ i€ J\I igJ ieJ\I igT

Hence I also violates the condition in (ii). Setting u; = z; when i € I and u; = 0 otherwise
and setting v = u — x, we have u; > 0 for any i € I N Py, u; = 0 for any i € P, \ I, and
v; >0forie PL\I,v;=0forie INP,and ), |u;| > >, |vi]. In addition, Au = Av due
to Az = 0, and u is s-sparse; finally, u # v due to x # 0. We see that the s-sparse vector
u € P, is not the unique solution to
mzln{;|zl| Az =Au, z;>0Vie P+} ,

which is a desired contradiction.

(ii)=-(iii): Let A satisfy (ii). Let J be the family of all subsets J of {1,...,n} of

cardinality < s. For J € 7, let
Xyj={zxeKerA:|z|]1 =1, ; <0 Vie Py \ J}.

Assuming that X; # (), let z € X ;. By (ii), we have
S n S < el
ieJNPy i€JNPy idJ

We claim that ;. ; |zi| > 0.

Indeed, otherwise x; # 0 implies that ¢ € J. Let Iy and I_ be the subsets of
J such that z; > 0 for i € I_ and x; < 0 for 4 € I.. At least one of these sets
is nonempty due to z # 0. W.Lo.g. we can assume that 3 ,.; @i > >,/ [z
(otherwise we could replace x with —x and swap I and I_). Applying (ii) to
2 and to I in the role of J, we should have
doomit Y fml =D wm <) Jml =) il
i€l NPy i€l NPy iely rin iel_

which is not the case. This contradiction shows that >, ; |z;| > 0 whenever

ze Xy.
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From our claim it follows that the function

Yicanp, Ti + 2 icinp, |%il

ZigJ |

is continuous on X ; and is < 1 at every point of this set. Since X ; is compact, we conclude

that when J € J is such that X ; # (), there exists £; < 1 such that
Z x; + Z |lz;] < fJZ |z;| for any x € X .
i€JNPy i€JNP, igJ
Setting £ = max £, we clearly ensure the validity of (iii). The implication (ii)=(iii) is
JeT: X ;740

proved.

(iii)=-(i): Let (iii) take place; let us prove that A is s-semigood. Thus, let u with u; > 0
for all ¢ € P, be s-sparse; we should prove that u is the unique optimal solution to the

problem

7

min zi| 1 Az = Au, z; > 0Vie P .
Z| | ; +

Assume, on the contrary to what should be proved, that the latter problem has an optimal
solution v different from w, and let x = v — v, so that x € KerA and = # 0. Setting
I ={i:u; # 0}, we have Card(]) < s and z; <0 when i € P, \ I, whence by (iii)
D @it ) |l <€) fml =€) fuil
i€InPy i€Inpy, il il

whence also

Soowi+ Y wl < DD vt D w4 Juil. (49)

i€INPy 1€INPy, i€INPy i€INPy, €1
Vv
:ZiEI |l :Ziel |vil

Since >, [vi| < 37, Jus| = 3¢y [ui| due to the origin of v, (49) implies that > ;o [v;| = 0,
that is, both u and v are supported on I, so that x is supported on I as well. Now let I, =
{ielINPy:x; >0}, I_={ie€INP;:x; <0}and I, = INP,. Replacing, if necessary, z
with —z and swapping I and I_, we can assume that } ., @i = > .cp |zil = > ,c; [@il-
Applying (iii) to x and to I+ U I, in the role of J, we get

Zwi—l— Z |24 SSZ |4,

icly icly, iel
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thereby > ;cr @i =3 icp |il = 2ier @il =0dueto }oiep @i 230, |@il. Thus, =0,
which is a desired contradiction.
We have proved that the properties (i) — (iii) of A are equivalent to each other.
(iii)<(iv): The implication (iv)=>(iii) is evident. Let us prove the inverse implication.
Thus, let A satisfy (iii) (and thus — (i) — (ii) as well), and let £’ € (£,1). Let, as above, J be
the family of all subsets J of {1,...,n} of cardinality < s. Let X = {z € KerA : ||z|; = 1},
and let J € J. Let x € X. We claim that there exists a neighborhood U, of x in X and

672 € [1,00) such that for any u € U, and 6 > 6, it holds

w0 fuwl <D Jul+ D max|—ug, 6ui] | . (50)

ieJNPy ieJNP, i€P\J iePy\J
The claim is clearly true when there exists i € Py \ J such that z; > 0. Now
assume that z; < 0 for i € Py \ J. Then } ., [x;| > 0. Indeed, otherwise
x; = 0 for all i € J, which combines with s-semigoodness of A and the relation
Az = 0 to imply that z = 0 (since assuming x # 0, we have z = u — v with
s-sparse u > 0,v > 0 with non-overlapping supports, and Au = Av due to
Az = 0, which of course contradicts the s-semigoodness of A), while x definitely
is nonzero (since ||z||; = 1 due to z € X). Now, since z € KerA and z; < 0,
i€ Py \ J, we have
doowit Y lml <€) |l <€) |l
i€JNPy i€JNPy idJ igJ

where the first inequality is due to (iii), and the second — due to >, ;2| > 0.
The concluding strict inequality clearly implies the validity of (50) with 6 = 1,

provided that U, is a small enough neighborhood of . Thus, our claim is true.

From the validity of our claim, extracting from the covering {U, },c x of the compact set X

a finite subcovering, we conclude that there exists 6; € [1,00) such that

Vixe X, 0>0y): Z x; + Z || < & Z |x;| + Z max|[—z;, 0z;]

i€JNPL ieJNPy, 1€P,\J 1€P\J

Setting 0 = maxjc 7 07, we see that A satisfies SG(¢', ).
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(iv)=(v): Let A satisfy SG4(&, ) for certain £ € (0,1), € [1,00) and let || - || be a
norm on R™. Let, further, P be the orthogonal projector of R™ on KerA. Then clearly with
a properly chosen C one has

[Pz — 2 < Cf|Az|

for any € R™. Now let J be a subset of {1,...,n} of cardinality < s, z € R" and u = Pz.

We have
S w3l w3 il e
ieJNPy i€eJNP, i€eJNPy i€JNP, icJ
< & D lul+ DD max(—ui, Qu] | + Y Jus —
[ i€P-\J 1€PL\J ieJ
< D il lw =l + D [max(—ai, 0] + Ola — wl]| + Y |ui —
[ i€P-\J 1€PL\J ieJ
< ¢ Z |zi| + Z max|—xz;, 0x;] | + max[1, 6&]||x — ul|1
[ i€P\J 1€PL\J ]
< &> w4+ ). max[—a;,0x]| + max(1, 0 C| Az,
Li€P\J iePy\J i

so that A satisfies SG, 5(¢,6) with § = max(1,0¢)C. The implication (iv)=-(v) is proved.

(v)=(vi)=-(iii): These implications are evident. O
2.10.2 Proof of Proposition 2.3.1

Let I be the support of w®, I be the complement of I in {1,...,n}, and let z = w — x. We
denote Iy ={i€l:2 >0}, [, ={ic€l:2z >0}, and I_=1\1I;, I_=1\I;. Observe

that w is a feasible solution to (25), so that

lzll1 < |lwll1 +v. (51)
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Obviously, |x;| — |wi| > —|z| and |z;| — |w;| > |zi| — 2|w;|. Now using z;,w; > 0 Vi € Py,

and z; > 0 Vi € I, we get

S
v

Y llzil = lwil]l [y (51)]

i

> ) (@mw)t Y (@imw)+ Y (@wi—w)+ Y (- w)
i61+ﬁP+ _ iEI,ﬂP+ :—Zv.:|21‘ iej_ﬂP+ :_Z’L:|Z’L‘ i€j+ﬂp+ =—z>—w;
+ > (] = Jwil)
i€Py

> = ) a+ ) lal+ Y lal- Y w
i€l NPy icl_NPy4 iel_NPy i€l NPy
= >0 lal+ > (lal = 2w,
i€INPy ieInp,

or, equivalently,

Ziel_ﬁP+ |2i| + Zief_ﬂP+ |2 + > sctnp, |2l

(52)
SV Yiernp, #it 2icinp, 7l + 2 ier ap, Wi + 23 e, [wil-
On the other hand, we have
[Az]| = [[Aw — Az|| < [|[Aw — y|| + [|Az — y|| < e+ . (53)
Then by condition SG; 5(&,0) with (I; N Py) U (I N P,) in the role of J, we get
Z zi+ Z |zi| < BllAz]| + ¢ [ZiejﬁPn |2 + Zz‘e(l’mPJr)u(LmPg 1/’(22)}
iel NPy ieINPy
= (54)
K= BHAZH t g[z:iel_mPn‘Zi| + Ziel_mP+|Zi| + Zief_mP+|Zi| + gzief+mP+zi]

=7(0)

Let us derive a bound on 7(¢). Now (52) implies, independently of whether SG; 5(&,0) is

or is not true, the first inequality in the following chain:

T(0) < v+ Z zi + Z |zi| + Z w; + 2 Z |w;| + 6 Z 2

i€l NPy i€lnpy, iel NPy ielnp, i€l NPy
< v+r+(1+96) Z w; + 2 Z |w;| [since w; > z; for i € Py]
i€l NPy ieInNP,
< v+r+(1+0)y, [since 6 > 1 and ), 7 |w;| < pl, (55)

and, in particular,

W)= Y |ul+ ) lul <v+rt2u (56)

iel_NPy el
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Combining (53), (54) and (55), we obtain

R<Ble+d) +Ev+nr+(1+0)ul,

and thereby,

B ‘ L Blet+d)+Ew+(0+1)p)
K= Z zi + Z |zi] < ¢ .

el NPy i€INPy,

Summing up the latter inequality and (56), we obtain

e = D lal+ D m+ | D lml+ D laul| <v+2u+2s
icInP, i€l NPy icl_NPy iel
2B(e+08)+26(w+ O+ 1Dp) 14+  2(1+£0) 28
< 2 = 5
< vH2u+ ¢ 1_£u+ - u+1_€(e+ ),

which is (26).
To show (27) observe that increasing e to ¢’ = e + au, we can think that the true signal

underlying the observation y is w® rather than w; note that (51) implies that
2l < lw'lls +/, V' =v+p. (57)

We can now repeat the reasoning which follows (51), with (57) in the role of (51), w* in the
role of w, € in the role of e and 0 in the role of y, thus arriving at the following analogy of

the bound (26):
14e, 28

_ S < /
whence
1+&, . 28 ,
— < )
which is nothing but (27). O

2.10.3 Proof of Proposition 2.4.1

Let ¢(u) be the Minkowski function of U, that is, a positively homogeneous, of order 1,
function on R™ such that U = {u : ¢(u) < 1}, let U be the cone {(u,t) : ¢(u) < t}. Note

that U is a closed pointed convex cone with a nonempty interior, and its dual cone is

Uy = {(w,7) : ds(—w) <7}, ¢u(w) = max {wTu cueU}.
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Now,

Opt™ = inf max [max[(] — YT A)2 )T [Pu + p] + o7 Az
Y 1<i<N | uel

= };nf {7’ : ma(}(uTPT[I —YTAl + [pT (I —YTA) 0T At <7, for1<i< N}
U, T ue

= inf {r: Gu(—PT[I YT Az + pT (I —YTA) + 0T Azt <7, for1<i< N}

Yo,
¢u(—PT[I = YTAlz") <~;, for I<i< N
= inf <7 A
Yooty Y+ pT(I—YTA) +0TAlz" <7, for 1 <i< N

Since the constraints ¢.(—PT [I-Y T A]x?) < ~; imply exactly that (PT[I-YT Alz?, ;) € U,
Opt™ is the optimal value of a conic minimization problem. Moreover it is immediately seen
that this problem is strictly feasible and bounded, so that the dual problem is solvable with

the optimal value Opt™, which amounts to

,

A sz\il tixi =0

o A [EAL ' [Pw’ + t;p]| =0
Opt™ = max Z:Tr(a:’[PwZ +tip]") : =t ‘
wlzti i

p(w') <t;, for1 <i< N

Zij\il ti=1

= max{Tr(V)},

where

N N N
Y = {V = in[Pwi +tip)T o p(w') <ty Zti =1, AZtizL’i =0, AV = 0} .
i=1 i=1

i=1
Note that V is a computationally tractable convex compact set. Moreover the set V admits

a simple interpretation. Specifically, setting
W= Conv{[m,u,x[Pu—i—p]T] cxeX, uelU},

we have
V=A{V: 3z,u:[z,u,V]eW, AV =0, Az =0}.
Indeed, if V € V, that is, V = SN 2/[Pw’ + t;p]T with ¢(w’) < t;, SN t; = 1 and

AV =0, AZf\Ll tiz' = 0, then w' = t;u’ with u’ € U, so that, setting = 21111 tiz® and
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u = Zf;l t;u’, we have

N N N
[z, 0, V] = Y tia!)> tiw' )Yt [Pul +p]T | € W
i=1 i=1 i=1

Vice versa, if [z,u, V] € W and Az = 0, AV =0, then [z,q, V] = Zszl e[2F, 4k, 2k [ Pak +
p]T] with @* € U, #*¥ € X and nonnegative \; summing up to 1. Representing #¥ =

Zij\il it with nonnegative ju;, Zfil i = 1, we have

[z, V] = S5 M i, 2F[PaF + p)T] = Sor SN Ao, 2 [PaF + p] 7]
= [Zi\; tixiaZfil ' [Pw' + tip]T} ;

where w' = Zszl e i, t; = Zszl Appki- Clearly Zf\il t; = 1 and since ¢(a¥) < 1
and ¢(-) is a convex function, we have ¢(w?) < t;. Thus, V = SN 2/[Pw’ + t;p]” with

#(w') < t; and t; summing up to 1 and such that AZﬁL tiz’ = 0, that is, V € V. O
2.10.4 Proof of Proposition 2.4.2

Let A satisfy VSG;(€,0,p,0), and let Y = [yi,...,y,] and v satisfy (32). Let, further,

I c {1,...,n} be such that Card(I) < s, and let z € R". Let u € R" be given by

1+0£, iEP+ﬁI,.fL’iZO

1-¢, ie PN, 2; <0
U; =

(1+¢)sign(x;), i€ P,NI

0, il

Note that v has at most s nonzero entries, the entries of v with indices from Py belong

to [0,1 4 6¢], and the modulae of entries in u with indices from P, are < 1+ &, so that
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ulz < ®4(2) for all z. We have

uT[I—YTAx—ZuTC-YA] = Y WG, Al + Y T [=ClY, Al
;>0 ;<0
< Z s(CilY, Az + Z CilY, A)) |z [since u”z < ®4(2)]
12 >0 1:2;<0
< Y Er@mi+ > 06+ (ATv)ilzi+ ) [¢ Yillzi|  [by (32)]
1:x;>0,0¢ Py 1:2;2>0,0€ Py B2 <0
= £ Z x;+0 Z T+ Z ]a;z\ + 27 ATy
| i:2i >0,i¢ Py 1:2;>0,1€Py 1:2; <0
= ¢ Z max|—x;, 0z;] + Z |z | + 2T AT,
| iePy i€P,
whence
uIlI=YTAle <& | Y max[—ay, 0] + Y |zl | + pll Az| (58)
1€PL ePy,

(recall that ||v||« < p). On the other hand, recalling the definition of u and that |ly;||.« < o,

we have
W'l -YTAlz = wlz— Y uy! Az
el

= Y max[(1-&z;, (1+0)z]+(1+8) X o — 3wyl Az
icInpy i€Inp, i€l

> Y max[(1— &)z, (1 +08)x]+(1+8) 3 |z
ielnPy i€lNP,
—o | > A+6)+ Y 1+ Az

ieINPy ieINPy

<B—p

Combining the resulting inequality with (58), we get

Y i+ Emax[—ay, 0ai]]+(1+6) D wil < Bl Az|+€ | Y max[—a, 0] + Y [ail

ielnPy i€InP, iePy icP,

with 8 given by (33), or, equivalently,

Z T + Z || < Bl Az|| + £ Z max[—;, 0] + Z &

1€INPy i€INP, i€P\T i€ Pp\I
The latter relation holds true for every x € R™ and for every set I C {1,...,n} of cardinality

< s, so that A satisfies SG; g(&,0). O
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2.10.5 Proof of Proposition 2.5.1

Proof is based on the following

Lemma 2.10.1 Let Z be a v X v matriz of rank m, s > 1 be a positive integer, and
9; € (0,1], 1 < i < v, be such that for the columns C; of the matriz I, — Z it holds
|Cills,g <1 —6;. Assume that

v > (2V2m + 1)%, (59)

Then
s <2v2m + 1. (60)

Proof of the lemma. Let o; = Z;;, and let ~; be the sum of s — 1 largest magnitudes of

the entries in C; with indices different from 7. We have
1—oi+7 < ||Cillsg <146,

consequently o; > §; +; > 0. Let us set \; = %, and let Z be the matrix with the columns
Z; = \iZ;, where Z; is the i-th column in Z. Note that Z is of the same rank m as Z, and

that Z;; = 1 for all i. Recalling that 7; < o;, we have also
1Zills=1.1 = Nl Zills—11 < Nilvi + 03] < 2X\i05 = 2.

Now let 5 = min[s — 1, [#*/2]], so that 5 > 1 due to s > 1. We have || Z;||s1 < || Zills—11 < 2
and 52 < v. From the latter inequality and due to ||Z;|3 < max{l,u§_2}||Zi||§71 (cf. the
proof of [31, Proposition 4.2]), it follows that ||Z;||3 < 4v5=2. We conclude that || Z]]3 <
412572, where for a matrix B, ||B||s is the Frobenius norm of B. Setting H = 3[Z + Z7],
we have therefore ||H||3 < 4v2572. On the other hand, Tr(H) = Y.V, Z;; = v, while
rank(H) < 2m, whence, denoting by p;, 1 < i < p < 2m, the nonzero eigenvalues of H, we

have
P P
1H(3 =" pf > wi)*/p = (Tx(H))/p = v*/(2m).
i=1 i=1
We arrive at the inequality 402572 > ||H||3 > v2?/(2m), thereby

5% < 8m. (61)
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Assuming that 5 = |v'/2], (61) says that v < (2v/2m + 1)2, which is impossible. The only

other option is that § = s — 1, and we arrive at (60). O

Lemma 2.10.1 = Proposition 2.5.1: Let Y, v satisfy (32). Consider first the case
when v := Card(P,) > n/2. Denoting by C; the v-dimensional vector comprised of the last
v entries in C; = C;[Y, A] (i.e., entries with indices from P,). By (32), for every ¢ € P,, and

for every set I C P, with Card(l) < s we have

> ier(1+OICH] < @s(=C) <€ = (ATv)i, Xose,(1+I[CH];] < @s(C) <€+ (ATw);,

thus for any i € P,,
2(1+8)|[Cills < 5(—=Ci) + B(Ci) < 26,

so that H@Hsl < 1/2. We see that the South-Eastern v x v submatrix Z of Y7 A satisfies
the premise of Lemma 2.10.1, while the size v of Z satisfies (59) due to (38) and v > n/2.
Applying the lemma, we arrive at (39).

Now consider the case when Card(P,) < n/2, that is, v := Card(P}) > n/2. By (32),

setting C; = C;[Y, A], for every set I C Py with Card(]) < s and every i € P, we have

>jer(1+06) max[—[Ci];,0] < @5(=C3) < € — (ATw);,
>jer(1+ 0€) max([Ci];, 0] < @4(Cy) < 06 + (ATwv);,

whence

Lo (0 +0)
;nam Troe <

Since the latter inequality holds true for every subset I of P, with Card(/) < s, when
denoting by C; the part of C; comprised of the first v entries (those with indexes from P, ),
we have for all © € Py:

1C;

5,1 < 1.

Now the proof can be completed exactly as in the previous case, with the North-Western

v X v submatrix of Y7 A in the role of Z. O
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2.10.6 Proof of Proposition 2.4.3

Let Y = [Y1,..., Y], 0,0, p certify the validity of VSG 5(£,0), and let ' > 3, ' > 6 and

¢ e [¢,1). Let us set
1+ 0¢ 1+¢
- 1+9/§/’ H= 1+§/'

so that A\, u € [0,1], and let Y’/ be as in the assertion to be proved, that is, the columns

A

of Y are multiples of those of Y: Y/ = A\Y; when ¢ € Py and Y/ = uY; otherwise. All we
need to prove is that (Y',v, 0, p) certify the validity of VSG 4 /(¢',6'), and this immediately

reduces to verification of the following fact:

Lemma 2.10.2 Let i, 1 < i < n, be fized, and let z € R™ for any I C {1,...,n} of

cardinality s satisfy the relations

(@) (1+08) > max[z; —06;,0] +(1+&) > |25 — 0yl + (Av)i <&,

jePinI jEPaNI
(b) (14068 > max[0; — 2,00+ (1+&) > |z —0y| — (Av)i
jEPLNI JEPNI (62)
967 (S P+7
<n=
E? Z e Pn?
0, j#1,
where 6;; = Then for every set I C {1,...,n} of cardinality s we have
1, i=17.

(@) (14+0¢) > max[Az; — ;5,00 + (1 +E&) >0 |z — 0yl + (Av); <&,

jepinI jePaNI
(0) (1+0¢) > max[d; — Az, 00+ (1+&) > |uzj — 6y — (Av)s
jePLNI JEPNI (63)
9/6,7 (S P+7
<Ny =
g, ieP,.

Proof. Taking into account the definition of A, i, in the case of i & I the relations (63) are
readily given by (62), hence we can assume i € I. Consider two possible cases: i € Py N[

and i € P,N1I.

71



The case of i € Py NI. In this case (62) reads:

(@) (14+60¢) max[z; —1,0]+(1+6¢) > max|z;,0]

JEPLNI j#i
HI+E X [zl + (Av) <&,
(b) (14 0¢) max[l —z;,0]+(1+65) > max[—z;,0]
jeP NI j#i
HI+E > |zl = (Av)i <06,
JEPNI
and our goal is to verify that then
(@) (1+6¢)max[\z; —1,0]
=1+6¢ =1+¢
/! !/ /
HAHOOA 3 maxfz 0]+ (L+u > |yl + (Av)i <€
JEPL NI j#i JEPRNI

(b) (14 6¢")max[l — Az, 0] (65)

+(1406) > max[—z,00+ (148 D |z|— (Av) <0¢

jePLNI,j#i JEP.NI

=R

We have Az; — 1 < A(z; — 1) due to A < 1, consequently
max[Az; — 1,0] < max[A(z; — 1),0] = Amax[z; — 1,0],

and therefore (65.a) follows from (64.a) due to (14 0’'¢)A =1+ 6¢ and & > £. It remains

to verify (65.0). Assume, first, that Az; < 1. From (64.0) it follows that

(14681 —z]+ R < (14 0&) max[l — 2;,0] + R < 6¢,

implying z; > 11%9}2 and therefore

1+R  0¢-R

1= Az <1- — .
M ST e T T ee

Since we are in the case 1 — Az; > 0, we arrive at

0'¢ — R

(1+0¢)max[l — Xz, 0 + R= (1+0&)1 - Az + R< (1 +6¢) 1+0¢

+R=0¢,

as required in (65.b). The case of 1 —\Az; < 0 is trivial, since here the left hand side in (65.)
clearly is < the left hand side in (64.b), while 6’¢’ > 6¢, so that (65.b) is readily given by

(64.b). Thus, when i € P NI, (65) follows from (64).

72



The case of i € P, N 1. In this case (62) means that

(@) (1+0¢) > maxfz, 00+ A+ —z[+ 1+ > |7+ (Av)i <&,

jEPL NI, j#i JEPNI,j#i
(b) (1+65) > max[—z, 0+ A+ —z[+ 1+ > [z]—(Av)i <&,
jePNI JEPRNI,j#i
(66)
and our goal is to verify that then
(@) 1+0¢) > max[rz,0]
jePLNI,j#i
+A+ ) —pzl+ A+ 2 7]+ (Av)i <€
JEP,NI,j#i (67)
() (1+6€) ¥ max[-Az,0]
jePLNI
A+ = pal+ A +E) X |uzl = (Av) <€

jePNI,j#1
Comparing (66.a) with (67.a), and (66.b) with (67.b), we see that all we need in order to
derive (67) from (66) is to verify the following statement: if (1 + £)|1 — z| < £ + a, then
(14+&N1 = pz] <& + a. This is immediate: assuming (1 + £)|1 — z| < £ + a, the premises

in the following two implication chains hold true:

(1+§)[1—z]<§+a:z>1+§:>,uz> e =>1-pz<1- +£,:i:';f

= 1+ &) —pz] <& +a,

142 2
(1+£)[z—1]<§—|—a:>z<1+§rg:>,uz< ‘Lf;,rai,uz 1< 51557'“

= A+)pz-1<26 - +a= 1+ [wz-1 < +a,

IN

while the resulting inequalities in these chains lead to the desired conclusion (1+&')|1—puz|

& +a. O]
2.10.7 Proof of Lemma 2.5.1

Let L be the n x n permutation matrix corresponding to the cyclic shift e; — e;,, j4 =
(j +1) mod n, of the standard basic orths ey, ..., e,—1 in R, and R be the m x m orthogonal

block-diagonal matrix with the North-Western block 1 and d additional 2 x 2 diagonal

cos(2mi/n) —sin(2wi/n)
blocks , 1 <4 < d. Denoting by A; the j-th column of
sin(27wi/n)  cos(2mwi/n)

A, 0 < j < n—1, we clearly have RA; = A;,, hence A = RAL™! and therefore also

>
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A= R'AL " for 1 <i < n. Now assume that Y, v satisfy (32) for certain & < 1,6 > 1, p,

0. Then
max [0 (~Ci[Y, A]) + &5(G[Y, A])] < £(1 +0),
in this way, it is immediately seen, max; [|C;[Y, A]|[s1 < &k := é(Hz) < 1, or, which is the
same,
II-Y"A)<k<1,
where I'(Z) is the maximum of the || - ||s1-norms of columns of Z € R"*". Observe that T’

is a convex function which is symmetric in the sense that I'(PZPT) = I'(Z) whenever P is
a permutation matrix. Now let Y = %Z?:l R™Y L' Since L" = I,, R™" = I,,,, we have
R7YYL =Y. We claim that

I(I-YTA) <k

Indeed, we have

r(I-vYTA) = r(% Zn:[l — L7'YTRA))
=1

IA

1 <& A A
= E (I - L %YTR'A) [since T is convex]
n

i=1

= er [I-Y"[RIALY| L)
= — Z (I -YTA) |[since I'is symmetric and RPAL™" = A]
= TI-YTA)

Now let

d
yj(¢) = Yo; + Z[Y%fl,j cos(i¢) 4 Yai j sin(ig)].
i=1

We have R™'YL =Y, that is, R™'Y = YL~!. In other words, the columns 1_/] of Y satisfy
the relation Y; = RY; , where j_ = (j — 1) modn. This is nothing but y;(¢) = y;_(¢ — 9),

§ = 2m/n, whence y;(¢) = yo(¢ — j&). Observe that the j-th column in Y7 A has the entries
YT A) = yi(j0) = wo((j —1)8), 0<i<n—1,

meaning that the columns in the matrix I — Y7 A are cyclic shifts of each other (so that

the || - ||s,;-norms of all columns are the same), and the zero column is comprised of the
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. . . . o .
values of the trigonometric polynomial 1 — yo(¢) on the grid G = {¢; = =L : 0 < j < n}.
Assuming s > 1, when denoting by - the sum of s — 1 largest magnitudes of entries in the

(n — 1)-dimensional vector {yo(¢:)}}—]', we have
1- yU(O) +7 < ||COD77A]”S71 <K< 17

thereby o := y0(0) > v. Now let M = Oglbag ly0(¢)], and let ¢ € Argmaxy|yo(e)|, so that
yh(¢) = 0. By Bernstein theorem, we have |y (¢)| < d®?M for all ¢, whence |yo(¢)| > M /2

when |¢ — ¢| < 1/d, so that

Card{j : [yoley)| = M/2} >~ — 1.

It follows that v > min [s — 1, 2 — 2] M/2, while = y0(0) < M. Thus, the relation p > ~

implies that

9 <o,

injls — 1
min[s — 1, —

that is, s < 2 provided that n > 4nd. O
2.10.8 Proof of Proposition 2.6.1

We will we consider the more general problem from Section 2.4.1.2 of bounding from above

the quantity given in (30):
Opt = max{xT[Pu +pl:ze X, Axr =0,u € U} , X = Conv{z!, ...,:CN},
T,u

where z° € R™, the set {x € X : Ar = 0} is nonempty, and U C R" is a computa-
tionally tractable compact convex set which contains the origin in its interior. Note that,
the only role of p and ¢ in the linear programming based verifiable sufficient condition
VSG;(&,0,p,0) is to get a control over ; and in the case of p = 0 = 00, VSG,(E, 0, p,0)
becomes equivalent to computing the following upper bound on Opt given by Proposition

2.4.1:
Optt = mvax{ﬁ(V) : 3z,uc [2,u, V] €W, AV =0, Az = 0},

where W = Conv{[x,u,z(Pu+p)T]: 2z € X,u € U}.
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To examine the connection with SDP based condition. Let X = {z € X : Az = 0}.

Given x € X and u € U, consider the positive semidefinite matrix

1 xT [Pu + p|T

Az, u) := [1;2; [Pu+ p]|[1;2; [Pu + p])]T = x zzl 2T [Pu+ p|T

[Pu+p] | [Pu+plz” | [Pu+ p][Pu+ p]"

The convex hull K, of these matrices is contained in every set of the form

1 T | [Pu+p]T
K=4qA= x Z %4 :AEO,AZZO,[.’IJ,U,V]EW,(*) ’
[Pu+p] | VT Q

where (%) is a set of efficiently computable convex constraints on A which are valid for
matrices A(z,u) given by x € X, u € U. When A > 0 and AZ = 0, we automatically have

Ax =0,AV =0, that is,

1 ol | [Pu+ p]"
Ki CLA= T A v A X0,AZ =0,V eV, (%)
[Pu+p] | VT Q

where V ={V : 3z,u:[z,u,V] € W, Az = 0, AV = 0}. Let us denote

1 T | [Pu+p]T

Opt™* := Zg{a/x Tr(V): A= x Z Vv =0,AZ=0,V eV, (x),,

[Pu+p] | VT Q

Then Opt* is efficiently computable and it follows that Opt < Opt* < Opt™.

In our particular case, for the derivation of verifiable sufficient conditions, p = 0 and
P = %% which is defined in (36). The extreme points of X are the 2n vectors —e; for
1<i<n,e forie P, and e, for i € P, where e; is the i-th basic orth. Moreover
U = U as defined in (35). Our LP based verifiable sufficient condition VSG;(§, 0, p, o) with
p =0 = oo is exactly Opt™ < £. In addition to this, our SDP bound given in (42) is at least
as good as Opt* without any inequalities included in (). Note that in our case A = HGH”

Iy
where H = " , under this connection it is clear that the objective functions in

938
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two SDPs are the same. Furthermore, (41.a), i.e., G = 0, holds if and only if A > 0, with
the same transformation, (41.b) and (41.c) correspond to constraints in (x), (41.d) together
with (41.f) characterize the set YW and (41.e) is equivalent to AZ =0 in Opt™ .

Hence Opt®? < Opt* < Opt™ < € where the last inequality holds whenever VSG, (£, 6, p, o)

with p = ¢ = oo holds. ([l
2.10.9 Proof of Proposition 2.8.1

Let us proceed by induction. First, let us show that (ag_1,bx_1) implies (ag,bx). Thus,
assume that (az_1, by—1) holds true. Let z#=1 = w—o* =1 By (ap_1), 2#~) is supported

(k=1)

on the support of w and is such that z; >0 for ¢ € P.. Note that

20Dy = w— o) YTy — Ay = (T — YT A)(w — o) — v Te

= (I-YTA)+D _yTe,

where e = y — Aw with ||[Y7e||oo < 06 due to (43.c). Then by (43.a,b) for any i € Py,

| 2 Zﬂ(‘kil) + 2 ‘Zﬂ(kiln —od <2V <y > Zy(‘kfl) + ) Izg(‘kfl)l + 74,

JeEPy JEP JjeEPy JEP,

consequently,

(k—=1)

— Yo = —T_og — 00 < 2 —u; < Y4 o= Thag—1 + 00. (68)

We conclude that for any ¢ € Py the interval S; = [u; — v—, u; + 74| of the width

ly = [T + 74]ag—1 + 200,

covers zi(k_l). In the same way for any i € P,

(k—=1)

—’V:Z—Takfl—05§2i —u; < Tap—1 +0d =7,

so that the interval S; = [u; — v, u; + 7] of the width

= 27‘0%71 + 20(5,

(k—=1)

covers z; when i € P,,.
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—1)

Recalling that zz(k > 0 for 7 € Py, the closest to 0 point of S; is

A = [ui—n-]y forie Py, A, = Ju;—~]y forie P, u; >0,
A; = —[lu| —7]y forie P, u; <0,

(k=1)

that is, 51 = A, for all 7. Since the segment S; covers z; and A, is the closest to 0 point

in S;, while the width of S; is at most £V £, we clearly have

(a) A; € Conv {o, ZZ?’H)} L) ERY —A<eve, (69)
Since (ag—_1) is valid, (69.a) implies that
o) = vgk_l) + A; € |:’U(k_1) + Conv {O,Mi — vgk_l)H C Conv{0,w;},

(2 (2

and (ay) holds. Further, let I be the support of w®. Relation (ay) clearly implies that

|z§k)| < |w;|, and we can write due to (69.b):

k— k
o —o® = 3 fos = [+ A+ D 1)

iel igl
< Yl ALY el < sleV 4] = o,
iel il

which is (bx). The induction step is justified.
It remains to show that (ag, bg) holds true. Since (ap) is evident, all we need is to justify
(b()). Let

= [wll1,

and let u = YTy. Same as above (cf. (68)), we have for all i:
|w; — ;| < max{T_, 74, T}, + 0 = Lo, + o0,
s
Then

p
= fwil + Y Jwil <> [luil + S0 00+ 1 < fulla g + po + 506 +
iel il iel

Hence

[ulls,1 + 500 + 4
I—p

which implies (by). O

oy <o =

9
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CHAPTER III

COMPRESSED SENSING SYNTHESIS PROBLEM

3.1 Overview
In this chapter we consider the synthesis problem of compressed sensing as follows:

Given s and an M x n matriz A, extract from it an m X n submatriz A.,,

certified to be s-good, with m as small as possible.

One can think, e.g., of a spatial or planar n-point grid £ of possible locations of signal
sources and an M-element grid S of possible locations of sensors. A sensor in a given
location measures a known, depending on the location, linear form of the signals emitted
at the nodes of £, and the goal is to place a given number m < M of sensors at the nodes
of § in order to be able to recover the location of sources via the £;-minimization, under
the condition that there are at most s sources. Since the exact verification of s-goodness is
difficult, we will look for a submatrix of the original matrix A for which the s-goodness can

be certified by the sufficient condition (10), introduced in [31]:

1
3Y € R™ " such that ||, — YT Ao < %
S

where | M ||oc = max; j |M;;| for a matrix M.
Suppose that along with A we know an M x n matrix Y3; which certifies that the “level

of goodness” of A is at least s, that is, we have

1
HIn_Y]\EAHoo S p< 2% (70)

Then we can approach the synthesis problem as follows:
Given M x n matrices Yy; and A and a tolerance € > 0, we want to extract
from A m rows (the smaller is m, the better) to get an m x n matrix A,,

which, along with properly chosen Y, € R™*" satisfies the relation ||V, A —

YWZCAmHOO < e.
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Choosing € < 2—15 — p and invoking (70), we ensure that the output A, of the above procedure
is s-good. This simple observation motivates our interest to the problem of approximating
a given matrix by a matrix of specified (low rank) in the uniform norm.

Note that in the existing literature on low rank approximation of matrices the emphasis
is on efficient construction when the approximation error is measured in the Frobenius norm
(for the Frobenius norm || Al|r = (El j A%) 1/2). Though the Singular Value Decomposition
(SVD) gives the best rank k approximation in terms of all the norms that are invariant under
rotation (e.g., the Frobenius norm and the spectral norm), its computational cost may be
prohibitive for applications involving large matrices. Recently, the properties of fast low
rank approximations in the Frobenius norm based on the randomized sampling of rows (or
columns) of the matrix (see, e.g., [50, 61]) or random sampling of a few individual entries
(see [1] and references therein) have been studied extensively. Another randomized fast
approximation based on the preprocessing by the Fast Fourier Transform or Fast Hadamard
Transform has been studied in [107]. Yet we do not know explicit bounds available from
the previous literature which concern numerically efficient low rank approximations in the
uniform norm.

The only known to us result on low rank approximation of matrices in uniform norm is
the one in [120]; it states then if W = YT A € R™*" and the rows in Y, A are of Euclidean
length at most D, then, for every k, W admits a k-rank approximation Wy = YkTAk
satisfying [|[W — Willeo < O(1)D?y/In(mn)/k, where Y} and Ay, are k x m and k x n
matrices with rows that are linear combinations of those in Y, A, respectively. This result
does not help in the synthesis problem, where we want the rows of Ax to be just rows of A,
and not linear combinations of these rows.

The main result of this chapter is as follows. Let W = Y7 A, where Y and A are known
M x n matrices. We consider the approximation Wy = YkTA/r€ of W such that the matrices
Y;. and Ay, of dimension my x n, my, < k < M, are composed of multiples of the rows of the

matrices Y and A respectively'. We show that a fast (essentially, of numerical complexity

! Allowing rows of Ay, to be multiples of rows of A in our context is the same as to require the rows of Ay
to be among the rows of A — the corresponding factors can be moved from rows of Ay to those of Yj.
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O(kMn?)) approximation Wy can be constructed which satisfies

In(n)

IW = Welloo = O(L(Y, Ay 2,

where L(Y, A) = Y, |yillsc|laillc and yI',al denote the i-th rows of Y and A respectively.
Note that for moderate values of L(Y, A) = O(1) and k < n/2 this approximation is “quasi-
optimal”, as we know (cf., e.g., [2], Proposition 4.2]) that (for certain matrices W) the
accuracy of such an approximation cannot be better than O(kz_l/ 2). Moreover, in Section
3.2.4, we show that when W is an n x n identity matrix, as in the case of compressed sensing
synthesis problem, the above bound is unimprovable up to a logarithmic factor. See also
Section 3.2.3 for a discussion of how large L(Y, A) can be in the case of A being a Hadamard
matrix. We propose two types of construction of fast approximations: we consider the
randomized construction, for which the accuracy bounds above hold in expectation (or
with significant probability). We also supply “derandomized” versions of the approximation

algorithms which do not require random sampling of matrices and attain the same accuracy

bounds as the randomized method.
3.2 Low Rank Approximation in Compressed Sensing

In this section, we suppose to be given s and an M x n matrix A and our objective is to
extract from A a submatrix Ay which is composed of, at most, k rows of A, with as small k
as possible, which is s-good. We assume that A admits a “goodness certificate” Y. Namely,

we are given an M X n matrix Y such that

pim = YT Ao < o ()
and we are looking for Ay and the corresponding Yy, such that |1, — VI Ay < 2%
3.2.1 Random Sampling Algorithm
The starting point of our developments is the following simple
Lemma 3.2.1 Let for 8 >0, let
Vg(z) = fB1n (icosh <zﬁl>> —Blnd:RYx Ry — R, (72)
i=1

Then
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(1) we have ||z||oc — fIn(2d) < Va(2) < ||2]|oo;

(ii) if B1 < Bo then Vi, (2) > Vi, (2);

(111) function Vg is convex and continuously differentiable on R?. Further, its gradient Vﬂ’

is Lipschitz-continuous with the constant 7 :

IV5(21) = Va(z2) i < B [z1 — 22l (73)

and ||Vg(2)|l1 <1 for all z € RY.

For proof, see Section 3.3.1.

Lemma 3.2.1 has the following immediate consequence:

Proposition 3.2.1 Let 8 > ' > 0 (non-random) and let &,...,& be random vectors in R?

such that E{&} = 0 and E{&[&1,..,& -1} =0 a.s. for alli € {2,....k}, and E{||&]%} <

02 < oo foralli € {1,...,k}, and let Sy, = Zle & and So = 0. Then fork > 1

2

E{V5(S1)} < E{Va(Si_1)} + ok,

26

As a result,

E{[[Sklloo} <

For proof, see Section 3.3.2.

The random sampling algorithm. Denoting y;‘r and aiT,

and A, respectively, let us set

04
0; = |Yyilloo laillos, L= 292', T = f
7
and let W = YT A. Observe that
W = Zz]\il Uy (Ziaz’T) )
|ziaf o = L, 1<i<M,
SMm =1, ;>0 1<i<M.
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=1,...,M, i-th rows of Y

= 7Y (76)
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Now let = be random rank 1 matrix taking values zia;fr with probabilities 7;, and let =1, =9, ...

be a sample of independent realizations of =. Consider the random matrix

1 k
szk;a.

Then Wy, is, by construction, of the form YkTAk, where Ay is a random my X n submatrix

of A with my, < k.

As an immediate consequence of Proposition 3.2.1 we obtain the following statement:

Proposition 3.2.2 One has

E{[|[Wi — W|oo} < 2LE~Y2\/21In(2n2). (78)

In particular, the probability of the event

E={21,....,B: [Wi — Wl|oo < 4Lk™/2/21In(2n2)}

is > 1/2, and whenever this event takes place, we have in our disposal a matriz Yy and a

my X n submatriz Ax of A with my, < k such that
1 = Y Ao < 10 = Wlo + [ Wi = Wiloo < i 1= g+ ALK Y2\ /2In(202).  (79)

For proof, see Section 3.3.3.

Discussion. Proposition 3.2.2 suggests a certain approach to the synthesis problem. In-
deed, according to this Proposition, picking at random k rows ag;, where i1, ..., i are sampled
independently from the distribution 7, we get with probability at least 1/2 a random my x n
matrix Ay, my < k, which is provably s-good with s = O(1)(L+/In(n)/k + )~'. When
L = O(1), this is nearly as good as it could be, since the sufficient condition for s-goodness
stated in (10) can justify s-goodness of an m X n sensing matrix with n > O(1)m only

when s < O(1)y/m, see [31, Proposition 4.2].
3.2.2 Derandomization

Looking at the proof of Proposition 3.2.1, we see that the construction of A; and Y3 can

be derandomized. Indeed, (74) implies that
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Whenever S € R"*™ and 3 > 3’ there exists i such that

T 212

Specifically, the above bound is satisfied for every i such that
(V3(8), ziai —W) <0,

and because m; > 0Vi and Y, m;(z;al — W) = 0, the latter inequality is certainly

satisfied for some 3.

Now assume that given a sequence 5y < 1 < ... of positive reals, we build a sequence of

matrices 5; according to the following rules:
1. Sy =0;

2. Sp41 =5k + (vkag; — W) with ¢ € {1,..., M} and v € R™ such that

2172
Brt1

Vi (Set1) < V3, (Sk) + Op1, Ok < (80)

Then for every k > 1 the matrix Uy, = k=1, is of the form YkTAk — W, where A is a

my X n submatrix of A with m; < k, and

k

ISkl < BrIn(2n?) + 341,
/=1

whence
k
1VIAL = Il < p + k71 (m In(2n%) + 5,g> .
(=1
In particular, for the choice 5, = 2L IH(QLnQ), ¢ =1,2, ..., we obtain?
In(2n?)
k

1V Ak = Inlloo < p+4L

One can consider at least the following three (numerically efficient) policies for choosing vy,

and ¢}, satisfying (80); we order them according to their computational complexity.

2for a given k, setting B, = L, /%, 1 < ¢ < k, the right hand side in the bound can be reduced to

21n(2n2)
fu+ 2L/ 22Cn7)
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A. Given S, we test one by one the options ¢ =1, vy = z;, ¢ = 1, ..., M, until an option
satisfying (80) is met (or test all the n options and choose the one which results in
the smallest Vj, . (Sk11)). Note that accomplishing a step of this scheme requires

O(Mn?) elementary operations.

A’. In this version of A, we test the options ¢, = 4, vy = 2; when picking ¢ at ran-
dom, as independent realizations of the random variable i taking values 1,...,M
with probabilities m;, until an option with <Vék+1(Sk), zial — W) < 0 is met. Since
E {(VékH (Sk), zial — W)} < 0, we may hope that this procedure will take essentially

less steps than the ordered scan through the entire range 1,..., M of values of i.

B. Given Si we solve M one-dimensional convex optimization problems

tr € Argmin Vg, , | (Sk +tzia] — W), 1<i < M, (81)
teR4

then select the one, let its index be i, with the smallest value of Vj, , (S +trzial W),

and put vy = t7 2;,, = ix.

If the bisection algorithm is used to find t}, solving the problem (81) for one i to the
relative accuracy e requires O(n?1In(1/¢)) elementary operations. The total numerical

complexity of the step of the method is O(Mn?In(1/¢)).

C. Given S}, we solve M convex optimization problems

uj € Argmin Vg, (Sk + ual —W), 1<i< M, (82)
ueR™

t hen select the one, let its index be i., with the smallest value of Vg, (Sk —i—ufa?—W),

and set vy = uj, £ = is.
Note that due to the structure of V3 to solve (82) it suffices to find a solution to the
system

> r—1 vesinh(age + yeuj) = 0,

Silie—[W1; Al )
= Bile Wit oy — B 1< e <,

(83)

Oéjg
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Since the equations of the system (83) are independent, one can use bisection to find
the component u; of the solution.® Finding a solution of relative accuracy e to each
equation then requires O(nIn(1/¢€)) arithmetical operations, and the total complexity

of solving (82) becomes O(Mn?In(1/e)).

Selecting Y and W. Note that the numerical schemes of this section should be initialized

with matrices Y and W = YT A. We can do as follows:

1. We start with solving the problem

M

Ye  Argmin Y lzilloollaf lloo = 110 = ZT Alloo < ¢
Z:[Z{;...;ZKAGRIWX" i=1

where p is a certain fraction of i Assuming the problem is feasible for the chosen

i, we get in this way the “initial point” — the matrix W = YT A.

2. Then we apply the outlined procedure to find Ax and Y. At each step ¢ of this
procedure, we get certain my x n submatrix A; of A and a matrix Y;. When |1, —
Y," A¢||c becomes less than 2%9 we terminate. Alternatively, we can solve at each step
¢ an auxiliary problem Uélr{l’i"rl} |7, — UT Ag|| o and terminate when the optimal value

Xn

in this problem becomes less than i
3.2.3 Numerical Illustration

Here we report on preliminary numerical experiments with the synthesis problem as posed
in the introduction. In our experiment, A is square, specifically, this is the Hadamard

matrix Hyq of order 2048.

Recall that the Hadamard matrix H,, v = 0,1, ... is a square matrix of order 2"

given by the recurrence

Hs  H;
Ho=1,Hs41 = )

Hs _Hs

whence H, is a symmetric matrix with entries +£1 and HVT H, =2"1.

3Note that due to the convexity of the left-hand side of the equation in (83), even faster algorithm of
Newton family can be used.
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The goal of the experiment was to extract from A = Hy; an m x 2048 submatrix A,, which

satisfies the relation (cf. (10))

. 1
Opt(Ay,) = ) min 11, — Y.L Ao < 550 1= 2048 (84)

with s = 10; under this requirement, we would like to have m as small as possible. In
compressed sensing terms, we are trying to solve the synthesis problem with A = Hiy; in
low rank approximation terms, we want to approximate Isg4g in the uniform norm within
accuracy < 0.05 by a rank m matrix of the form Y,I'A,,, with the rows of A,, extracted

from Hy;. The advantages of the Hadamard matrix in our context is twofold:

1. The error bound (78) is proportional to the quantity L defined in (76). By the
origin of this quantity, we clearly have [|[YTA|s = | Zf\il yial||oo < L, whence
L>1-—p>1-2 >1/2by (71). On the other hand, with A = H, being an
Hadamard matrix, setting Y = 27V H,,, so that YT A = I, we ensure the validity of
(71) with 4 = 0 and get L = 1, that is, u is as small as it could be, and L is nearly as

small as it could be.

2. Whenever A,, is a submatrix of H,, the optimization problem in the left hand side of

(84) is easy to solve.

Item 2 deserves an explanation. Clearly, the optimization program in (84) reduces to the

series of n = 2048 LP programs

Opt;(A,) = min [le; — AL ylloo, 1 < i <, (85)
yeRnL

where e; is the standard basic orth in R", and Opt(A,,) = maxOpt,(A,,). The point is
(2

given by

Proposition 3.2.3 Suppose A, is an m X n submatriz of the n X n Hadamard or Fourier

matriz, then Opt,;(Ay,) is independent of i, i.e., Opt(Ay,) = Opty(Amn).

For proof of Proposition 3.2.3, see Section 3.3.4.
In the light of Proposition 3.2.3, checking the inequality in (84) requires solving a single

LP program with m variables rather than solving n LO programs of the same size.
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Table 9: Comparison of algorithms for compressed sensing synthesis problem

H

[1]2]3[4]5[6]7[8]9][10]
15 | 55 | 121 | 197 | 279 | 343 | 427 | 512 | 554 | 662
12 [ 47 | 104 | 172 | 246 | 323 | 399 | 469 | 547 | 617

> || o

The experiment was organized as follows. As it was already mentioned, we used v = 11
(that is, » = 2048) and s = 10 (that is, the desired uniform norm of approximating Isp4s

by Y,I'A,, was 0.05). We compared two approximation policies:

e “Blind” approximation — we choose a random permutation o(-) of the indices 1, ..., 2048
and look at the submatrices A*, k = 1,2, ... obtained by extracting from H;; rows with
indices 0(1),0(2),...,0(k) until a submatrix satisfying (84) is met. This is a refine-
ment of the Random sampling algorithm as applied to A = Hy; and Y = 271 A, which
results in W = I5g48. The refinement is that instead of looking for approximation of
W = I5psg of the form %lezl zi/_,ag;, where 41,19, ... are independent realizations of
random variable ¢ taking values 1, ..., u with equal probabilities (as prescribed by (76)
in the case of A = H),), we look for the best approximation of the form YkTAk , where

A¥ is the submatrix of A with the row indices o (1), ..., o(k).

e “Active” approximation, which is obtained from algorithm A’ by the same refinement

as in the previous item.

In our experiments, we ran every policy 6 times. The results were as follows:
“Blind” policy B: the rank of 0.05-approximation of W = I5g4g varied from 662 to 680.
“Active” policy A: the rank of 0.05-approximation of W varied from 617 to 630.
Note that in both algorithms the resulting matrix A,, is built “row by row”, and the
certified levels of goodness of the intermediate matrices A', A2, ... are computed. In Table
9, we indicate, for the most successful (resulting in the smallest m) of the 6 runs of each
algorithm, the smallest values of k for which A* was certified to be s-good, s = 1,2, ..., 10:
Finally, we remark that with A being the Hadamard matrix H,, the “no refinement”

versions of our policies would terminate according to the criterion ||I,, — %A;{Akﬂoo < %,
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which, on a closest inspection, is nothing but a slightly spoiled version of the goodness test
based on mutual incoherence [13]*. In the experiments we are reporting, this criterion is
essentially weaker that the one based on (84): for the best, over the 6 runs of the algorithms
A and B, 10-good submatrices A,, of Hy; we got the test based on mutual incoherence

certifies the levels of goodness as low as 5 (in the case of B) and 7 (in the case of A).
3.2.4 Lower Bound

We have seen that if YTA = W € R™*" then the || - | s-error of the best in this norm
approximation of W by a matrix of rank k£ by selecting rows from Y and A is at most
O(1)L(Y,A) \/@ . We intend to demonstrate that in general this bound is unimprovable,
up to a logarithmic in m and n factor even when we are allowed to use any rank k& matrix

in the approximation. Specifically, the following result holds:

Proposition 3.2.4 When n > 2k, the || ||c error of any approximation of the unit matriz

I, by a matriz of rank k is at least

1
—. 86
2Vk (86)
Proof [cf. [81, Proposition 4.2]] Let a(n, k) be the minimal || - ||o error of approximation

of I, by a matrix of rank < k; this function clearly is nondecreasing in n. Let v be
an integer such that £k < v < n, and W be an v X v matrix of rank < k such that
I, — W|loo = a:= a(v, k). By variational characterization of singular values, at least v — k
singular values of I, — W are > 1, whence Tr([I, — W][I, — W]T) > v — k. On the other
hand, |1, — W||s < @, whence Tr([I, — W][I, — W]T) < v2a?. We conclude that a? > ”V;Qk

for all v with k < v < n, whence o? > ﬁ when n > 2k. OJ

“The mutual incoherence test is as follows: given a k X n matrix B = [by, ..., b,] with nonzero columns,

we compute the quantity p(B) = max [6F'b;]/b7b; and claim that B is s-good for all s such that s < 1;*253}3)).
i#£]

1

With the Hadamard A, the “no refinement” criterion for our scheme is nothing but s < S(AFY
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3.3 Proofs of Chapter 3
3.3.1 Proof of Lemma 3.2.1

Properties (i) and (ii) are immediate consequences of the definition of V3 given in (72).

Observe that Vg is convex and continuously differentiable with

‘ZZ 1 sinh(z;/B)h;
z 1 COSh(xZ/ﬁ)

Vs(z + th) < [[hloo VA,

dt|t 0

whence |[V5(2)[[1 < Lforx € RY. Verification of (73) takes one line: Vj is twice continuously

differentiable with

sinh(z;/5)h
Vs(z + th) = B~ 1 2o cosh(x;/B)h? _ gt (Z =1 /B) )

d? 11012
< h
dt? ‘t ’ Zz 1 cosh(z;/B) (§ 1 cosh(a:z/ﬁ))2 7l

3.3.2 Proof of Proposition 3.2.1
Let 8 > f'. By applying items (ii) and (iii) of the lemma for k > 1 we get:

V5(Sk) < Va(Sk-1) + (V5(Sk-1), &) + 35l 1%
< Vor(Sk—1) + (V4(Sk-1), &) + 9516115
When taking the expectation (first conditional to &1, ..., &k—1), due to E{&|&1, ..., &k—1} =0

a.s. for k > 2 and then using E{(V},(50),&)} = 0 (due to E{&} = 0), we obtain for k > 1

2

E{1€kll5} %
2’

sle) < Ba(s)+

E{V53(Sk)} <E{Va(Sk-1)} + — 57—

which is (74). Now let us set 3/ = = %:1’&122)’2 . Since V3(0) = 0 we conclude that

k2
g;
E{Vs(Si)} <) 25
i=1
On the other hand, by item (i) of Lemma 3.2.1,

k
E{||Sklloc} < BIn(2d) + E{V3(Sk)} < BIn(2d) + Z ﬁ <

proving (75). O
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3.3.3 Proof of Proposition 3.2.2

By (77) we have ||z;al ||c = L for all i, and besides this, treating 2 as random index dis-
tributed in {1, ..., M } according to probability distribution 7 = {m;}1,, we have E{z,al} =
W. It follows that ||Zy — W||e < 2L and E{Z,— W} = 0. If we denote S; = 22:1(56 -W),

when applying Proposition 3.2.1 we obtain

E{[|Sk]oo} < 2L\/2k In(2n2),

and we arrive at (78). O

3.3.4 Proof of Proposition 3.2.3

We claim that if A,, is an m x 2¥ submatrix of the Hadamard matrix H, of order n = 2%,
then the optimal values in all problems (85) are equal to each other. The explanation is a
s follows. Let G be a finite abelian group of cardinality n. Recall that a character of G is
a complex-valued function £(g) such that £(0) =1 and &(g+ h) = &(g)&(h) for all g, h € G;
from this definition it immediately follows that |£(g)| = 1. The characters of a finite abelian
group G form abelian group G, the multiplication being the pointwise multiplication of
functions, and this group is isomorphic to G. The Fourier Transform matrix associated
with G is the n X n matrix with rows indexed by £ € G, columns indexed by g € G and
entries £(g). For example, the usual DFT matrix of order n corresponds to the cyclic group
G = Zy := Z/nZ, while the Hadamard matrix H, is nothing but the Fourier Transform
matrix associated with G = [Zg]” (in this case, all characters take values £1). For g € G let
eq(h) stands for the function on G which is equal to 1 at h = g and is equal to 0 at h # g.
Given an m-element subset @ of Gy, consider the submatrix A = [{(g)]ccq of the Fourier

geG

Transform matrix, along with n optimization problems

. 4T — _
min, [Rleg — A™y]lloo = min max [Rleg (k) &%ygi(h)]l (Py)

These problems clearly have equal optimal values, due to

max [Rleg(h) = X eeq Y6 (W] = max [Rleo(h — g) = Decqluet(9)IE(h — )]

= max [Rleo(f) = Lecoluet (@)l

91



As applied to G = Z¥, this observation implies that all quantities given by (85) are the

same. 0
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CHAPTER IV

RANDOMIZED ALGORITHMS FOR LARGE-SCALE
OPTIMIZATION

4.1 Overview

This chapter is motivated by the desire to develop efficient randomized first-order methods
for solving well-structured large-scale convex optimization problems. Our primary (but not

the only) target is the ¢1-minimization problem
Opt, = mum{Hqu CJAu = b)), <6} [A=[Ar, .., Ap] € R™ myn > 2], (87)

where p = oo (“uniform fit”) or p = 2 (“l>-fit”). We are interested in the large-scale case,
where the sizes m,n of (possibly dense) matrix A are in the range of thousands/tens of
thousands. Efficient solutions to the problems of this type are of paramount importance
for sparsity-oriented signal processing, in particular, in compressed sensing (see [27, 25, 45]
and references therein). To give an overview of our results, here is what our approach yields

for (87):

1
Proposition 4.1.1 Assume that (87) is feasible, 0 is small enough, namely, 2m»¢d < ||b||.
Given € € (0, %Op‘cpHAHl,p],l let our goal be to find an e-solution to (87), that is, a point
Te satisfying

zc]l1 < Opt, & [|[Azc —bll, <6+ €.

Then, for every tolerance x € (0,1/2], the outlined goal can be achieved with probability
>1-=x
(i) in the case of p = oo (uniform fit) — in at most

o) [V RO Al vt | <\/1n<m> 1n<n>||AHHooomoo>] i

X€

Y Here and below ||A||1—p = max ||A;||, stands for the norm of the mapping x — Ax induced by the norms
j

|- 1l1 and || - ||p in the argument and the image spaces, respectively
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steps of a randomized algorithm, with computational effort per step reduced to extracting
from A two columns and two rows, given their indezes, plus “computational overhead” of
O(1)(m + n) operations.

(ii) in the case of p =2 ({3 fit) — in at most

In(mn)r(A)[|Afl1-+20pts | <1H(mn)H(A)HAH1—>20Pt2)]2 (A = VAl oo
€ Xe€ ’ | All1-2

0(1)

steps of a randomized algorithm with the same as in (1) computational effort per step.
Furthermore, there exists a randomized preprocessing of the data [A,b] of the problem

(87) of computational cost not exceeding O(1)mnln(m), which ensures with probability >
1 —x that k(A) < O(1)/In(mn/x).

Note that the best known so far complexity of finding e-solution to a large-scale prob-

v/In(m) In(n)||All1— 00 Opt s (

lem (87) by a deterministic algorithm is at least O(1) p = 00) or

v ln(n)HAeHHQOth (p = 2) steps? with complexity of a step dominated by the necessity to
perform O(1) multiplications = + Az, y + ATy. When A is dense, the resulting opera-

tions count is, up to logarithmic terms, of order of Nget = "1, where v = W can
—p

Opt,
be naturally interpreted as relative accuracy. For the randomized algorithms underlying

Proposition 4.1.1, this count, again, up to logarithmic terms, is of order of Nyang = mV—Jg”

(uniform fit) and Nyapng = 252 + mn (¢ fit). We see that when v < 1 is fixed and m,n

V2

grow, the randomized algorithms eventually outperform the deterministic ones, becoming
more significant as the problem size grows. Numerical results presented in Section 4.5
demonstrate that this acceleration is not a purely academic phenomenon and can be of real
practical interest.

Our approach is based on saddle point reformulation of well-structured convex mini-
mization problems and is applicable when the resulting saddle point problems are bilinear;
in this respect, it goes back to the breakthrough paper of Nesterov [106]. The deterministic
saddle point prototypes of the randomized algorithms we develop here were proposed in
[100] and [101] and the prototypes of our randomization scheme were proposed in [102,

Section 3.3] and [32]. In this chapter, we demonstrate that in the case of a bilinear saddle

2The indicated bounds are attainable, provided Opt,, is known in advance.
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point problem, a better randomization is possible. The advantage of this new randomization
over those prototypes lies in the immediate possibility to assess, in a computationally cheap
fashion, the quality of the resulting approximate solutions. This possibility is instrumental
when solving parametric bilinear saddle point problems. In particular many important ap-
plications including the problems of the form (87) reduce to the class of parametric bilinear
saddle point problems which we introduce and study in Section 4.2.2. In the hindsight, one
can recognize utilizing a particular case of this randomization technique leads to the sublin-
ear time randomized algorithm for solving matrix games due to Grigoriadis and Khachiyan
[66]-

The main body of this chapter is organized as follows. In Section 4.2, we present a saddle-
point-based framework for our developments together with a sample of interesting optimiza-
tion problems fitting this framework. This sample includes, along with ¢1-minimization, the
(semidefinite relaxation of the) problem of low-dimensional approximation to a collection
of points in R? and a specific version of the Support Vector Machine problem. Randomized
algorithms for the problems fitting to our framework are developed and analyzed in Sections
4.3 and 4.4. Section 4.5 presents encouraging results of preliminary numerical experiments
aimed at comparing the performance of the proposed randomized algorithm and a state-
of-the-art deterministic algorithm as applied to large-scale ¢1-minimization problem. All

proofs are relegated to the last section of this chapter.
4.2 Problems and Goals

We start with specifying and motivating two problems to be discussed in this chapter and

our goals.

4.2.1 A Bilinear Saddle Point Problem
4.2.1.1 The problem

The first generic problem we are interested in is a Bilinear Saddle Point (BSP) problem

SV == i a. ) ’
nin max ¢(z1, 22) )

d(z1,20) = v+ {(a1,21)+ {(ag, 22) + (22, Bz1) : Z|= 71 x Z3] — R,
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where Z; are nonempty convex compact sets in Euclidean spaces F;, ¢ = 1,2. Recall that

(8) gives rise to two dual to each other convex optimization programs

Opt(P) = min P(21) == max P(z1, 22) (P) (58)
Opt(D) = max P(22) == min P(21, 22) (D)

with Opt(P) = Opt(D) = SV, and to the variational inequality : find 2z, € Z := Z; X Zy

such that
(F(z),z2—24) >0 forall z € Z, (89)

where F': Z — E; X F5, is an affine monotone operator given by

aqs(zlﬂ 22)
62’1

. 8¢(Z17 22)

F(Zl,ZQ) = Fl(ZQ) = 82:2

1 Fo(z1) = = a+ Alz1; 23],

(here B* stands for the conjugate of B). Note that A is skew-symmetric: A* = —A and
<Z,.AZ> =0Vze EF:= FE| x Es. (90)

It is well known that the solutions to (S) — the saddle points of ¢ on Z; x Zy — are exactly
the pairs z = [z1; 22] comprised of optimal solutions to problems (P) and (D) in (88), same
as are exactly the solutions to the variational inequality (89). We quantify the accuracy of

candidate solutions z = [z1; 22] € Z to (S) by the saddle point residual

€sad(2) = @(21) — ¢(22) = [¢(21) — Opt(P)] + [Opt(D) — p(22)] . (91)

>0 >0

4.2.1.2  Assumptions and goal

When speaking about a BSP problem (S), our goal is to solve the problem within a given
accuracy € > 0, that is, to find z¢ € Z such that egq(2¢) < e. Deterministic first order
algorithms achieve this goal by working with the values of the associated operator F' at the
iterates 2y, t = 1,2, ..., generated by the method. When Z is simple and the problem is

large-scale, computing the values F(z;) is the “leading term” in the computational effort.
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Our goal in this chapter is to replace relatively expensive (in the large-scale case) exact
values F'(z;) with their computationally cheap unbiased random estimates. Specifically, we

assume that
[P] every point z € Z is associated with a probability distribution P, such that

e P, is supported on Z and E¢.p, {C} = #;

e Given z, we can sample from the distribution P,.

Under these assumptions, in order to get an unbiased estimate of F'(z;), it suffices to draw
a (4 ~ P, and to take F'((;) as a desired estimate of F'(z;). In order to make this approach
meaningful, the computational price of generating (; and subsequent computation of F'((;)
should be significantly less than the price of a straightforward computation of F'(z;). This
requirement guided us in the selection of applications to be considered below as well as in
building the corresponding saddle point reformulations .

Note that the deterministic algorithms remain in the scope of our approach since we

always have an option to define P, as ¢, (the unit mass sitting at z).
4.2.1.8 Application example: low dimensional approzimation

We consider the following problem (related to a dimension reduction problem in statistics,
see, e.g., [37]): let V. = {v1,...,un} be a collection of unit vectors in R", and d < n be
a positive integer. We want to find a linear subspace F C R" of dimension d such that
the deviation 6(V, E) of the collection from E — the maximal, over i, Euclidean distance
between v; and E — is as small as possible.

Letting IT? be the family of all orthogonal projectors of R™ onto d-dimensional linear

subspaces, the problem reads
Opt, = max min v Tlv;

Merd 1<i<N

and seems to be computationally intractable. It, however, admits the tractable relaxation

= in vl Qu; d— nL0=<Q < =d}.
Opt &%@;HNU@Q% Pi={QeS": 0=XQ =1, Tr(Q) =d} (92)
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We refer to (92) as to the problem of low dimensional approximation. We clearly have
Opt, < Opt < 1, whence §2 := 1 — Opt < §2 := 1 — Opt,; note that J, is the deviation of V'
from the “ideal” d-dimensional space F, underlying Opt,. It is easily seen (see Lemma 4.6.1
of Section 4.6.1) that if @ is an optimal solution to the relaxation (92) and E is spanned
by the d leading eigenvectors of Q., then §(V, E) < v/d + 14., that is, approximation (92)
admits some quality guarantees.

Now, (92) is nothing but the BSP problem:

1 — Opt = min max [1 —Tr <QZZ1)‘1UWZT>] , Ay = {)\ IS Rj_i\_[ : Zi)\i = 1} . (93)

QePiAeAN
In terms of (S), E; is the space S™ of symmetric n X n matrices with Frobenius inner

product, Z; = P4 C Ey, By = RN, Zy = Ay. The associated operator F is

F(z1,22) = F(Q, ) = [_Zj\;l)\ivivz‘T; [v1 Qui; ...; vy Qun] ] (94)

Fi(22) Fa(21)

Assuming that v; are dense, the arithmetic cost of computing the value of F' at a given
point is O(n?N). Now let us specify the distributions P,, z = (Q,\) € Z = Z; x Z. In

order to generate ¢ ~ F(q, ), we proceed as follows:

e Given Q € P?, we build the eigenvalue decomposition @ = UDiag{q}U”. Note that
geApg={geR":0<¢q <1Vi, > ¢ = d}. The extreme points of A, 4
are Boolean vectors with exactly d nonzero entries. There exists a simple algorithm
(see Section 4.6.1) which, given as input a vector ¢ € A,, 4, builds in O(1)dn? a.o0. n
extreme points ¢/, 1 < j < n, of A, q along with weights p; > 0, Zj p; = 1, such
that ¢ = Zj p;q’. We run this algorithm to build {¢7, u; 71, pick € {1,...,n} at

random, with Prob{y = j} = p;, j = 1,...,n, and set (] = UDiag{¢’}U".

e Given A € Ay, we pick 2 € {1,..., N} at random, with Prob{s =i} = \;; 1 <i < N,

and set (5 :=e,, where e;, ¢ =1, ..., N, are standard basic orths in RN,
e Finally, we set ¢ = (¥ := [(];¢4] € P x Ap.

The family of distributions P ) clearly satisfies [P]. The “setup costs” for sampling from

P\ reduce to those of 1) computing the eigenvalue decomposition of @, 2) building
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q's ..y q", 1, ..., iy (this cost is O(n® + dn?) a.0.) and 3) computing the “cumulative dis-
tributions” {u/ = Z{é:l fs}i—q and (N =3 AN, (what amounts to O(n + N) a.o.).
After the setup cost is paid, a sample (1, 7) can be generated at the cost of just O(In(n+ N))

a.0. Now let us look at the cost of computing F'(¢*) given 1, 7. We have

F(¢Y) = [~ow,’; {v] UDiag{g"}U vi}iL4]
Since ¢’ has just d nonzero entries, all equal to 1, let the indices of the entries be ji, ..., jq,
we have vl UDiag{¢?}UTv; = 2?21(Ujgvi)2v where U; is j'* column of U. We see that
computing F(¢¥) costs O(n? +dnN) a.o. Thus, the total cost (including that of the setup)

of drawing a sample { from P ) and computing F'(() is
O(n® + dn? +n* + dnN) = O(n® + dnN) a.o.

When d < n < N, this cost is much smaller than the cost O(n?N) of computing F(z) at

a “general position” point z = (Q,\) € Z.

4.2.2 A Generalized Bilinear Saddle Point Problem
4.2.2.1 The problem

Assume that we are given a single-parameter family of bilinear saddle point problems

SV(p) = min max ¢”(z1, 22) := @(21, 22) + p¥(21, 22), (95)
21€721 220€ 7

where p > 0 is a parameter and ¢(z1, 22), ¥ (21, 22) are bi-affine in z; and z5. The Generalized
Bilinear Saddle Point (GBSP) problem associated with this family is, by definition, the
optimization program

p = max{p > 0: SV(p) < 0} (96)
A highly desirable property of a GBSP problem, relative to our approach, is the convexity
of SV(p) as a function of p > 0. To ensure this property, we make from now on the following

assumption on the structure of (95):
[A.1] Z1 = Z11 x Zy2 is the direct product of two convex compact sets, and the
bilinear functions ¢(z1, 22), ¥(z1, 22) in (95) are of the form
(21 = [z11;212], 22) = v+ (a11, 211) + (b, 22) + (22, Bz11),

(97)
P(z1 = [z115212],22) = X+ (@12, 212) + (¢, 22) + (22, C212),
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that is, ¢(z1, z2) and ¥(z1, z2) as functions of z; depend each on its own “block”
of z1, and these blocks z11 and z12, independently of each other, run through

the respective convex compact sets Z11 and Zi2.

From now on, we denote by F?(z) = ®(z) 4+ pW¥(z) the affine monotone operator associated

with ¢” according to (89).
Lemma 4.2.1 In the case of A.1 the function SV(p) given by (95) is convex in p > 0.
From now on we assume, in addition to A.1, that

[A.2] Function SV(p) given by (95) is nonpositive somewhere on R, and tends

to +00 as p — +00,
which implies solvability of (96) and positivity of p..

The goal. Given a GBSP problem (95) — (96) and a tolerance € > 0, our goal will be to

find an e-solution to the problem, that is, a pair pe, 2{ € Z; such that

pe > poand max o7 (5, 2) < pee (98)
290€Zo

We are about to point out several important application examples for GBSP problem.
4.2.2.2  Application example: {1-minimization with £,-fit

The problem of interest is
Opt = min {||z]]; : [|[Az —b||, <46} [A e R™™. (99)

Different versions of this problem arise in sparsity-oriented signal processing and compressed

sensing. Setting = = pu, |lu|l; < 1, we rewrite the problem equivalently as

1
— =p, = : min ||Au — pb|, — pd < 0 100
o = max{p min [ Au— pbl, — pb < } (100)
or, which is the same as
. {o: 20 i, l4u— pb— pioll <0}
= p, = max : = min U — — pov > .
Opt " P P i <b vlp<t P potlle
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This is nothing but the GBSP problem (95) with SV (p) = ¢(2), z € Z, given by

¢ (21(= 2113 212)), 22) = 23 S (AJnz11 — plb + 6212])

m 101
Z1 = Agn X {2’12 cR™: HZUHP < 1}, ZQ = Agm, ( )
~—~

-~

Z11 Z12

where we denote Jy, = [I, —Ij], I being k x k identity matrix. This problem satisfies [A.1];
when ||b|, > ¢ (otherwise the optimal solution to (99) is = 0), the problem satisfies [A.2]

as well. The associated saddle value function is

SV(p) = max min (23 T (Adnz11 — plb — 6212])]

22€02m 211€A2n, 212€ 212

. . T
= max min min |w! (Au — p[b+ 6z
w=Jmz2, 226 Ao u=Jn21,21€A2, 2126212 [ ( P[ * 12])]

. . T
max min min |[w' (Au — p[b+ dv])| = P(p).
IIwH1SIIIUI|1SIIIvIIp§1[ ( [ D] (°)
Suppose that we are given an e-solution pg, 2§ = [2];; 255 to the problem (98), (101) with

-1 . _ . .
e = em” ». When setting z. = p71J,25; and v. = 2§, we get an approximate solution to

(99) such that
|lzelli < Opt & ||Aze —b||p < [[6ve|lp + [[Aze — b — dve[p < 0 + em/P = § 1 «.

Finally, we associate with z = [z11;212;20] € Z = Z1 x Zy distribution P, satisfying [P],
namely, as follows. Note that for z € Z, z11 and zy are vectors from the standard simplices
and thus can be considered as probability distributions on the corresponding index sets
{1,...,2n}, {1,...,2m}. To generate ¢ = [(11; C12; (2] ~ P., we draw at random index 2 from
the distribution z;; and make [(j1], = 1 the only nonzero entry in (3. (2 is built similarly,
with 29 in the role of z11, and (j2 is nothing but z12. It is immediately seen that it takes
just O(m + n) a.o. to generate a sample ¢ ~ P, and to compute the vector F*(().

It is worth to mention that in the important case p = oo the construction of the GBSP
which corresponds to (99) can be substantially simplified. Indeed, one can see immediately
that for p = oo (100) is equivalent to the GBSP problem on the direct product of just two
unit ¢1-balls (since ||Az1 — b||cc = | zrglﬁ}i ) 28 (Az; —b)). Tt is more convenient to pass from
£1-balls to the standard simplexes, as itiwas done in the case of (101). The resulting GBSP

problem is given by

OP(z1,29) = zTJn:';Aanl — pzTJn:’;b — po,
( ) =2z 2 (102)
Zy = Z11 = Doy, Z12 = {0}, Zo = Aoy,
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and satisfies [A.1] and [A.2] when § < ||b|cc-
4.2.2.8  Application example: ¢1 Support Vector Machine.

One of the “statistically solid” SVM models (see [36] and [115, Section 2.3.3]) is as follows.
We are given a training sample — a matrix X € R"*"™ with rows representing feature
vectors, and a vector y € R™ with entries &1 representing labels. Setting R = max; j | Xj;],

Y = Diag{y} and 1 = [1;...;1] € R™, we want to solve the margin optimization problem

Opt = max {p : Jully < 1, [p1 = Y[Xw+b1]}4 2 < R} (103)

'Yy

where [z]; is the vector with coordinates [z;]4+ := max|[z;,0]. We can convert this problem

into a GBSP one as follows. Observe first that

Opt = : i 1-Y[Xw+bl]— Rol, <0
o= s i =YX 1] - R <0}
R AR - IO o uT[ﬂl—Y[Xw+bl]—Rv]§0}.
lw]l1 <1, [[v]l2<1,b uEAM

Assuming that the entries of y contain both 1 and —1 and setting A} = {u € A, : yTu =

0}, we have min max u”[p1l — Y [Xw+b1] — Rv] = max u’ (p1 —Y Xw — Rv). Hence, when

setting w = J, s, we come to

Opt = max {p : min max u’ [pl — Y X J,s — Rv] < O}.
s€A2n, ||v|l2<1 ye A

We see that (103) is equivalent to the GBSP problem given by

PP (z1 = [z11 = $;212 = 0], 20 = u) = uT[pl -YXJ,s — Ry,

Z1 = {[S;’U] s E Agn, ”'UHQ < 1},22 = A;rl

Note that this problem clearly satisfies A.1 — 2. Besides this, /m max;[z;]+ > ||[x]+]]2, so
that an e-solution (pe, 2§ = [sv]) to the GBSP problem induces the approximate solution

(pe,w® = Jps%,b°) to (103) such that
pe > Opt & ||[pel — Y[Xw® + b°1]]1|]2 < R+ vVmpee,
whence (pc(1 — /me), w, b) is a feasible solution to (103) with the value of the objective

> (1 — /me)Opt.
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Finally, we associate with z = [211 = s;212 = v;20 = u| € Z = Z; x Zy a distribution
P, on Z = Z; x Zy defined as follows. To generate ¢ = [(11;(12; (2] ~ P., we pick at
random ¢ € {1,...,2n}, with Prob{r = i} = [211];, 1 < i < 2n, and set (11 = e, €
being the basic orths in R?". We always set (12 = v. To generate (2, we act as follows.
Let I ={i:y; =1} J={i:y; = -1}, and let p := 37, ;ui = > ;c;u; (recall that
>oiyiui = 0, that is, D7, ru; = Y . ;uj). Note that p < 1/2 due to 200, u; < 1. We
first flip a coin with probability 1 — 2p to get head; if head appears, we set (o = 0. If tail
appears, we pick at random ¢ € I with Prob{s = i} = w;/p, i € I, pick at random jy € J
with Prob{y = j} = u;/p, j € J, and set (> = i[e, + €,], e; being the basic orths in R™. It
is immediately seen that P, satisfies [P], and that it takes just O(m + n) a.o. to generate a

sample ¢ ~ P, and to compute the vector F*(().
4.3 Solving Bilinear Saddle Point Problem

We are about to present two randomized first order methods for solving BSPs and hence
will be utilized in solving GBSPs — the Stochastic Approximation (SA) and the Stochastic
Mirror Prox (SMP) algorithms, which are the randomized versions of the methods proposed
in [100] and [101] respectively. Both SA and SMP are directly applicable to a BSP problem,
and this is the situation we are about to consider here; the GBSP case will be considered

in Section 4.4.
4.3.1 The Setup

Both SA and SMP algorithms are aimed at solving a BSP problem (S). The setup for these

methods is given by

e a norm | - || on the Euclidean space E where the domain Z = Z; x Z3 of (S) lives,

along with the conjugate norm |||« = max|<1(¢, 2);

e a distance-generating function (d.g.f.) w(z) which is convex and continuous on Z,
admits continuous on the set Z° = {z € Z : w(z) # 0} selection w’(z) of subgradient

(here Qw(z) is a subdifferential of w| , taken at z), and is strictly convex with modulus
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1Lwrt. |||
Ve, 2 e Z°: (W(Z) - ("), 2 = 2" > || = 2|2
We shall refer to the latter property as to compatibility of w(-) and || - ||.
A d.g.f. w gives rise to several important for us entities:
1. Bregman distance V,(u) = w(u) — w(z) — (w'(2),u — z), where z € Z° and u € Z;

2. Prox-mapping Prox.(§) = argmin,c, {({,w) + Vz(w)} : E — Z°; here z € Z° is a

«“ K2
prox center;

3. “w-center” z, = argmin,cyw(z) € Z° of Z and the quantities

Q =maxV,, (z) <maxw(z) —minw(z), © = V2. (104)
2€Z z2€Z z2€Z
In the sequel, we set
R :=max ||z — 2,|| <O, (105)
2€Z

where the concluding inequality follows from the fact that for every z € Z one has %Hz —
2u||? < V2, (2) by strong convexity of w(-). We also denote by £ the (|| - ||, || - ||+)-Lipschitz

constant of F"

|F(2) = F(2)« = Az = 2« < Lllz = 2|, V2, 2; (106)
and set
M, = max |F(z) — F(2)]l« <2RL < 20L, (107)
z,2' €
Fo = max|F(z)]. < llalls + M. < lal +20L. (108)

4.3.2 The SA and SMP Algorithms

Assume we have access to an “oracle” O which, at i-th call (i = 1,2,...), returns a vector

& € E (this vector can be random with distribution depending on previous calls and, more
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generally, on the history of our computational process before the call). This oracle gives

rise to two conceptual algorithms:

(a) LRl = Rws {Ztagt} — {zt-i-l - PrOth(’tht)>§t+1}a t= 17 27
(0) 1 21 = zw; {2, §at—1} — {wr = Prox,, (v€at—1), ot} — {2141 = Prox,, (v€2t), {2t41 ),

t=1,2, ..
(109)

here 71, 7o, ... are positive stepsizes defined in a non-anticipative fashion, that is, v depends
on oracle’s answers obtained prior to step ¢ (i.e., 7 depends solely on &1, ..., &1 in the case
of (a), and solely on &1, ...,&2—2 in the case of (b)). We refer to (109.a,b) as the Stochastic
Approximation (SA) and Stochastic Mirror Prox (SMP) schemes, respectively. We will

consider two implementations of these schemes, the basic and the advanced ones.
4.8.2.1 Basic implementation

Recall that we have associated with (S) the affine operator F(z) : Z — E given by (89),
and with every point z € Z — a probability distribution P, supported on Z satisfying

E¢p.{(} = 2. Suppose that
e the stepsizes v > 0 are chosen in a non-anticipating fashion such that v; > 72 > ...;
e in SA: (; is drawn at random from the distribution P,,, and & = F(();

e in SMP: &1 = F(n) with 7 drawn at random from the distribution P,,, and

&t = F(¢;) with ¢; drawn at random from the distribution P,,.

The approximate solution generated by the short-step SA/SMP in course of t = 1, 2, ...

steps is
t
A=ty ¢ (110)
T=1

4.8.2.2  Advanced implementation

In Advanced implementation of SA and SMP, same as in the Basic one, the stepsizes v; > 0

still are chosen in a non-anticipating fashion, but the restriction 3 > o > ... is now lifted.
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To explain how the oracle is built, observe that if u € Z, then

Ecopr, {(F((),( —u)} =0

(recall that F(z) = a + Az with skew symmetric A and that E¢.p,{(} = u). It follows
that given u and generating one by one independent samples n° ~ P,, s = 1,2, ..., one with

probability 1 eventually generates ¢ such that

(F(¢),¢ —u) <0. (111)

At step t of SA, in order to define &, the oracle draws one by one samples n° ~ P,,,
s = 1,2,..., until a sample ; := n°® satisfying (111) with u = z; is generated; when it
happens, the oracle returns & = F((;). At a step t of SMP, the oracle is invoked twice, first
to generate ;1 = F(n;), and then to generate o = F((;). 21 is generated exactly as
in the basic implementation — by drawing a sample 7, ~ P,, and returning &1 = F(n;).
To generate &o¢, the oracle draws one by one samples n° ~ P,,, s = 1,2, ..., until a sample
(¢ = n® satisfying (111) with u = w; is generated; when it happens, the oracle returns
ot = F'(Gt).

Finally, in the advanced implementation we replace the rule (110) for generating ap-
proximate solutions with the rule

t
1
t
P Y (112)
ZTII ’Y‘r 7-21

4.8.2.8  Quantifying quality of approximate solutions

Observe that by construction at a step 7 both (; and F({;) become known. Recalling
that F is affine, it follows that after ¢ steps we have at our disposal both the approximate
solution z! = [2¢;24] and the vector F(z!). As a result, with both Basic and Advanced
implementations of both SA and SMP, after ¢t = 1,2, ... steps we have at our disposal the

quantities

B(=4) = v+ (@, 24) + max (2, ~Fa(:]), 9(=5) = v+ (az 3h) + min (o1, Fi () (113)

(see (89)) and consequently we know the residual egq(2!) = ¢(z%) — ¢(z!) of the current

t

approximate solution z'. As we shall see in Section 4.4, this feature of our algorithms
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becomes instrumental when solving GBSP problems.® This is in sharp contrast with the
prototypes of the SA and the SMP proposed, respectively, in [102, Section 3.3] and [32].
The approximate solutions z! of those algorithms were computed according to the formula
(112), but with z; [102] or w, [32] in the role of {;. As a result, in the prototype algorithms

there is no computationally cheap way to quantify the quality of approximate solutions.
4.8.2.4  Efficiency estimates for basic implementation

The accuracy bounds for Basic SA and SMP algorithms are given by the following

Proposition 4.3.1 Let the BSP problem (S) be solved by the short-step SA or SMP algo-

rithm with positive stepsizes y1 > 2 > ... chosen in a non-anticipative fashion. Then

(i) For every t > 1, for both SA and SMP one has

t t
esad(zt) < ¢! [’Yt_IQ 4+ Ry + St] , Ry = ZT‘T, Sy = ZST, (114)
=1 =1
where
(F(Ct),Ct — z) in the case of SA,
ry =
(F(¢t), ¢t —wye) in the case of SMP,
(F(C), 2t — 2t41) — 'yt_lvzt (zt41), in the case of SA,
St =
(F(C),ws — ze41) — v Vi, (2¢41), in the case of SMP.
We have
LN F ()2, in the case of SA,
o) 1E (Gl (115)
LIF(G) — F(m)|2 - Q—#tHwt — 2%, in the case of SMP,
with

%Ff, in the case of SA,
st < (116)

LM?2, in the case of SMP.
In particular, if the stepsizes v > 0 satisfy Sy < Q/v, t = 1,2, ..., then

20 R
wa(2) < 2224 1 117
€ d(z)_t%—i- " (117)

30f course, computing the quantities in (113) is not completely costless; note, however, that the cost of
this computation is dominated by the cost of computing the prox-mapping(s) at a step and thus is a small
fraction of the overall computational effort.
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(ii) Further, E{R:} =0, and in the case of SMP, under additional assumption that

v < (V3L)TH, (118)
we have
0. 2 A — woll2 + 1A — )12 (119)
so that E{s;} < 3y,02, where
0% = sup Bp. {[A(C ~ 2|3} < ME. (120)

In particular, if the stepsizes v > 0 satisfy E{S;} < Q/y fort =1, 2, ..., then

20
Ef{eoq(2)) < =.
{€saa(2")} o

The bound of Proposition 4.3.1 allows to easily conceive stepsize policies. Let us start
with offline policies, where +; are chosen in advance deterministic reals. If the number of
steps N is fixed in advance, one can use constant stepsizes y; = ... = yy = 7. In particular,

when choosing

FL* % , in the case of SA  (a)

’7:
min{;\/?&,,\éﬂ}, in the case of SMP (b)

(by (116), (108) this choice implies that E{S;} < Q/v, 1 < t < N), Proposition 4.3.1

(121)

implies the efficiency bound

N Foy /% in the case of SA  (a)
E{€sa(z")} <
max {20\ ES MJ%;M} , in the case of SMP (b)

When the number of steps is not fixed in advance, one can use the decreasing stepsizes

(122)

F% % , in the case of SA,
VE>1, = (123)
min{;\/gt, ég}? in the case of SMP,
which result in the accuracy bound
2F*\/§ , in the case of SA  (a)
vVt > 1, E{eaa(2)} < (124)

max {20\ / ?, 2\/395} , in the case of SMP (b)

completely similar to (122).
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4.3.2.5 Online stepsize policies

From theoretical viewpoint, the main advantage of the outlined versions of SA and SMP with
the “theoretically optimal” offline stepsize policies (121) and (123) are the explicit (and
in fact — the best known under circumstances) efficiency estimates (122), (124). While
they may appear attractive also from the practical viewpoint because of their apparent
simplicity, their use may present several disadvantages: the quantity ¢ involved in the
stepsize computation may not be available at hand and should be evaluated. Besides this,
these policies are offline and worst-case oriented; we would prefer more flexible on line
adjustable stepsizes.

A natural way to adjust the stepsizes online would be to choose at each step ¢ > 1 the
largest ¢ < 74—1 ensuring the balance /v > Sy, and thus the bound (117). This idea
cannot be implemented “as is,” since the stepsize policy should be non-anticipative, while
s¢ is not yet available when -4 is computed. This difficulty can be easily circumvented by
using instead of s; its a priori upper bound, which is either %F* for the SA algorithm or
%M*Q for the SMP, see (115). Specifically, consider the online policy of choosing ~;, t > 1

as follows:

25l A1 s ], + F2 in the case of SA,
Q’yt_Q _ ZT 1 [ ]+ (125)

23 4 s ]y + 8QL%  in the case of SMP,

where we set 22:1 v 1[s-]+ = 0. With this policy, one clearly has v; > 72 > ....

Proposition 4.3.2 Let positive stepsizes vy, t = 1,2, ... of the Basic SA/SMP implemen-

tation be chosen according to (125). Then the approzimate solution 2! satisfies

(a+v2)e R

€sad(2') < -~ - (126)
As a consequence, we have
(+v2)Va <F2+z IIE (G2 ) + B in the case of SA  (a)
saal) < W(smuz o) (127)

< T 4 Ry (”‘/)\F S, in the case of SMP  (b)
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where
=3 [I1F(¢) — F(we)|F+ |1 F(ne) — F(=)lIZ] - (128)
Recalling that E{R;} = 0 and E{g;} < 602 (see (120)), we arrive at

Corollary 4.3.1 Under the premise of Proposition 4.53.2, for the SMP algorithm one has

0L 6VQo
E{esad( )}<T \/E .

Note that the bounds (127.a) and (129) within an absolute constant factor coincide with

(129)

the respective bounds in (124), that is, our online stepsizes policy (which, in contrast to
(123), does not require knowledge of o) is not worse that the “theoretically optimal” stepsize

policies underlying (124).
4.83.2.6 Discussion

Since F, > RL > o/2 (cf. (105)), the SA efficiency estimate (124.a) is at most within
an absolute constant factor better than the corresponding estimate for the SMP. Besides
this, the SMP bound (124.b) says that when the noise level o of the oracle is small enough
(specifically, 0% = O (QE )) then E{ega(2t)} < O(1 ) , which, modulo expectation of the
residual instead of the residual itself, coincides with the best known so far efficiency estimate
of the deterministic first order algorithms solving bilinear saddle point problems. On the
other hand, we do have a possibility to make o small. The trivial way to do so is to use
P, = §,, which results in ¢ = 0 and makes SMP a version of the Deterministic Mirror Prox
algorithm (DMP) proposed in [101]. Another, more attractive, option to control o is as
follows. Given the family of distributions P, supported on Z and such that E¢p {C} = z,

(k)

and a positive integer k, we can convert P, into the family of distributions P, with the same
property as follows: in order to generate a random vector ¢ ~ Pz(k) and to compute F'((),
we draw a k-element sample ¢!, ...,¢¥ from the distribution P, compute F(¢1), ..., F(¢F)

and then set ¢ = % Zle ¢%, so that
k
1
“ 2T
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If, as in the examples of Section 4.2, drawing (¢ ~ P, and computing F(z*) is much cheaper
than computing F'(z), the outlined procedure with a “reasonably large” value of k is still
significantly cheaper than the direct computation of F'(z). At the same time, for “good
enough” norms || - ||, passing from P, to Pz(k) can significantly reduce the noise level o.
Specifically, given a norm || - ||« on a finite-dimensional Euclidean space E, one can associate
with it its regularity parameter » > 1 (see Section 2.2, [77] for details) to ensure the
following: whenever k > 0 is an integer and &', ..., £F are independent vectors from E with

E{¢'} = 0 and E{|¢/||?} < o and a = maxay, for € =  3°F | ¢ it holds

Mw

E{|£)?} < min [k‘ kQ] 2 < min [1, %} o,

Suppose now that when running SMP we sample (;, 7; from the distributions Pz(k) for
some k > 0. It follows that if || - ||, is s-regular with certain s, then, passing from P,
to P = Pék), we can reduce the “original” value of o to the value ot = min[1, \/%]a
We shall see in a while that in the applications we have mentioned so far, s is “small”
— at most logarithmic in dim Z. The bottom line is that there is a tradeoff between the
computational cost of a call to a stochastic oracle and the noise level o. Consequently,
in the case of SMP, it is possible to tradeoff the computational effort per iteration and
the iteration count to obtain an approximate solution of the desired expected quality, and
we can use this tradeoff in order to save on the overall amount of computations. This
option (which is the major advantage of SMP as compared to SA) is especially attractive
when among the two components of our computational effort per iteration — one related
to computing 1, ¢, F(n:) F((), and the other aimed at computing the prox mappings —
the second component is essentially more significant than the first one. In such a situation,

(k)

we basically can only gain by passing from P, to P,"’ with k chosen to balance the outlined

two components of the computational effort.
4.3.2.7 Large deviations

In the above efficiency estimates, say, in (129), we upper-bounded the expected inaccuracy

of approximate solutions z’. In fact, one can get exponential upper bounds on probabilities
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of large deviations for the inaccuracy of the approximate solution. Though we do not need
such bounds to access the inaccuracy of solutions, they are still useful to provide theoretical
guarantees for the complexity of our algorithms (cf. Theorem 4.4.1 in the next section).

For the sake of definiteness, when presenting large deviation results, we restrict ourselves
to the SMP algorithm and the stepsize strategy (125). Note that one can easily derive a
deviation bound from the bound (129) on the expectation of €s,q(2?) in the previous section.
Indeed, let us fix the number ¢ of iterations, run the algorithm m times and select the best,
in terms of €gq(-), of the resulting approximate solutions. The probability that for this
solution €g,q(+) is worse than, say, twice the right hand side of (129) is at most 2™ and
thus can be made negligibly small with quite moderate values of m.

We also have the following bound on the deviations of the algorithm without restarts:

Proposition 4.3.3 Assume we are solving problem (S) by Basic implementation of SMP
)

where (¢, ne are sampled from the distributions Pék , k > 1 being a parameter of the con-

struction. Assume also that the norm ||-||« is s¢-regular, and the online stepsize policy (125)

is used. Then there are absolute constants Ky, K1 such that the approxzimate solution zt

satisfies for allt > 1 and A, A >0

oL n s (k, N)O%L
t Vkt

where s, (k,A) = \/min[k, (3 + A)]. In particular, one has for all € > 0:

Prob {Esad(zt) > Ky kt

+0(]a]. + OL) *] } <My e (130)

Prob{esq(zN) > e} < e N 4 e for N > N., where

N. = K Ceil (max [@255—1, AT (”“””@‘)29”}).

€ ke

(131)

4.3.3 Efficiency Estimates for Advanced Implementations of SA and SMP

The efficiency of Advanced implementations of SA and SMP stem from the following result

(we use the notation from Section 4.3.1):

Proposition 4.3.4 Let the BSP problem (S) be solved by the advanced-step SA or SMP

algorithms. Then for every t > 1, for both SA and SMP one has

t t
Q—i—ZrT—i—ZsT], (132)
T=1 T=1

€sad(2)) STV Q+ R+ S =T, !
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where

t
Ft = Z Y75
T=1

Y(F((t), G — z) in the case of SA

ry =
Y(F (), —wy) in the case of SMP

[ (F(Gt), 2t — 2e41) — Vo (2e41)],  in the case of SA
St =
[V (F(G), wr — ze+1) — Vz, (2¢41)],  in the case of SMP

with r <0 and

gHF(Q)\P < gFf, in the case of SA
= ; 2 _ 1 2 o WAr2 s (133)
%THF(Q) — F(no)|l7 — 5llwe — 2z|]* < M2, in the case of SMP.
In order to extract from (132) explicit efficiency estimates, we need to specify a stepsize
policy. In this respect, the advanced implementations offer more freedom than the basic

ones, since now we should not ensure neither the martingale property of the random sums

Ry, nor the monotonicity of the stepsizes. One option here is to use constant stepsize policy

1 .
2Q) -, in the case of SA
%2\/;- e J1<t<N.
ﬁ*, in the case of SMP

As it is easily seen, with this policy, (132) results in efficiency estimate (cf. (124))

F.\/$, inthe case of SA  (a)

vt > 1, E{ea(z")} <0(1) (134)

RL % in the case of SMP  (b)
Our preliminary experiments, however, suggest to equip the advanced implementations of

SA and SMP with the online stepsize policy as follows. Let us set

62 * : 2
=" 8 :;57 [< ©%(1 4+ Int)] (135)

and let us choose 7, according to the “greedy” rule (the larger, the better) under the

restriction that for all t = 1,2, ... it holds
R+ S; < St*v (*t)

see (132). Specifically, assume that we have already carried out ¢ — 1 steps of the algorithm

ensuring the relations (x;), 7 <t — 1, and are about to define 7; in order to carry out step
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t and to ensure (#;). At this time, we know R;_; < 0 and S;_1, same as know for sure that

whatever be our choice of 4 > 0, we would have

F2 .
5 in the case of SA

MTE < 2L%R?, in the case of SMP

Ri—Ri1=1<0, S,—S_1=s5<0v, 0=

(see (133)). Thus, we can be sure that S; + Ry < [Si—1 + Ri—1] + 077, meaning that when

choosing

7= \/15¢ — Sic1 — Ri1]/8 (136)
we guarantee the validity of (%;) and the inequality v, > \/W This observation combined
with (132) and (*p) implies that
Ny < 92/2N+ Ry + 5y _ 0(1)0*(1+1InN)

e Vo /0 > Ve /0

OF,N~Y2 in the case of SA,
< O(1)(1+1InN)- (137)

ORLN/2_ in the case of SMP.

VYN >1: €z

Observe that (137) is, within the logarithmic in N factor O(1)(1 +In N), the same as the
bound (134). In fact, we could somehow reduce this logarithmic gap by modifying sy, but
we do not think this is necessary; we may hope (and the experiments to be reported in
Section 4.5 fully support this hope) that “in reality” the rule (136) is much better than it
is stated by the above worst-case analysis. The rationale behind this hope is that while we
indeed are conservative when thinking how large could S; — S;—1 be, we account, to some
extent, for the “past conservatism:” when S;_1 + R;—1 is essentially less than S} |, v as
given by (136) is essentially larger than its lower bound used in the complexity analysis.
Finally, we remark that the major theoretical disadvantage of the efficiency estimate
(137) as compared to (124) is much more serious than an extra log-factor. While with the
basic implementation, in course of N steps the stochastic oracle is called O(1)N times, the
number of oracle calls in course of NV steps of the advanced implementation is random and
can be much larger than O(1)N; it is unclear why it should be O(1)N even on average.
Though for the time being we cannot support the empirical evidence by a solid theoretical
complexity analysis, in our experiments the advanced implementation by far outperformed

its basic counterpart.
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4.3.4 The Favorable Geometry Case

We are about to present the “favorable geometry” case where we can point out the setup for
SA/SMP which results in (nearly) dimension-independent efficiency estimates. Specifically,
assume that

[G.1] The domain Z of (S) is a subset of the direct product Z* = By x .... x By, of

r = p+ q “standard blocks” as follows:
o for 1 <i <p, B; is the unit Euclidean ball in F; = R™;

e for 1 < j <gq, By, is a subset of the space Fj,1; of npyj X nyij (npy; > 1) symmetric
block-diagonal matrices of a given block-diagonal structure and is the spectahedron

of F4;, that is, the set of all positive semidefinite matrices from F},; with unit trace.

In particular, B,y; can be the standard simplex {z € RY : >, z, = 1} (since the

space of diagonal k x k matrices can be naturally identified with R¥).

We equip F; = R™, ¢ < p, with the standard Euclidean structure and the associated
Euclidean norm | - ||y, and Fp1; — with the Frobenius Euclidean structure and the trace-
norm (the sum of singular values of a matrix) | - ||(,4;). In particular, the embedding space
E = Fy x...x F, of ZT becomes equipped with the direct product of the indicated Euclidean
structures. Note that the norm || - [|(; ) conjugate to || - [|;y is either the norm || - [ ;) itself
(this is so when ¢ < p), or is the standard matrix norm (maximal singular value of a matrix)
(this is so when ¢ > p). We denote a vector form on E as x = [z1;...;z,], where z; is the
Fy-component of x.
G.2. The decomposition Z = Zy X Zy C E1 X Ey is compatible with the decomposition
Z = Bj X ... X B,, that is, F; is the direct product of some of Fy, 1 < ¢ < p+ q, and FEs
is the direct product of the remaining Fj. Besides this, we assume that Z intersects the
relative interior of Z7.

We refer to this case as to the one of favorable geometry and associate with this case

the setup for SA and SMP as follows (cf. [101, Section 5]):
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e The skew-symmetric linear mapping A (see (89)) can be written down as
T T
Alw; s = Y Aays5) Ay,
j=1 j=1
where A% is a linear mapping from Fj to F; and [A¥]* = —AJ". We denote by L;; an
a priori upper bound on Lj; := max {IlA% 2| ;) : lljll ;) < 1} such that Ly = Ly;.*
@

e Further, we set

wz(xz):%x;f:vl B; — R, Qi:%, 1<i<p
Wt (Tpj) = 220027 Ne(@pg) Im(Ne(@p)) = Bprj = R, Qi = 21In(ny), 1 <j < ¢

where A\y(u) are the eigenvalues of a symmetric matrix u taken with their multiplicities.

It is known that wy(-) is a d.g.f. for By compatible with the norm || - ||, 1 < £ <.

e Finally, we define the norm || - || on E and the d.g.f. w(-) for Z according to

o= L T LY
(== szl =
Q370 i1 Lij/ 09,

D wllzel?y, wl@) = pewe(e),
=1 =1

(138)
which results in

N<1L,RSOSV2 L= L/, (139)

ij=1

see [101, Section 5.

Remark 4.3.1 From the results of [77] it follows that the norm ||€||« = \/22:1 ,u;l||§g||%i 0
is se-regular (see discussion in Section /.53.2.4) with nearly dimension-independent s, namely,

= 1 ).
» 3{%&%{} n(np+;)

Note that the applications presented in Sections 4.2.2.2 and 4.2.2.3 are of favorable geome-
try; the same is true for the low dimension approximation problem of Section 4.2.1.3 after

passing from the variable @ to the variable R = d~1Q.

“The latter restriction is natural, since L}; = L7; due to [AY]* = —A7".
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4.4 Solving the Generalized Bilinear Saddle Point Problem

Here we explain how a GBSP problem (95) — (96) can be reduced to a “small series” of BSP
problems; the strategy to follow originates from [24]. From now on we assume, in addition
to A.1-2, that we have an a priori upper bound p on the optimal value p, of (96). For
example, it is immediately seen that when finding an e-solution to ¢1-minimization problem

with £,-fit (Section 4.2.2.2) in the only nontrivial case ||b||, > ¢ relation (99) implies that

_ [ Al[1-p
= . = , ||A = max || A4,]», 140
where Aj, ..., A, are the columns of A. In particular, when finding an e-solution to f;-

minimization problem with the uniform fit in the only nontrivial case [|b||oo > ¢ we have

_ H11H1—>oo 1
5 - 0, ‘= |4 = max |A4;;|: 141
Hb||oo—5 = Opt’ H Hl o i,J | ”|’ ( )

For the sake of definiteness, we assume that we are in the Favorable Geometry case,
and that the decomposition Z = Z11 X Z13 X Zs C E, see (97), is compatible with the
decomposition £ = Fj X ... X F,, that is, the embedding spaces of Z11, Z12 and Z, are
products of some of Fy’s. To save space, we restrict ourselves with the SMP algorithm;

modifications in the case of SA are straightforward.

The algorithm solves the problem of interest (96) by applying to SV(-) a Newton-type
root finding routine, with (approximate) first order information on SV at a point p given by
SMP as applied to the saddle point problem specifying SV(p). Specifically, the algorithm
works stage by stage. At a stage s, we have at our disposal an upper bound ps on p, and

a piecewise linear function £s_1(p) which underestimates SV(-):
SV(p) = ls—1(p) Vp = 0.
here p1 = p, {y = —o0. At a stage, we apply SMP to the BSP problem
SV(ps) = Jmin max @7 (21, 22) (Ss)

namely, act as follows.
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A. We start stage s with building the setup for SMP as explained in Section 4.3.4. The

affine operator associated with (S;) is

FPe(z1 = [z115 212], 22) = ®(21,22) + ps ¥ (21, 22)
= [[a11 + B*22; ps(a12 + C*22)]; —b — Bz11 — ps(c + Cz12)],
see (95), (97). In matrix A = A, of the linear part of F#s, some blocks A% are independent of

ps, while the remaining blocks are proportional to ps. Consequently, the Lipschitz constant

of FPs as given by (139) is
L=L(ps) =M+ psN, M, N >0. (142)
An analogous decomposition holds for vector a = a,:

lallx = p+ psv, p, v > 0.

B. We apply to (S;) either the basic, or the advanced implementation of the SMP. When
running the basic SMP, we use the distributions Pz(k), see Section 4.3.2.4 (here k > 1 is
a parameter of the construction) and use the online stepsize policy (125), where we set
L=M+ pN and Q =1 (see (139)). When (S;) is solved by the advanced SMP, we use
the online stepsize policy (135) — (136), with © = /2 in (135).

B.1. Let 2% = [z} 28] be the approximate solution to (Ss) generated after ¢ steps of stage
s; recall that along with this solution, we have at our disposal the quantities

—t
¢ = maxX.,ecz, ¢ (21%, 22) = v + (a11, 215) + ps[x + (a2, 213)]

+min,, ez, (22,0 + psc + Bzl + pC2i5),

N (143)
¢ = min. ez ¢ (21,25) = v+ (b, 25°) + min., ez, (a11 + B2, z11)

Qts
-

+ps [Fﬂ + {c, Z§S> +ming ez, (a2 + C*zés, Z12>]

(cf. (113) and see (95), (97)). We set

ts _ . TTS jgts TS _
ut =ming, £ =max ™, bis(p) = maxlla-1(p), max[pra + grapl]

Note that u'® is a nonincreasing in ¢t upper bound on SV(ps), £ is a nondecreasing in ¢ lower

bound on SV(ps), and £4s(p) underestimates SV(p) for all p > 0. In addition, 4s(ps) > £%5.
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SV(p)

Figure 1: Illustration of the algorithm for solving GBSPP
Note also that after ¢ steps we have at our disposal vectors w!® € Z1, w& € Z5 such that

—t .
max ¢* (wlf, z9) = u'® < ¢ ° min PP (21, wh) = 015 > @ts,
22€Z> Z1€Z1

meaning that w'® = [w!¥; wf] is a feasible solution to (Ss) and egq(w!®) = u® — 1% <
ats . ?ts _ esad(zts)'

B.2. We proceed with solving (Ss) until one of the following two situations occurs:

A) We get u'® < eps. In this case we terminate with the claim that ps,w!® is the desired

e-solution to (95) — (96).

B) We get £t > %uts . When it happens, we set

pest = max{p: f1s(p) < 0}, £u(-) = us(") (144)

and pass to the stage s + 1. An illustration of this algorithm is given in Figure 1.

Theorem 4.4.1 When solving a Generalized Bilinear Saddle Point problem (95) — (96) by
the outlined algorithm:

(i) The algorithm terminates in finite time with probability 1, and the resulting solution
is an e-solution, as defined in Section /.2.2, to the GBSP problem in question;

ii) The number of stages does not exceed the quantity O(1)In l¢lloot+pll¥lloe + 2, where
(i) 9 y e

[@lloc = max.ez |p(2)], [[¢]lco = maxzez [12(2)], see (95).
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(iii) The (random) number Ny of steps at every stage s of the basic implementation

satisfies for all € > 0 the relation
Prob{N, > N(e)} < e V() 4 A

where

N(e) = O(1)Ceil

€Dx k €Dx k €Px

2 2 2
M+p*/\/+ so(k, A) <M+p*/\/> L2 (ﬂ*’“”) ] (145)

The number of steps at every stage of the advanced implementation of the algorithm does

not exceed

M+ pN +2ep. <./\/l+p*./\/'+26p*>r. (146)

N e =
For proof, see Section 4.6.4.

In the case of ¢1-minimization problems with uniform- and f»-fits, Theorem 4.4.1 as
applied to the basic implementation of SMP with k& = 1, initialized according to (141),
resp., (140), after completely straightforward computations implies the complexity bounds
stated in Proposition 4.1.1. The preprocessing mentioned in item (ii) of Proposition is as
follows: we choose an m x m orthogonal matrix U with moduli of entries not exceeding
O(1)/4/m and such that multiplication of a vector by U takes O(mInm) operations (e.g.,
U can be the matrix of the Cosine Transform). We then draw at random a +1 vector £

from the uniform distribution on the vertices of the unit m-dimensional box and pass from

the data [A,b] to the data
[A" = UDiag{¢} A, V' = UDiag{¢}],

thus obtaining an equivalent reformulation of the problem of interest. Note that this pre-
processing costs O(1)mnIn(m) operations. We clearly have ||A’[|1—2 = ||A]12. Applying

the Hoeffding inequality, it is immediately seen that with probability > 1 — x one has

A 11500 < O(1)/In(mn/x)m /2| Al|1 e, that is, T(A") < O(1)y/In(mn/x), as stated in

Proposition 4.1.1.
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4.5 Numerical Results

Below we report on a series of numerical experiments aimed at comparing the performances
of the Stochastic Mirror Prox algorithm SMP (in its advanced implementation) and its
prototype — Deterministic Mirror Prox algorithm (DMP) proposed in [101]°. The algo-
rithms were tested on the GBSP problems of ¢;-minimization with uniform and #o-fits,
see Section 4.2.2.2. The MATLAB 7.10.0 implementation of the algorithms was executed
on an eight-core machine with two quad-core Intel Xeon E5345 CPU@2.33GHz, 8 MB L2
cache per quad-core chip and 12GB FB-DIMM total RAM (the computations were running

single-core and single-threaded).

Test problems we use are of the compressive sensing origin. Specifically, given the sizes
m,n of a test problem, we picked at random an m X n matrix B with i.i.d. entries taking
values +1 with probabilities 0.5, and a sparse (with Ceil(y/m) nonzero entries) “true signal”

x, normalized to have ||x.||; = 1, thus giving rise to the test problem
Opt,, = min {|[a|1 : Az~ yll, <6}, A=m™PB, y = Az, +¢ (B,)

where p = oo (uniform fit) or p = 2 (/>-fit). The “observation noise” { was chosen at
random and then normalized to have |£||, = 6. Our goal is to solve (P,) within accuracy
€, i.e., to find z, satisfying [z[1 < Opt, and ||Az. — yl, < § + ¢ In all our experiments,

6 = 0.005 and € = 0.0025 were used.

Implementation of the algorithms. The GBSP reformulations of problems (P,) were
solved by SMP (in advanced implementation) and DMP according to the scheme presented
in Section 4.4. In the case p = oo of uniform fit, both SMP and DMP used the GBSP
problem reformulation given by (102). In the case p = 2 of fs-fit, SMP used the GBSP
reformulation (101), while DMP was applied to the GBSP problem stemming directly from

(100) with p = 2, namely, given by

o (21, 22) = zg(Aanl —pb) — pb, Zy = Z11 = Aoy, Zo = {||22]|2 < 1}. (147)

SDMP is nothing but SMP with precise information (i.e., P, is the unit mass sitting at z) and on-line
stepsize policy described in [101, Section 6].
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The rationale here is that the GBSP given by (147) “by itself” is easier than the GBSP
given by (101): an e-solution to the latter problem induces straightforwardly an e-solution
to the former one, but not vice versa. As a compensation, the problem (101), in contrast
to (147), is better suited for randomization®. The latter fact, which is crucial for SMP, is
irrelevant for DMP, this is why we apply this algorithm to the GBSP given by (147). In
order to make a fair comparison, when running SMP for /»-fit, we terminate the run based
on the fy-residual of the solution.

When implementing SMP, we utilized the option, discussed in Section 4.3.2.4, of building
an estimate F(¢) of F(z) by generating k samples ¢ ~ P,, £ = 1,...,k, and setting ¢ =
%Zif:l ¢f. The “multiplicity” k was set to 40 for small instances and 100 for large (those
with at least 108 nonzeros in A) instances.

In our implementations, we have tested different policies for choosing the starting point
at each stage and different choices of the distance generating function (d.g.f.) for the sim-
plexes. Specifically, along with the entropy d.g.f. discussed in Section 4.3.4, we tested the
power d.g.f. w(z) = ﬁzzll o} {r e RY Y m; < 1} — R, with &k = ﬁ; the
theoretical complexity bounds associated with this choice of d.-g.f. coincide, within absolute
constant factors, with those for the entropy. The detailed results comparing the effects of
these policies on the performance are provided in Tables 13 and 14 in Section 4.7. The best
policies we ended up with are as follows:

— for SMP: entropy d.-g.f., restarts from the w-center of Z (“COOE” implementation);

— for DMP, in the case of uniform fit: power d.-g.f., restarts from the convex combination
of the best (with the smallest €g,q) point found so far and the w-center of Z, the weights
being 0.75 and 0.25, respectively ("B75P” implementation);

— for DMP, in the case of fo-fit: power d.-g.f., restarts from the convex combination of the

last search point of the previous stage and the w-center of Z, the weights being 0.25 and

5Indeed, in the second problem all nontrivial matrix-vector multiplications required to compute F? (2)
are multiplications of vectors from the ¢;-balls by A and AT; since a vector from ¢;-ball is the expectation
of an extremely sparse (just one nonzero entry) random vector taking values in the same ball, the required
matrix-vector multiplications admit cheap randomized versions. In the first problem, some of the required
matrix-vector multiplications involve vectors from the || - ||2-ball, and such a vector typically cannot be
represented as the expectation of a sparse random vector taking values in the ball.
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0.75, respectively ("L25P” implementation).

The results, I. In order to avoid too time-consuming experimentation, we primarily dealt
with “moderate size” test problems. These problems were split into four groups according
to the total number of nonzeros in A (2-10%, 8105, 32-10%, 128 - 10%). Every group was
further split into two subgroups according to the ratio n : m (8 and 2). For every one of the
resulting pairs (m,n), we generated 5 instances of problem (P,) and 5 instances of problem
(Pso) and solved them by DMP and SMP. Thus, the methods were compared on totally 70
problems split into 14 series of 5 experiments each, with common for all experiments of a
series sizes m,n and the value of p. The results are presented in Tables 10 (uniform fit)
and 11 (f2-fit). For every series of 5 experiments, we present the corresponding minimal,
maximal and average values of several performance characteristics, specifically

e CPU — the CPU time (sec) of the entire computation

e Calls — the total number of computations of the values of F

e FCalls — the equivalent number of calls to the deterministic oracle for the randomized
algorithm. This quantity is defined as follows. For DMP, computing a value of F' at a
point reduces to a pair of matrix-vector multiplications, one involving A and the other
one involving AT the cost of this computation is 2mn operations. For SMP invoked with
multiplicity k (see above), the computation of (an unbiased estimate of) F(z) requires
multiplying one vector with < k nonzero entries by A, and another vector with < k nonzero

entries by AT, the total cost of these two computations being k(m-+n) operations. Thus, the

k(m-+n) The

2mn

“deterministic equivalent” of the randomized computation of F' used by SMP is
quantity FCalls is the induced by this definition deterministic equivalent of all randomized
computations of F' in a run of the SMP.

The data in Tables 10, 11 and their summaries provided in Figures 2-7 suggest the

following interpretations:

1. As the sizes of instances grow, the randomized algorithm eventually outperforms its
deterministic counterpart in terms of the CPU time, and the corresponding “savings”

grow with the size m x n of the instance, and for instances of a given size — grow as
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the ratio n/m decreases. Both phenomena are quite natural: the larger is mn and the

m+n
2mn

smaller is n/m > 1 for a given mn, the smaller is the deterministic equivalent k

of a randomized computation of F.

2. Even for our “not too large” test problems, the savings stemming from randomization
can be quite significant: for the 8000 x 16000 instances, SMP is, at average, nearly
4.6 times faster than the best version of DMP for problems with uniform fit and 2.1

times faster than DMP for problems with ¢o-fit.

When interpreting the CPU time data one should keep in mind that oracle calls of
DMP make use of very efficient MATLAB implementation of matrix-vector multipli-
cation, while SMP relies upon much less efficient (with respect to, e.g., C language)

implementation of long DO loops.

3. The advantages, if any, of SMP as compared to DMP are more significant in the
case of uniform fit than in the case of fo-fit. This phenomenon is quite natural: as
we have already explained, in the case of £5-fit the methods are applied to different
GBSP reformulations of (P,), and the reformulation DMP works with is easier than

the one processed by SMP.

The results, II. In order to get impression of what happens when the matrix A in (P,)
is too large to be stored in RAM, we carried out two experiments where the goal was to
solve the f;-minimization problem with uniform and with ¢y fits and fully dense (m =
32000) x (n = 64000) matrix A given by a simple analytical expression. This expression
allows to compute a column/a row of A with a given index in O(m), respectively, O(n)
operations. Matrix A = A, was normalized to have ||A[[;—, = 1. While the sizes of A make
it impossible to store the matrix in the RAM of the computer we used for the experiments,
we still can multiply vectors by A and AT by computing all necessary columns and rows,
and thus can run DMP and SMP. In our related experiments, we generated at random a

c R64000

sparse (64 nonzeros) “true” signal x, with ||z.][1 = 1, computed y = Az + ¢,

&, |€l[, = 6 = 0.005, being observation noise, and ran DMP and SMP in order to find
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an e-solution z., e = 0.0025, to the resulting problem (P,); in particular, we should have
|zelli < ||z«]l1 = 1 and ||Aze — b|| < 0 + € = 0.0075. In every experiment, each of the

methods was allowed to run at most 7,200 sec. The results are as follows.

e In the allowed 7,200 sec, the deterministic algorithms on every one of the two test
problems (p = 2 and p = co) was able to carry out just about 30 steps with the total
of about 67 computations of F'(-); this is by far not enough to get meaningful results,
see Table 12. In contrast to this, the numbers of steps and randomized computations
of F' carried out by the randomized algorithm in the same 7,200 sec was in the range
of tens of thousands, which was enough to fully achieve the required accuracy for both

p=oc and p = 2.

e While the quality of approximation of x, by the solution yielded by DMP is basically
non-existing, the SMP produced fairy reasonable approximations of x,, see Table 12

and Figure 8.

In our opinion, the preliminary numerical results we have reported suggest that “acceleration
via randomization” possesses a significant practical potential when solving extremely large-

scale convex programs of appropriate structure.

4.6 Proofs of Chapter /

4.6.1 Low Dimensional Approximation

We use the notations of Section 4.2.1.3.

Lemma 4.6.1 Let Q. be an optimal solution to (92), \y > Aa > ... > A, be the eigenvalues
of Qx, €1,...,en be the corresponding eigenvectors of Q«, and E = Lin(ey, ...,eq). Then for
any v € V, dist(v, E) < d./d+ 1 (here dist(z, E) stands for the Euclidean distance from v

to E).

"Percents given in the table represent ||Z — z.||/||z«| for the corresponding norms || - |.
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Table 10: Numerical Results for ¢;-minimization with || - ||co-fit

DMP SMP
H Sizes H Calls \ CPU || Calls \ FCalls \ CPU chgfi’sl?sl\ﬁﬁ; \ %ﬁ%’gﬁg H
500 x 4000 || Mean (COOE) || 2661.6 | 106.6 || 10511.0 | 2365 | 57.2 11.89 1.08
Min (COOE) || 1683.0 | 50.0 || 8159.0 | 183.6 | 34.0 6.91 1.16
Max (COOE) | 4395.0 | 179.4 || 11783.0 | 265.1 | 83.4 23.94 4.14
Mean (B25P) || 1453.4 | 104.1 6.15 1.89
1000 x 2000 || Mean (COOE) || 1830.8 | 64.0 || 10568.8 | 158.5 | 42.9 11.69 1.54
Min (COOE) || 1344.0 | 41.0 || 8434.0 | 1265 | 28.8 7.82 1.02
Max (COOE) | 2507.0 | 91.5 || 11576.0 | 173.6 | 70.4 15.83 2.02
Mean (B25P) || 1530.6 | 97.9 9.64 2.48
1000 x 8000 || Mean (COOE) || 2338.0 | 227.0 || 12406.6 | 139.6 | 113.2 16.63 1.99
Min (COOE) || 1453.0 | 119.4 || 11579.0 | 130.3 | 88.2 11.15 1.27
Max (COOE) | 2739.0 | 370.2 || 13895.0 | 156.3 | 168.9 18.99 2.39
Mean (B25D) || 1545.6 | 248.9 11.08 2.30
2000 x 8000 || Mean (COOE) || 2691.6 | 227.6 || 12922.8 | 96.9 | 745 27.93 3.10
Min (COOE) || 1132.0 | 97.7 || 109340 | 82.0 | 56.6 12.24 1.37
Max (COOE) | 3355.0 | 313.1 || 15632.0 | 117.2 | 88.8 35.46 4.25
Mean (B25P) || 1426.4 | 207.8 14.74 2.81
2000 x 16000 || Mean (COOE) || 2384.6 | 494.2 || 13174.8 | 74.1 | 184.9 32.30 2.68
Min (COOE) || 2288.0 | 486.3 || 11735.0 | 66.0 | 174.4 20.78 2.53
Max (COOE) | 2491.0 | 505.5 || 14720.0 | 82.9 | 195.3 34.66 2.84
Mean (B25P) || 1575.2 | 533.7 21.41 2.89
4000 x 8000 || Mean (COOE) || 2023.6 | 798.7 || 19750.2 | 74.1 | 2284 30.42 3.30
Min (COOE) || 2032.0 | 407.6 || 17262.0 | 64.7 | 159.0 28.86 2.34
Max (COOE) | 3895.0 | 1539.7 || 22945.0 | 86.0 | 343.1 48.61 4.49
Mean (B25P) || 1554.6 | 576.2 21.12 2.63
4000 x 32000 || Mean (COOE) || 24828 | 2054.3 || 11073.2 | 842 | 515.8 20.47 3.98
Min (COOE) || 1826.0 | 1448.9 || 11331.0 | 79.7 | 499.9 22.39 2.90
Max (COOE) | 3479.0 | 2904.2 || 12715.0 | 89.4 | 525.0 42.65 5.70
Mean (B25P) || 1604.8 | 1736.3 19.19 3.36
8000 x 16000 || Mean (COOE) || 2680.4 | 2227.7 || 12474.6 | 585 | 375.0 15.78 5.02
Min (COOE) || 2297.0 | 1890.1 || 11493.0 | 53.9 | 341.9 41.12 5.44
Max (COOE) | 3177.0 | 2609.0 || 13759.0 | 64.5 | 408.8 49.26 6.48
Mean (B25P) || 1615.8 | 1752.7 || 12474.6 | 58.5 | 375.0 2757 163

126



Table 11: Numerical Results for ¢;-minimization with || - ||2-fit

DMP SMP
| sizes | Calls | CPU | Calls | FCalls | CPU || &t | Spvsnp |

500 x 4000 Mean (COOE) 579.8 21.0 4771.6 106.7 24.6 5.91 0.93

Min (COOE) 410.0 14.5 3412.0 76.3 16.9 3.18 0.49

Max (COOE) 722.0 40.3 6868.0 153.5 36.0 8.40 1.94

Mean (L75P) || 287.8 | 16.1 2.95 0.70

1000 x 2000 Mean (COOE) 553.0 19.0 3910.8 54.8 13.6 10.73 1.47

Min (COOE) 463.0 9.1 3315.0 46.4 11.5 5.68 0.52

Max (COOE) 664.0 30.1 5890.0 82.5 17.4 13.56 2.34

Mean (L75P) 282.4 14.1 5.44 1.07

1000 x 8000 Mean (COOE) 617.0 56.6 5148.8 57.5 50.7 11.25 1.17

Min (COOE) 486.0 34.7 3745.0 41.9 36.1 7.68 0.74

Max (COOE) 794.0 87.1 6050.0 67.6 64.8 18.35 1.93

Mean (L75P) || 318.8 | 40.9 5.84 0.86

2000 x 8000 Mean (COOE) 634.8 39.8 5853.6 41.0 47.2 15.94 0.86

Min (COOE) 487.0 30.0 3926.0 27.5 33.1 11.17 0.59

Max (COOE) 796.0 51.0 6869.0 48.1 54.0 20.49 1.12

Mean (L75P) 318.8 25.9 8.05 0.58

2000 x 16000 Mean (COOE) 531.8 | 150.7 || 5055.6 28.3 90.0 19.88 1.80

Min (COOE) 438.0 | 108.3 3947.0 22.1 60.2 11.64 0.87

Max (COOE) 608.0 | 180.3 || 6736.0 37.6 125.1 24.80 2.49

Mean (L75P) 346.0 | 110.6 12.74 1.28

4000 x 8000 Mean (COOE) 675.2 | 138.5 || 6504.6 22.8 101.7 29.71 1.36

Min (COOE) 531.0 99.1 5868.0 20.5 83.3 22.71 0.99

Max (COOE) 810.0 | 193.6 7143.0 25.0 113.9 34.52 1.70

Mean (L75P) || 346.4 | 86.3 15.21 0.85

4000 x 32000 Mean (COOE) 672.2 | 486.0 5613.4 39.2 287.2 17.66 1.74

Min (COOE) 506.0 | 382.5 3418.0 23.9 197.2 12.08 1.26

Max (COOE) 817.0 | 579.1 6611.0 46.2 336.4 22.57 2.15

Mean (L75P) 355.4 | 311.6 9.39 1.12

8000 x 16000 Mean (COOE) 592.4 | 591.4 5815.0 25.4 177.6 24.15 3.51

Min (COOE) 509.0 | 472.4 3765.0 16.5 117.3 16.56 2.36

Max (COOE) 696.0 | 798.1 7038.0 30.8 214.1 30.90 5.06

Mean (L75P) 329.8 | 360.2 13.38 2.10

Table 12: Experiments with dense 32,000 x 64,000 matrices A
CPU

Method P Steps | Calls | FCalls | (sec) |AZ — b||p |z — 24|17 |Z — z«||2 |Z — z+ || oo
DMP (CO0E) | oo 30 71 71 7564 0.16018 1.406 (141%) | 0.143 (89%) | 0.041 (79%)
DMP (B25P) || oo 31 67 67 7363 0.15975 1.361 (136%) | 0.136 (85%) | 0.035 (69%)
SMP (CO0E) || oo || 7501 | 22141 | 25.9 | 5352 0.00744 0.048 (5%) 0.005 (3%) | 0.002 (4%)
DMP (CO0E) || 2 29 67 67 7471 0.03653 1.455 (146%) | 0.135 (84%) | 0.035 (68%)
DMP (L75P) || 2 30 67 67 7536 0.02480 0.976 (98%) | 0.093 (58%) | 0.022 (42%)
SMP (COOE) || 2 || 2602 | 7749 85 2350 0.00715 0.264 (26%) | 0.021 (13%) | 0.004 (7%)
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Proof. Note that 0 < A; <1 and Zj Aj =d, so that \; < d%‘il-l when 7 > d + 1. Denoting

by y;(x) the coordinates of x in the eigenbasis {e;}, we have

dist?(v, E) = 1 — Z;l:1 yJQ(U) <1- E;l:l )\jyjz(v) [since \; < 1]
<1 =300 A2 (0) + Aarn X g1 95 (0) = 1 =0T Qu + Agyadist® (v, E)
= (1= Aggp1)dist?(v, E) <1 —0TQu <1 —O0pt <1-Opt, =52

= dist®(v, E) < (d+ 1)62 [since A\gy1 < ﬁ‘ll],

as claimed. OJ

Representing a vector from A, ; as a convex combination of extreme points.

The case of d = n is trivial, thus, let d < n. Let

qEAmd:{qERi: OSC_[Z’SlVi,Zqi:d}'

=1

To represent ¢ as a convex combination of n extreme points of A, ; we act as follows:

e Initialization: We set p® = [1;q], u° = 1. Note that p® € A = {p = [1;p1;...;pn] €

Api1drt}-

e Stept=1,2,.... Given p!~! = [1;p§_1; ;P € A, we find the d + 1 largest among
the entries pf_l, 1=1,...,n, let their indexes be %1, ...,%4+1, Where pfl_l > pfg‘l > .2
plit;rll'

a) It may happen that pﬁz_l =1for1 </ <d;since p'~! € A, r* := p'~! is a Boolean
vector with exactly d + 1 entries equal to 1, and ¢! = [pﬁ_l; ;P is an extreme

point of A,, 4. We set v, = 1, p* = 0 and terminate.

t—1

b) When not all pgzl, 1 < ¢ <d, are equal to 1, we set v, = min|[1 —pidﬂ,p:f;l], define

rt as Boolean (n + 1)-dimensional vector with d + 1 entries equal to 1, the indexes of

the entries being 0,1, ..., 74, set p' = [p!=1 — 7] /(1 — 1), ¢¢ = [rt;...;rL] (note that

¢' is an extreme point of A,, 4) and pass to step ¢ + 1.

Observe that the algorithm is well defined. Indeed, 0 < v, < 1 by construction, and v, = 1

t—1

i = 0 and pfd_l =1, that is, when we terminate at step ¢ according to a).

if and only if p

Thus, p' is well defined at every non-termination step . Moreover, from b) it is immediately
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seen that at such a step we have p) =1, 0 < p! < 1 for all i and Yoo piT = d + 1, that
is, p' € A for all ¢ for which p' is well defined. Beside this, it is immediately seen that
those entries in p'~! which are zeros and ones remain zeros and ones in p’ as well, and that
the total number of these entries increases at every step of the algorithm by at least 1.
The latter observation implies that the algorithm terminates in at most n steps. Finally,
by construction p=1 = (1 — 14)p’ + 147!, whence, denoting by  the termination step, p° is
a convex combination of r!, ..., r" with coefficients e readily given by vy, ..., v;. Discarding
in 7!, ...,rf the entries with index 0, we get extreme points ¢, ...,q’“T of A, 4 such that

q = Zle pqt. Finally, the computational effort per step clearly does not exceed O(1)dn,

that is, the total computational effort is at most O(1)dn?.
4.6.2 Proof of Lemma 4.2.1

We have

SV(p) = in ¢
)= e e o)

= max min v+ px + {(a11, z11) + (b, z2) + (29, Bz
22€42 211€211,212€ 212 PX < 117 11> < ’ 2> < 2 11)

+p[{a12, z12) + (¢, z2) + (22, Cz12)] :|

= max |:U + px + (b, z2) + p(c, z2) + min [(all, z11) + (22, Bz11)

20€ 2o 211€211
9(22)
. C*
+p ZIIQIg?lQ [{(a12 + C™ 29, 212] }]
h(z2)

= max [v+ px + (b, 22) + plc, 22) + pg(z2) + min [(a11, 211) + (22, B211)] ]

20€ 2o 211€2411
= max [v+ (b, z2) + h(22) + p[x + (¢, 22) + g(22)] ]

2o€Zo

and thus SV(p) is the supremum of affine functions of p. O

4.6.3 Proofs for Section 4.3

We start with the following

Lemma 4.6.2 [cf. [101], Lemma 3.1.(b)] Given z € Z°, v >0 and {,n € E, let us set

w = Prox; (7€) = argmin, ¢z {(7¢ — w'(2),v) + w(v)},

24 = Prox; (yn) = argmin,e 7 { (v — o'(2),v) +w(v)}.
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Then w, z4 € Z°, and for every u € Z one has

a) y(nw—u) <Vy(u) = Vi (u) +y(n,w — 24) = Va(27)

(

b) < Vi(u) = Vo (u) +v(n—§w—zq) = Va(w) = Viw(zy)
)+
)+

) (148)
o) < Vi(uw) = Vay (u) + )0 = Ellllw — 2z = 3 [[lw — 2> + [w — 247

(
(
(
(

d) < Va(u) = Ve (u) + 5 [v?lln = €12 = [lw - 2[1°] .

n
Proof. The inclusions w, z4 € Z° are evident (a subgradient of w(-) at w, taken w.r.t. Z,
is, e.g., w'(2) — ¥¢, and similarly for z,). Now let u € Z. z, is an optimal solution of
certain explicit convex optimization problem; taking into account that w’(-) is continuous
on Z°, it is easily seen that the necessary optimality condition in this problem reads (yn +
W(24) = w(2),u— 24) > 0, whence y{n,w — u) < {n,w — 24) + (W (24) — & (2),u — 24),
and the latter inequality, after rearranging terms in the right hand side, becomes (a). By
similar reasons, 0 < (v€ + w'(w) — w'(2),v — w) for all v € Z; setting v = 2z, summing up
the resulting inequality with (a) and rearranging terms in the right hand side of what we
get, we arrive at (b). (c) follows from (b) due to V,(b) > 3[la—b||? (recall that w is strongly

convex, modulus 1 w.r.t. || - [, on Z). Finally, (d) follows from (c) due to pv — u* < 312

O

4.6.3.1  Proof of Proposition 4.5.1

Let us prove the bound (114). Consider first the case of SMP. Applying Lemma 4.6.2 to
z2=2r, Y =7, &= F(n;), n = F({;), which results in w = w, and z; = 2,41, we get for

all u € Z:

Y (F (&) wr —u) <V, (u) — VZT+1(U) + [V (F (&), wr — 2r41) — Vo, (2r41)]
whence for all u € Z

(F(Cr) G —u) < 7 (Vi (u) — Vi (w) + 77 + 57,
sr = (F(Cr),wr — 2r41) — ’Y;IVZT (2r+41)
< 5 [WIFG) = Fo)ll2 = v Hlwe = 21%] 5 (%)

e = (F(¢r), G —wr).

(149)
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with (x) given by (148). When summing up inequalities (149) over 7 and taking into

account that v > v2 > ..., V(u) > 0 and V, (u) =V, (u) < Q by definition of 2, we get

t

STUFG) G —u) <7+ sy + e (150)

T=1 T=1

On the other hand,

t

S UFG) G —u) =) la+ Al G —u)

T=1 T=1

t
= t{a, 2" —u) — Z(ACT, u) [A is skew symmetric]
=1

= t[{a,z" —u) — (A" u)] =t [{a, 2" — u) + (A2, 2" — )]

= t{F (2", 2" —u).

Thus, for all u € Z it holds

t
HF(2'), 2" —u) Q7+ [sr 1] =9 Q+ S + Re. (151)

=1
Setting 2! = [2%; 2L] and u = [uq; ug], we get from (89) (F(2%), 2 —u) = ¢(2}, uz) — Pp(uq, 23);
the supremum of the latter quantity over u € Z is nothing that the saddle point residual
€sad(2'). Since the right hand side in (151) is independent of u, we arrive at the SMP-version
of (114).

Now consider the case of SA. Applying Lemma 4.6.2toy =v,, 2 =z, { =0, n = F({;),
which results in w = 2z; and z4 = 2;41, and acting exactly as in the case of SMP, we arrive
at the SA-version of (114).

Let us prove (ii). The conditional to the “past” (the answers of the oracle prior to the
call for &) distribution of ¢, is P,,, which combines with the affinity of F' and the facts

that the linear part of F' is skew symmetric and the expectation of P, is z, to imply that

E{(F(¢), G —wr)} = (0, E{¢G;} —wr) + E{{(ACG, & —wr) } = —E{(AGr, wr)}
= E{{(A(w; — ), wr)} =0,

whence E{R;} = 0 for all t. By completely similar reasoning, E{R;} = 0 in the case of SA.
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To complete the proof (ii), we need to prove (119). We have

st < PG — Pl = 5w = P fsee (115)
< F0F@) = Pl + 1P = Pl + 1Pln) = PEllL = 5=l = =P
< [; o = P+ 2 [1P(G) — P+ 17 ) — FlaE).
<0 by (118)

It remains to note that ||F(¢;) — F(wy)||? + ||F(n:) — F(z)||? < 2M2 since ¢, we, ns, 2t € Z
and that the conditional, over the respective pasts, expectations of ||F({;) — F(w;)||? and

|F(n:) — F(2)||? do not exceed o2. 0

4.6.3.2  Proof of Proposition 4.5.2

We start with observing that (125) v > v >

19, Let us verify first that with the choice (125) of v, 7 =1,2,... we have for all t = 1,2, ...,
V20t > 8, (152)

Indeed, for t = 2,3,... we have (with 2S5 = F2 in the case of SA and 2S5y = 8QL2, > M?

by (107), in the case of SMP)

2 t—1
Vit o Asel /o +25%  Asale/umn (153)
% X 2sele /e + 25 250

(recall that 2s¢/v; < 2Sp by (116)). On the other hand

2[st—1]+
-2 t—1]+
7t _775 1= Q’yt—l )

and

Y 2 O - ) = e > Bl o B0 — 7] > [seals

where the second inequality in this chain follows from ;1 < v/27y; which is implied by

(153). By summing up the resulting inequalities in the above chain, we get

t—1
V2 > s + V200 (154)
T=1
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In the case of SMP, we have v = (2\@E)_1, whence \/5971_1 =4QL >y M2 > 4 M? (see
(107)), whence v29Q7; ! > s in view of (115), and (154) implies (152). In the case of SA,
we have 71 = VQ/F,, whence V20, ! = V2VQF, > 4 F2 > v, F2, whence V20, > s,
by (115), and (152) again is given by (154).

29, Invoking (114), (152) implies (126). Now, by (115) in the case of SA we have 2[s,] 1 /7, <

|F(¢)]1?. In the case of SMP we have

2[sel+ /v S NF(G) = Fno)ll2 = 27 2llwr — 27| [see (115)]

< IF(G) = Flw)lle + [F(wr) = F(zo) s + 1F(27) = ) 1] =21 2 lwr — 21
<B[IF(G) = Flw) |+ 1F () = Fn)l2] + [BIF(wr) = F(z)[1Z =21 2 lwr — 2]
< 6= 3[|F(¢r) = Flwr)|2 + 1F(2) = F()lIZ] [by (106) due to 47" = 2v/2L]

Invoking (125), we get

1/2
(F*2 + 3t HF(CT)H§> , in the case of SA
<2 7 N (155)
(8Q£2 + 5 §T> , in the case of SMP
which combines with (126) to imply (127). O

4.6.3.83  Proof of Proposition 4.5.3

19, Let us denote
t—1

SOt - 89£2 + ngr,
T=1
where ¢ = 3 [||F(¢) — F(we)||2 + [|[F(m) — F(z)]12] (cf. (128)). Let us show that under

the premise of Proposition 4.3.3

2
VA >0: Prob {cpt >0(1) [952 + %J{z(k‘, A)} } < exp{—At}, (156)

where O(1) is an absolute constant factor. We use the following result (see, e.g., Theorem
2.1 (iii) of [77]): let &, ..., ¥ be k independent vectors from E with ||¢?], < o and E{¢'} = 0,

where the norm || - ||« is se-regular, »r > 1. Then for any u > 0

k
Prob {H = [\/EJF uﬁ] m/E} < exp{—u?/2}.
=1
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When rewriting the above bound for ¢! = F(¢*) — F(w) and ¢ = F(n') — F(z) and taking

into account that ||¢%||, < M, we obtain

k
Yu>0: Prob {| Zf’”f > M2k(V2sx + \/§U)2} < exp{—u?/2}.

i=1
So, if we denote Prob; conditional probability over (y,m1, ...., (t—1, m:—1 being fixed, we get

24 M?
> 20 e ) < 2exp{-uy2),

Yu>0: Prob; {gt

where ¢; = 3 [||F(Q) — F(wy)||2 + || F () — F(zt)||z] (cf. (128)). When setting vy = %,

we have for the conditional expectation E; over (1,m1, ...., (;—1, :—1 being fixed and 0 < a <

1

“‘x

o0
/ ez Prob{v, > u}du
oo
ax 1
< e2 4 exp{— (;)u}du: 1jjexp{a—2%}

4

Et{exp{%l/t}} < eT

oo

exp{1}—1
exp{1}+1

2 {owi3 )

we get E; {exp{252}} < exp{2* + 1}, so that

E {Et {exp{i a*;T } exp{ a;Vt }} }

— {exp{z Qs VE, {exp{ Oé*ut}}} < exp{t(% +1)}

When choosing «a, =

Hence, when applying the Tchebychev inequality we find

VA>0: Prob {Z vy >t (%—f— (1+ A)> } < exp{—At}.

T=1

When recalling that ¢; < 6M2, we conclude that

t—1 )
VA>0: Prob {ZgT > min [6M3t, 24M, ¢ (%—1— 3(1 + A))} } < exp{—At}.
=1 k Qs

Since s > 1, x4 = (1 +A) < O(1)s2(k,A), and we arrive at (156).
20, We have

R )
VYA>0: Prob {tt > O(1)F, kt} <e (157)
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Indeed, since A is skew-symmetric, i.e., (Az, z) =0,
re = (F(G), G —w) = (a+ AG, G —wy) = (a+ Awy, G — wy) = (F(wy), ¢ — wy).

We conclude that

R, 1 1 I\ R
= thztZ<F<wT>,<T—wT>=tZ<F<wT>vkz@‘“”>

where &L = (F(w,), ¢t — w,) is a scalar martingale-difference with |¢¢| < 2RF, < 20F,

(cf. (105)). Then by the Azuma-Hoeffding inequality [%],
YA >0: Prob {]? > 20F, 2} <e

which implies (157).

Now we are done — when substituting the bounds (156) and (157) into (127) we get

%JFM%*k;A\/ +@F\/ ]}g"‘t e,

which is (130) if we recall that © = v/2Q and Fi < ||a||. +20L (cf. (108)). O

Prob {fsad(zt) >0(1)

4.6.83.4 Proof of Proposition 4.5.4
This proof is completely similar to the one of Proposition 4.3.1 and is omitted.
4.6.4 Proof of Theorem 4.4.1

1.  From the description of the method it follows that
Vi, s> 1,p>0:u" > SV(ps) > 0%, lis(p) < SV(p), £ < lis(ps). (158)

Let us prove by induction in s that p, < ps < p1. The base s = 1 is evident. Now let
px < ps < p1, and let stage s + 1 take place. When passing from stage s to stage s + 1, we

are in the case B) and thus have u'® > ep;, £ > 3 uts %eps, whence, in view of (158),

Us(ps) = lus(ps) > € > ax[eps, SV(ps)] & Ls(ps) > 0. (159)

»Noo
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This combines with 4:5(ps«) < SV(ps) < 0 and convexity of £;5(-) to imply that p, < psy1 <
ps. Induction is complete.

Since ps > ps, uf® is an upper bound on SV(p,) and u!® > ¢ (w'¥), we conclude that if
the algorithm terminates at stage s, then the result pg, w!® is an e-solution to the GBSP in

question.

29, Let us prove (ii). The reasoning to follow goes back to [%4]; we reproduce it here to
make the chapter self-contained. Let s be such that the stage s + 1 takes place, and let ug

be the last bound u!* built at stage s. Observe that

3 3
16Ps < JUs < Us(ps) < SV(ps) < us. (160)

Since the convex function /s(p) is nonpositive at p = ps+1 and is > %us >0at p=ps > pst1,

we have g := £ (ps) > 0 and

3
Ps — Ps+1 = ES(PS)/QS > ius/gs- (161)

Now assume that s > 1 is such that the stage s+ 1 takes place. Applying (161) and (160) to
s—1in the role of s, we get ps_1—ps > %us_l/gs_l and %us < ls(ps), whence, by convexity

of 45(-) and in view of (158), us—1 > SV(ps—1) > ls(ps—1) > ls(ps) + gs(ps—1 — ps) >

§ §US—1 é gsUs—1 Us
TUs + gs3 , so that sus—1 > us + T O o +

< % whence —Y% <
gs—1 >

1 = 3 Us—19s—1

gs
gs—

(1/4)(4/3)? = 4/9. Tt follows that

Vitsgs < (2/3)"7! Vg (162)

We have (5(ps) < SV(ps) =0, ls(ps) = %us (see (160)) and £s(ps) — £s(ps) < gs(ps — p)
> 2u

(convexity of £4(+)), whence gs > Sus(ps — ps)~t > %us, and (162) implies that

us < (2/3)"" irgiV/Api /3. (163)

Now, g1 = £1(p1) and £1(p) < SV(p) < [[¢lloc + plltbllco, Whence g1 < [|¢h][co, and clearly
ur < ||olloo + pillt|loo- At the same time, us > eps > €ps, so that (163) implies that

epx < (2/3)°H|blloo + p1l110]l0c]- The resulting upper bound on s implies (ii).
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3%. Let us prove (iii). From the description of the algorithm it follows that at every stage
s before termination of the stage the residual of current approximate solutions w® is > %eps
(since u'® > eps and £'% < %uts). In the case of short-step implementation we use the result
of Proposition (4.3.3) with € = eps. Let us denote Ns(¢) the corresponding value of N, as
in (131). We conclude that the number N; of steps at stage s is finite with probability 1
and satisfies Prob{N; > Ng(e)} < exp{—AN;(e)} + exp{—A}. As we have seen, p, < p, for
all s, and therefore Ny < N(e) for all s, provided that the absolute constant O(1) in (145)
is properly chosen.

For the aggressive-step implementation, similar reasoning based on the bound (137)

with £ = M + psN justifies (146).

4% Combining (ii), (iii) and the concluding claim in item 1° above, we arrive at (i). O

4.7 Detailed Numerical Experiments of Chapter j

Here we provide detailed results comparing the effects of different policies for choosing the
starting point at each stage and different choices of the distance generating function (d.g.f.)
for the simplexes on the performance of our algorithms. We encode various different policies

with codes “X NNY” where

e X can be [Clenter of the domain, or a weighted combination of center point with the

[Blest solution or [L]ast solution from the previous stages;

e NN gives the percentage for the convex combination weight used for the given starting
point X and 100 — NN is the percentage for the convex combination weight used for

the center of the domain, the possible values tested are 0.[00], 0.[25], 0.[75];

e Y denotes the distance generating function used for simplexes, with the [E]xponential,

[Plower d.g.f. options.

Thus “B25P” implementation would mean that power d.-g.f. is used, and at each stage the
algorithm restarts from the convex combination of the best (with the smallest €g,q) point

found so far and the w-center of Z, the weights being 0.25 and 0.75, respectively.
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The instances used are the same from Section 4.5 and for each given instance size, the

numbers in the tables are the respective averages for performance of the selected policy on

the corresponding instances.

Table 13: Detailed Results for ¢;-minimization with || - ||co-fit

DMP SMP
H Size H Option Calls CPU Steps  Stages Calls FCalls CPU  Steps Stages

500 x 4000 COOE 2661.6  106.6 912.2 4.0 10511.0  236.5 57.2  3505.2 4.8
B25E 3157.4 1249 1080.8 4.6 9235.6 207.8 52.1  3073.0 4.8

B50E 3856.0 156.0 1317.6 4.8 10303.2  231.8 55.3  3421.0 4.8

B75E 4495.4  180.8 1534.0 4.8 10524.4  236.8 55.3  3508.8 4.6

B25P 1453.4  104.1 506.4 4.4 8607.8 193.7 106.4 2880.8 4.6

B50P 1732.0 116.6 602.6 4.8 8708.4 195.9  107.1 2913.0 4.6

B75P 1986.2  132.0 688.2 4.8 10162.2  228.6  115.6 3385.0 4.8

L25P 1326.0 92.5 462.6 4.4 13666.4  307.5 166.3 4569.0 5.2

L50P 1592.8  109.4 553.6 4.8 15013.2 3378 179.6 4985.2 5.2

L75P 1806.4  123.5 627.0 4.8 14762.2  332.1  181.4 4941.0 5.0

min 1326.0 92.5 462.6 4.0 8607.8 193.7 52.1  2880.8 4.6
max 44954  180.8 1534.0 4.8 15013.2  337.8 181.4 4985.2 5.2
1000 x 2000 COOE 1830.8 64.0 629.6 4.2 10568.8  158.5 429  3536.6 4.8
B25E 2573.4 85.6 881.2 4.4 11136.4  167.1 38.1  3725.2 5.0

B50E 3027.2 90.7 1038.4 4.8 12502.8  187.5 46.4 41854 5.0

B75E 3759.2  126.0 1284.8 4.8 10881.6  163.2 419  3633.2 5.0

B25P 1530.6 97.9 532.2 4.6 10709.2  160.6  113.3 3593.2 4.8

B50P 1735.0 1123 603.6 4.6 11285.6  169.3  117.9 3765.0 5.0

B75P 1750.4  109.5 607.8 4.6 11339.4 170.1  117.3 3769.0 5.0

L25P 1260.2 81.1 440.8 4.6 16031.8  240.5 172.6 5341.0 5.2

L50P 1505.6 90.8 524.6 5.0 15116.4  226.7  148.7 5065.0 5.2

L75P 1958.8  121.1 680.2 5.0 18181.4  272.7 198.5 6041.0 5.6

min 1260.2 64.0 440.8 4.2 10568.8  158.5 38.1 3536.6 4.8
max 3759.2  126.0 1284.8 5.0 18181.4  272.7 198.5 6041.0 5.6
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Table 13: Detailed Results for £;-minimization with ||| so-fit (Continued)

DMP SMP
H Size H Option Calls CPU Steps  Stages Calls FCalls CPU  Steps Stages

1000 x 8000 COOE 2338.0 227.9 801.6 4.0 12406.6 139.6 113.2 4136.6 5.0
B25E 3212.2  300.9 1100.4 5.0 11324.2 127.4 122.7 3768.6 5.0

B50E 3658.0 349.0 1252.2 5.0 14077.2  158.4  126.6 4700.8 5.0

B75E 4721.4  455.8 1611.4 5.0 14301.2 160.9 137.2  4745.0 5.0

B25P 1545.6  248.9 539.0 4.8 11355.4  127.7  266.0 3785.0 5.0

B50P 2023.4  313.5 701.8 5.0 12386.2 139.3 2974 4149.0 5.0

B75P 2625.6  427.4 906.6 5.0 12935.0 145.5 299.0 4321.0 5.2

L25P 1441.8  237.1 504.6 5.0 14922.2 167.9  343.0 4989.0 5.2

L50P 1661.4  261.1 579.8 5.0 15944.6 1794 378.7 5336.8 5.2

L75P 2361.2  395.9 818.2 5.0 17466.4 196.5  425.7 5821.0 5.4

min 1441.8  227.9 504.6 4.0 11324.2 127.4 113.2  3768.6 5.0
max 4721.4  455.8 1611.4 5.0 17466.4 196.5  425.7 5821.0 5.4
2000 x 4000 COOE 2691.6  227.6 925.2 4.4 12922.8 96.9 74.5  4293.0 5.0
B25E 2322.4 190.5 800.4 5.0 12303.8 92.3 79.4  4121.0 5.0

B50E 2929.2 245.1 1006.0 5.0 13877.6 104.1 86.0 4613.0 5.2

B75E 3839.6  346.6 1314.4 5.0 16366.0 122.7 109.2  5457.0 5.2

B25P 1426.4  207.8 500.6 5.0 16294.8 122.2 334.5 5457.0 5.4

B50P 1426.4  231.7 500.8 5.0 13462.2 101.0  271.7 4485.0 5.0

B75P 1948.4 295.4 677.4 5.0 16149.8 121.1 311.0 5401.0 5.6

L25P 1183.2 178.2 417.2 5.0 19280.8 144.6  367.2 6433.0 6.0

L50P 1665.4  224.0 582.6 5.2 20075.8  150.6  390.5 6725.2 6.0

L75P 2344.0  309.7 813.0 5.0 20953.8  157.2  413.9 6964.8 6.0

min 1183.2 178.2 417.2 4.4 12303.8 92.3 74.5  4121.0 5.0
max 3839.6 346.6 1314.4 5.2 20953.8  157.2  413.9 6964.8 6.0
2000 x 16000 COOE 2384.6  494.2 819.6 4.0 13174.8 74.1 184.9  4405.0 5.0
B25E 3525.0 733.5 1205.6 4.8 15646.8 88.0 221.6  5229.0 5.0

B50E 4303.2  912.2 1471.4 4.8 14498.6 81.6 207.5 4861.0 5.0

B75E 5300.0 1130.6 1809.6 4.8 16908.6 95.1 238.9 5629.2 5.4

B25P 1575.2  533.7 550.0 4.8 14623.4 82.3 599.3 4873.2 5.0

B50P 1915.0 637.1 665.6 4.6 16554.0 93.1 671.9 5541.2 5.2

B75P 2319.2  754.3 803.2 4.8 15903.6 89.5 639.2  5329.0 5.0

L25P 1838.4  615.9 639.4 4.8 18717.0 1053 7734 6256.8 5.6

L50P 2245.6  736.7 778.2 5.2 18882.8 106.2 775.1 6289.2 5.4

L75P 2892.8  921.9 996.2 5.2 19391.2  109.1  796.5 6465.0 5.6

min 1575.2  494.2 550.0 4.0 13174.8 74.1 184.9  4405.0 5.0
max 5300.0 1130.6 1809.6 5.2 19391.2  109.1  796.5 6465.0 5.6
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Table 13: Detailed Results for £;-minimization with ||| so-fit (Continued)

DMP SMP
H Size H Option Calls CPU Steps  Stages Calls FCalls CPU  Steps Stages
4000 x 8000 COOE 2923.6  798.7 1005.0 4.4 19750.2 74.1 228.4  6589.0 5.4
B25E 3386.8 795.1 1163.6 5.0 20047.2 75.2 215.8 6697.0 5.8
B50E 4332.8 983.3  1482.4 5.2 18337.0 68.8 198.4 6101.0 5.4
B75E 5197.6 1237.1 1778.0 5.2 19546.2 73.3 228.0 6529.0 5.8
B25P 1554.6  576.2 544.4 5.0 19242.2 72.2 748.9  6425.0 5.6
B50P 2068.8  704.1 720.2 5.2 20343.8 76.3 768.8 6781.0 5.8
B75P 2684.8  882.7 928.4 5.4 21494.2 80.6 824.5 7145.0 6.0
L25P 1823.4  641.4 635.0 5.0 20767.0 77.9 799.3  6937.0 6.0
L50P 2433.8  766.7 843.2 5.4 22350.0 83.8 865.4  7465.2 6.4
L75P 3130.0 987.1 1079.2 5.2 24185.8 90.7 9344 8077.2 6.2
min 1554.6  576.2 544.4 4.4 18337.0 68.8 198.4 6101.0 5.4
max 5197.6 1237.1 1778.0 5.4 24185.8 90.7 9344 8077.2 6.4
Table 14: Detailed Results for ¢;-minimization with || - ||2-fit
DMP SMP
H Size H Option || Calls CPU Steps Stages Calls FCalls CPU  Steps Stages
500 x 4000 COOE 579.8 21.0 206.2 5.0 4771.6 106.7 24.6  1589.0 4.4
B25E 523.0 18.3 187.4 5.2 5186.0 1159 27.7 1737.0 5.0
B50E 527.6 19.3 189.2 5.2 5308.4 118.7 29.4 1781.0 5.0
B75E 610.2 224 218.8 5.8 5204.4 116.3 28.9 1749.0 5.0
B25P 5394  30.8 194.6 4.8 5331.6 119.2 67.2 1781.0 5.0
B50P 480.2  29.0 175.0 5.0 5215.0 116.6 61.7 1744.8 5.0
B75P 421.2 247 156.2 5.4 5416.6 121.1 65.5 1797.0 5.0
L25P 403.0 23.6 147.0 4.4 5453.8 121.9 64.3 1825.0 5.0
L50P 334.8 19.7 125.2 5.0 5549.6 124.0 64.2 1857.0 5.0
L75P 287.8 16.1 110.2 5.2 5938.4 132.7 66.9 1984.8 5.0
min 287.8 16.1 110.2 4.4 4771.6 106.7 24.6 1589.0 4.4
max 610.2  30.8 218.8 5.8 5938.4 132.7 67.2 1984.8 5.0
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Table 14: Detailed Results for ¢;-minimization with ||-||2-fit (Continued)

DMP SMP
H Size H Option || Calls CPU Steps Stages Calls FCalls CPU  Steps Stages

1000 x 2000 COOE 553.0 19.0 198.0 5.0 3910.8 54.8 13.6 1296.2 4.2
B25E 531.8 17.3 190.8 5.0 4880.0 68.3 17.2 1612.8 4.8

B50E 534.0 15.5 192.4 5.2 5524.8 7.3 21.6 1849.0 5.0

B75E 780.8 224 278.6 6.0 5294.8 74.1 21.6 1765.0 5.0

B25P 465.0 17.7 1704 4.8 5268.0 73.8 54.9  1757.0 5.0

B50P 4404 177 162.8 5.0 5256.6 73.6 52.6  1753.0 5.0

B75P 431.4 15.9 159.4 5.0 5295.4 74.1 54.5 1772.8 5.0

L25P 467.2 19.4 170.8 5.0 5863.2 82.1 59.4 1941.0 5.0

L50P 3744 176  139.6 5.0 5657.6 79.2 57.7  1885.0 5.0

L75P 282.4 14.1 110.4 5.6 5923.6 82.9 61.7 1977.0 5.0

min 282.4 14.1 110.4 4.8 3910.8 54.8 13.6 1296.2 4.2
max 780.8 224  278.6 6.0 5923.6 82.9 61.7  1977.0 5.0
1000 x 8000 COOE 617.0 56.6 220.4 5.0 5148.8 57.5 50.7 1716.8 4.6
B25E 4934 414 1788 5.2 5393.8 60.3 53.3  1797.0 5.0

B50E 433.8 43.6  159.0 5.6 5552.4 62.1 55.0  1857.0 5.0

B75E 5974 615 216.6 6.0 5535.2 61.9 54.2 1825.0 5.0

B25P 535.0 85.9 195.8 5.0 5279.4 59.0 134.6  1765.0 5.0

B50P 471.2 749 173.8 5.0 5353.2 59.8 132.7 1789.0 5.0

B75P 460.4  64.3 171.8 5.6 5425.8 60.6 135.0 1809.0 5.0

L25P 4384 684 162.6 5.0 5626.6 62.9 135.9 1881.0 5.0

L50P 391.2 524 146.0 5.0 6238.4 69.7 155.1  2081.0 5.2

L75P 318.8  40.9 124.0 5.8 5917.2 66.1 143.9 1957.0 5.0

min 318.8  40.9 124.0 5.0 5148.8 57.5 50.7 1716.8 4.6
max 617.0 85.9 220.4 6.0 6238.4 69.7 155.1  2081.0 5.2
2000 x 4000 COOE 634.8 39.8 227.2 5.0 5853.6 41.0 47.2 1952.8 4.8
B25E 720.6 459 256.4 5.0 5653.4 39.6 50.3  1897.0 5.0

B50E 617.8 39.3 2226 5.4 5786.4 40.5 49.7  1937.0 5.0

B75E 755.0  48.1 271.0 6.0 5946.2 41.6 50.4 1985.0 5.0

B25P 4278 37.0 159.8 5.0 5566.6 39.0 124.4  1845.0 5.0

B50P 430.8  34.2 161.0 5.0 5524.8 38.7 121.2  1856.8 5.0

B75P 479.0 37.8 1788 5.6 5849.0 40.9 126.8 1941.0 5.0

L25P 497.0 421 182.8 5.0 6241.2 43.7 138.6  2081.0 5.0

L50P 383.6  32.0 144.0 5.0 6354.2 44.5 139.6  2105.0 5.0

L75P 318.8 259 124.4 5.8 8832.8 61.8 201.3  2957.0 5.4

min 318.8 259 124.4 5.0 5524.8 38.7 47.2 1845.0 4.8
max 755.0 48.1  271.0 6.0 8832.8 61.8 201.3  2957.0 5.4
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Table 14: Detailed Results for ¢;-minimization with ||-||2-fit (Continued)

DMP SMP
H Size H Option || Calls CPU Steps Stages Calls FCalls CPU  Steps Stages

2000 x 16000 COOE 531.8 150.7 192.6 5.0 5055.6 28.3 90.0 1689.0 4.4
B25E 562.0 154.1 202.8 5.0 5802.4 32.4 99.6 1921.0 5.0

B50E 623.8 161.7 224.2 5.0 6061.8 33.9 104.5 2017.0 5.0

B75E 611.4 162.1 2204 5.4 6049.2 33.8 108.2  2013.0 5.0

B25P 500.4 175.8 184.4 4.8 5488.6 30.7 274.8 1841.0 5.0

B50P 490.4 191.5 181.6 5.0 5820.4 32.5 281.5 1933.0 5.0

B75P 478.6 156.5 179.6 5.6 5744.2 32.1 283.8 1917.0 5.0

L25P 416.6 144.5 156.0 4.8 7620.0 42.6 374.2  2537.0 5.2

L50P 402.8 132.1 151.6 5.0 9525.2 53.2 464.0 3185.0 5.4

L75P 346.0 110.6 133.0 5.4 12614.4 70.5 629.5 4217.2 5.8

min 346.0 110.6 133.0 4.8 5055.6 28.3 90.0 1689.0 4.4
max 623.8 191.5 224.2 5.6 12614.4 70.5 629.5 4217.2 5.8
4000 x 8000 COOE 675.2 138.5 242.0 5.0 6504.6 22.8 101.7 2177.0 5.0
B25E 685.8 141.7 245.6 5.0 5782.0 20.2 91.3 1929.0 5.0

B50E 5274 106.2 191.8 5.0 5894.4 20.6 96.2  1957.0 5.0

B75E 870.4 182.0 312.0 6.0 5899.4 20.6 96.5 1973.0 5.0

B25P 483.0 116.3 180.0 5.0 5439.2 19.0 247.4  1809.0 5.0

B50P 453.2  112.8 169.6 5.0 5635.8 19.7  256.3 1885.0 5.0

B75P 512.4 125.0 190.4 5.4 6126.6 21.4 274.0 2037.0 5.2

L25P 411.2 104.3 155.0 5.0 12948.0 45.3 615.5  4285.0 6.0

L50P 403.8 979 152.2 5.0 11588.2 40.6 532.2 3877.0 5.8

L75P 346.4 86.3 135.0 5.8 12099.0 42.3 553.2  4021.0 5.8

min 346.4  86.3 135.0 5.0 5439.2 19.0 91.3 1809.0 5.0
max 870.4 182.0 312.0 6.0 12948.0 45.3 615.5 4285.0 6.0
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CHAPTER V

EFFICIENTLY VERIFIABLE ACCURACY CERTIFICATES FOR
NOISY RECOVERY

The problem we consider in this chapter is to estimate a linear transform Bz € RN of

a vector € R™ from the observations
y=Ar +u+ 0§, (164)

Here A is a given m X n sensing matrix, B is a given N X n matrix, and u + o€ is the
observation error; in this error, w is an unknown nuisance known to belong to a given
compact convex set U C R™ symmetric w.r.t. the origin, o > 0 is a known noise intensity,
and £ is random noise with known distribution P.

We assume that the space RY where Bz lives is represented as RY = R™ x ... x R"K,
so that a vector w € R¥ is a block vector: w = [w[l];...;w[K]] with blocks w[k] € R™,
1 <k < K. In particular, Bz = [B[1]z;...; B[K]z] with nj x n matrices Blk|, 1 < k < K.
While we do not assume that the vector x is sparse in the usual sense, we do assume that
the linear transform Bz to be estimated is block sparse, meaning that at most a given
number, s, of the blocks Bk]z, 1 < k < K, are nonzero.

The recovery routines we intend to consider are based on block-f1 minimization, i.e.,
the estimate w(y) of w = Bx is Bz(y), where z(y) is obtained by minimizing the norm
S | B[k]z| (1) over signals z € R" with Az “fitting,” in certain precise sense, the obser-
vations y. Above, || -[|x) are given in advance norms on the spaces R"* where the blocks of
Bz take their values.

In the sequel we refer to the given in advance collection (B, n1,...,nk, || |1y, - || - [l (x))
as the representation structure. Given such a structure and A, our ultimate goal is to
understand how well one can recover the s-block-sparse transform Bz by appropriately

implementing block-¢; minimization.
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Related compressed sensing research. Our situation and goal form a straightforward
extension of the usual sparse/block sparse compressed sensing framework. Indeed, the stan-
dard representation structure B = I,,, np = 1, || - [[xy = |- |, 1 < k < K = n, leads to
the standard compressed sensing setting — recovering a sparse signal x € R" from its noisy
observations (164) via ¢;-minimization. With the same B = I,, and nontrivial block struc-
ture {ng, || - (s }1—y, We arrive at block-sparsity and related block-£1-minimization routines
considered in numerous recent papers. Specifically, there is a number of applications where
block-sparsity (with B = I,,) arises naturally, e.g., in multi-band signals, measurements
of gene expression levels or in the estimation of multiple measurement vectors sharing a
joint sparsity pattern (see [55] and references therein). In addition, in many studies (e.g.,
[54, 55]) it was shown that the block-sparsity model can be used in sampling signals that lie
in a union of subspaces. Moreover, several methods of estimation and selection extending
plain ¢;-minimization to block sparsity were proposed and investigated recently. Most of
the related research focused so far on block reqularization schemes — Lasso-type algorithms
of the form
K
Z(y) € Argmin {114z = ylI3 + M=llesse, } > N2llerse, = D 125 llg-
z=[z1;. ;2 K]ERP=R"1 x...xR"K =1

In particular, there is a huge literature on plain Lasso (ny = 1,1 < k < K = n), see
[23, 24, 75, 78, 87, 93, 94, | and references therein, there is a significant counterpart on
group Lasso (arbitrary ng, ¢ = 2), see, e.g., [9, 14, 33, 51, 54, 55, 65, 70, 85, 92, 96, ,

, , |, and references therein. Another avenue of research here [75, 86] deals with
block-sparse analogies of the Dantzig selector originating from [29]. Most of the cited papers
focus on bounding recovery errors in terms of magnitude of the observation noise and “s-
concentration” of the true signal = (that is, its ¢; /¢, distance from the space of signals with
at most s nonzero blocks) or algorithms to solve block-¢; regularization problems. Typically,
these results deal with the case of ¢ = 2 and rely on natural block analogy (“Block RIP,”
see, e.g., [75]) of the celebrated Restricted Isometry Property (RIP) introduced by Candés
and Tao [27, 26], or on block analogies [38] of the Restricted Eigenvalue Property introduced

in [18].
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Contributions of this chapter. The first (and by itself, minor) novelty in our problem
setting is in the presence of matrix B; we are not aware of any preceding work handling the
case of a “nontrivial” (i.e., different from the identity) B. Introducing this matrix seems to
be natural and adds some useful flexibility (and costs nearly nothing, as far as the theoretical
analysis is concerned). In addition to this, there are a number of important applications
where a nontrivial B arises naturally. As a simple example consider the standard image
reconstruction with Total Variation (TV) regularization, where one wants to recover an
image x from noisy observations of its convolution with a given kernel. The rationale
behind TV regularization stems from the fact that the (discretized) gradient field Bz of the
image, not the image x itself, is (nearly) sparse. Note that this example leads to a block
sparsity setting, since Bz is naturally split into 2-dimensional blocks representing gradients
at the grid points, and TV is just the sum of £5 norms of these blocks. Another example
is when x is the solution of a linear finite-difference equation with sparse right hand side
(“evolution of a linear plant corrected from time to time by impulse control”); in this case,
B is the matrix of the corresponding finite-difference operator.

We believe, however, that the major novelty in what follows is the emphasis on verifiable
conditions on A and the representation structure which guarantee good recovery of trans-
forms Bx from noisy observations of Az, provided that the transforms are nearly s-sparse,
and the observation noise is low. In this respect, this chapter continues the line of research
started in [31, 76, 79], where {¢i-recovery of the usual sparse vectors was considered (in
the first two papers — in the case of uncertain-but-bounded observation errors, and in the
third — in the case of Gaussian observation noise). To give an impression of the approach,
we present here a summary of our major results. To streamline this summary, we restrict
ourselves for the time being with the case where (a) the random noise £ in (164) is standard
Gaussian: & ~ N(0,1), and (b) all the norms | - || are just || - ||,-norms, with r common
for all values of k. In this case, an (incomplete) summary of our (somehow simplified)
constructions and results is as follows. Let s be a given positive integer — an a priori upper
bound on the number of nonzero blocks B[k]x in the transforms we intend to recover well,

and € < 1 be the a given tolerance. We fix an m X n sensing matrix A and a representation
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structure (B, n1, ..., g, ||« vy oo || < [r)-
A.1. Given s and g € [1,00] and the norm || - ||, we introduce a condition Qs4 on an

m X N contrast matrix H, specifically, the condition

1

1 g
q3 Li(Bz)

S

V(z € R") : Ly o(Bx) < sa||HT Az +

where for w = [w[l];...;w[K]] € RN and p € [1,00], Ly(w) = ||[lw[1]|lr;.; |[w[K]|l]]lp is
the £,,/¢, norm of w, and L ,(w) is the norm of w obtained as follows: we zero out all but
the s largest in “magnitude” ||w[k]||, blocks in w, and take the L,-norm of the resulting
s-block-sparse vector. For example, L o (w) is, independently of s, just the maximum of
magnitudes ||w[k]||, of blocks in w.

A.2. Given an m x N contrast matrix H, we introduce two recovery routines:

e regular Ly-recovery (cf. (block) Dantzig selector)

Treg(y) € Arg]glin {L1(B2) : |H" (y — A2)|| < v(H)},
zeR™

where v(H) =  hax |max u'hi + oErfinv(55)||h7|]2| and Erfinv(d) is the inverse
<j< UE

error function®, and,

e penalized Ly-recovery (cf. (block) Lasso)

Tpen(y) € ArgIIRgnn [Ll(Bz) + QSHHT(y — Az)||] .
z€R™

Note that the regular Li-recovery can be undefined; this happens when the corresponding
optimization problem is infeasible. The penalized recovery always is well defined.

A.3. Our main related result is as follows (see Theorems 5.3.1, 5.3.2): Let a contrast
matrix H satisfy the condition Q4. Then there exists a set = of realizations of { such that
Prob{{ € E} > 1 —e€and for all { € 2, x € R" and u € U, Zreg(Ax + u + &) is well defined,

and for both T = Zreg(Ax + 1+ 0€) and T = Tpen(Ax + u + 0&) one has

¥p € [1,q) : Lpy(BE — Bx) < O(1)s» [v(H) + s 'v(Ba)] (165)

Y.e., t = Erfinv(§) means that \/% e efp2/2dp =9.
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where O(1) is an absolute constant, and vs(w) is the “s-concentration of w,” that is, the
sum of magnitudes ||wlk]||, of all but the s largest in magnitude blocks in w.

Note that for the case of the standard representation structure, the corresponding construc-
tions and the result in A were developed in [79].

B.1. Similarly to the plain and block Restricted Isometry/Eigenvalue Properties, con-
dition Qg 4 seems to be computationally intractable — given a candidate contrast matrix H,
it is difficult to verify whether it satisfies Q4 or not; not speaking about designing the best
— with the smallest ¥(H) — contrast matrix satisfying this condition, if any exists. We,
however, can point out a verifiable sufficient condition for H to satisfy Qs 4. Specifically,
we demonstrate (Proposition 5.4.3) that H definitely satisfies Qs q, if there exists an N x N
matrix V (which we treat as a K x K block matrix with ny, x ny blocks V*) such that

1
S4q

3

(a): B=VB+H"A, and (0) : [V llrosr IV lrmsrs oo [VE Yoo llsg < , (166)

where ||[V*|,_,, = max,ecpn, {||[VFUE, o ||ub]] < 1}, and ||ul|sp is the norm on RX defined
as follows: we zero out all but the s largest in magnitude entries in vector u, and take the
|| - l,-norm of the resulting vector.

One can use this sufficient condition in order to build a “suboptimal” contrast matrix,
specifically, by minimizing v(H) over pairs (V, H) satisfying the system of convex constraints
(166) (provided, of course, that this system of constraints is feasible). The resulting problem
is computationally tractable, provided that the norms || - ||,—, are efficiently computable,
which indeed is the case when r =1, or r = 2, or r = oc.

B.2. In general, the verifiable (at least for r € {1,2,00}) sufficient condition for H
to satisfy Qs stated in B.1 is not necessary, and the condition Q,, itself seems to be
intractable. There exists, however, a notable exception — this is the case of ¢ = oo and
r = oco. We show (Proposition 5.4.1) that here the verifiable sufficient condition stated in
B.1 is necessary and sufficient for H to satisfy Qs ... Moreover, the latter condition is
“fully computationally tractable,” meaning that one can optimize efficiently the quantity
v(H) over the contrast matrices H satisfying Qs o, thus ending up with an optimal, as far

as the error bound (165) is concerned, recovery routines. Note that when g = co, the bound
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(165) holds true in the largest possible range 1 < p < oo of values of p.

Note that in the case of the standard representation structure, the sufficient condition in
B.1 reduces to the verifiable sufficient condition for the validity of ¢i-recovery established
in [21]. It should further be mentioned that to the best of our knowledge, the only known so
far verifiable sufficient condition for the validity of block-f1 recovery of block-sparse signals
is the “mutual block-incoherence condition” [54] (slightly extended in [50]) dealing with the
case of B = I, and r = 2; this is a block analogy of the usual mutual incoherence condi-
tion originating from [13]. We show in Section 5.4.3.1 that the mutual block-incoherence
condition is covered by the case of B = I,,, r = 2 of condition B.1.

B.3. As the majority of good error bounds in compressed sensing, the error bound
(165) expresses a quite intuitive fact, specifically, as follows: imagine that instead of implicit
observations (164) of a transform w = Bz, we were observing this transform directly with
random error Aw such that with probability > 1 — € one has Lo(Aw) < v(H). It is
easily seen that in the latter case, in the range vs(Bz) < sv(H) of s-concentrations of the
transforms w = Bz, the best (1 — €)-reliable bound on the L,(-)-norm of the recovery error
of Bz coincides, within an absolute constant factor, with the right hand side of (165). Thus,
a natural interpretation of the error bound (165) is that as far as recovery of transforms
Bzx with s-concentration vs(Bz) < sv(H) is concerned, everything is as if we were given
their direct observations of Bx contaminated by noise of typical Ly-magnitude < v(H).
One of the main results presented in this chapter is that to some extent, the opposite also
is true, provided that r = oo and thus the error bounds in (165) holds true in the entire
range 1 < p < oo of values of p. Specifically, we prove (see Proposition 5.4.2) the following.
Let all the norms || - ||y be the || - |-norms, and let the observation error be present (that
is, either o > 0, or U contains a neighborhood of the origin). Let, further, for some integer
S and positive v there exist a routine w(y) = BZ(y) for recovering Bx from observations

(164) such that

V(ueU,r € R": S~ ug(Bx) <v):

Prober(0,n{Loo(Blr — Z(Ax +u + 0§)] < 8[v + S~ lug(Bz)]} > 1 —e
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(cf. (165) with p = oo). Then for every integer s, 1 < s < 5—51 there exists an N x N
contrast matrix H and a certificate V = [V’“e]ﬁ:l € RV*N such that B = VB + HT A,
[VHosoo € &, 1 < k0 < K, and v(H) < v = 171/%‘(,@\’)). In other words, when €
is small, the condition B.1 is satisfied by appropriate s, H such that s and v(H) coincide,
within absolute constant factors, with S and v, respectively.

The main body of this chapter is organized as follows. Section 5.1 contains detailed
problem statement, Section 5.2 describes the condition Qg 4(k), Section 5.3 presents the
regular and the penalized ¢; recoveries and an analysis of their performance under condition
Qs,¢(k). Advanced properties of this condition are subject of Section 5.4, and its relations
to the RIP from traditional compressed sensing are investigated in Section 5.5. In the
concluding section, we present a Block Matching Pursuit “counterpart” of the regular and

penalized recoveries.

All proofs are placed in the last section of this chapter.
5.1 Problem Statement

Notation. In the sequel, we deal with
e signals — vectors x = [x1;...; 2] € R™, and a m X n sensing matrix A;

e representations of signals — block vectors w = [w[l];...;w[K]] € W :=R"™ x ... x R"¥
and the representation matrix B = [B[1];...; B[K]], Blk] € R™*™; the representation

of a signal # € R™ is the block vector w = Bz with the blocks B[l]z,...,B[K]x.

The dimension of W is denoted by N where N = nj+...+ng. The factors R™ of the space
W of representations are equipped with the norms | - [|(z); the conjugate norms are denoted
by ||+ [[(x,%)- A vector w = [w[1];...; w[K]] from W is called s-sparse, if the number of nonzero
blocks w[k] € R"™ in w is at most s. We refer to the collection (B, ny,...,nk, [|-[[1), - ||l (x))
as the representation structure.

For w € W, we call the number [w[k]||x) as the magnitude of k-th block in w, and
denote by w® the representation vector obtained from w by zeroing out all but the s largest

in magnitude blocks in w (with the ties resolved arbitrarily). For w € W and 1 < p < o0,

153



we denote by Ly(w) the || - [[,-norm of the vector [||w[1][|1);...; [[w[K]|[(k)], so that Ly(-) is
a norm on W with the conjugate norm Ly(w) = |[[|w[1]||(1,4); -+ lw[K][l ()]l p.s P+ = z%'
Given positive integer s < K, we set Lg ,(w) = Ly(w®); note that L, ,(-) is a norm on W.
We define the s-block concentration of a vector w = Bz as the sum of magnitudes
|lwlk]||» of all but the s largest in magnitude blocks in w, and denote it by vs(w) :=

Ll(w) - Ls,l(w).
Problem of interest is as follows: given an observation
y= Az +u+ o€, (167)

of unknown signal x € R™, we want to recover x and the representation Bx of x, knowing
in advance that this representation is s-sparse, for some given s. In (167), the term u 4 0§
is the observation error; in this error, u is an unknown nuisance known to belong to a given
compact convex set U C R™ symmetric w.r.t. the origin, ¢ > 0 is a known noise intensity,
and £ is random noise with known distribution P.

A recovery routine is a Borel function Z(y) : R™ — R™ and we characterize the perfor-

mance of such a routine by its risk

Riskf(ﬁ:\(-ﬂs, 0,0V, €)
= inf {d :Probep {§: Ly (Blx(Ax +u+0&) —x]) <d Y(u e U,z € R" : vy(Bx) <)}
>1- e};
(168)
here 0 <e<1and 1< p<oo. Thus, Riskf(ff(-ﬂs, o,v,€) < d if and only if there exists a
set = € R™ such that P(Z) > 1 — € and L, (B[Z(Az + u + 0€) — z]) < d whenever { € &,
u € U and whenever x € R™ is such that Bx can be approximated by s-sparse representation

vector within accuracy v (measured in Ly(+)), i.e., vs(Bz) < v.
5.2 Condition Q (k)

Let a sensing matrix A and a representation structure (B,n1,...,nx, || - [y, - || - l(x)) be

given, and let s < K be a positive integer, g € [1,00] and £ > 0. We say that a pair (H, ||-||),
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where H € R™M and |- || is a norm on RM | satisfies the condition Qs 4(k) associated with

the matrices A, B and the representation structure, if
1 1
Vo € R": Ly (Bx) < si|HT Az| + ksa 'Ly (Bz). (169)
The following is an evident observation

Observation 5.2.1 Given A and a representation structure (B,ni,....nx, || - |1y, | -
l(ry), let (H, ||||) satisfy Qs q(x). Then (H, ||-||) satisfies Qs (k') forallq’ € (1,q) and ' >

1 1
k. Besides this, if s < s is a positive integer, ((s/s')aH,| -||) satisfies QS/’q((SI/S)l_EK,).

Whenever (B,n1,...,nk, || 1), |l - ll(x)) is the standard representation structure,
meaning that B is the identity matrix and n; = ... = ng = 1 and [ - |4y = | - | for all k, the

condition Qg 4(x) reduces to the condition Hy 4(x) introduced in [79].
5.3 Recovery Routines

We are about to introduce two new recovery routines.
Regular Li-recovery is

Treg(y) € Argmin {L1(Bu) : IH" (Au—y)|| < p}, (170)
where H € R™M || .|| and p > 0 are parameters of the construction.

Theorem 5.3.1 Let s be a positive integer, q € [1,00] and k € (0,1/2). Let also € € (0,1).

Assume that the parameters H, || - ||, p of the reqular Li-recovery are such that
A. (H,| -||) satisfies the condition Qs q(k) associated with matrices A, B;

B. There exists a set Z such that P(Z) > 1 — € and

IH (u+08)| < pV(uclU,é € E). (171)

Then for 1 <p<q andV(§ € Z,u €U,z € R"™),

12p+ s~ 1Li(Bx — [Bz]®)

Ly(B[Zreg(Az 4 u + 0€) — z]) < (45) 1 —2r

(172)
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Penalized L;-recovery is
Zpen(y) € Argmin {Ll(Bu) + 2$HHT(A:L‘ — y)||} , (173)
u
where H € R™M || .|| and a positive integer s are parameters of the construction.

Theorem 5.3.2 Let s be a positive integer, q € [1,00] and k € (0,1/2). Let also € € (0,1).
Assume that the parameters H, ||-||, s of the penalized recovery and a p > 0 satisfy conditions

A, B from Theorem 5.5.1. Then, similar to Theorem 5.5.1, we have

12p+ s 1Li(Bx — [Bz]*)

Ly(B[Zpen(Az +u+ ) — x]) < 2(2s) T o , (174)
for1<p<qandV( €Zucl,z € R") ¢f. (172).
5.4 Properties of Condition Q, (k)
In general, given a sensing matrix A and a representation structure (B, n1, ..., ng, ||-|l(1y, - ||

ll(x)), it seems to be difficult even to verify that a pair (H, || - [|) satisfies condition Qs 4(k)
associated with A, B, not speaking about synthesis of (H, || - ||) satisfying this condition and
resulting in the best possible error bounds (172), (174) for the regular and the penalized ¢;
recoveries. We are about to demonstrate that when all [| - |4 are the uniform norms || - [|o
and, in addition, ¢ = oo (which, by Observation 5.2.1, corresponds to the strongest among
the conditions Qs 4(x) associated with A and a given representation structure and ensures
the validity of (172), (174) in the largest possible range 1 < p < oo of values of p), the
condition Qg 4(x) becomes “fully computationally tractable.” We intend to demonstrate
also that this condition Qs (k) is in fact necessary for the bounds of the form (172), (174)

to be valid when p = oo.
5.4.1 Condition Q; . (x): Tractability

In the sequel, given 7,0 € [1,00] and a matrix M, we denote by ||M|/r—¢ the norm of
the linear operator u — Mu induced by the norms || - || and || - |4 at the origin and the
destination spaces:

M|l = max_[[Mulp.
wif|ullx <1

156



Consider the situation where || - ||, for all k, are the £, norms. We claim that in this case

the condition Qg (k) becomes fully tractable. Specifically, we have the following

Proposition 5.4.1 Let || [|(z) = || [|oc for all k < K, and let a positive integer s and reals
k>0, €€ (0,1) be given.
(i) Assume that a triple (H,| - ||,p), where H € RM>*™ || .|| is a norm on RM, and

p >0, is such that

(1) (H,| - |) satisfies Qsoo(k) and the set == {& : |H [u + o€]|| < p Yu € U}

is such that P(Z) > 1 —e.

Then there exist N = ni+...4+nx vectors h', ...,k in R™ and N x N matriz V = [V*]EK,_

(the blocks V** are ny, x ng matrices) such that

(a) B=VB+I[h',.. hN]TA,
B) VF¥osoo <57k Vh (<K, (175)

() P (E+ = {¢: mazjcuThi +ol¢thi < p,1<i < N}) >1—e
uUe€

(ii) Whenever vectors hl,...,hN € R™ and a matriz V = [VF|K,_ with ny x ny blocks
VFC satisfy (175), the m x N matriz H = [hY, ..., hN], the norm || - ||c on RN and p form a

triple satisfying (!).

R™*™ and a representation structure (B, ny, ..., nx,

Discussion. Let a sensing matrix A €
[ leays o I I ry) with all |- [|(x) being the £o, norms be given, along with a positive integer
s, an uncertainty set U, a distribution P of ¢ and quantities o, €. Theorems 5.3.1, 5.3.2 say
that if a triple (H, || - ||, p) is such that (H, || -||) satisfies Qs 00(x) with k < 1/2 and H, p are
such that for the set

E={¢: [H u+og]]| < pVueld}

it holds P(Z) > 1 — ¢, then for all v > 0, for the regular L;-recovery associated with

(H,|| - |l,p) and for the penalized Li-recovery associated with (H,|| - ||,s) the following
holds:
120451
Risk? ()5, 0, v, ) < 2(2.%%, 1<p<oo (176)
-2k
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for all = such that vs(Bx) < v. Proposition 5.4.1 states that when applying this result,
we loose nothing by restricting ourselves with triples H = [h!,...,hN] € R™N N =
n+..+ng, ||| = |, p > 0 which can be augmented by an appropriately chosen
matrix N x N matrix V to satisfy relations (175). In the rest of this discussion, it is assumed
that we are speaking about triples (H, || - ||, p) satisfying the just defined restrictions.

Now, as far as bounds (176) are concerned, they are completely determined by two
parameters —  (which should be < 1/2) and p; the smaller are these parameters, the
better are the bounds. In what follows we address the issue of efficient synthesis of matrices
H with “as good as possible” values of x and p.

Observe, first, that H = [hl, o BN ] and k should admit an extension by a matrix V' to
a solution of the system of convex constraints (175). In the case of o = 0, the best choice
of p, given H, is

p = max g (h?), where pg;(h) = maxu” h.
7 uel

Consequently, in this case the “achievable pairs” p, x form a computationally tractable

convex set
G, = {(/1, p): 3H =[h', .. hWN] e RNV = [V ¢ Rrwxne]K

B=VB+HA, [VH|r < &, (W) < p1 < i < N}.

When o > 0, the situation is complicated by the necessity to maintain the validity of the
restriction

PEY) =P{&: uy(h) +ol¢Th' | <p, 1<i< N} >1—¢ (177)

which is a chance constraint in variables h',...,h", p and as such can be “computationally
intractable.” Let us consider the “most standard” case of Gaussian zero mean noise £, that

is, assume that £ = Cn with n ~ N(0, I,;,). Then (177) implies that
p = max |y (') + oBrfin(5) [T h 2
and is implied by

p > max {uu(hi) + UErﬁnv(ﬁ)HCThiHQ} ,1<i<N.
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Ignoring the “gap” between Erfinv(e/2) and Erfinv(5% ), we can safely model the restriction

(177) by the system of convex constraints

p(hY) + JErﬁnv(%)HCThng <p, 1<i<N. (178)

Thus, the set G5 of admissible k,p can be safely approximated by the computationally

tractable convex set

B=BV+H"A, [V¥]ase <5 1<k (<K
H = [ht,...,hN] ¢ R™*N , 4
Gy =1q(kp): 3 8 maxul bl + oBrfinv (55) [|CTR|2 < p,
V = [Vk:é c R’I’Lang]kK7€:1 ueld

1<:<N
(179)
5.4.2 Condition Q; . (k): Necessity
In addition to the earlier assumption that for all &, [|-[|(x) are the £ norms, we now assume

€ is a zero mean Gaussian noise: £ = Cn with n ~ N(0, ;). From the above discussion
we know that if, for some x < 1/2 and p > 0, there exist H = [h!,...,h"Y] € R™ and
V = [V e Rwxn)K _ satisfying (175), then regular and penalized ¢1 recoveries with

appropriate choice of parameters ensure that

2p + s~ 'Ly (Bz — [Bz]®)

—z <
Prob{||Blz — Z(Az + u + 0§)]||oc <2 o

}>1—¢ (180)

for all (z € R™,u € U).

We are about to demonstrate that this implication can be “nearly inverted:”

Proposition 5.4.2 Let a sensing matriz A, a representation structure (B,ni,...,ng,| -
l)s - Il - l(x))s the uncertainty set U, and reals k > 0, € € (0,1) be given, with all || - ||
being £oo-norms. Assume also that the observation error “is present,” specifically, that for
every r > 0, the set {u+ocCe:ueclU,|e|2 <r} contains a neighborhood of the origin.
Given a positive integer S, assume that there exists a recovering routine T satisfying an

error bound of the form (180), specifically, the bound

V(z € R",u € U) : Prob{||Blz — Z(Az + u + 0€)]||ec < a + ¢S L1(Bx — [Bz]®)} > 1 —e.

(181)
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where a and c are some positive constants. Then for every s < % there exist H =
R, AN € RN and V = [V# ¢ R”kxnf]kKj:l such that h* € R™, v e R¥, 1 < i <k,
satisfying

(a) B=VB+ HTA,

D) [[V*)lsossoo < & VE L <K,

— 3s
o T e V[T hi Erfinv(5)
(¢) with p = 121%}]{\7 [rggg{(u h' + o Erfinv(55)[|C* h Hz] < 2la—pgm X

(182)
and & = Cn, n ~ N(0,I,),

one has

P <E+ ={¢: mazj(uThi—FU\{Thi\ <p 1<i< N}) >1—e,
ue

meaning that (see Proposition 5./.1) (H, ||-||ec) satisfies Qs 00(1/3) for s “nearly as large as
S,” namely, s < =3, and H = [h', ..., h¥], p satisfy conditions (178) (and thus — condition

6.3c’
5 . . « , Erﬁnv(ﬁ)
B from Theorem 5.3.1), with p being “nearly o’, namely, p < 2.1aW.

5.4.3 A Sufficient Condition for Q; (k)

Proposition 5.4.3 Let a sensing matriz A, a representation structure (B,ni,...,ng,| -
l1)s - | - l(xy) be given. Let N =nq+...+ng, and let N x N matriz V = [VM]/,CKIZ1 (Vke

are ng X ng) and m X N matriz H satisfy the relation

B=VB+HTA. (183)
Let
* _ 1, . .y K¢ ¢
ve (V) = 12%)%wfe]]§"?:l|ﬁv}i||(4)gl L, ([V w"s .. V3w ]) . (184)

Then for all s < K and all q € [1,00], we have:
Ly g(Bx) < 1 Log(HT Az) + v (V) L1(Bz) Va. (185)

In particular, whenever there is an upper bounding function vs (V') satisfying vy (V) <

vsq(V) for all s < K, q € [1,00] and matriz V such that
1
vs (V) < s1 "k, (186)

holds, then the pair (H, Loo(+)) satisfies Qg q(K).
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Let Coly(2) is k-th column of Q and ||u||sq is the £y-norm of the vector obtained from u
by zeroing all but the s largest entries in u and || Pl| () ) is the norm of the linear mapping
u > Pu : R™ — R™ induced by the norms || - ||y, || - [[(x) on the argument and on the

image spaces. Then

Viu(V) < Pug(V) = masx [Colg[@lug where @ = (V¥ olfimr. (187
When all || - ) are the f-norms and ¢ = oo, Proposition 5.4.3 recovers Proposi-

tion 5.4.1. In the general case, Proposition 5.4.3 suggests a way to synthesize matrices

H € R™¥N which provably satisfy the condition Qs4(x), along with a certificate V for
this fact: H and V should satisfy a system of linear equations (183) and, in addition, V'
should satisfy (187) and (186), which is a system of convex constraints on V. Whenever
these constraints are efficiently computable, we get a computationally tractable sufficient
condition on H to satisfy Qg 4(x) — a condition which is expressed by an explicit system of
efficiently computable convex constraints on H and additional matrix variable V. Now, ef-
ficient computability of the constraints (186) is the same as efficient computability of norms
I ll(k)—(¢)- Assuming that [| - [[(zy = || - ||x, for every k, the computability issue becomes
the one of efficient computation of the norms || - ||x,—x,. The norm | - ||z—¢ is known to be

generically efficiently computable in just three cases:

1. 6§ = oo, where ||M||r—00 = ||MT”14)L1 = max |[Row! (M) where Row;(M) is
K 2

| =
71’

i-th row of M;
2. m =1, where | M||150 = max |Col;(M)||6;
3. m =0 =2, where ||M||2—2 is the usual spectral norm of a matrix M.
Assuming for the sake of simplicity that in our representation structure || - () are m-norms
with common value of 7, let us look at three “tractable cases” as specified by the above
discussion — those of 7 = 0o, m =1 and © = 2.

The case of T = 0o was considered in full details in Section 5.4.1. In this case, we have

Vg qln=oo(V) = | hax Hvleoo—mo-
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The case of 7 = 1. When all || - [|3) are the {1 norms, the quantity v (V) is easy to

compute:
Vs,q\wzl(v) = V;k,q(v) = 1I<I}€a<}§( Ls,q(COIk‘(V))
The bottom line is that when | - ||y for all k are {1 norms, a verifiable sufficient condition

of an m x N matrix H and the norm Lo (-) on RY to satisfy Qs 4(k) is the existence of an

N x N matrix V such that

_ T -1
B=VB+H'AL max Lg(Colk(V)) <57, (188)

which is a system of efficiently computable convex constraints in variables V, H.

The case of 7 = 2. Now assume that all || - || are {2 norms, one has
(V) = VY ||o; [V wlla; ..o [V E . 189
ViaV) = (Y wl [V s VSl (189

In order to convert (189) into a verifiable sufficient condition for H to satisfy Qs q(x), we
need an efficiently computable and convex in V' upper bound on the quantity v; (V). To
this end it suffices to find an efficiently computable upper bound on the function ys4(U) of

a block matrix U = [U';...; UX] with ng x ¢ blocks U* defined as follows:

1 772 . T K
Hog(U) = wmax [T wllzs [T wllzs 5 [TTwliz]ls.g

A trivial efficiently computable upper bound on pus 4(U) is [|[[|U l2=2; -5 [|[UE|2—2] 5,45 this
bound brings us back to the function v, 4(V'). Note that this bound is exact when ¢ = oo
(same as when s = 1, since p11,4(U) = pr,0(U) = max |U*]|2,2). A less trivial bound can

be derived when ¢ = 1.

The case of T =2, g=1. Let Z={zeW: |z[k]|2 < 1Vk < K, |2[K]|]2 < s}, so

that for every vector w € W we have L, 1(w) = max 2zTw. We have
zE

2
3,1 = max [max ZTUU):|

2 1 2 K
= ma ;
K,(U) 0wl 020 st [UFwla)| 2 = s | m

w:||w]|2<1

= max maxw Ul zzTUw = max | max w UTzzTUw
wil|w[2<1 z€2 2€Z |wif|lw|2<1

= max Tr(UT227U) [since UT 227U is of rank 1]
ze
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whence

psa(U) = maéq/Tr(UTzzTU). (190)
zE

Now, when z € Z, the matrix Z = 227 is a block matrix: Z = [Zkg]éfg:1 with ng X ny
blocks Z*¢ = 2[k](2[€])T, and ||z[k]||2 < 1 for all k, >, ||2[Kk]||l2 < s. As a result, Z possesses

the following properties:

(a) Z=2Z1"=0
1ZF ) <tp, 1 <k U< K
(b) Fp1<k<K:Q K Iz8|| <sty, 1<k <K (191)

h<1L,1<k<K YK t<s

)

where || - ||« is the nuclear norm (the sum of singular values) of a matrix.
Indeed, (a) is evident; to ensure (%), it suffices to set tx = ||z[k]||2, 1 < k < K.

Now let 2% be the set of all N x N matrices Z = [ZM]K,_ satisfying (191), and let

A1 (U) = Te(UTZU 192
frs1(U) =, | max Ti( ) (192)

Observing that fis 1 (U) is an upper bound on ps 1(U) (by (190) and due to 227 € Z* when
z € Z) and it is a convex efficiently computable function of U ?; we have reached our
goal — building an efficiently computable upper bound on 1 (+). It is easily seen that this
bound is never worse than the simpler bound fis 1(U) = ||[||[UY |l22; -5 |[UX|l2—2]||s.1;* and

numerical experiment shows that the ratio 11/fi can be quite significant. O

2Convexity follows from the fact that with Z = 0, /Tr(UT ZU) is the Frobenius norm of || Z'/2U||, com-
putability - from the fact that Z7 is a computationally tractable convex set, so that maximizing Tr(UT ZU)
over Z71 is a tractable task.

3Here is the justification: Let Z € ZT and t, be such that (191.b) takes place, and let uy = ||U"||2-2.
Observe that

(1) whenever 7 € R¥ and o € R are such that || <o, 1 << K, and 3, || < so, we have
|77 w| < o|lwl|s,1 for all w.

We now have
Te(UTZU) = 3250y Tr(UMT Z2MU%) = 525 ooy Te(ZH UM UMT) < 500, 121U 0] 122
< St 125 ewiare = S0 e [, 128 | <y i wntilfullon oo [l

where <(,) and <) are given by (!) combined with (191.b).
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5.4.3.1 Proposition 5.4.3 and Mutual Block-Incoherence

We have mentioned in Introduction section that, to the best of our knowledge, the only
previously proposed verifiable sufficient condition for the validity of block-f1 recovery is
the “mutual block incoherence condition” [54]; our local goal is to demonstrate that this
condition is covered by Proposition 5.4.3.

The mutual block incoherence condition deals with the case where B = I, nip = d,
|- llgy =1l - ll2, 1 £ k < K, and the columns of A are normalized to have Euclidean lengths
equal to 1. The condition is as follows: let A[¢] be consecutive m x d submatrices of m x n

matrix A. We set

_ T y — T
o= max | max o |CoL (Al Colyr (ADI, pp= | max  omax(A” [k]A[L]) (193)

where opax stands for the maximal singular value and Col;(A) denotes the j-th column of

the matrix A. [51] states that under the condition

l1—-(d-1Na+o
194
5 < = (194)

the block-¢1 /¢y recovery Z(y) € Argmin, {25:1 1242 : Az = y} (2* are consecutive d-
dimensional blocks in z € R"™) in the case of noiseless observations is exact on all s-block-
sparse signals . In the case of noisy observations, certain error bound for a (properly
modified) block-¢1 /¢35 recovery of nearly s-block-sparse signals is provided. We are about
to demonstrate that these results of [51], are, essentially, covered by Proposition 5.4.3 and

Theorems 5.3.1, 5.3.2 due to the following observation:

Proposition 5.4.4 Given m X n sensing matric A with unit Euclidean lengths of the
columns and the representation structure B = I,,, ng = d, |||y = [|-[[2, 1 <k < K =n/d,
let a, 0 > 0 be defined according to (193), and let a positive integer s be such that (194) holds
true (the latter clearly implies that 1 — (d — 1)ac > o). Then the matrices By = AT[(]A[{]

are positive definite for all £, and setting

1-(d-1)a

H=0[B;'A[1], By 1 A2], ..., BF AIK]], 0= —@d-Dato
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we get a contrast matriz which, along with the norm Lo (-), satisfies the condition Qs o (k)

with
. g8
1-(d-1Da+o

K <1/2.

The Fuclidean lengths of the columns in H do not exceed Tl—l)p'

5.4.8.2  Sufficient Condition for Qg q4(k): Limits of Performance

Consider the situation where all the norms || - ||y are || - ||z, with m € {1,2,00}. Here
Proposition 5.4.3 offers a verifiable sufficient condition for a pair (H € R™N L. () to
satisfy the condition Qg 4(x). A natural question is, what are “limits of performance” of this
sufficient condition, specifically, how large could be the values of s for which the condition

can be satisfied by at least one contrast matrix. Here is a partial answer to this question:

Proposition 5.4.5 Let A be an m X n sensing matriz with m < n, let B = I, and let
ng=d, | [[wy =1l llx, 1 <k < K =n/d, withm e {1,2,00}. Whenever an m x n matriz

H and n x n matriz V satisfy the conditions
1_
L=V +H"Aand masx [V o [V oo [V sl < 5771/2 (195)

(cf. (183), (187), and (186)), one has

s < NCOET (196)

U

provided that either (a) g > 2, or (b) ¢ = 1 and A is “essentially non-square,” namely,

m < 3n/4.

Discussion. Let the representation structure in question be the same as in Proposition
5.4.5, and let m x n sensing matrix A which is “sufficiently non-square,” that is, m < «n for
some v < 1. Proposition 5.4.5 says that in this case, verifiable sufficient condition, stated
by Proposition 5.4.3, for satisfiability of Qg 4(x) with £ < 1/2 has rather restricted scope
— it cannot certify the satisfiability of Qs 4(k), £ < 1/2, when s > W\/le—v)’ at least in

the case of ¢ > 2; when ¢ = 1, the conclusion still holds true provided that v < 3/4).

Note that in fact the condition Qs 4(x) can be satisfiable in a much larger range of values
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of s; e.g., when the representation structure in question is the standard one, and A is a
random Gaussian m X n matrix, the matrix 24 satisfies, with overwhelming probability as
m,n grow, the condition Qs2(1/3) for s as large as O(1)m/+/In(2n/m), see Proposition
5.5.1 below. There is, however, an important case where the “limits of performance” of
our verifiable sufficient condition for the satisfiability of Q (%) implies severe restrictions
on the range of values of s in which the “true” condition Qs 4(r) is satisfiable — this is the
case when ¢ = 0o and m = co. Combining Propositions 5.4.1 and 5.4.5, we conclude that
in the case of representation structure from Proposition 5.4.5 with m = oo and “sufficiently
non-square” (m < 3n/4) m x n sensing matrix A, the associated condition Qs o(1/2) is
unsatisfiable, provided that s > 2\/%. Invoking Proposition 5.4.2, we conclude that

with the representation structure in question, assuming & ~ N (0, I,,) and o > 0, for every

pair of constants a, C' > 0, the error bound
V(z € R",u € U) : Prob {||Z(Az + u+ &) — 2| < a+Cs 'Li(z —2°)} > 1—¢

is not achievable for any estimate Z(-), unless s < O(1)C'y/n/d. Informally speaking, at the
(block) sparsity level /m “something happens” — in particular, the nice picture “everything
is as in the case of direct observations” outlined in item B of Introduction section ceases to

exist, provided the approximation error is measured in the uniform norm.
5.5 RIP and Condition Q;,(x)

In this section, we restrict ourselves with the standard representation structure, meaning
that B = I,, K =n,n; = .. =ng =1 and all | - [|3) are just the standard norms |- | on
the real axis.

Recall that a sensing matrix A € R™*" satisfies the Restricted Isometry Property
RIP(d,k) (here 6 > 0 and k is a positive integer) if for every x € R™ with at most k

nonzero entries one has

(1 =0zl < 2" AT Az < (1 +6)|=[13 (197)
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Proposition 5.5.1 Let A € R"™"™ satisfy RIP(6,2s) for some § < 1 and positive integer s.
Then

(i) The pair (H = %Im, || - ||2> satisfies the condition Qs 2 (%) associated with A
and the standard representation structure.

(ii) The pair (H =54, Hoo> satisfies the condition Qg2 (%5) associated with A

and the standard representation structure.

(iii) Let s = Floor (%) Then one can build efficiently a matriz H = [h',...,h"] €

R™X™ sych ||ht||s < \/1176 for all i and the pair (H,|| - ||so) satisfies the condition Qgz oo (3)

associated with A and the standard representation structure.

(iv) Let m,s,n be such that 1 < s <m <n, n > 1000, and
36s+/In(n)/m <1, (198)

and let A satisfy RIP(4 SIHT(N), s). Then (H = 3A, || - ||lso) satisfies Qs00(3). Besides this,

a Gaussian A (i.e., random m X n matriz with independent N'(0,1/m) entries) satisfies

RIP(4 S’IHT("), s) with probability at least 1 — 1/n.

Combining Theorems 5.3.1, 5.3.2 and Proposition 5.5.1, we arrive at the following con-

clusion:

Corollary 5.5.1 Let A= [Ay,...,A,] € R™*" § < 1/3 and positive integer s be such that
A satisfies RIP(0,2s), and let the representation structure be standard.
(i) Let R > 0 be such that for the set = = {& : ||0€ + ull2 < R Yu € U} one has

. —1/2
P(E)>1—¢€. Let H= f/ﬁfm, |-1=1"]2 and
s~V2R
P=/i=s
Then for the regular ¢1-recovery associated with H, || - |2, p and for the penalized ¢1-recovery
associated with H, || - ||2, s one has

VizeR" ueld,Ec=): (199)
H%(Aw + U + 0_£) _ pr S 38%2\/1753_1/2RT£13;6)S_1“1‘715“1, 1 S p S 2

(ii) Let

p; = omin {d : Probep{(1 —6)"'|AT¢| > d} < ¢/n},
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so that with = = {€ : (1 — §) 7Y AT¢| < pi,1 < i < n} one has P(E) > 1 —e. Let also

H = 171514 and
p=max |(1—0) 'maxul A; + p;| .
) uelU
Then for the regular {1-recovery associated with H,|| - ||co, p, and the penalized ¢1-recovery

associated with H, || - |lco, s, and for all 1 < p < 2 one has

1 (1—0)[2p+ 57|l — 2°[|1]

Vixe R ueld,£ €E): ||z(Ax + u+ of) — z||, < 3sP Y (200)

Discussion. I. Let 4 = {u € R™ : |Ju|l2 < r} and o = 0. In the situation of Corollary

5.5.1.iwithe=0weget R=7r, p= 3_1/27“/\/1 — 0, the recoveries are

Treg(y) € Argmin, {[lully : [Au —ylls <7},

. (201)
Fpen(y) € Avgmin, {Jlulli + 2555 | Au— ylls}
and the bound (199) reads
121 =05 20+ (1= 0)s |z — 2°
|Z(Az 4+ u) — x|, < 3s? s )5 e = 2l (202)

1-36 ’
V(iz e R" u: |lulls <7)and 1 <p <2
Note that this bound is not completely evident even in the case of direct observations

m = n, A = I, (in this case, RIP(0,2s) holds true whenever 2s < n). As p grows from
2/5VI=0r+(1=9)||z—a*
GOl (p = 1) to

1 to 2, the right hand side in the bound decreases from 3

32\/ —or+(1-0)s _I/QHI 5|1
1-39 (

= 2). We clearly have

— _ —-1/2 _ .8
2V1—or+(1—-9)s |l — z°|1 2 < p< oo,

|1Z(Az + u) — 2|, < [E(Az +u) — 22 < 3 1-35 T

II. Let 0 ~ N(0,I,) and U = {u : |jull2 < r}. In the situation of Corollary 5.5.1.ii with

e € (0,1) we get
p=(1-0)"1p, where p = max [r||4;||2 + ocErfinv(e/n)||Ai|l2] < V1 + [r + oErfinv(e/n)],

and the recoveries are

Treg(y) € Argmin, {[Jufl1 : [|AT(Au — y)llw < 5},

Tpen(y) € Argmin, {[|ully +2s(1 — )~ AT (Au — y)lloc } ,

(203)
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and the bound (200) reads

V(z € R uelU, &€ == {¢: |AF¢| < Erfinv(e/n), 1 <i < n}): (204)

1 - s
|Z(Az + u + 0€) — af|, < 3sp 2REBlGWEAD el g < p < 9,
5.5.1 {.-error of Dantzig Selector.

We continue to consider the case of the standard representation structure. If In(m) =
O(In(n)) and A is an m x n Gaussian matrix, Proposition 5.5.1.iv states that when s <
O(1)y/m/In(m) with an appropriately chosen O(1), the probability for (34, - ||«) to
satisfy the condition Qg (1/3) approaches 1 as n — oo. Since for In(m) = O(In(n)), the
Euclidean norms of columns in A are bounded by 1.1 with probability approaching 1 as

n — oo, we conclude from our results on regular ¢;-recovery that

(1) When s < O(1)y/m/In(m), for n large and a typical realization of Gaussian

A, the Dantzig selector

y=Ax + 0 — Tp(y) € Argmin {HUHI AT (Au — ) || < 60\/21n(n/e)}

under the standard Gaussian noise, & ~ N (0, I;,), satisfies
Prob{¢ : ||z — Zp(Azx + 0&)|looc < O(1)o/2In(n/€)} > 1 — € for all s-sparse x.

The question is, to which extent the bound s < O(1)y/m/In(m) is important here. Specif-

ically, let us pose the following question:

(?) Consider Dantzig Selector recovery ZTp (-), and let us fix €, say, € = 0.01.
Given a constant C > 0, how large, for n large, In(m) = O(In(n)) and a typical

Gaussian A € R™*"™ are those s for which the following holds

Prob {||§— 2]l < Coy/2 ln(n/e)} >1—¢=0.99 (205)
for every s-sparse signal x?

The answer is given by the following
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Proposition 5.5.2 For given C, € and for large m,n with In(m) = O(1)In(n), a typ-

ical Gaussian m X n sensing matriz ensures (205) for every s-sparse x only when s <
O(1) max[C, C?]y/mIn(m).

Thus, the restriction s < O(1)y/m/In(m) in (!) indeed is important: when s is by a
logarithmic in m factor greater than this bound, the Dantzig selector associated with a

typical Gaussian A stops to work properly in the ¢,.-norm.
5.6 Non-FEuclidean Matching Pursuit Algorithm for Block Sparsity

The Matching Pursuit algorithm for sparse recovery is motivated by the desire to provide
a reduced complexity alternative to the algorithms using ¢;-minimization. Several imple-
mentations of Matching Pursuit has been proposed in the compressed sensing literature
including the ones for block-sparse recovery [10, 14, 54, 55]. In this section, we aim to
show that for a given sparsity level s, whenever || - [[4) = || - [l for all & = 1,..., K, the
verifiable condition Qs o can be used to design a specific version of the Matching Pursuit
algorithm which we refer to as Block Non-Euclidean Matching Pursuit (BNEMP) algorithm
for recovering vectors obeying a block sparsity structure. In this section, we will assume
that the matrix B is invertible.

Suppose that we have in our disposal £ > 0 such that the condition Qg is satisfied by

some pair (H, || - ||). For the given € € (0,1), let
v(H) := inf {p : Prob{¢: |H [u+o€]| <pVuecl} >1— 6} :

and by invoking Proposition 5.4.1, in this case, we can efficiently find N = ny + ... + ng
vectors hl,...,hY in R™ and N x N matrix V = [Vke]ﬁezl (the blocks V* are nj, x ny
matrices) such that

(@) B=VB+Ih', .. hNTA

(B) IVH¥lo0soo <5 Vh (<K (206)

(¢) Prob <E = {¢: mab){(uThi +ol¢Thi <v(H),1<i < N}) >1—e
uec

In the remaining of this section, we will denote ¥ = s~'x, H = [h!,..., ] be the collection

of vectors satisfying (206) and w.(y) = v(H). Let v > 0 be a given upper bound on the
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“s-block tail” of the linear transform, Bx, to be recovered. Consider the following BNEMP

algorithm:

Algorithm 2

T —
1. Initialization: Set v(©) =0, o = Lsa(H i/itfyw*(v)+v‘

2. Step k, k=1,2,...: Gwen v*=1) € R” and a_1 > 0, compute

(a) g=H"(y — Av*=D) and vector A € R by setting

A; =sign(gi)[|gi| — Yok—1 —ws«(P)]4, 1<i<n

(here [a]+ = max[0,a]).

(b) Set v¥) = =1 + B=1A and
g = 2871 + 25wy (y) + v. (207)
and loop to step k + 1.

3. The approzimate solution found after k iterations is v(*).

Proposition 5.6.1 Let v > 0 be given and assume that sy < 1 is such that (206) takes
place. Then there exists a set = C R™, Prob{¢ € Z} > 1 — ¢, of “good” realizations of
& such that whenever £ € =, for every x € R™ satisfying L1(Bx — [Bz|®) < v and every
uw e U, the approzimate solution w® := Bv®) for Bx and the value oy, after the k-th step

of Algorithm 2 satisfy
(ag) foralll <i< K and1<j<mn;, w®]i]; € Conv{0; (Bx)i];},
(b)) Li(Bx —w®) < oy and Loo(Bz — w**tY) < 250y + 2w, (7).

Note that if K < 1/2, i.e., 257 < 1, then also s < 1, so that Proposition 5.6.1 holds

true. Furthermore, by (207) the sequence «j converges exponentially fast to the limit

. 2swe(Y) v,
Qoo 1= o

Li(Bo™) — Bx) < oy, = (259)F[arg — oo + Qo

171



Along with the second inequality of (bg) this implies the bounds:

Loo(Bv™ — Bz) < 25aj_1 + 2w, () < %,
s

-1
and since L,(w) < Ll(w)%Loo(w)pT for 1 < p < oo, we have
1—
Lp(Bv(k) — Bx) < STP(Qsﬁ)k[ao — Qo] + Qoo
The bottom line here is as follows:

Corollary 5.6.1 Let ¥ < 1/(2s) be such that Qs takes place, so that we can find effi-
ciently contrast matrices H,V satisfying (206). The recovery of Bx where vs(Bx) < v with
Algorithm 2 associated with H,V, one ensures that for every t = 1,2,..., the approrimate

solution v found after t iterations satisfies

Riskf(v(t) |s, 0,0, €)

5 —1
< 2w, (y) + 5
- 1 —2s%

[T Lsp(H y) +0) +wi(?)  20.(7) + s‘lvD

bo
+ (257) 1— sy 1- 257

foralll <p<oo (cf (176)).

5.7 Proofs of Chapter 5
5.7.1 Proof of Theorem 5.3.1

Let us fix z € R", u € Y and £ € E, and let us set ) = u + 0§, T = Treg(Ax +1). Let
also I € {1,..., K} be the set of indexes of the s largest in magnitude blocks in Bz, J be
the complement of I in {1,..., K}, and let for w € W, w; and w; be the vectors obtained
from w by zeroing blocks w[k] with indices k ¢ I and k ¢ J, respectively, and keeping the
remaining blocks intact. Finally, let z =7 — x.

19, By B and due to £ € E, u € U, we have

1T ([Az +n] — Az)|| < p, (208)
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so that z is a feasible solution to the optimization problem specifying , whence L;(BZ) <

L;(Bz). We therefore have

Li([Bz];) = Li(BZ) — Li([B7]r) < Li(Bx) — Li([B7]r)
= Li([Bzlr) + La([Bzl) = La([BZ]1)

< Ly([Bz];) + L1(|Bx]y),

whence

Li([B2]s) < La([BZ]y) + La([Bz]y) < Li([B2l1) + 2L ([Bz]).

It follows that
Li(B2) = Lu([B2)1) + L1(1B2ly) < 2L1([B2)1) + 2L ([Bal,). (209)

Further, by definition of # we have |[HT ([Ax + u + 0€] — AZ)|| < p, which combines with
(208) to imply that

|HT A - )] < 2. (210)

20, Since (H, || - ||) satisfies Qs 4(k), it satisfies Q1 (k) as well (Observation 5.2.1), that is,
Ls1(Bz) < s|HY Az|| + kL1 (Bz).

By (210), it follows that Lg;(Bz) < 2sp + xLi(Bz), which combines with the evident

inequality L;([Bz]r) < Ls1(Bz) and with (209) to imply that
Li([Bz|r) <2sp+ kLi(Bz) < 2sp+ 2cL1([Bz|r) + 26 L1([Bz] ),

whence

2sp + 2kLy([Bx]y) '

Li([B2]r) < o

Invoking (209), we conclude that

< dsp + 2L1([BIE]J)'

L(Bz) < 1- 2k

(211)
3. Since (H, | - ||) satisfy Qs4(k), we have
Ls,(Bz) < se|H" Az|| + kse " Ly(Bz),
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which combines with (211) and (210) to imply that

1p+ K/S_lLl([B.'L']])'

L, q4(Bz) < 2sq e (212)

Let A be the (s + 1)-st largest among the magnitudes of blocks in Bz, and let w =

_ _ _ 1
Bz — [B2]°. We have Ly(w) < Loo(w)'® Li(w) < A& Ly(Bz)t < A'7 [Leet2lallBeln)]

where the concluding inequality is given by (211). Besides this, (212) implies that A <

2P+Hs*117L;I({[BI]J) < 2p+s*11L71H([Bx]J) (note that & < 1/2), whence Ly(w) < (25)%%

Taking into account (212) and the fact that the supports of [Bz]® and w do not intersect,

we get
Ly(B2) < 23 maxlLy([BA]"), Ly(w)] = 20 max{Lyg(B2), Ly(w)]
< o2t 2p + s 1Ly ([Bzx]y) '
1—-2k
This relation combines with (211), Holder inequality and the relation ||[Bx]s|| = ||Bz —
[Bx]®|| to imply (172). O

5.7.2 Proof of Theorem 5.3.2

Same as in the proof of Theorem 5.3.1, let us fix x € R", w € U and £ € =, and let us set
N =u+0&, T = Tpen(Ax+n). Let also I C {1,..., K} be the set of indices of the s largest in
magnitude blocks in Bz, J be the complement of [ in {1, ..., K}, and for w € W let wy, wy
be the vectors obtained from w by zeroing out all blocks with indexes not in I, respectively,

not in J. Finally, let z =7 — z.

1%, We have
Li(BZ) + 2s||HT (AZ — Az — )| < L1(Bz) + 2s|H ||
and
1HT (AT — Ax — )|l = [ HT (Az = )|l > | H" Az|| - |[Hn],
whence

Li(BZ) + 2s||[HT Az|| < Ly(Bx) + 4s||H n|| < L1(Bx) + 4sp, (213)
where the concluding inequality follows from the fact that u € U, £ € = due to B. We have

Li1(Bz) = Li(Bx+ Bz) = Li([Bz|; + [Bz];) + L1([Bz]; + [Bz]))

> Li([Bzlr) = Li([B=]r) + L1([B2]y) — La([Bz]y),
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which combines with (213) to imply that
Ly([Bz]r) — L1([Bz]r) + L1([Bz]y) — Li([Bz]y) + 2s|| H' A2|| < Ly (Bx) + 4sp,
or, which is the same,
Li([Bz)) — L1([B2]1) + 2s|HT Az|| < 2L ([Bx];) + 4sp. (214)
Since (H, || - ||) satisfies Qs4(x), (H, || - ||) satisfies Qs 1(k) as well, whence
Li([Bz]1) < Ls1(Bz) < s||HT Az|| + kL (B2),
or, which is the same,
(1 — k)L ([B2];) — kL1([Bz];) — s|HT Az| < 0. (215)
Taking weighted sum of (214) and (215), the weights being 1, 2, respectively, we get

(1= 26) [L1([Bz]1) + L1([Bz]s)] < 2L1([Bx] ;) + 4sp,

that is,
Li(B2) < 4sp +12fl2(’£B$]J)’ (216)
exactly as in (211). Further, by (213) we have
2s||HT Az|| < L1(Bz) — L1(BZ) + 4sp < Ly (Bz) + 4sp,
which combines with (216) to imply that
28| HAT 2| < dsp +12£12(LB$]J) +sp— 4sp(2 — 2/;)_+21L1([Bx]tj)‘ (217)

From Qg 4(x) it follows that
1 T lfl
Ls,(Bz) < si||H" Az|| + ks1 ~Lq(Bz),
which combines with (217) and (216) to imply that

Log(Bz) < si ' [s|HT Az|| + kLi(B2)]
G- 4sp(1 — k) + L1([Bx] ) N kl4sp + 2L, ([Bz] )]

IN

1—2k 1—-2k
14p+ 251 Ly ([Bx]y)
= S .
1 -2k
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It remains to repeat the reasoning following (212) in item 3° of the proof of Theorem 5.3.1.

Specifically, denoting A the (s+1)-st largest magnitude of entries in Bz, the above inequality

results in
4 25 1Ly ([B
’ 1—-2k
so that for the vector w = Bz — [Bz]|® one has
Lyw) < NT0Li(w)s < \TOL(Bz)u
g=1 1
< |fet2s Li(Bal) ’”]J)] ’ [—48” F2LBIl) | T [y (218) and (216)]
_ S§4p+28*11}21ﬁ([3$h)’

whence, invoking (217) and taking into account that [Bz]® and w have non-intersecting

supports,

12p+ s~ Li([Bz]y)

Ly(B2) < 24 max[Ly([B2]*), Ly(w)] = 27 max[Ly o(B2), Ly(w)] < 2(2s)

1-2k
This combines with (216) and Hoélder inequality to imply (174). O
5.7.3 Proof of Proposition 5.4.1
(i): Let H € R™M || .||, p satisfy (!). Then for every k < K and every i < n;, denoting

by wy; i-th entry in w[k], w € W, we have
\[Bx]pi| < ||[HT Az|| + s~ 'kLy(Bx),
or, which is the same by homogeneity,
rrgn{]]HTAx\\ — [Bz]ki + L1(Bx) <1} > —s k.
Equivalently the optimal value Opt,,; in the conic optimization problem
Opty,; = n;:utn {t — "Bz« |HT Az|| < t, Li(Bx) < 1},

where e € W is the vector with the only nonzero entry, equal to 1, placed at i-th position
of the k-th block, is > —s~'k. Let || - ||« is the norm conjugate to || - ||. Since the problem

clearly is strictly feasible, this is the same as to say that the dual problem

e AR {—u : ATHn+ BTg =B ", |lgll|h < p, 1 <L <K ]l < 1}
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Li. Tt follows that there exists

has a feasible solution with the value of the objective > —s~
n=n" and g = ¢* such that
(a) BTeki — ATpki 4 BT ghi,
(8) B = H, i < 1 (219)
© g0l < 57 h 1< <K
Denoting by h® i-th column in the matrix [pb!, ... R p21  p2n2 pFL O pEonE]
defining V* as the ng x ny matrix with the rows (¢*[¢))”, i = 1,...,nz, and setting V =
[Vu]fj:l, (219.a,c) ensure the validity of (175a,b) (note that || M||so—oo is nothing but the

maximum of || - ||;-norms of the rows in M). Besides this, by (219.b) and the definition of
= (see (1)) we have
E€Z = |Hu+ogl|<p Yueld

o BT+ o€ < p VueU

=, glgfuThki_{_o_‘gThkq <p
where the implication =, is due to the fact that |[[A*]T¢| = |7 HT¢| < |HT¢| for all
¢ because of ||7¥!||. < 1, and the implication =, is due to the fact that U/ is symmetric
w.r.t. the origin. We conclude that = C Z* and thus P(E") > P(Z) > 1 — ¢, as required
in (175.¢). (i) is proved.

(ii): Let H = [h!, ..., hN], V = [quﬁ:l, p satisfy (175). Then for every x € R™ we have

w:=Bx=VBz+ H Az = Vw +ﬁTAm,
——

whence w(k] = Y34, VFw[(] + v[k], so that
K

lwlkl ) = lwlklllo < IV llsomoollw@llso + [0[E] oo < 57 6Ly (w) + | HT Az oo,
=1

that is,

Ly oo(Bz) = max [wlklll g < | Az]oo + s~ L1 (Bx)
for all z, meaning that (H, | - ||s) satisfies Qs,00 (k). Further, we have
E = {g NET[u+ 0€]]| < p Vu € u} = (& | [u+o8]| < pYu €U, Vi< N}

= {5 : mag{cuThi +o|[RTe] < p Vi < N} =zt
ue
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whence P(Z) = P(E") > 1 —¢. Thus, H, || - ||, p satisfy (1). O
5.7.4 Proof of Proposition 5.4.2

Notation. Let 1 <k < K and 1 <i < ng. For a vector w € W, we set [w]; to be i-th
coordinate in w(k]. For a vector u € R™, we set ||u|’y = max;; |u;|, with the convention
that the latter maximum is 0 when nj, = 1. Further, let e** be the vector from W such that
[e*]y; = 1 when ¢ = k and j = i and [e*]y; = 0 for all remaining pairs ¢, j. Finally, let

B = [B*;...; BX] with nj, x n matrices BF.

0. Letusfixk,i,1<k<K,1<i<ny, and set

M=25 a=1la+S"1cM =2.1a,
XE = {z € R [Bha)s = 0, | BAali + Sy [ Boloo < M}, X4 = - XH,
Y = AXF YR = AXKF = —yFi
and let V = 2U + 20 {Cn : ||n||2 < Erfinv(e)}.
0°. It may happen that Xff = (). This is exactly the same as to say that the optimal

value in the strictly feasible conic optimization problem

max [e")" B : || BFz|ll, + > | B ) < M
1#£k

is < a, meaning that the dual problem

K
: : o aT, 1) — pT ki <
Jé%l,t{Mt [v]ki 0,;[3] vlf] = BTe™, max |lvff)ll <t

is < a, whence there exists v* € W such that [v¥/];; = 0, BTv* = BT and Mm?x |vRe)|l <
a, that is, max |0 [0)|l1 < a/M = 2.1¢S~!. Thus, when X is empty, setting h¥* = 0 € R"™,

we get vectors h* € R™ and v* € W such that there exists v* € W such that

(aki) BTUki +Ahkz — BTeki’

(b) v =0, max ()] < 2.1e57, (220)
(cki) max uT ¥ + oErfinv(e) | CTh* ||y < 2.1a
ue
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1°.  Assume now that X% # (. Then Y} are nonempty convex sets. We claim that
whenever 0 < 0 < 1, the convex compact set #) does not intersect the convex set 2Yffi.
Indeed, if the opposite is true, there exists v € U and e, |le]ls < Erfinv(e), such that
O(v + 0Ce) = Az with z € XK. Now consider two hypotheses on the distribution of a
random vector ¢ € R™: the first, Hy, states that ( ~ P4, where P, is the distribution
of oCe + oCn, n ~ N(0,1,), and the second, H_, states that ( ~ P_, where P_ is
the distribution of —0cCe + oCn, n ~ N(0,1,,). Consider the following procedure for
distinguishing between these two hypotheses: given (, we compute Z(¢) and accept Hy
when [BZ(()]r; > 0, otherwise we accept H_. We claim that this procedure rejects the true

hypothesis with probability < e. Indeed, applying (181) to u = —6v and = = z, we get
Prob, a0, 1,011 Blz — T(Az — 0v + 0Cn)]|lec < a + ¢S Li(Bz - [Bz]®)} > 1—e

Since Az = Qv +600Ce and Ly (Bz — [Bz]%) < >0tk |1B%2)|0o < M, we get a+cS™'Li(Bz—
[B2]%) < a+ cS™'M = 2a, while [B2]y; = a = 2.1q; it follows that | B[z — Z(Az — v +
oCN)]llee < o+ ¢ST Ly (Bz — [B2]®) implies that 2.1a — [BZ(foCe + 0Cn)]x; < 2 and

thus implies that [BZ(#oCe + oCn)]r; > 0. We see that
Prob, nr(0,1,)1[BZ(00Ce + oCn)|k; > 0} > 1 — ¢,

that is, our rule for distinguishing between H; and H_ rejects H; when this hypothesis is

true with probability < e. Similarly, applying (181) to u = fv and x = —z, we get
Prob, n(0,1,) 11 Bl=2 — Z(=Az + 0v + 0Cn)][|oc < a + ¢S7ILy(Bz — [B2]°)} > 1—e.

Since —Az = —0v — #oCe, we, same as above, conclude that |B[—z — Z(—Az + v +

oON)]|lee < o+ cSTIL1(Bz — [Bz]®); implies that [Bz(—0cCe + aCn)|p: < 0, and thus
Prob, (0,1, 1 [BT(=00Ce + aCn)lyi <0} > 1 —¢

that is, the probability to reject H_ when the hypothesis is true is < e. On the other
hand, to distinguish between the hypotheses Hi via observation ( distributed according to
the respective distribution P, /P_ is the same as to distinguish between the distributions

N (—be, I,;,) and N (fe, I,,,); to do it with probabilities < € to reject the true distribution is
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possible only when ||fe||o > Erfinv(e), which is not the case due to ||e|l2 < Erfinv(e) and

0 < 0 < 1. The resulting contradiction demonstrates that 61 does not intersect 2Yfi.

20, Since 6V does not intersect QYJ_“' when 6 < 1, the sets V and 2Yfi can be separated by a

linear form, which can be normalized to be > 2 on QYfi and < 2 on V (recall that 0 € int)).

In other words, there exists g = g* € R™ such that ma]z(gTv < 2 and inf g¢gTy > 2.
ve

yey
Recalling the origin of V), the first relation amounts to

max u’ g + oErfinv(e)||CT g|l2 < 1, (221)
uUE

while the relation g7y > 2 for all y € 2Y_{fi = 2AX_]f_i amounts to fTx > 1 for all z € X_]f_i,

where f = ATg. Recalling the definition of X, it follows that

min{ flz: ()T Bx = a, |BFz||l, + E | B 2|joo < M » > 1.
xT
0k

Passing to the dual problem, the latter inequality results in

IteRyeW): f=B"y, ayi — Mt >1, Y |yg| <t, %gcuy[e]ul <t. (222)
J#i
For the above ¢,y we have 0 <t < (ayx; — 1)/M, so that y; > 0; setting

0, C—kj—i .
b = ) and hkz = y].;ilg7

~[ylej/yki, otherwise

[v*]

(222) combines with f = ATg to imply that BTe* = BTvk + AL, Besides this, by
construction we have [v¥],; = 0. Further, by (222) we have |[v*[{]||1 < t/yr; < a/M =
2.1¢S71, so that v, h¥ satisfy (220.(ax;),(bx;)). Besides this, by (222) we have 0 < 1/y; <

a, which combines with (221) to imply (220.(c;))-
4%, The bottom line is that for every k,1 < k < K, and every i, 1 < i < ny, there exist

vectors A € R™ and v¥' € V satisfying (220). Setting

_pll 1, 2,1 2, K1 K,
H =[h", . ho™M k5t h5™2 L RM L RSTE]

Vo= (0" (08T (02T s (022) 5 (05T (0o T,

we get (182) as an immediate consequence of (220) and the relation s < &. O
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5.7.5 Proof of Proposition 5.4.4

The diagonal entries in By are equal to 1, and the moduli of the off-diagonal entries are < a.
This implies, quite straightforwardly, that the minimal eigenvalue of By is > 1—(d—1)«, and
in our situation the latter quantity is > o > 0 (otherwise the right hand side in (194) were
< 0, which is not the case. Setting V =1 — HT A, it is immediately seen that the minimal
eigenvalue of B is > 1 — (d — 1)ae > 0, so that the matrices B, indeed are positive definite,
H is well defined, and the Euclidean lengths of columns in H do not exceed 1/(1—(d—1)a.
Now let us set V.= I — HTA. The d x d blocks V¥ in V are as follows: when k = ¢,
we have V¥ = (1 — )I;; since clearly 6 < 1, the || - |22 norms of these blocks are equal
to 1 — 6. The || - |22 norms of the off-diagonal blocks V¥ = 0B, ' AT[k]A[(] clearly do
not exceed 0o /(1 — (d — 1)a) by the definition of ¢ and since, as we have already seen,

|B; 22 < 1/(1— (d - 1)a). It remains to note that 1 —§ = , that is, the || - |22

(d Da

norms of all blocks V¥ do not exceed f:=1—6 = Setting Kk = (s, we get

g
1—(d—1)a+o"
k < 1/2 by (194). By construction, ¢ = oo, H, V and ||[VF¢||a_,o < sk satisfy (183), (184),

whence, by Proposition 5.4.3, (H, Loo(-)) satisfies Qg o0(K). O
5.7.6 Proof of Proposition 5.4.5

Let H,V satisfy (195). We have V = I, — HT A, and the rank of HT A is < m; therefore at
least n — m singular values of V are > 1, and therefore the squared Frobenius norm ||V ||%
of V is at least n — m. On the other hand, let us upper-bound this quantity as follows.
For 7 = {1,2,00}, it is immediately seen that, for every d x d block V** in V we have
IV r < VA||[VF|zr := VdQe. The columns Cy of the K x K matrix Q = [ng]ﬁézl
satisfy ||Collsp < o = s%_1/2 by (195). Now, it is immediately seen that for every K-

dimensional vector f one has ||f||3 < max LQ%, 1] Hf||§,q We now have

K K K
n—m < |V[i =ZZHV’“ZH2 Ay > IVHI e =d)_ 1Cl3
(=1 k=1 =1k (=1

K

=1
K
Z [2/q :|HCgH§ < max [/ }dKer

IN

1 2_
= jnmax [d_lns_Q,sq 2}.
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The resulting inequality, as it is immediately seen, implies the desired conclusion. O

5.7.7 Proof of Proposition 5.4.3

Let V¢ = [V ., VEY 1 < ¢ < K. Given € R" and setting w = Bz, and using the

relation (183), we have
w= Bz =[VB+H'Alx =Vw+ H' Az,
whence,

Lsy(w) = Ls7q(Vw—|—HTA:L‘)

< Lsg(Vw) + Ls o(HT Ax)

K
= L., (Z V%[ﬁ]) + 59 Lo (HT Az)
=1

IN
=

1
DMV wldllys - IVE @l o) lllsig + 57 Loo(HT Az)
/=1

1
VegV)llwlllly + 57 Loo(H" Ax)

S,

M=

~
Il

1
= 13, (V)Ly(w) + 51 Log(H Ag)

proving (185).

To verify (187), note that for every k and every ¢, we have

0 < [V*wlf]]| ) < l[w]€]]| ey IVEwl| ) = 0[]l ) IV 0= iy = 1wl 0y ke

max
wERnlinH(QSl

Since for any two nonnegative vectors, a, b satisfying a; < b; Vi, we have ||a||s,q < ||b]|s,q, We

get

IV wlEll s o5 IV wlbl] a0) g < Nl I Cole[€ ls,q-

By taking the maximum of both sides first with respect to w[¢] subject to the constraint that
[w[f]||(¢y < 1, and then over 1 < ¢ < k, we arrive at (187) implying that v (V) < s (V).

O
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5.7.8 Proof of Proposition 5.5.1

Let z € R”, and let z!,...,27 be obtained from x by the following construction: z! is

obtained from z by zeroing all but the s largest in magnitude entries; 22 is obtained by the

L 23 — by the same procedure applied to  — ! — 22, and

same procedure applied to x — x
so on; the process is terminated at the first step ¢ when it happens that = 2 4+ ... + 2.
Note for j > 2 we have ||27]|oo < s7 1|27 ||; and ||27]|; < ||277Y|1, whence also ||z7]|s <

VIzilleollzi]l1 < s7Y2[|277 1|1 Recall that if A is RIP(J,2s), then for every two s-sparse

vectors u, v with non-overlapping support we have
|u” AT Au| < 6|ull2[|v]l2- (%)
(i): We have

Azt 2]l Azllz > [2']" AT Az = [ Az! (|3 — 325 _p[a']" AT Ax?
> (| Az 3 = 6 35 [l l2]la7[|2 [by (+)]
> [|Az|3 — 0572 [l |2 o5 |27 1 > Azt — 057212 |22l

= ||z < |z’ (|2 Axl2 + 3572 |l* |2 ]|l

| Izl 40002 < Lzt BYYAIIPAS
= ot = ks a3 < el Azl + 8577 (et ) Dl

1/2

= |lzlls2 = lle'll2 < sl Azll2 + %=5- 2l [by RIP(S, 25)]

and we see that the pair (H = —S_lljfslm, I| - H2> satisfies stg(%), as claimed in (i).
(ii): We have
e[| AT Az oo > [a1]T AT Az = || A2 |5 — 327, [a']" AT Aa?

> ||Azt||3 — 057 2|z ||o|jz||1 [exactly as above]

= [ Az (3 < llat 1| AT Azl + 85712 |2t |2l

= (1=9)llz"[5 < lla* 1| AT Azlloc + 8572 (|2 |2 ]| z]l1 [by RIP(S, 25)]
< 12|t 2] AT Az|oo + 05712 |[2 |2 ]|z

1/2 Fy _
= |lzlls2 = lla'll2 < $511AT Alloo + 25572 l2]l1,

and we see that the pair (H = ﬁA, | - ||oo) satisfies the condition Qo (%), as required

in (if).
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(iii): By (i) we have

1
Ve e R"™: ||z < ——||Az||2 + sTV2 ||z ,
lellsz <~ o+ 72552 i
w
whence for every 7 it holds
Vo eFe < —— | Azlls +wlz| Va,
V1—90

that is,

i

Opt(P) = min {t —elr:t> A2, ||z|1 < 1} > —w.
xr

1
Vv1—96
The conic optimization problem in the right hand side of the latter relation clearly is strictly

feasible and bounded, whence by Conic Duality Theorem the dual problem

Opt(D) = max {_s o

9,f,s

1
ATy =i gl < Ll < )

is solvable with optimal value Opt(D) = Opt(P) > —w. Thus, there exist vectors g* and

f = f* such that

1 . . . .
————ATg" — =i, |g']2 < L[| f']loc S w.

VvV1—96

Setting h' = —\/llfégi and H = [hl,...,h"], we get ||hi|l2 < \/11T5 and ||[ATh! — €;]|00 < w,

whence for every x € R" it holds |z;| < |zT ATh!| + w||z||1, so that

J

[#lloo < I1HT Az]loo + @il =

_ 1
s Pl < | HT Azl + 3zllzll O
(iv): We start with proving the fact about Gaussian matrices mentioned in (iv).

Lemma 5.7.1 Let 1 < s < m < n be such that n > 1000 and ¢ := 4 SIHT(TL) < 1/3, and
let A be a Gaussian m x n random matriz (i.e., random m X n matriz with independent

N(0,1/m) entries). Then
Prob {A does not satisfy RIP(d,s)} < 1/n. (223)

Proof. 1°. Let I be an s-element subset of {1,...,n}, let x be a || - ||o-unit vector supported
on I, let § = 0.005, A = (1 —460)5, and let A, = {A € R™*": 1 — A < ||Az|3 < 1+ A}.
Then

Prob{A ¢ A,} < 2exp{—mrA?}, k= 3(1 —31n(4/3))/2. (224)
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Indeed, ¢ = \/mAx is a vector with independent N(0, 1) entries. Therefore , setting

1 1
=In(— [ exp{ys?}ex —822ds>:—ln1—2 ,
s =t (= [ ety expl-s?/2)ds) = - (1 - 23)
for —1/2 <y < 1/2, and applying Bernstein bounding scheme, we get

Vy €10,1/2):
In(py) := In(Prob{||Az[j3 > (1+ A)}) =In (Prob{[|¢[|3 > m(1 + A)}}
< mf(7) —ym(l +A) = _% In(1 — 2y) — ym(1 + A)

m
1 < inf |——In(1—-2y)— 1+A
= n(py) < inf |- in(l = 29) —qm(1+ A)]

= m B In(1+A) — A/2} < —mrA?
Vy € (—=1/2,0) :
In(p_) := In(Prob{||Az[j3 < (1 - A)}) =In (Prob{[|¢[j3 < m(1 — A)}}
< mf(y) —ym(l—A) = —T (1 - 29) — ym(l - A)

m
< 3 - — — —
= In(p-) 1/12n<f7<0 [ 5 In(1 —2v) —ym(1 A)}

= m B In(1 —A)+ A/2} < —mrA?

and (224) follows; note that we have used the evident fact 2 In(1+s) — s < —rs?, —1/3 <
s <1/3.

29, Let I be a subset of {1,...,n} of cardinality s, let S = {u € R® : |lu|2 = 1}, let € = ué,
and let S be a minimal e-net, w.r.t. || - [|2, in S, and N be the cardinality of S. Finally, let
Ar be the submatrix of A comprised of columns with indices in I, and let B = A?A 1. We

claim that
{1-A)<u"Bu<(1+A)VueS}={(1-8) <u"Bu<(1+8§)VuesS}. (225)

Indeed, let the premise in (225) hold true. Let 5 be the spectral norm of the positive
semidefinite symmetric matrix B, and @ € S be such that u” Bu = 3. There exists v € S
such that ||u — v|s < €, whence 8 = u!'Bu < 28e + vI'Bv < 28¢ + 1 + A (since the
quadratic form z? Bz is Lipschitz continuous, with constant 23 w.r.t. || - |2, on S), whence

8 < %fi < 146, where the concluding inequality is given by a straightforward computation.
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Thus, 27 Bz <1+ 6 for all z € S. By similar reasons, if v € S, and if v € S is such that
|lu—vl|2 < €, we have u” Bu > vT Bv—28¢ > 1—-A—2(1+6)e = 1—6. Thus, the conclusion
in (225) holds true.

3% We can straightforwardly build an e-net S’ in S in such a way that the || - ||o-distance
between every two distinct points of the net is > €, so that the balls B, = {z € R* :
|z — v|l2 < €/2} with v € § are mutually disjoint. Since the union of these balls belongs to
B ={z € R*:|z]2 < 1+¢/2}, we get Card(S")(¢/2)® < (1+¢€/2)%, that is, N < Card(S’) <
(142/€)® = (142/(ud))*. Invoking (224), we see that the probability of violating the premise
in (225) for a given I does not exceed exp{—m#xd? +In(2) + sln(1 +2/(ud))}. The number
of M of s-element subsets of {1,...,n} does not exceed exp{sln(n)}, and we conclude that
the probability for A be such that 27 AT Az & [1 — §,1+ 8] for a || - ||o-unit vector = with at

most s nonzero entries does not exceed
p = exp{—mrd> +In(2) + sln(n(1 + 2/(ud)))}.

It is immediately seen that with the just defined § and in the range 1 < s < m < n,

n > 1000, we get p < 1/n. O

Let A € R™ " satisfy RIP (6, s). Let o' be the vector obtained from z by zeroing all but

2 1

the s largest in magnitude entries in x, x° is obtained by the same procedure from z — z*,

L _ 22, and so on, until a vector 27 with at

2> obtained by the same procedure from = —
most s nonzero entries is built. Let, further, h € R™ be supported on the support of z!. We

have

722 = o]l < 57?7

= |l < 1272202711 < ||l27 112 )0 < s V2 |2
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Moreover,

q
B AT Azllee > BTAT Ax > nTAT Azt =) 0T AT A
j=2
q
> hTAT Az =6 ||hll2)l27]2
j=2
q—1

> hTAT Azt — 65723 " ||hla)|27 |

j=1
> hTAT Azt — 5572 ||h||o|z]x

Now let I be the support of ', A; be the submatrix of A comprised of columns with indexes
from I, and B = AITAI. Since h is supported on I, we have hT AT Az' = KT Bax!. Now
let i, € I be the index of the largest in magnitude entry in z', and h be i,-th basic orth
times sign(x;,). Observing that the spectral norm of the difference D of B and the unit
s X s matrix does not exceed J, we have h” Bz! > hTz! — hT Dz! = Tzl — |D2t|s =

LSl > [ | — '
* — * * |9
|25, | = 0|t |2 > |z, | — 6+/s|xi, |, we get

Vs <1 = |alleo(l—3dvs) < hTAT Azt < ||h|1[| AT Ax|os + 0572 ||hl|2]l21
1 §s—1/2

—|AT Az o + ———— .
575147 Aalle + 15l

= [zl <

Now let 6 =4 Sln(n); recall that when n > 1000 and 4 S'IHT(n) < 1/3, the probability for a

m

Gaussian m x n matrix to satisfy RIP(J, s) is at least 1 —1/n. When A is RIP( slnn) s)

and d/s < 1/3, the above computation shows that
3T 3. 12 3T
Vo el < SlIA7 Azlloo + 5057 Fl2ll = 14T Azllc +12¢/In(n)/mll2]1,
so that in the case of (198) (34, | - [|s) satisfies Qs 4(1/3). O

5.7.9 Proof of Proposition 5.5.2

By homogeneity reasons, it suffices to consider the case of ¢ = 1, which we assume from
now on.

Assume that (205) takes place for every s-sparse z, and let p = y/21In(n/e).
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0Y. For a typical Gaussian A € R™ " with In(m) = O(1) In(n) and m, n large, we have

(a) 0.99 < [|4;2<1.01,1<i<n,
(0)  u(A) = maxi<icj<n |A] Aj| < O(1)y/In(m)/m.

From now on we assume that these relations hold true.

1%, Let I be a subset of {1,...,n} including 1 and of cardinality < s, and let X! = {z €

R™ : 21 > 20p,z; =0Vi ¢ I} and Y! = ATAX'. We claim that

min [yl > p.
yeyl

Indeed, otherwise we could find s-sparse signal Z with #; > 2Cp such that ||AT AZ| s < p,
meaning that

IAT (Az + )| < 2p

for a typical realization of £. For such a &, we clearly have Z = 0, whence ||Z — Z||c > Cp
for a typical &, which is impossible, since by (205) for a typical £ the opposite inequality
takes place.

Thus, the convex set Y7/ is at || - || distance from the origin at least p, meaning that
there exists y/ € R™ with ||y!||; = 1 such that [y/]T AT Az > p for all x € X!, or, which is

the same,
n 0, 2</tel
<Z szAh Af) = )
i=1 cr>(20)7h (=1
Setting )\Z-I = yZI /cr, we conclude that there exists vector AY € R such that
(a) A <20
(b) (AN A;) =1 (226)

() (AN, Ag) =0, £eT\{1}
20, Let I be as above. When ¢ = 1, we have
1= (AN Ay) = MlA1]3+ M AT A,
i>1

and | Y00 MAT 41| < [A14(A), whence

1= M[lAl3] < 2Cu(A),
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whence 0.98 < M < 1.02, provided m is large enough. Similarly, for every ¢ € I\{1} we
have

0= (AN, Ag) = N[ Adl3 + D _ A AT A,
Iy
and |37, MAT Ayl < | M||12(A). Thus, we can assume that,

(a) 0.98 <M <1.02,
(227)

(b) 1£Lel=|\|<01)C/In(m)/m.
3. Let k = s/2 be integer, and let I* = {1,....k}. Let

1, (=1
A={AeR": A1 <20, (AN, Af) =

0, 2<(<k

so that A is a closed convex set in R” which is nonempty (indeed, by (226) we have A" € A).

For A € A, let A~ be the vector obtained from A by zeroing the first k£ coordinates, and let
=min |27 ||cc-
7= min Al

We claim that

~ < 0(1)C [1 /s + +/In(m) /m} (228)
Indeed, assuming v > 0, there exists e € R™, ||e||; = 1, with e; = e3 = ... = e, = 0, such that

el > v for every A € A. Let iy, ..., i be the indexes of the k largest in magnitude entries
in e. Setting I = {1,2,...,k}U{i1, ..., i} and invoking (226) and (227), we have Al € A and
therefore we should have v < e [M]~ < lezl eio[M]i, + M|l max;gg;, 0y |es]. Invoking
(227) and taking into account that [le[|; = 1, we get S35 e, [M];, < O(1)C+/In(m)/m,
while ||A!||; max;g(;, g €] < 2C/k due to M € A and |le]j; = 1, and (228) follows.

From (228) it follows that there exists A € A such that

| < o(1)C [1/3 + \/ln(m)/m] i>k

Besides this, from A € A it follows that [|A||; < 2C and



whence, applying the reasoning which led us to (227) to A in the role of Al and I* in the

role of I,

0.98 < A1 <1.02, |N| <OM)Cy/In(m)/m, 2 <i<k,

provided m is large enough. Thus,

a) [l <2C

b) 0.98 < \; <1.02

) - (229)
)N < O(1) [1/3—1—\/ /m} 2<i<n

d) (AN A4;) =0,2<i<k.

(
(
(c
(

4%, Let f be the orthogonal projection of A; onto the linear span L of As, ..., Aj. Since A
is a Gaussian matrix, the typical Euclidean norm of f is > O(1 \/T/m m

Now consider the vector

g = ZS\ZAZ = Aj\ — 5\1141.
1=2

Note that by (229.d) the orthogonal projection of AX onto L is zero. It follows that the

orthogonal projection of g onto L is —A; f, whence
979> Nff = 0(1)s/m.

On the other hand, g = Y, A\jA; with ||A[[1 < 2C and [[A||o < 0 := O(1)C[1/s4+/In(m)/m],
whence

gTg = S MNAT A <SR + S Il A (4)
< LOUAI Mo + IINIF(A) < O()C? |15 + /In(m) /m] + /In(m) /m]

and we arrive at the inequality

s/m < O(1) 02 [1/s + +/In(m)/m)],

whence

s < O(1) max[C, C?]y/In(m)m. O
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5.7.10 Proof of Proposition 5.6.1

The proof below follows the lines of the proofs of Proposition 7 of [76] and Proposition 10
of [79]. Given € € (0,1), let Z = {¢ : maxyeyy hlu + o|hl¢| < v(H), 1 <i < N}, so that
Prob{¢ € E} > 1 —e€. Let usfix { € Z, u € U and z € R" such that L;(Bx — [Bz]*) < v.
For n =y — Ax = u + 0§, using the definition of = and the fact that I/ is a symmetric set,

we have
IH ]l = max i u+ohi¢] < m?X{!hiTUI +olhi €[}
- %

< max {mag{ch;u + a|hiT§\} <v(H) =w.7).
ue

We will proceed by induction. First, let us show that (ax_1,bx—1) implies (ag,bg).
Thus, assume that (ag_1,bx—1) holds true. Let Z=0) = g — (k=1 By (ag-1), Bz=1) g
supported on the support of Bx. Note that

Bz —g = Bx— Bo* Y - HT(y — Av* D) = (B— HTA)(z — o) - HTy

= VB _ HTy,

where the last equality follows from B = VB + HT A.

I(Bz*"Y — g)lillle = (VB = H p)li]||
< VB[ loo + [ H ]l
< I VEBLT) oo + wi(7)
l
< DIV ool (B2E) Elloc +ws(7)
L
< AL(B"Y) +w(3),
consequently,
1(Bz*"1 = g)i]lloc < Far—1 +we(7) =7. (230)

We conclude that for any 1 < ¢ < K and any 1 < j < ny, the interval S[i]; = [g[i]; —

v, gli]; + 7] of the width £ = 25 + 2w.(¥), covers (Bz*~1)[i]; and the closest to 0
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point of S[i]; is

Alil; = —[lglil| =71+ glil; <0,

that is, Ali]; = Afi]; for all 1 < < K and 1 < j < n;. Since the segment S[i]; covers
(Bz(*=1)[i]; and A[i]; is the closest to 0 point in S[i];, while the width of S[i]; is at most

£, we clearly have

(a) Alil; € Conv{0,(Bz"D)[i];},  (b) Loo(BzFY —A) <. (231)

Since (ag—1) is valid, (231.a) implies that

(Bo®)[i]; = (Bv®=D + A)[i]; € [(Bu<k—1>)[¢]j + Conv {o, (Bx — Bv(k_l))[i]jH ,

cConv{o,(Bz)[i];}
and (ag) holds. Further, let I C {1,..., K'} be the set of indices of the s largest in magnitude
blocks in Bz and T = {1,..., K} \ I. Relation (az) clearly implies that |(Bz%")[i]||le <

||(Bz)[i]||oo, and we can write due to (231.b):

Li(Bzx — Bo™) = L([Bz — Bo* "V — Alp) + Ly([BzW];)

< D B = Afillloe + > N(B2)[illoo < 8L+ v = .
iel igl

Since by (231.b)
Loo(Bz — Bv™)) = Loo(Bz — Bv 1) — A) < 0 = 29041 + 2w.(7),

we conclude that (by) is satisfied. The induction step is justified.
It remains to show that (ao, bg) holds true. Since (ap) is evident, all we need is to justify
(bo). Let
oy = L1(Bx),

and let g = HTy. Same as above (cf. (230)), we have for all :

Loo(Bx — g) < 25, + 2w, (7).
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Then

ay, = Li(Bz)= Li([Bx]r) + L1(Bz — [Bx]®)

IA

> lglillloo +Fw +we(3)] +v < Ly 1(g) + 700 + swa(3) + v,
el

Hence

which implies (b).
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis we have investigated new techniques for both analysis and design of tractable

relaxations and efficient algorithms with good performance guarantees in large-scale sparsity-

oriented optimization. In terms of developing tractable relaxations, we have

developed a unifying framework for building tractable relaxations for disjoint bilinear

programs, based on linear and semidefinite programming;

investigated the benefits of using additional information given in the form of sign
restrictions for sparse f1-recovery, and presented necessary and sufficient as well as
verifiable sufficient conditions which generalize their previous counter parts from the

literature and analyzed their limits of performance;

demonstrated that our verifiable sufficient conditions can be utilized in the efficient

design of a measurement matrix with performance guarantees on the quality of recov-
ery;

investigated conditions and proposed new recovery methods for a more general sparse
estimation problem —estimating a signal from its undersampled observations corrupted
with nuisance and stochastic noise under the assumption that a known linear trans-
form of the signal admits a good block-sparse approximation in a given block rep-
resentation structure. We have shown that all our previous results on goodness of

{1-recovery can be extended to this setting.

Motivated by the specific convex optimization problems arising in compressed sensing,

we have introduced and investigated the notion of a generalized bilinear saddle point prob-

lem (GBSP). Specifically:

e We have shown that many interesting classes of problems from compressed sensing

recovery and machine learning can be cast as GBSPs.
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e We have suggested efficient first-order methods for solving GBSPs equipped with de-
terministic and stochastic oracles. These methods admit explicit theoretical efficiency
estimates which for numerous applications, including those in compressed sensing and

machine learning, are the best known so far.

e Through numerical experiments, we have shown that our algorithms with stochastic
oracles besides achieving sublinear time behavior, exhibit excellent computational

performance.

e We have investigated the effect of using previous information in our algorithms through

testing different continuation schemas paired with new distance generating functions.

Compressed sensing is an emerging field with active research particularly because of its
great promise for acquiring and processing massive data efficiently and accurately. Yet, its
solid theoretical foundation is still evolving. Optimization techniques will play a key role
in the development of this foundation. A few topics that are worth mentioning for future

studies can be categorized as follows:

Efficient Algorithms for Block-Sparse Recovery: In Chapter 5, we have suggested
new algorithms with provable accuracy certificates for a more general sparse estimation
problem with stochastic noise. One of the important features of this problem is that it
assumes the signals are block-sparse with respect to a given representation structure and
specifically considers the problem of estimating a linear transform Bz € RN of a vector

x € R™, where Bz is assumed to be block sparse, from the observations
y = Ax 4+ u + o&.

Consequently in all of the resulting recovery procedures, a norm of this linear transform Bz,
e.g., L1(Bx), appears in the objective. When the representation matrix, B is identity, these
recovery procedures more or less reduces to the ¢; regularization problems and we arrive
back at the setting of Chapter 4. On the other hand, handling the general representation

matrix B is a nontrivial and important task. There are a number of important applications
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where a nontrivial B arises naturally such as standard image reconstruction with Total
Variation regularization or finding the solution of a linear finite-difference equation with
sparse right hand side. However the algorithms in Chapter 4 are explicitly making use of
the /1 objective function and similar transformations for norms involving nontrivial B will
no longer lead to “easy to solve” subproblems utilized in the state of the art first-order
methods (or at least we don’t know it yet). Therefore it will be an interesting task to

develop efficient first-order methods for solving these estimation problems.

Verifiable Sufficient Conditions for Nuclear Norm Minimization: Minimizing the
rank of a matrix subject to constraints is a challenging problem that arises in many applica-
tions in machine learning, control theory, and discrete geometry. This class of optimization
problems, known as rank minimization, is NP-hard, and for most practical problems there
are no efficient algorithms that yield exact solutions. A popular heuristic replaces mini-
mizing the rank function of a matrix with minimizing its nuclear norm —the sum of the
singular values. This practical approach has been shown to provide the optimal low rank
solution in a variety of scenarios. The necessary and sufficient condition that character-
izing when nuclear norm minimization finds the minimum rank matrix subject to linear
matrix inequalities have been established in [114]. Despite the fact that the probabilistic
performance bounds on the rank as a function of the matrix dimension and the number of
constraints, for which the nuclear norm minimization succeeds with overwhelming probabil-
ity are provided in the literature (see [52, , 1), there is no tractable way of verifying
these conditions. It will be interesting to provide verifiable sufficient conditions in this set-
ting. The main difficulty in extending the previous work and ideas from ¢;-recovery to this
setting lies in the fact that in the space of matrices, the unit ball in the nuclear norm is not

a polyhedral set, i.e., it has infinitely many extreme points, as opposed to the /;-ball in R™.

Parallel Implementation of Efficient Algorithms for Compressed Sensing and
Their Applications: The first-order methods presented in Chapter 4 provide excellent

theoretical (they exhibit sublinear time behavior) and practical performance, yet they don’t
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take advantage of the emerging parallel and /or distributed computing architectures. Design-
ing and implementing algorithms with parallel/distributed computing in mind to achieve
both superb practical performance (thus satisfying the increasing demand for handling
larger instances faster) and optimal rate of convergence, and conducting more computa-

tional studies for large-scale first-order methods in these settings will be very rewarding.

197



[1]

2]

[11]

[12]

[13]

[14]

REFERENCES

AcCHLIOPTAS, D. and MCSHERRY, F., “Fast computation of low rank matrix approx-
imations,” Journal of the ACM, vol. 54, pp. 1-19, 2007.

AGARWAL, A., NEGAHBAN, S. N., and WAINWRIGHT, M. J., “Fast global conver-
gence of gradient methods for high-dimensional statistical recovery,” tech. rep., 2011.
http://arxiv.org/abs/1104.4824.

AL-KHAYYAL, F. and FALK, J., “Jointly constrained biconvex programming,” Math.
Oper. Res., vol. 8, pp. 273-286, 1983.

ANDERSEN, E. D. and ANDERSEN, K. D., “The MOSEK optimization tools manual.”
http://www.mosek.com/fileadmin/products/6_0/tools/doc/pdf/tools.pdf.

AvyBaT, N. S. and IYENGAR, G., “A unified approach for minimizing composite
norms,” tech. rep., 2009. http://arxiv.org/abs/1005.4733.

AvyBAT, N. S. and IYENGAR, G., “A first-order augmented lagrangian method for
compressed sensing,” tech. rep., 2010. http://arxiv.org/abs/1005.5582.

AvBAT, N. S. and IYENGAR, G., “A first-order smoothed penalty method for com-
pressed sensing,” SIAM J. Optim., vol. 21, no. 1, pp. 287-313, 2011.

AzumMma, K., “Weighted sums of certain dependent random variables,” Tékuku Math.
J., vol. 19, pp. 357367, 1967.

BacH, F., “Consistency of the group lasso and multiple kernel learning,” J. Mach.
Learn. Res., vol. 9, pp. 1179-1225, 2008.

BARrRANIUK, R. G., CEVHER, V., DUARTE, M. F., and HEGDE, C., “Model-based
compressive sensing,” IEEFE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982-2001, 2010.

BARANIUK, R., DAVENPORT, M., DUARTE, M., and HEGDEK, C., Introduction to
Compressive Sensing. Connexions e-textbook, 2011.

BECKER, S., BOBIN, J., and CANDES, E. J., “Nesta: a fast and accurate first-order
method for sparse recovery,” SIAM J. on Imaging Sciences, vol. 4, no. 1, pp. 1-39,
2011.

BECKER, S., CANDES, E. J., and GRANT, M., “Templates for convex cone problems
with applications to sparse signal recovery,” tech. rep., 2010. http://arxiv.org/
abs/1009.2065.

BEN-HAIM, Z. and ELDAR, Y. C., “Near-oracle performance of greedy block-sparse
estimation techniques from noisy measurements,” tech. rep., 2010. http://arxiv.
org/abs/1009.0906.

198


http://arxiv.org/abs/1104.4824
http://www.mosek.com/fileadmin/products/6_0/tools/doc/pdf/tools.pdf
http://arxiv.org/abs/1005.4733
http://arxiv.org/abs/1005.5582
http://arxiv.org/abs/1009.2065
http://arxiv.org/abs/1009.2065
http://arxiv.org/abs/1009.0906
http://arxiv.org/abs/1009.0906

[15]

[16]

[17]

[29]

[30]

BERINDE, R., GILBERT, A. C., INDYK, P., KARLOFF, H. J., and STRAUSS, M. J.,
“Combining geometry and combinatorics: A unified approach to sparse signal recov-
ery,” 2008.

BERINDE, R. and INDYK, P., “Sequential sparse matching pursuit,” in Proceedings
of the 47" Annual Allerton Conference on Communication, Control, and Computing,
pp. 36—43, 2009.

BICKEL, P. J., “Discussion: the Dantzig selector,” Annals of Stat., vol. 35, no. 6,
pp. 2352-2357, 2007.

BICKEL, P. J., RiTov, Y., and TsyBAKOV, A. B., “Simultaneous analysis of Lasso
and Dantzig selector,” Annals of Stat., vol. 37, no. 4, pp. 1705-1732, 2008.

BLUMENSATH, T. and DAVIES, M., “Iterative hard thresholding for compressed sens-
ing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265274, 2009.

BOURGAIN, J., DiILwORTH, S. J., FORD, K., KONYAGIN, S., and KUuTzZAROVA, D.,
“Explicit constructions of rip matrices and related problems,” tech. rep., 2010. http:
//arxiv.org/abs/1008.4535.

BRUCKSTEIN, A. M., DONOHO, D., and ELAD, M., “From sparse solutions of systems
of equations to sparse modeling of signals and images,” SIAM Review, vol. 51, no. 1,
pp- 34-81, 2009.

BRUCKSTEIN, A. M., ELAD, M., and ZIBULEVSKY, M., “A non-negative and sparse

enough solution of an underdetermined linear system of equations is unique,” IFEE
Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, 2008.

BUHLMANN, P. and VAN DE GEER, S., “On the conditions used to prove oracle results
for the Lasso,” Electron. J. Statist., vol. 3, pp. 1360-1392, 2009.

BuUNEA, F., TsyBakov, A. B., and WEGKAMP, M. H., “Sparsity oracle inequalities
for the Lasso,” Electron. J. Statist., vol. 1, pp. 169-194, 2007.

CaNDEs, E. J., “Compressive sampling,” in Proceedings of International Congress of
Mathematicians (ICM), pp. 1437-1452, 2006.

CANDES, E. J., “The restricted isometry property and its implications for compressed
sensing,” Comptes Rendus de I’Acad. des Sci., vol. Serie I, no. 346, pp. 589-592, 2008.

CaNDEs, E. J. and Tao, T., “Decoding by linear programming,” IEEE Trans. Inf.
Theory, vol. 51, pp. 42034215, 2006.

CANDES, E., ROMBERG, J., and TAo, T., “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,” IEEE Trans.
Inf. Theory, vol. 52, pp. 489-509, 2006.

CANDES, E. and Tao, T., “The Dantzig selector: Statistical estimation when p is
much larger than n,” Annals of Stat., vol. 35, no. 6, pp. 2313-2351, 2007.

CARATHEODORY, C., “Ueber den variabilitaetsbereich der fourierschen konstanten
von positiven harmonischen funktionen,” Rend. Circ. Mat. Palermo, vol. 32, pp. 193—
217, 1911.

199


http://arxiv.org/abs/1008.4535
http://arxiv.org/abs/1008.4535

[31]

[32]

[33]

[34]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

CHANDAR, V., “A negative result concerning explicit matrices with the restricted
isometry property,” tech. rep., 2008. http://dsp.rice.edu/files/cs/Venkat_CS.
pdf.

CHEN, S. S., DoNoHO, D. L., and SAUNDERS, M. A., “Atomic decomposition by
basis pursuit,” SIAM J. of Scientific Comput., vol. 20, no. 1, pp. 33-61, 1998.

CHESNEAU, C. and HEBIRI, M., “Some theoretical results on the grouped variables
Lasso,” Mathematical Methods of Statistics, vol. 27, no. 4, pp. 317-326, 2008.

CoHEN, A., DAHMEN, W., and DEVORE, R., “Compressed sensing and best k-term
approximation,” J. Amer. Math. Soc, vol. 22, pp. 211-231, 2009.

CPLEX, “IBM ILOG,” 12.2. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

CRISTIANI, N. and SHAWE-TAYLOR, J., An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, NY: Cambridge University
Press, 2000.

DavaLyan, A. S., JupiTsky, A. B., and SPOKOINY, V., “A new algorithm for

estimating the effective dimension-reduction subspace,” J. Mach. Learn. Res., vol. 9,
pp- 1647-1678, 2008.

D’ASPREMONT, A. and GHAoul, L. E., “Testing the nullspace property using
semidefinite programming,” Math. Progr., vol. 127, no. 1, pp. 123-144, 2010. Special
issue on machine learning.

DAVENPORT, M., DUARTE, M., ELDAR, Y., and KuTYyNIOK, G., Introduction to
Compressed Sensing. Cambridge, NY: Cambridge University Press, 2011.

DE CASTRO, Y., “Error prediction and model selection via unbalanced expander
graphs,” tech. rep., 2011. http://arxiv.org/abs/1010.2457v4.

DEVORE, R. A., “Deterministic constructions of compressed sensing matrices,” Jour-
nal of Complexity, vol. 23, no. 4-6, pp. 918-925, 2007.

DoNoHO, D. L. and EvraDp, M., “Optimally sparse representation in general
(nonorthogonal) dictionaries via ¢; minimization,” Proc. Natl. Acad. Sci. USA,
vol. 100, no. 5, pp. 2197-2202, 2003.

DonoHo, D. L., ELaD, M., and TEMLYAKOV, V. N., “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans. Inf. Theory,
vol. 52, pp. 6-18, 2006.

Donono, D. L., ELAD, M., and TEMLYAKOV, V. N., “On Lebesgue-type inequalities
for greedy approximation,” J. Approx. Theory, vol. 147, no. 2, pp. 185-195, 2007.

Donono, D. L. and Huo, X., “Uncertainty principles and ideal atomic decomposi-
tion,” IEEFE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845-2862, 2001.

DoNOHO, D. L. and TANNER, J., “Neighborliness of randomly-projected simplices in
high dimensions,” Proc. Natl. Acad. Sci. USA, vol. 102, no. 27, pp. 9452-9457, 2005.

200


http://dsp.rice.edu/files/cs/Venkat_CS.pdf
http://dsp.rice.edu/files/cs/Venkat_CS.pdf
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://arxiv.org/abs/1010.2457v4

[47]

[57]

[58]

[59]

[60]

DonoHO, D. L. and TANNER, J., “Sparse nonnegative solutions of underdetermined
linear equations by linear programming,” Proc. Natl. Acad. Sci. USA, vol. 102, no. 27,
pp- 94469451, 2005.

DonoHo, D. L., TsaiG, Y., DRORI, 1., and LUC STARCK, J., “Sparse solution of un-
derdetermined linear equations by stagewise Orthogonal Matching Pursuit (StOMP),”
tech. rep., 2006. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.
115.5221.

DORFMAN, R., “The detection of defective members of large populations,” Annals of
Stat., vol. 14, pp. 436-440, 1943.

DRINEAS, P., KANNAN, R., and MAHONEY, M. W., “Fast Monte Carlo algorithms
for matrices IT: Computing a low-rank approximation to a matrix,” SIAM J. Comput.,
vol. 36, pp. 158-183, 2006.

DUARTE, M., BAJwA, W., and CALDERBANK, R., “The performance of group Lasso
for linear regression of grouped variables,” tech. rep., 2011. http://www.duke.edu/
~wb40/pubs/samptall_tr.pdf.

DvioTHAM, K. and FAZEL, M., “A nullspace analysis of the nuclear norm heuristic
for rank minimization,” in Proceedings of IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), pp. 3586-3589, 2010.

Evrap, M., “Optimized projections for compressed sensing,” IEEE Trans. on Signal
Processing, vol. 55, no. 12, pp. 5695-5702, 2007.

ELDAR, Y. C., KUPPINGER, P., and BOLCSKEI, H., “Block-sparse signals: Uncer-

tainty relations and efficient recovery,” IEEE Trans. on Signal Processing, vol. 58,
no. 6, pp. 3042-3054, 2010.

ELDAR, Y. C. and MisHALI, M., “Robust recovery of signals from a structured union
of subspaces,” IEEFE Trans. Inf. Theory, vol. 55, no. 11, pp. 5302-5316, 2009.

ELHAMIFAR, E. and VIDAL, R., “Structured sparse recovery via convex optimiza-
tion,” tech. rep., 2011. http://arxiv.org/pdf/1104.0654.

FARIAS, V., JAGABATHULA, S., and SHAH, D., “A non-parametric approach to mod-
eling choice with limited data,” tech. rep., 2010. http://arxiv.org/pdf/0910.0063.

FORNASIER, M., Theoretical Foundations and Numerical methods for sparse recovery.
Radon Series Comp. Appl. Math., Germany: De Gruyter, 2010.

FORNASIER, M. and RAuHUT, H., “Compressive Sensing,” in Handbook of Mathe-
matical Methods in Imaging (SCHERZER, O., ed.), pp. 187-228, Springer, 2011.

FORNASIER, M. and RAUHUT, H., “Iterative thresholding algorithms,” Appl. Com-
put. Harmon. Anal., vol. 25, no. 2, pp. 187-208, 2008.

Frieze, A., KANNAN, R., and VEMPALA, S., “Fast Monte-Carlo algorithms for
finding low-rank approximations,” Journal of the ACM, vol. 51, pp. 1025-1041, 2004.

GILBERT, A. C. and INDYK, P., “Sparse recovery using sparse matrices,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 937 — 947, 2010.

201


http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.5221
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.5221
http://www.duke.edu/~wb40/pubs/sampta11_tr.pdf
http://www.duke.edu/~wb40/pubs/sampta11_tr.pdf
http://arxiv.org/pdf/1104.0654
http://arxiv.org/pdf/0910.0063

[63]

[77]

GOLDFARB, D., MA, S., and SCHEINBERG, K., “Fast alternating linearization meth-
ods for minimizing the sum of two convex functions,” tech. rep., 2009. http:
//arxiv.org/abs/0912.4571.

GOLDFARB, D., MA, S., and SCHEINBERG, K., “Fast multiple splitting algorithms
for convex optimization,” tech. rep., 2009. http://arxiv.org/abs/0912.4570.

GRIBONVAL, R. and NIELSEN, R., “Sparse representations in unions of bases,” IEEE
Trans. Inf. Theory, vol. 49, pp. 3320-3325, 2003.

GRIGORIADIS, M. D. and KHACHIYAN, L. G., “A sublinear-time randomized ap-
proximation algorithm for matrix games,” Oper. Res. Lett., vol. 18, pp. 53-58, 1995.

GUROBI OPTIMIZATION, “Reference Manual,” 4.0. http://www.gurobi.com/doc/
40/refman/.

GuruswaMI, V., UMANS, C., and VADHAN, S., “Unbalanced expanders and ran-
domness extractors from Parvaresh-Vardy codes,” J. ACM, vol. 56, no. 4, pp. 20-34,
2009.

HERMAN, M. and STROHMER, T., “High-resolution radar via compressed sensing,”
IEEE Trans. on Signal Processing, vol. 57, no. 6, 2007.

HuANG, J. and ZHANG, T., “The benefit of group sparsity,” Annals of Stat., vol. 38,
no. 4, pp. 1978-2004, 2010.

HuaNg, S. and ZHu, J., “Recovery of sparse signals using OMP and its variants:
convergence analysis based on RIP,” Inverse Problems, vol. 27, no. 3, p. 035003,
2011.

INDYK, P., “Explicit constructions for compressed sensing of sparse signals,” in Pro-
ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 30-33, 2008.

JAFARPOUR, S., CEVHER, V., and SHAPIRE, R., “A game theoretic approach to
expander-based compressive sensing,” tech. rep., 2011. http:infoscience.epfl.ch/
record/163465/files/isit2011.pdf.

JAFARPOUR, S., Xu, W., HassiBl, B., and CALDERBANK, R., “Efficient and ro-

bust compressed sensing using optimized expander graphs,” IEEE Trans. Inf. Theory,
vol. 55, no. 9, pp. 4299-4308, 2009.

JAMES, G. M., RADCHENKO, P. 5 and Lv, J., “Dasso: connections between the
Dantzig selector and Lasso,” J. Roy. Statist. Soc. Ser. B, vol. 71, no. 1, pp. 127-142,
2009.

JupiTsky, A. B., KILING-KARZAN, F., and NEMIROVSKI, A. S., “Verifiable condi-
tions of ¢1 recovery for sparse signals with sign restrictions,” Math. Progr., vol. 127,
no. 1, pp. 89-122, 2010. http://www.optimization-online.org/DB_HTML/2009/
03/2272.html.

JuDpITSKY, A. B. and NEMIROVSKI, A. S., “Large deviations of vector-valued mar-
tingales in 2-smooth normed spaces,” tech. rep., 2008. http://www2.isye.gatech.
edu/~nemirovs/LargeDevSubmitted.pdf.

202


http://arxiv.org/abs/0912.4571
http://arxiv.org/abs/0912.4571
http://arxiv.org/abs/0912.4570
http://www.gurobi.com/doc/40/refman/
http://www.gurobi.com/doc/40/refman/
http:infoscience.epfl.ch/record/163465/files/isit2011.pdf
http:infoscience.epfl.ch/record/163465/files/isit2011.pdf
http://www.optimization-online.org/DB_HTML/2009/03/2272.html
http://www.optimization-online.org/DB_HTML/2009/03/2272.html
http://www2.isye.gatech.edu/~nemirovs/LargeDevSubmitted.pdf
http://www2.isye.gatech.edu/~nemirovs/LargeDevSubmitted.pdf

78]

[79]

[30]

[81]

[82]

JUuDITSKY, A. B. and NEMIROVSKI, A. S., “Nonparametric estimation by convex
programming,” Annals of Stat., vol. 37, no. 5a, pp. 2278-2300, 2009.

JupiTsKy, A. B. and NEMIROVSKI, A. S., “Accuracy guarantees for ¢i-recovery,”
tech. rep., 2010. http://www.optimization-online.org/DB_HTML/2010/10/2778.
html.

JUDITSKY, A. B. and NEMIROVSKI, A. S., “First order methods for large-scale convex
optimization,” in Optimization for Machine Learning (SRA, S., NOwWOZIN, S., and
WRIGHT, S. J., eds.), Cambridge, Massachusetts: The MIT Press, 2010.

JupITsKy, A. B. and NEMIROVSKI, A. S., “On verifiable sufficient conditions for
sparse signal recovery via £; minimization,” Math. Progr., vol. 127, no. 1, pp. 57-88,
2010. Special issue on machine learning.

JupiTsky, A. B., NEMIROVSKI, A. S., and TAUVEL, C., “Solving variational in-
equalities with stochastic mirror prox algorithm,” tech. rep., 2008. http://www2.
isye.gatech.edu/~nemirovs/SMP_240408. pdf.

LAN, G., Convex Optimization Under Inexact First-order Information. PhD the-
sis, Georgia Institute of Technology, 2009. http://www.ise.ufl.edu/glan/papers/
guanghui_lan_200908_phd.pdf.

LEMARECHAL, C., NEMIROVSKI, A. S., and NESTEROV, Y., “New variants of bundle
methods,” Math. Progr., vol. 69, no. 1, pp. 111-148, 1995.

Liu, H. and ZHANG, J., “Estimation consistency of the group Lasso and its applica-
tions,” Journal of Machine Learning Research - Proceedings Track, vol. 5, pp. 376-383,
2009.

Liu, H., ZHANG, J., Ji1aANG, X., and Liu, J., “The group Dantzig selector,” Journal
of Machine Learning Research - Proceedings Track, vol. 9, pp. 461-468, 2010.

Lounicr, K., “Sup-norm convergence rate and sign concentration property of Lasso
and Dantzig estimators,” FElectron. J. Statist., vol. 2, pp. 90-102, 2008.

Lounici, K., PoNTIL, M., TsyBAKOV, A., and VAN DE GEER, S., “Oracle in-
equalities and optimal inference under group sparsity,” tech. rep., 2010. http:
//arxiv.org/pdf/1007.1771.

Lustic, M., DoNnoHO, D., and PAuLy, J. M., “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine, vol. 56,
no. 6, pp. 1182-1195, 2007.

MALLAT, S. and ZHANG, Z., “Matching pursuit with time-frequency dictionaries,”
IEEFE Trans. on Signal Processing, vol. 41, no. 12, pp. 3397-3415, 1993.

McCorMICK, G. P., “Computability of global solutions to factorable nonconvex

programs: Part I Convex underestimating problems,” Math. Progr., vol. 10, no. 1,
pp. 147-175, 1976.

MEIER, L., VAN DE GEER, S., and BUHLMANN, P., “The group Lasso for logistic
regression,” J. Roy. Statist. Soc. Ser. B, Methodological, vol. 70, no. 1, pp. 53-71,
2008.

203


http://www.optimization-online.org/DB_HTML/2010/10/2778.html
http://www.optimization-online.org/DB_HTML/2010/10/2778.html
http://www2.isye.gatech.edu/~nemirovs/SMP_240408.pdf
http://www2.isye.gatech.edu/~nemirovs/SMP_240408.pdf
http://www.ise.ufl.edu/glan/papers/guanghui_lan_200908_phd.pdf
http://www.ise.ufl.edu/glan/papers/guanghui_lan_200908_phd.pdf
http://arxiv.org/pdf/1007.1771
http://arxiv.org/pdf/1007.1771

93]

[94]

[95]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

MEINSHAUSEN, N., RocHA, G., and YU, B., “Discussion: A tale of three cousins:
Lasso, 12boosting and Dantzig,” Annals of Stat., vol. 35, pp. 2373-2384, 2007.

MEINSHAUSEN, N. and YU, B., “Lasso-type recovery of sparse representations for
high-dimensional data,” Annals of Stat., vol. 37, pp. 246-270, 2009.

MILENKOVIC, O., BARANIUK, R., and SIMUNIC-ROSING, T., “Compressed sensing
meets bioinformatics: a new DNA microarray architecture,” in Information Theory
and Applications Workshop, 2007.

NARDI, Y. and RINALDO, A., “On the asymptotic properties of the group Lasso
estimator for linear models,” FElectron. J. Statist., vol. 2, pp. 605-633, 2008.

NATARAJAN, B., “Sparse approximate solutions to linear systems,” SIAM J. Comput.,
vol. 24, pp. 227-234, 1995.

NEEDELL, D. and TroOPP, J., “CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301-321,
2008.

NEEDELL, D. and VERSHYNIN, R., “Uniform uncertainty principle and signal re-

covery via regularized orthogonal matching pursuit,” Foundations of Computational
Mathematics, vol. 9, no. 3, pp. 317-334, 2009.

NEMIROVSKI, A. S., “Efficient methods for large-scale convex problems,” Fkonomika
i Matematicheskie Metody (in Russian), vol. 15, 1979.

NEMIROVSKI, A. S., “Prox-method with rate of convergence O(1/t) for variational in-

equalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems,” SIAM J. Optim., vol. 15, pp. 229-251, 2004.

NEMIROVSKI, A. S., JUDITSKY, A. B., LAN, G., and SHAPIRO, A., “Stochastic
approximation approach to stochastic programming,” SIAM J. Optim., vol. 19, no. 4,
pp- 1574-1609, 2009.

NEMIROVSKI, A. S. and YUDIN, D., Problem complezity and method efficiency in
Optimization. Somerset, NJ: John Wiley & Sons, 1983.

NESTEROV, Y., “A method for solving a convex programming problem with rate of
convergence O(1/k?),” Soviet Math. Dokl., vol. 27, no. 2, pp. 372-376, 1983.

NESTEROV, Y., Introductory Lectures on Conver Optimization: A Basic Course.
Norwell, MA: Springer, 2003.

NESTEROV, Y., “Smooth minimization of non-smooth functions,” Math. Progr.,
vol. 103, pp. 127-152, 2005.

NcuyEN, N. H., Do, T. T., and TraN, T. D., “A fast and efficient algorithm
for low-rank approximation of a matrix,” in Proceedings of the 415 annual ACM
symposium on Theory of computing (STOC), pp. 215-224, 20009.

OBOZINSKI, G., WAINWRIGHT, M. J., and JORDAN, M. I., “Support union recovery
in high-dimensional multivariate regression,” Annals of Stat., vol. 39, no. 1, pp. 1-47,
2011.

204



109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119)]

[120]

[121]

[122]

[123]

[124]

PARVARESH, F., VikaLo, H., Misra, S., and HAssIBI, B., “Recovering sparse sig-
nals using sparse measurement matrices in compressed DNA microarrays,” IEEE J.
Selected Topics in Signal Processing, vol. 2, no. 3, pp. 275285, 2008.

PARVARESH, F. and VARDY, A., “Correcting errors beyond the Guruswami-Sudan
radius in polynomial time,” in Proceedings of the 46" Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 285-294, 2005.

Pascal KOIRAN, A. Z., “On the certification of the restricted isometry property,”
tech. rep., 2011. http://arxiv.org/abs/1103.4984.

RAGINSKY, M., JAFARPOUR, S., HARMANY, Z. T., Marcia, R. F., WILLETT,
R. M., and CALDERBANK, R., “Performance bounds for expander-based compressed
sensing in poisson noise,” tech. rep., 2010. http://arxiv.org/abs/1007.2377.

REcHT, B., FAZEL, M., and PARRILO, P. A., “Guaranteed minimum rank solutions

to linear matrix equations via nuclear norm minimization,” SIAM Review, vol. 52,
no. 3, pp- 471-501, 2010.

RecHT, B., XU, W., and HassiBi, B., “Null space conditions and thresholds for
rank minimization,” Math. Progr., vol. 127, pp. 175211, 2011.

RUBINSTEIN, E., “Support vector machines via advanced optimization techniques,”
Master’s thesis, Technion, 2005. http://www2.isye.gatech.edu/~nemirovs/Eitan.
pdf.

RuDIN, L., OSHER, S., and FATEMI, E., “Nonlinear total variation based noise re-
moval algorithms,” Physica D, vol. 60, no. 1-4, pp. 259-268, 1992.

SANTOSA, F. and SyMES, W., “Linear inversion of band-limited reflection seismo-
grams,” SIAM J. Sci. Statist. Comput., vol. 7, no. 4, pp. 1307-1330, 1986.

SHERALI, H. and ApamSs, W., A Reformulation-Linearization Technique for Solv-
ing Discrete and Continuous Nonconvexr Problems. Boston, MA: Kluwer Academic

Publishers, 1999.

SIPSER, M. and SPIELMAN, D. A., “Expander codes,” IEEE Trans. Inf. Theory,
vol. 42, no. 6, pp. 1710-1722, 1996.

SREBRO, N. and SHRAIBMAN, A., “Rank, trace-norm and max-norm,” in Proceedings
of the 18" Annual Conference on Learning Theory, pp. 545-560, 2005.

SToJNIC, M., PARVARESH, F., and HAssiBI, B., “On the reconstruction of block-
sparse signals with an optimal number of measurements,” IFEE Trans. on Signal
Processing, vol. 57, no. 8, pp. 3075-3085, 2009.

TAYLOR, H., BANKS, S., and McCoy, J., “Deconvolution with the ¢;-norm,” Geo-
phys. J. Internat., vol. 44, no. 1, pp. 39-52, 1979.

TiBSHIRANI, R., “Regression shrinkage and selection via the Lasso,” J. Roy. Statist.
Soc. Ser. B, vol. 58, no. 1, pp. 267288, 1996.

TropP, J., “Greed is good: Algorithmic results for sparse approximation,” IEEE
Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, 2004.

205


http://arxiv.org/abs/1103.4984
http://arxiv.org/abs/1007.2377
http://www2.isye.gatech.edu/~nemirovs/Eitan.pdf
http://www2.isye.gatech.edu/~nemirovs/Eitan.pdf

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Tropp, J. and GILBERT, A., “Signal recovery from random measurements via or-
thogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 46554666,
2007.

UNSER, M., “Sampling—50 years after Shannon,” Proceedings of the IEEE, vol. 88,
no. 4, pp. 569-587, 2000.

VASANAWALA, S. S., ALLEY, M. T., HARGREAVES, B. A., BARTH, R. A., PAuLY,
J. M., and LusTiG, M., “Improved pediatric MR Imaging with compressed sensing,”
Radiology, vol. 256, no. 2, pp. 607616, 2010.

WAGNER, G., SCHMIEDER, P.; STERN, A., and HocCH, J., “Application of nonlinear

sampling schemes to cosy-type spectra,” J. Biomolecular NMR, vol. 3, no. 5, pp. 569—
576, 1993.

WakIN, M., LASKA, J., DUARTE, M., BARON, D., SARVOTHAM, S., TAKHAR, D.,
KEeLLY, K., and BARANIUK, R., “An architecture for compressive imaging,” in Pro-
ceedings of IEEE International Conference on Image Processing (ICIP), pp. 1273—
1276, 2006.

YANG, J. and ZHANG, Y., “Alternating direction algorithms for ¢;-problems in com-
pressive sensing,” tech. rep., 2009. http://arxiv.org/abs/0912.1185.

YUuAN, M. and LIN, Y., “Model selection and estimation in regression with grouped
variables,” J. Roy. Stat. Soc. Ser. B, vol. 68, no. 1, pp. 4967, 2006.

ZHANG, Y., “A simple proof for recoverability of /1-minimization: go over or under?,”
tech. rep., 2005. http://www.caam.rice.edu/~yzhang/reports/tr0509.pdf.

ZHANG, Y., “A simple proof for recoverability of ¢1-minimization (IT): the nonnegative
case,” tech. rep., 2005. http://www.caam.rice.edu/~yzhang/reports/tr0510.pdf.

ZHANG, Y., “Theory of compressive sensing via 1 minimization: a non-rip analysis
and extensions,” tech. rep., 2008. http://www.caam.rice.edu/~yzhang/reports/
tr0811.pdf.

206


http://arxiv.org/abs/0912.1185
http://www.caam.rice.edu/~yzhang/reports/tr0509.pdf
http://www.caam.rice.edu/~yzhang/reports/tr0510.pdf
http://www.caam.rice.edu/~yzhang/reports/tr0811.pdf
http://www.caam.rice.edu/~yzhang/reports/tr0811.pdf

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables 
	List of Figures 
	Summary
	Chapter 1 — Introduction
	Overview of Compressed Sensing
	Preliminaries and Notation
	Sparsity and Compression
	Compressed Sensing

	Summary of Previous Results for 1-recovery
	Conditions for 1-recovery
	Deterministic Construction of Compressed Sensing Matrices

	Efficient Algorithms for 1-recovery
	Convex Optimization Methods
	Greedy Algorithms for 1-recovery

	Organization of the Thesis
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5


	Chapter 2 — Verifiable sufficient conditions for compressed sensing
	Overview
	Necessary and Sufficient Conditions for s-semigoodness
	Error Bounds for Imperfect 1-recovery
	Verifiable Conditions for s-semigoodness
	Lower Bounding the Level of s-semigoodness
	Upper Bounding the Level of s-semigoodness

	Limits of Performance of LP-based Sufficient Conditions for s-semigoodness
	Verifiable Sufficient Conditions for s-semigoodness by Semidefinite Relaxation
	Numerical Results
	Matching Pursuit Algorithm
	Appendix: Connections to Other Tractable Relaxations for Disjoint Bilinear Programs
	Proofs of Chapter 2
	Proof of Proposition 2.2.1
	Proof of Proposition 2.3.1
	Proof of Proposition 2.4.1
	Proof of Proposition 2.4.2
	Proof of Proposition 2.5.1
	Proof of Proposition 2.4.3
	Proof of Lemma 2.5.1
	Proof of Proposition 2.6.1
	Proof of Proposition 2.8.1


	Chapter 3 — Compressed Sensing Synthesis Problem
	Overview
	Low Rank Approximation in Compressed Sensing
	Random Sampling Algorithm
	Derandomization
	Numerical Illustration
	Lower Bound

	Proofs of Chapter 3
	Proof of Lemma 3.2.1
	Proof of Proposition 3.2.1
	Proof of Proposition 3.2.2
	Proof of Proposition 3.2.3


	Chapter 4 — Randomized Algorithms for Large-Scale Optimization
	Overview
	Problems and Goals
	A Bilinear Saddle Point Problem
	A Generalized Bilinear Saddle Point Problem

	Solving Bilinear Saddle Point Problem
	The Setup
	The SA and SMP Algorithms
	Efficiency Estimates for Advanced Implementations of SA and SMP
	The Favorable Geometry Case

	Solving the Generalized Bilinear Saddle Point Problem
	Numerical Results
	Proofs of Chapter 4
	Low Dimensional Approximation
	Proof of Lemma 4.2.1
	Proofs for Section 4.3
	Proof of Theorem 4.4.1

	Detailed Numerical Experiments of Chapter 4

	Chapter 5 — Efficiently Verifiable Accuracy Certificates for Noisy Recovery
	Problem Statement
	Condition Qs,q()
	Recovery Routines
	Properties of Condition Qs,()
	Condition Qs,(): Tractability
	Condition Qs,(): Necessity
	A Sufficient Condition for Qs,q()

	RIP and Condition Qs,q()
	-error of Dantzig Selector.

	Non-Euclidean Matching Pursuit Algorithm for Block Sparsity
	Proofs of Chapter 5
	Proof of Theorem 5.3.1
	Proof of Theorem 5.3.2
	Proof of Proposition 5.4.1 
	Proof of Proposition 5.4.2
	Proof of Proposition 5.4.4
	Proof of Proposition 5.4.5
	Proof of Proposition 5.4.3
	Proof of Proposition 5.5.1
	Proof of Proposition 5.5.2
	Proof of Proposition 5.6.1


	Chapter 6 — Conclusions and Future Research Directions
	References

