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Sparse iterative methods, in particular �rst-order methods, are known to be among the most e�ective in

solving large-scale two-player zero-sum extensive-form games. �e convergence rates of these methods

depend heavily on the properties of the distance-generating function that they are based on. We investigate

the acceleration of �rst-order methods for solving extensive-form games through be�er design of the dilated

entropy function—a class of distance-generating functions related to the domains associated with the extensive-

form games. By introducing a new weighting scheme for the dilated entropy function, we develop the �rst

distance-generating function for the strategy spaces of sequential games that has no dependence on the

branching factor of the player. �is result improves the convergence rate of several �rst-order methods by a

factor of Ω(bdd ), where b is the branching factor of the player, and d is the depth of the game tree.

�us far, counterfactual regret minimization methods have been faster in practice, and more popular, than

�rst-order methods despite their theoretically inferior convergence rates. Using our new weighting scheme

and practical tuning we show that, for the �rst time, the excessive gap technique can be made faster than the

fastest counterfactual regret minimization algorithm, CFR+, in practice.

1 INTRODUCTION
Extensive-form games (EFGs) are a broad class of games; they model sequential interaction, imper-

fect information, and outcome uncertainty. Nash equilibria prescribe a particular notion of rational

behavior in such games. In the speci�c case of two-player zero-sum EFGs with perfect recall, an

exact Nash equilibrium can be computed in polynomial time using a Linear Program (LP) whose

size is linear in the size of the game tree [von Stengel, 1996]. However, in practice the LP approach

has two major drawbacks limiting its applicability. First, the LP may be prohibitively large and

may not �t in memory. Second, even when it does, the iterations of interior-point methods or

the simplex algorithm are prohibitively expensive [Sandholm, 2010]. Practical methods for EFG

solving tackle this issue through two complementary approaches: Abstraction and iterative game

solvers with low memory requirements [Sandholm, 2010]. In this paper we focus on the second

approach. Iterative game solvers mainly fall in two categories: (i) counterfactual-regret-based

methods [Lanctot et al., 2009, Zinkevich et al., 2007] achieving a convergence rate on the order

of O ( 1

ϵ 2
), and (ii) �rst-order methods (FOMs) [Hoda et al., 2010, Kroer et al., 2015] achieving a

convergence rate of O ( 1

ϵ ). �e be�er convergence rate of FOMs makes them more a�ractive from

a theoretical viewpoint. �is paper investigates the acceleration of such FOMs for EFGs, from both

a theoretical and a numerical perspective.

Nash equilibrium computation of a two-player zero-sum EFG with perfect recall admits a Bilinear

Saddle Point Problem (BSPP) formulation where the domains are given by the polytopes that encode

strategy spaces of the players. �e most e�cient FOMs are designed to solve this BSPP. �e classical

FOMs to solve BSPPs such as mirror prox (MP) [Nemirovski, 2004] or the excessive gap technique
(EGT) [Nesterov, 2005a] utilize distance-generating functions (DGFs) to measure appropriate notions

of distances over the domains. �en the convergence rate of these FOMs relies on the DGFs and

their relation to the domains in three critical ways: �rough the strong convexity parameters of

Manuscript submi�ed for review to ACM Economics & Computation 2017 (EC ’17).



Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm 2

the DGFs, the norm associated with the strong convexity parameter, and set widths of the domains

as measured by the DGFs.

Hoda et al. [2010] introduced a general framework for constructing DGFs for treeplexes—a class

of convex polytopes that generalize the domains associated with the strategy spaces of an EFG.

While they also established bounds on the strong convexity parameter for their DGFs in some

special cases, these lead to very weak bounds and result in slow convergence rates. Kroer et al.

[2015] developed explicit strong convexity-parameter bounds for entropy-based DGFs (a particular

subclass of DGFs) for general EFGs, and improved the bounds for the special cases considered by

Hoda et al. [2010]. �ese bounds from Kroer et al. [2015] generate the current state-of-the-art

parameters associated with the convergence rate for FOMs with O ( 1

ϵ ) convergence.

In this paper we construct a new weighting scheme for such entropy-based DGFs. �is weighting

scheme leads to new and improved bounds on the strong convexity parameter associated with

general treeplex domains. In particular, our new bounds are �rst-of-their kind as they have no

dependence on the branching operation of the treeplex. Informally, our strong convexity result

allows us to improve the convergence rate of FOMs by a factor of Ω(bdd ) (where b is the average

branching factor for a player and d is the depth of the EFG) compared to the prior state-of-the-art

results from Kroer et al. [2015]. Our bounds parallel the simplex case for matrix games where the

entropy function achieves a logarithmic dependence on the dimension of the simplex domain.

Finally, we complement our theoretical results with numerical experiments to investigate the

speed up of FOMs with convergence rate O ( 1

ϵ ) and compare the performance of these algorithms

with the premier regret-based methods CFR and CFR+ [Tammelin et al., 2015]. CFR+ is the fastest

prior algorithm for computing Nash equilibria in EFGs when the entire tree can be traversed (rather

than sampled). Bowling et al. [2015] used it to essentially solve the game limit Texas hold’em.

CFR+ is also the algorithm used to accurately solve endgames in the Libratus agent, which

showed superhuman performance against a team of top Heads-Up No-Limit Texas hold’em poker

specialist professional players in the Brains vs AI event
1
. A slight variation

2
of CFR+ was used

in the DeepStack agent Moravčı́k et al. [2017], which beat a group of professional players. Our

experiments show that FOMs are substantially faster than both CFR algorithms when using a

practically tuned variant of our DGF. We also test the impact of stronger bounds on the strong

convexity parameter: we instantiate EGT with the parameters developed in this paper, and compare

the performance to the parameters developed by Kroer et al. [2015]. �ese experiments illustrate

that the tighter parameters developed here lead to be�er practical convergence rate.

�e rest of the paper is organized as follows. Section 2 discusses related research. We present

the general class of problems that we address—bilinear saddle-point problems—and describe how

they relate to EFGs in Section 3. �en Section 4 describes our optimization framework. Section 5

introduces treeplexes, the class of convex polytopes that de�ne our domains of the optimization

problems. Our focus is on dilated entropy-based DGFs; we introduce these in Section 6 and present

our main results—bounds on the associated strong convexity parameter and treeplex diameter. In

Section 7 we demonstrate the use of our results on instantiating EGT. We compare our approach

with the current state-of-art in EFG solving and discuss the extent of theoretical improvements

achievable via our approach in Section 7.1. Section 8 presents numerical experiments testing

the e�ect of various parameters on the performance of our approach as well as comparing the

performance of our approach to CFR and CFR+. We close with a summary of our results and a few

compelling further research directions in Section 9.

1
Con�rmed through author communication

2
�is variation was chosen for implementation reasons, though, and has inferior practical iteration complexity.
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2 RELATEDWORK
Nash equilibrium computation has received extensive a�ention in the literature [Daskalakis et al.,

2015, 2009, Gilpin and Sandholm, 2007, Jiang and Leyton-Brown, 2011, Kroer and Sandholm, 2014,

Lipton et al., 2003, Li�man and Stone, 2003, Zinkevich et al., 2007]. �e equilibrium-�nding problems

vary quite a bit based on their characteristics; here we restrict our a�ention to two-player zero-sum

sequential games.

Koller et al. [1996] present an LP whose size is linear in the size of the game tree. �is approach,

coupled with lossless abstraction techniques, was used to solve Rhode-Island hold’em [Gilpin

and Sandholm, 2007, Shi and Li�man, 2002], a game with 3.1 billion nodes (roughly size 5 · 10
7

a�er lossless abstraction). However, for games larger than this, the resulting LPs tend to not

�t in the computer memory thus requiring approximate solution techniques. �ese techniques

fall into two categories: iterative ϵ-Nash equilibrium-�nding algorithms and game abstraction

techniques [Sandholm, 2010].

�e most popular iterative Nash equilibrium algorithm is the counterfactual-regret-minimization

framework instantiated with regret matching (CFR) [Zinkevich et al., 2007], its sampling-based

variant monte-carlo CFR (MCCFR) [Lanctot et al., 2009], and CFR instantitated with a new regret

minimization technique called regret matching plus (CFR+). �ese regret-minimization algorithms

perform local regret-based updates at each information set. Despite their slow convergence rate of

O ( 1

ϵ 2
), they perform very well in pratice, especially CFR+. Recently, Waugh and Bagnell [2015]

showed, with some caveats, an interpretation of CFR as a FOM withO ( 1

ϵ 2
) rate. Nonetheless, in this

paper we make a distinction between regret-based methods and O ( 1

ϵ ) FOMs for ease of exposition.

Hoda et al. [2010] initially proposed DGFs for EFGs leading to O ( 1

ϵ ) convergence rate when

used with EGT. Kroer et al. [2015] improved these result for the dilated entropy function. Gilpin

et al. [2012] give an algorithm with convergence rate O (ln( 1

ϵ )). �eir bound has a dependence on a

certain condition number of the payo� matrix, which is di�cult to estimate; and as a result they

show a bound of O ( 1

ϵ ) which is independent of the condition number. Detailed comparisons to all

three algorithms discussed here are given in Section 7.1.

Finally, Bosansky et al. [2014] develop an iterative double-oracle algorithm for exact equilibrium

computation. �is algorithm only scales for games where it can identify an equilibrium of small

support, and thus su�ers from the same performance issues as the general LP approach.

In addition to equilibrium-�nding algorithms, another central topic in large-scale game solv-

ing has been automated abstraction [Sandholm, 2010, 2015]. Initially, this was used mostly for

information abstraction [Gilpin and Sandholm, 2007, Shi and Li�man, 2002, Zinkevich et al., 2007].

Lately, action abstraction approaches have gained considerable interest [Brown and Sandholm, 2014,

Hawkin et al., 2011, 2012, Kroer and Sandholm, 2014, 2016]. Sequential game abstraction approaches

with solution quality bounds have also emerged for stochastic [Sandholm and Singh, 2012] and

extensive-form [Kroer and Sandholm, 2014, 2016, Lanctot et al., 2012] games more recently.

3 PROBLEM SETUP
Computing a Nash equilibrium in a two-player zero-sum EFG with perfect recall can be formulated

as a Bilinear Saddle Point Problem (BSPP):

min

x ∈X
max

y∈Y
〈x ,Ay〉 = max

y∈Y
min

x ∈X
〈x ,Ay〉. (1)

�is is known as the sequence-form formulation [Koller et al., 1996, Romanovskii, 1962, von Stengel,

1996]. In this formulation, x and y correspond to the nonnegative strategy vectors for players 1

and 2 and the sets X,Y are convex polyhedral reformulations of the sequential strategy space of

these players. Here X,Y are de�ned by the constraints Ex = e, Fy = f , where each row of E, F
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encodes part of the sequential nature of the strategy vectors, the right hand-side vectors e, f are

|I1 | , |I2 |-dimensional vectors, and Ii is the information sets for player i . For a complete treatment

of this formulation, see von Stengel [1996].

Our theoretical developments mainly exploit the treeplex domain structure and are independent

of other structural assumptions resulting from EFGs. �erefore, we describe our results for general

BSPPs. We follow the presentation and notation of Juditsky and Nemirovski [2011a,b] for BSPPs.

For notation and presentation of treeplex structure, we follow Kroer et al. [2015].

3.1 Basic notation
We let 〈x ,y〉 denote the standard inner product of vectors x ,y. Given a vector x ∈ Rn , we let ‖x ‖p

denote its `p norm given by ‖x ‖p :=
(∑n

i=1
|xi |

p
)

1/p
for p ∈ [1,∞) and ‖x ‖∞ := maxi ∈[n] |xi | for

p = ∞. �roughout this paper, we use Matlab notation to denote vector and matrices, i.e., [x ;y]

denotes the concatenation of two column vectors x , y. For a given set Q , we let ri (Q ) denote its

relative interior. Given n ∈ N, we denote the simplex ∆n := {x ∈ Rn+ :

∑n
i=1

xi = 1}.

4 OPTIMIZATION SETUP
In its most general form a BSPP is de�ned as

Opt := max

y∈Y
min

x ∈X
ϕ (x ,y), (S)

whereX,Y are nonempty convex compact sets in Euclidean spaces Ex ,Ey andϕ (x ,y) = υ+〈a1,x〉+
〈a2,y〉 + 〈y,Ax〉. We letZ := X ×Y ; so ϕ (x ,y) : Z → R. In the context of EFG solving, ϕ (x ,y) is

simply the inner product given in (1).

�e BSPP (S) gives rise to two convex optimization problems that are dual to each other:

Opt(P ) = minx ∈X[ϕ (x ) := maxy∈Y ϕ (x ,y)] (P ),
Opt(D) = maxy∈Y[ϕ (y) := minx ∈X ϕ (x ,y)] (D),

with Opt(P ) = Opt(D) = Opt. It is well known that the solutions to (S) — the saddle points of ϕ
on X ×Y — are exactly the pairs z = [x ;y] comprised of optimal solutions to the problems (P ) and

(D). We quantify the accuracy of a candidate solution z = [x ;y] with the saddle point residual

ϵsad (z) := ϕ (x ) − ϕ (y) =
[
ϕ (x ) − Opt(P )

]︸               ︷︷               ︸
≥0

+
[
Opt(D) − ϕ (y)

]︸               ︷︷               ︸
≥0

.

In the context of EFG, ϵsad (z) measures the proximity to being an ϵ-Nash equilibrium.

4.1 General framework for FOMs
Most FOMs capable of solving BSPP (S) are quite �exible in terms of adjusting to the geometry of

the problem characterized by the domains X,Y of the BSPP (S). �e following components are

standard in forming the setup for such FOMs (we present components forX, analogous components

are used for Y):

• Vector norm: ‖ · ‖X on the Euclidean space E where the domain X of (S) lives, along with

its dual norm ‖ζ ‖∗
X
= max

‖x ‖X ≤1

〈ζ ,x〉.

• Matrix norm: ‖A‖ = maxy
{
‖Ay‖∗

X
: ‖y‖Y = 1

}
based on the vector norms ‖ · ‖X, ‖ · ‖Y .

• Distance-Generating Function (DGF): A function ωX (x ) : X → R, which is convex and

continuous on X, and admits a continuous selection of subgradients ω ′
X
(x ) on the set
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X◦ := {x ∈ X : ∂ωX (x ) , ∅} (here ∂ωX (x ) is a subdi�erential of ωX taken at x), and is

strongly convex with modulus φX w.r.t. the norm ‖ · ‖X :

∀x ′,x ′′ ∈ X◦ : 〈ω ′
X
(x ′) − ω ′

X
(x ′′),x ′ − x ′′〉 ≥ φX ‖x

′ − x ′′‖2
X
. (2)

• Bregman distance: V (u‖x ) := ωX (u) − ωX (x ) − 〈ω
′
X
(x ),u − x〉 for all x ∈ X◦ and u ∈ X.

• Prox-mapping: Given a prox center x ∈ X◦,

Proxx (ξ ) := argmin

u ∈X

{
〈ξ ,u〉 +V (u‖x )

}
: E→ X◦.

For properly chosen stepsizes, the prox-mapping becomes a contraction. �is is critical in

the convergence analysis of FOMs. Furthermore, when the DGF is taken as the squared `2
norm, the prox mapping becomes the usual projection operation of the vector x − ξ onto X.

• ω-center : xω := argmin

x ∈X
ωX (x ) ∈ X

◦
of X.

• Set width: Ωx := max

x ∈X
V (x ‖xω ) ≤ max

x ∈X
ωX (x ) −min

x ∈X
ωX (x ).

�e distance-generating functions ωX,ωY can be used to create smoothed approximations to ϕ,ϕ

as follows [Nesterov, 2005b]:

ϕµ2

(x ) = max

y∈Y

{
ϕ (x ,y) − µ2ωY (y)

}
, (3)

ϕ
µ1

(y) = min

x ∈X

{
ϕ (x ,y) + µ1ωX (x )

}
, (4)

where µ1, µ2 > 0 are smoothness parameters denoting the amount of smoothing applied. Let yµ2
(x )

and xµ1
(y) refer to the y and x values a�aining the optima in (3) and (4). �ese can be thought of

as smoothed best responses. Nesterov [2005b] shows that the gradients of the functions ϕµ2

(x ) and

ϕ
µ1

(y) exist and are Lipschitz continuous. �e gradient operators and Lipschitz constants are given

as follows

∇ϕµ2

(x ) = a1 +Ayµ2
(x ) and ∇ϕ

µ1

(y) = a2 +A
>xµ1

(y),

L1

(
ϕµ2

)
=
‖A‖2

φYµ2

and L2

(
ϕ
µ1

)
=
‖A‖2

φXµ1

.

Based on this setup, we formally state the Excessive Gap Technique (EGT) of Nesterov [2005a] in

Algorithm 1.

ALGORITHM 1: EGT

input :ω-center zω , DGF weights µ1, µ2, and ϵ > 0

output :zt (= [xt ;yt ])

x0 = Proxxω
(
µ−1

1
∇ϕµ2

(xω )
)
;

y0 = yµ2
(xω );

t = 0; z1 B zω ;

while ϵ
sad

(zt ) > ϵ do
τt =

2

t+3
;

if t is even then
(µt+1

1
,xt+1,yt+1) = Step (µt

1
, µt

2
,xt ,yt ,τ )

else
(µt+1

2
,yt+1,xt+1) = Step (µt

2
, µt

1
,yt ,xt ,τ )

end
t = t + 1;

end

ALGORITHM 2: Step

input : µ1, µ2,x ,y,τ
output : µ+

1
,x+,y+

x̂ = (1 − τ ) x + τxµ1
(y);

y+ = (1 − τ )y + τyµ2
(x̂ );

x̃ = Proxxµ
1
(y )

(
τ

(1−τ )µ1

∇ϕµ2

(x̂ )
)
;

x+ = (1 − τ ) x + τ x̃ ;

µ+
1
= (1 − τ ) µ1;
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�e EGT algorithm alternates between taking steps focused on X and Y . Algorithm 2 shows a

single step focused on X. Steps focused on y are completely analogous. Algorithm 1 shows how

the alternating steps and stepsizes are computed, as well as how initial points are selected.

Suppose the initial values µ1, µ2 in the EGT algorithm satisfy µ1 =
φX

L1 (ϕµ
2

)
. �en, at every iteration

t ≥ 1 of the EGT algorithm, the corresponding solution zt = [x t ;yt ] satis�es x t ∈ X, yt ∈ Y , and

ϕ (x t ) − ϕ (yt ) = ϵsad (z
t ) ≤

4‖A‖

T + 1

√
ΩXΩY
φXφY

.

Consequently, [Nesterov, 2005a] proves that the EGT algorithm has a convergence rate of O ( 1

ϵ ).

5 TREEPLEXES
Hoda et al. [2010] introduce the treeplex, a class of convex polytopes that encompass the sequence-

form description of strategy spaces in perfect-recall EFGs.

De�nition 5.1. Treeplexes are de�ned recursively:

(1) Basic sets: �e standard simplex ∆m is a treeplex.

(2) Cartesian product: If Q1, . . . ,Qk are treeplexes, then Q1 × · · · ×Qk is a treeplex.

(3) Branching: Given a treeplex P ⊆ [0, 1]
p
, a collection of treeplexes Q = {Q1, . . . ,Qk } where

Q j ⊆ [0, 1]
nj

, and l = {l1, . . . , lk } ⊆
{
1, . . . ,p

}
, the set de�ned by

P l Q B
{
(u,q1, . . . ,qk ) ∈ R

p+
∑
j nj

: u ∈ P , q1 ∈ ul1 ·Q1, . . . ,qk ∈ ulk ·Qk
}

is a treeplex. In this setup, we say ulj is the branching variable for the treeplex Q j .

A treeplex is a tree of simplexes where children are connected to their parents through the

branching operation. In the branching operation, the child simplex domain is scaled by the value of

the parent branching variable. Understanding the treeplex structure is crucial because the proofs

of our main results rely on induction over these structures. For EFGs, the simplexes correspond

to the information sets of a single player and the whole treeplex represents that player’s strategy

space. �e branching operation has a sequential interpretation: �e vectoru represents the decision

variables at certain stages, while the vectors qj represent the decision variables at the k potential

following stages, depending on external outcomes. Here k ≤ p since some variables in u may

not have subsequent decisions. For treeplexes, von Stengel [1996] has suggested a polyhedral

representation of the form Eu = e where the matrix E has its entries from {−1, 0, 1} and the vector

e has its entries in {0, 1}.
For a treeplex Q , we denote by SQ the index set of the set of simplexes contained in Q (in an EFG

SQ is the set of information sets belonging to the player). For each j ∈ SQ , the treeplex rooted at

the j-th simplex ∆j
is referred to as Q j . Given vector q ∈ Q and simplex ∆j

, we let Ij denote the

set of indices of q that correspond to the variables in ∆j
and de�ne q j to be the sub vector of q

corresponding to the variables in Ij . For each simplex ∆j
and branch i ∈ Ij , the set Di

j represents

the set of indices of simplexes reached immediately a�er ∆j
by taking branch i (in an EFG Di

j is

the set of potential next-step information sets for the player). Given a vector q ∈ Q , simplex ∆j
,

and index i ∈ Ij , each child simplex ∆k
for every k ∈ Di

j is scaled by qi . Conversely, for a given

simplex ∆j
, we let pj denote the index in q of the parent branching variable qpj that ∆j

is scaled

by. We use the convention that qpj = 1 if Q is such that no branching operation precedes ∆j
. For

each j ∈ SQ , dj is the maximum depth of the treeplex rooted at ∆j
, that is, the maximum number of

simplexes reachable through a series of branching operations at ∆j
. �en dQ gives the depth of Q .
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We use b jQ to identify the number of branching operations preceding the j-th simplex in Q . We will

say that a simplex j such that b jQ = 0 is a root simplex.

Figure 1 illustrates an example treeplex Q . Q is constructed from nine two-to-three-dimensional

simplexes ∆1, . . . ,∆9
. At level 1, we have two root simplexes, ∆1,∆2

, obtained by a Cartesian

product (denoted by ×). We have maximum depths d1 = 2, d2 = 1 beneath them. Since there

are no preceding branching operations, the parent variables for these simplexes ∆1
and ∆2

are

qp1
= qp2

= 1. For ∆1
, the corresponding set of indices in the vector q is I1 = {1, 2}, while for

∆2
we have I2 = {3, 4, 5}. At level 2, we have the simplexes ∆3, . . . ,∆7

. �e parent variable of

∆3
is qp3

= q1; therefore, ∆3
is scaled by the parent variable qp3

. Similarly, each of the simplexes

∆3, . . . ,∆7
is scaled by their parent variables qpj that the branching operation was performed on.

So on for ∆8
and ∆9

as well. �e number of branching operations required to reach simplexes

∆1,∆3
and ∆8

is b1

Q = 0,b3

Q = 1 and b8

Q = 2, respectively.

∆1

q2 · ∆
4

q8 q9

q1 · ∆
3

q7 · ∆
9

q19 q20

q7 · ∆
8

q16

q17

q18

q6 q7

q1 q2

∆2

q5 · ∆
7

q14 q15

q4 · ∆
6

q12 q13

q3 · ∆
5

q10 q11

q3

q4

q5

×

×

Fig. 1. An example treeplex constructed from 9 simplexes. Cartesian product operation is denoted by ×.

Note that we allow more than two-way branches; hence our formulation follows that of Kroer

et al. [2015] and di�ers from that of Hoda et al. [2010]. As discussed in Hoda et al. [2010], it is

possible to model sequence-form games by treeplexes that use only two-way branches. Yet, this

can cause a large increase in the depth of the treeplex, thus leading to signi�cant degradation in

the strong convexity parameter. Because we handle multi-way branches directly in our framework,

our approach is more e�ective in taking into account the structure of the sequence-form game and

thereby resulting in be�er bounds on the associated strong convexity parameters and thus overall

convergence rates.

Our analysis requires a measure of the size of a treeplex Q . �us, we de�ne MQ B maxq∈Q ‖q‖1.

In the context of EFGs, suppose Q encodes player 1’s strategy space; then MQ is the maximum

number of information sets with nonzero probability of being reached when player 1 has to follow

a pure strategy while the other player may follow a mixed strategy. We also let

MQ,r B max

q∈Q

∑
j ∈SQ :b jQ ≤r

‖q j ‖1. (5)

Intuitively, MQ,r gives the maximum value of the `1 norm of any vector q ∈ Q a�er removing the

variables corresponding to simplexes that are not within r branching operations of the root of Q .

Example 5.2. In order to illustrate MQ and compare it to the size of |SQ |, let us know consider

an example of an EFG and its corresponding treeplexes. Consider a game where two players take

turns choosing among k actions, and each player chooses actions d times before leaf nodes are
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reached. In the treeplex Q of Player 1, each time Player 1 chooses among k actions constitutes a

size k branching operation, and every time Player 2 chooses among k actions constitutes a size k
Cartesian product operation. �e total dimensionality of the treeplex, |SQ |, is k2d

, while the value

of MQ is kd (since only Cartesian products blow up). �us, MQ is square root of the size of |SQ |.

6 DILATED ENTROPY FUNCTIONS WITH BOUNDED STRONG CONVEXITY
In this section we introduce DGFs for domains with treeplex structures and establish their strong

convexity parameters with respect to a given norm (see (2)).

�e basic building block in our construction is the entropy DGF given by ωe (z) =
∑n

i=1
zi log(zi ),

for the simplex ∆n . It is well-known that ωe (·) is strongly convex with modulus 1 with respect to

the `1 norm on ∆n (see Juditsky and Nemirovski [2011a]). We will show that a suitable modi�cation

of this function achieves a desirable strong convexity parameter for the treeplex domain.

�e treeplex structure is naturally related to the dilation operation [Hiriart-Urruty and Lemaréchal,

2001] de�ned as follows: Given a compact set K ⊆ Rd and a function f : K → R, we �rst de�ne

K̄ B
{
(t , z) ∈ Rd+1

: t ∈ [0, 1] , z ∈ t · K
}
.

De�nition 6.1. Given a function f (z), the dilation operation is the function
¯f : K̄ → R given by

¯f (z, t ) =



t · f (z/t ) if t > 0

0 if t = 0

.

�e dilation operation preserves convexity, and thus we de�ne the following convex function by

dilating the entropy function over the simplexes of a treeplex:

De�nition 6.2. Given a treeplex Q and weights βj > 0 for each j ∈ SQ , we de�ne the dilated
entropy function as

ω (q) =
∑
j ∈SQ

βj
∑
i ∈Ij

qi log

qi
qpj

for any q ∈ Q,

where we follow the treeplex notation and pj is the index of the branching variable preceding ∆j
,

with the convention that qpj = 1 if ∆j
has no branching operation preceding it.

Remark 1. Note that the dilated entropy function ω (·) de�ned above is twice di�erentiable in the
relative interior of treeplex Q and admits a continuous gradient selection. Moreover, for weights βj
that scale appropriately with depth dj , we will demonstrate that it is strongly convex w.r.t. the `1 norm.
�us, the dilated entropy function is compatible with the `1 norm, as required by the BSPP setup.

We would also like the prox-mapping associated with our DGF to be e�ciently computable.

Hoda et al. [2010] show that for any dilated function, its prox operator on a treeplex can be easily

computed through a recursive bo�om-up traversal involving the prox mappings associated with the

function being dilated on individual simplexes. Since the entropy prox function can be computed

in closed form on a simplex, the dilated entropy function can be computed by a single treeplex

traversal involving closed-form expressions on each simplex.

De�nition 6.2 above leads to a subset of the DGFs considered by Hoda et al. [2010]. Our main

theoretical result shows that by a careful selection of the weights βj , we can signi�cantly improve

the strong convexity bounds associated with the dilated entropy function. We will consider weights
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that satisfy the following recurrence:

α j = 1 +max

i ∈Ij

∑
k ∈Di

j

αkβk
βk − αk

, ∀j ∈ SQ ,

βj > α j , ∀i ∈ Ij and ∀j ∈ SQ s.t. b jQ > 0,

βj = α j , ∀i ∈ Ij and ∀j ∈ SQ s.t. b jQ = 0.

(6)

Intuitively, α j represents the negative terms that the weight βj has to cancel out: the constant 1

represents the negative term resulting from the squared norm in the strong convexity requirement;

the summation term represents the amount of negative terms accumulated from the induction on

simplexes descending from simplex j. �e quali�cations on βj ensure that βj is set such that it at

least cancels out the negative terms; the di�erence βj − α j controls the amount of negative value

the parent simplex has to make up. �is is why we set βj = α j when b jQ = 0. As part of the proof

of Lemma 6.7 we will see why we require a strict inequality βj > α j for non-root simplexes.

Based on recurrence (6), our main results establish strong convexity of our dilated entropy DGF

w.r.t. the `2 and `1 norms:

Theorem 6.3. For a treeplex Q , the dilated entropy function with weights satisfying recurrence (6)
is strongly convex with modulus 1 with respect to the `2 norm.

Theorem 6.4. For a treeplex Q , the dilated entropy function with weights satisfying recurrence (6)
is strongly convex with modulus 1

MQ
with respect to the `1 norm.

We give the proofs of �eorems 6.3 and 6.4 in Section 6.2. Based on �eorem 6.4, we get the

following corollary:

Corollary 6.5. For a treeplexQ , the dilated entropy function with weights βj = 2+
∑dj

r=1
2
r (MQ j ,r−

1) for all j ∈ SQ is strongly convex with modulus 1

MQ
w.r.t. the `1 norm.

Corollary 6.5 follows easily from �eorem 6.4 and a recursive interpretation of the weights,

which is presented as Fact 2 in the next section. In particular, a speci�c choice of weights in Fact 2

immediately satis�es the recurrence (6) and leads to Corollary 6.5.

To our knowledge, the best strong convexity bounds for general treeplexes were proved in Kroer

et al. [2015]. Using weights βj = 2
djMQ j they show strong convexity modulus

1

|SQ |
w.r.t. the `1

norm. Corollary 6.5 improves the prior bounds by exchanging a factor of
���SQ

��� with a factor of MQ .

Note that
���SQ

��� is tied to the branching factor associated with branching operations in the treeplex

Q whereas MQ is not. �us, our result removes the dependence of the strong convexity parameter

on the branching factor and hence signi�cantly improves upon Kroer et al. [2015].

In �eorem 6.8 we use our strong convexity result to establish a polytope diameter that has only

a logarithmic dependence on the branching factor. As a consequence, the associated dilated entropy

DGF when used in FOMs such as MP and EGT for solving EFGs leads to the same improvement in

their convergence rate.

6.1 Preliminary results for the proofs of our main results
We start with some simple facts and a few technical lemmas that are used in our proofs.
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Fact 1. Given a treeplexQ , we have, respectively, for all i ∈ Ij , j ∈ SQ and all d = 1, . . . ,dQ ,q ∈ Q :

(a) MQ j ≥ 1 +
∑
l ∈Di

j

MQl , (b) MQ ≥
∑

j ∈SQ :dj=d

qpjMQ j .

Proof. �e �rst inequality was established in Kroer et al. [2015, Lemma 5.7]. �e second follows

by using MQ =
∑

j qi for some q, and inductively replacing terms belonging to simplexes j at the

bo�om with MQ j . �e result follows because branching operations cancel out by summing to 1.

Our next observation follows from Fact 1(a) and is advantageous in suggesting a practically

useful choice of the weights βj that can be used for �eorem 6.4 to arrive at Corollary 6.5.

Fact 2. LetQ be a treeplex and βj = 2+
∑dj

r=1
2
r (MQ j ,r − 1) for all j ∈ SQ as in Corollary 6.5. �en

Fact 1(a) implies βj ≥ 2 +
∑

k ∈Di
j

2βk ,∀i ∈ Ij and ∀j ∈ SQ .

Consequently, by selecting βj = 2α j , and α j = 1 +
∑dj

r=1
2
r−1 (MQ j ,r − 1) for all i ∈ Ij and for all

j ∈ SQ such that b jQ > 0, we immediately satisfy the conditions of the recurrence in (6).

Given a twice di�erentiable function f , we let ∇2 f (z) denote its Hessian at z. Our analysis is

based on the following su�cient condition for strong convexity of a twice di�erentiable function:

Fact 3. A twice-di�erentiable function f is strongly convex with modulus φ with respect to a norm
‖ · ‖ on nonempty convex set C ⊂ Rn if h>∇2 f (z)h ≥ φ‖h‖2, ∀h ∈ Rn , z ∈ C◦.

For simplexes ∆j
at depth 1, there is no preceding branching operation; so the variables hpj ,qpj

do not exist. We circumvent this with the convention hpj = 0,qpj = 1 for such j ∈ SQ .

In our proofs we will use the following expression for h>∇2ω (q)h.

Lemma 6.6. Given a treeplex Q and a dilated entropy function ω (·) with weights βj > 0, we have

h>∇2ω (q)h =
∑
j ∈SQ

βj



∑
i ∈Ij

(
h2

i

qi
−

2hihpj
qpj

)
+
h2

pj

qpj


∀q ∈ ri (Q ) and ∀h ∈ Rn . (7)

We provide the proof of Lemma 6.6 in the appendix. It simply follows from taking the second-

order partial derivatives and rearranging terms.

6.2 Proofs of our main theorems
�e majority of the work for our strong-convexity results is performed by the following lemma,

from which our strong convexity results follow easily.

Lemma 6.7. For any treeplex Q , the dilated entropy function with weights satisfying recurrence (6)

satis�es the following inequality:

h>∇2ω (q)h ≥
∑
j ∈SQ

∑
i ∈Ij

h2

i

qi
∀q ∈ ri (Q ) and ∀h ∈ Rn . (8)

Proof. We will �rst show the following inductive hypothesis over the set of non-root simplexes

ŜQ =
{
j ∈ SQ : b jQ > 0

}
for any depth d ≥ 0:

∑
j ∈ŜQ :dj ≤d

βj



∑
i ∈Ij

(
h2

i

qi
−

2hihpj
qpj

)
+
h2

pj

qpj


−

∑
j ∈ŜQ :dj ≤d

∑
i ∈Ij

h2

i

qi
≥ −

∑
j ∈ŜQ :dj=d

βjα j

βj − α j

h2

pj

qpj
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We begin with the inductive step, as the base case will follow from the same logic. Consider a

treeplex Q of depth d > 0. By applying the inductive hypothesis we have

∑
j ∈ŜQ :dj ≤d

βj



∑
i ∈Ij

(
h2

i

qi
−

2hihpj
qpj

)
+
h2

pj

qpj


−

∑
j ∈ŜQ :dj ≤d

∑
i ∈Ij

h2

i

qi

≥
∑

j ∈ŜQ :dj=d

βj



∑
i ∈Ij

(
h2

i

qi
−

2hihpj
qpj

)
+
h2

pj

qpj


−

∑
j ∈ŜQ :dj=d

∑
i ∈Ij

h2

i

qi
−

∑
j ∈ŜQ :dj=d−1

βjα j

βj − α j

h2

pj

qpj
(9)

Now we can rearrange terms: �e sum over j ∈ ŜQ such that dj = d − 1 is equivalent to a sum over

the immediate descendant information sets k ∈ Di
j inside the square brackets, and we can move

the sum over i ∈ Ij outside the square brackets by using the fact that

∑
i ∈Ij

qi
qpj
= 1 and spli�ing

the term

h2

pj
qpj

into separate terms multiplied by
qi
qpj

, this gives

(9) =
∑

j ∈ŜQ :dj=d

∑
i ∈Ij



*..
,
βj − 1 −

∑
k ∈Di

j

βkαk
βk − αk

+//
-

h2

i

qi
−

(
2βjhihpj

qpj

)
+
qiβjh

2

pj

q2

pj



≥
∑

j ∈ŜQ :dj=d

∑
i ∈Ij



(
βj − α j

) h2

i

qi
−

(
2βjhihpj

qpj

)
+
qiβjh

2

pj

q2

pj


, (10)

where the last inequality follows from the de�nition of α j .

For indices j ∈ SQ such that b jQ > 0 and i ∈ Ij , the relations in (6) imply βj > α j , and so the

expression inside the square brackets in (10) is a convex function of hi . Taking its derivative w.r.t.

hi and se�ing it to zero gives hi =
βj

βj−α j
qi
qpj

hpj . �us, we arrive at

(10) ≥
∑

j ∈ŜQ :dj=d

∑
i ∈Ij



β2

j

βj − α j

qih
2

pj

q2

pj
−

β2

j

βj − α j

2qih
2

pj

q2

pj
+
qiβjh

2

pj

q2

pj



=
∑

j ∈ŜQ :dj=d

h2

pj

qpj



( −β2

j

βj − α j
+ βj

) ∑i ∈Ij qi

qpj


= −

∑
j ∈ŜQ :dj=d

βjα j

βj − α j

h2

pj

qpj
.

Hence, the induction step is complete. For the base case d = 0 we do not need the inductive

assumption: Because Di
j = ∅, α j = 1, and we get (10) by de�nition; we can then apply the same

convexity argument. �is proves our inductive hypothesis.

�en using Lemma 6.6, we now have

h>∇2ω (q)h −
∑
j ∈SQ

∑
i ∈Ij

h2

i

qi
=

∑
j ∈SQ

βj



∑
i ∈Ij

(
h2

i

qi
−

2hihpj
qpj

)
+
h2

pj

qpj


−

∑
j ∈SQ

∑
i ∈Ij

h2

i

qi

≥
∑

j ∈SQ :b jQ=0



∑
i ∈Ij

βj
h2

i

qi
−

∑
k ∈Di

j

βkαk
βk − αk

h2

i

qi
−
h2

i

qi


≥ 0.
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�e �rst inequality follows from the fact that hpj = 0 for all j ∈ SQ such that b jQ = 0, and for all

j ∈ SQ such that b jQ > 0, we used our induction. �e last inequality follows from (6) and qi ,h
2

i ≥ 0.

�is then proves (8).

We are now ready to prove our two main theorems, which we restate before proving them.

Theorem 6.3. For a treeplex Q , the dilated entropy function with weights satisfying recurrence (6)
is strongly convex with modulus 1 with respect to the `2 norm.

Proof. Since qi ≤ 1, Lemma 6.7 implies h>∇2ω (q)h ≥
∑

j ∈SQ
∑

i ∈Ij h
2

i = ‖h‖
2

2
for all q ∈ ri (Q )

and for all h ∈ Rn . Because the dilated entropy function ω (q) is twice di�erentiable on ri (Q ), from

Fact 3, we conclude that ω (·) is strongly convex w.r.t. the `2 norm on Q with modulus 1.

�is analysis is tight: By choosing a vector q ∈ {0, 1} |Q | such that ‖q‖1 = MQ , and se�ing

hi =
βj

βj−α j
qi
qpj

hpj for all indices i such that qi = 1 and hi = 0 otherwise, every inequality in the

proof of Lemma 6.7 becomes an equality.

Theorem 6.4. For a treeplex Q , the dilated entropy function with weights satisfying recurrence (6)
is strongly convex with modulus 1

MQ
with respect to the `1 norm.

Proof. To show strong convexity with modulus 1 w.r.t. the `1 norm, we lower bound the

right-hand side of (8) in Lemma 6.7:∑
j ∈SQ

∑
i ∈Ij

h2

i

qi
≥

1

MQ

( ∑
j ∈SQ

∑
i ∈Ij

qi

) ∑
j ∈SQ

∑
i ∈Ij

h2

i

qi
≥

1

MQ

( ∑
j ∈SQ

∑
i ∈Ij

|hi |
√
qi

√
qi

)
2

=
1

MQ
‖h‖2

1
,

where the �rst inequality follows from the fact that MQ is an upper bound on ‖q‖1 for any q ∈ Q ,

and the second inequality follows from the Cauchy-Schwarz inequality.

Hence, we deduce h>∇2ω (q)h ≥ 1

MQ
‖h‖2

1
holds for all q ∈ ri (Q ) and for all h ∈ Rn . Because the

dilated entropy function ω (q) is twice di�erentiable on ri (Q ), from Fact 3, we conclude that ω (·) is

strongly convex w.r.t. the `1 norm on Q with modulus φ = 1

MQ
.

6.3 Treeplex width
�e convergence rates of FOMs such as MP and EGT algorithms depend on the diameter-to-strong

convexity parameter ratio
Ω
φ , as described in Section 4.1. In order to establish full results on the

convergence rates of these FOMs, we now bound this ratio using Corollary 6.5 scaled by MQ .

Theorem 6.8. For a treeplex Q , the dilated entropy function with simplex weights βj = MQ (2 +∑dj
r=1

2
r (MQ j ,r − 1)) for each j ∈ SQ results in Ω

φ ≤ M2

Q2
dQ+2

logm wherem is the dimension of the
largest simplex ∆j for j ∈ SQ in the treeplex structure.

7 EGT FOR EXTENSIVE-FORM GAME SOLVING
We now describe how to instantiate EGT for solving two-player zero-sum EFGs of the form (1)

with treeplex domains. Below we state the customization of all the de�nitions from Section 4 for

our problem.

Letm be the size of the largest simplex in either of the treeplexes X,Y . Because X and Y are

treeplexes, it is immediately apparent that they are closed, convex, and bounded. We use the `1
norm on both of the embedding spaces Ex ,Ey . As our DGFs for X,Y are compatible with the `1
norm, we use the dilated entropy DGF scaled with weights given in �eorem 6.8. �en �eorem 6.8
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gives our bound on
ΩX
φX

and
ΩY
φY

. Because the dual norm of the `1 norm is the `∞ norm, the matrix

norm is given by: ‖A‖ = maxy∈Y

{
‖Ay‖∗

1
: ‖y‖1 = 1

}
= maxi, j |Ai, j |.

Remark 2. Note that ‖A‖ is not at the scale of the maximum payo� di�erence in the original game.
�e values in A are scaled by the probability of the observed nature outcomes on the path of each
sequence. �us, ‖A‖ is exponentially smaller (in the number of observed nature steps on the path to
the maximizing sequence) than the maximum payo� di�erence in the original EFG.

�eorem 6.8 immediately leads to the following convergence rate result for FOMs equipped with

dilated entropy DGFs to solve EFGs (and more generally BSPPs over treeplex domains).

Theorem 7.1. Consider a BSPP over treeplex domains X,Y . �en EGT algorithm equipped with the
dilated entropy DGF with weights βj = 2 +

∑dj
r=1

2
r (MXj ,r − 1) for all j ∈ SX and the corresponding

setup forY will return an ϵ-accurate solution to the BSPP in at most the following number of iterations:

maxi, j |Ai, j |
√
M2

X
2
dX+2M2

Y
2
dY+2

logm

ϵ
.

�is rate in �eorem 7.1, to our knowledge, establishes the state-of-the-art for FOMs with O ( 1

ϵ )
convergence rate for EFGs.

7.1 Improvements in extensive-form game convergence rate
�e ratio

Ω
φ of set diameter over the strong convexity parameter is important for FOMs that rely

on a prox function, such as EGT and MP. Compared to the rate obtained by [Kroer et al., 2015], we

get the following improvement: for simplicity, assume that the number of actions available at each

information set is on average a, then our bound improves the convergence rate of [Kroer et al.,

2015] by a factor of Ω(dX · a
dX + dY · a

dY ).
As mentioned previously, Hoda et al. [2010] proved only explicit bounds for the special case

of uniform treeplexes that are constructed as follows: 1) A base treeplex Qb along with a subset

of b indices from it for branching operations is chosen. 2) At each depth d , a Cartesian product

operation of size k is applied. 3) Each element in a Cartesian product is an instance of the base

treeplex with a size b branching operation leading to depth d − 1 uniform treeplexes constructed

in the same way. Given bounds Ωb ,φb for the base treeplex, the bound of Hoda et al. [2010] for

a uniform treeplex with d uniform treeplex levels (note that the total depth of the constructed

treeplex is d · dQb , where dQb is the depth of the base treeplex Qb ) is

Ω

φ
≤ O

(
b2d−2k2d+2d2M2

Qb

Ωb

φb

)
.

�en when the base treeplex is a simplex of dimensionm, their bound for the dilated entropy on a

uniform treeplex Q becomes

Ω

φ
≤ O

(���SQ
���
2

d2

Q logm
)
.

Even for the special case of a uniform treeplex with a base simplex, comparing �eorem 6.8 to their

bound, we see that our general bound improves the associated constants by exchangingO (���SQ
���
2

d2

Q )

with O (M2

Q2
dQ ). Since MQ does not depend on the branching operation in the treeplex, whereas

|SQ | does, these are also the �rst bounds to remove an exponential dependence on the branching

operation (we have only a logarithmic dependence). In Example 5.2 we showed that there exist

games where MQ =
√
|SQ |, and in general MQ is much smaller than |SQ |. Consequently, our results
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establish the best known convergence results for all FOMs based on dilated entropy DGF such as

EGT, MP, and stochastic variants of BSPP algorithms.

CFR, CFR+, and EGT all need to keep track of a constant number of current and/or average

iterates, so the memory usage of all three algorithms is of the same order; when gradients are

computed using an iterative approach as opposed to storing matrices or matrix decompositions, each

algorithm requires a constant times the number of sequences in the sequence-form representation.

�erefore, we compare mainly the number of iterations required by each algorithm. Since the

theoretical properties of CFR and CFR+ are comparable, we compare to CFR, with all statements

being valid for CFR+ as well.

CFR has a O ( 1

ϵ 2
) convergence rate; but its dependence on the number of information sets is only

linear (and sometimes sublinear [Lanctot et al., 2009]). Since our results have a quadratic dependence

on M2

Q , CFR sometimes has a be�er dependence on game constants and can be more a�ractive for

obtaining low-quality solutions quickly for games with many information sets. MCCFR and CFR+

have a similar convergence rate [Lanctot et al., 2009], though MCCFR has cheaper iterations.

Gilpin et al. [2012] give an equilibrium-�nding algorithm presented as O (ln( 1

ϵ )); but this form of

their bound has a dependence on a certain condition number of the A matrix. Speci�cally, their

iteration bound for sequential games isO (
‖A‖2,2 ·ln( ‖A‖2,2/ϵ ) ·

√
D

δ (A) ), where δ (A) is the condition number

of A, ‖A‖2,2 = supx,0

‖Ax ‖2
‖x ‖2

is the Euclidean matrix norm, and D = maxx, x̄ ∈X,y,ȳ∈Y ‖ (x ,y) −

(x̄ , ȳ)‖2
2
. Unfortunately, the condition number δ (A) is only shown to be �nite for these games.

Without any such unknown quantities based on condition numbers, Gilpin et al. [2012] establish

a convergence rate of O (
‖A‖2,2 ·D

ϵ ). �is algorithm, despite having the same dependence on ϵ as

ours in its convergence rate, i.e., O ( 1

ϵ ), su�ers from worse constants. In particular, there exist

matrices such that ‖A‖2,2 =
√
‖A‖1,∞‖A‖∞,1, where ‖A‖1,∞ and ‖A‖∞,1 correspond to the maximum

absolute column and row sums, respectively. �en together with the value of D, this leads to a

cubic dependence on the dimension of Q . For games where the players have roughly equal-size

strategy spaces, this is equivalent to a constant of O (M4

Q ) as opposed to our constant of O (M2

Q ).

8 NUMERICAL EXPERIMENTS
We carry out numerical experiments to investigate the practical performance of EGT on EFGs when

instantiated with our DGF.

We test these algorithms on a scaled up variant of the poker game Leduc holdem [Southey et al.,

2005], a benchmark problem in the imperfect-information game-solving community. In our version,

the deck consists of k pairs of cards 1 . . .k , for a total deck size of 2k . Each player initially pays

one chip to the pot, and is dealt a single private card. A�er a round of be�ing, a community card is

dealt face up. A�er a subsequent round of be�ing, if neither player has folded, both players reveal

their private cards. If either player pairs their card with the community card they win the pot.

Otherwise, the player with the highest private card wins. In the event both players have the same

private card, they draw and split the pot.

First, we investigate the impact of applying the weights used in recurrence (6), as compared to

the previous scheme introduced in Kroer et al. [2015]. To instantiate recurrence (6) we have to

choose a way to set βj relative to α j . Experimentally, we found that the best way to instantiate

the recurrence is to use βj = α j for all j, in spite of the strict inequality required for our proof.

�is scheme will henceforth be referred to as new weights. We compare these new weights to the

weights used in Kroer et al. [2015] (henceforth referred to as old weights). Figure 2 shows the result

of running EGT with the old and the new weights. For both the old and the new weights, we found

that the scalars MQ and |SQ | applied to each DGF in order to achieve strong convexity modulus 1
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Fig. 2. Regret as a function of the number of iterations for EGT with our weighting scheme (EGT new) and
with the weighting scheme from Kroer et al. [2015] (EGT old). Both axes are on a log scale.

according to Corollary 6.5 and �eorem 5.4 of Kroer et al. [2015], respectively, are too conservative.

Instead, we show the results a�er tuning these parameters for the corresponding algorithms to

yield the best results for each weight scheme. Anecdotally, we found that the old weights are more

sensitive and more di�cult to tune. �e performance also seems more ji�ery; this is evident even in

the strongest parameter we found (especially noticeable on 10, 16, and 30-card Leduc in Figure 2).

We compare the performance of EGT to that of CFR and CFR+ algorithms on a scaled up variant

of the poker game Leduc hold’em [Southey et al., 2005], a benchmark problem in the imperfect-

information game-solving community. In our version, the deck consists of k pairs of cards 1 . . .k ,

for a total deck size of 2k . Se�ing k = 3 yields the standard Leduc game. Each player initially pays

one chip to the pot, and is dealt a single private card. A�er a round of be�ing, a community card is

dealt face up. A�er a subsequent round of be�ing, if neither player has folded, both players reveal

their private cards. If either player pairs their card with the community card, they win the pot.

Otherwise, the player with the highest private card wins. In the event both players have the same

private card, they draw and split the pot.

�e results are shown in Figure 3. Each graph is a loglog plot that shows the results for a

particular instance of Leduc with 6, 10, 16 and 30 card decks, respectively. For each graph, we show

the performance of all three algorithms, with the x-axis showing the number of tree traversals,

and the y-axis showing the sum of regrets over the two players. We note that tree-travels is a

good proxy for overall computational e�ort because the majority of the time in FOMs is spent on

gradient computations, which in our case directly translates into tree-traversals. We �nd that EGT

instantiated with our DGF signi�cantly outperforms both CFR and CFR+ across all four variants

of Leduc. �is is the case across all iterations; EGT �nds a stronger initial point in x0,y0
(see

Algorithm 1), and maintains a stronger convergence rate across all iterations.
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Fig. 3. Regret as a function of the number of tree traversals in four di�erent variants of Leduc hold’em for
the CFR, CFR+, and EGT algorithms. Both axes are shown on a log scale.

�e performance we get from EGT relative to CFR and CFR+ is surprising due to what the

conventional wisdom in the �eld has been. In Kroer et al. [2015] it was found that, while EGT has

be�er convergence rate, CFR (which performs worse than CFR+) had be�er initial performance,

and it was only a�er a certain number of iterations that EGT took over. Furthermore, the switch

point where EGT is preferable was found to shi� outward on the x-axis as the Leduc game size was

increased. �is sentiment has been mirrored by Brown and Sandholm [2016]. In contrast to this,

we �nd that our DGF along with proper initialization leads to EGT performing be�er than not only

CFR, but also CFR+, at every point on the x-axis. Furthermore, scaling up the game size does not

seem to adversely a�ect this relationship.

While the experiments in Figure 3 are very interesting from the perspective of which algorithm

to use for large-scale EFG-solving in practice going forward, there are some caveats to keep in mind.

First, we only considered number of tree traversals in our performance calculations. However,

CFR algorithms have the ability to avoid parts of the tree traversal. For games where accelerated

best-response calculation [Johanson et al., 2011] can be applied, e.g., poker-like games, this is

unlikely to have a big e�ect. But, for some other games, this aspect can be important, though note

that Brown et al. [2017] showed experimentally that pruning can be used in EGT as well. Second,

to get superior performance from EGT, we had to hand-tune initialization parameters relating to

our DGF, whereas CFR+ requires no tuning. Development of an algorithmic scheme for choosing

this tuning parameter in EGT can make it signi�cantly easier to apply the tuned variant of EGT in

practice. �ird, on another practical aspect, CFR+ is a conceptually very simple algorithm, and thus

also easy to implement. In contrast to this, EGT and our DGF requires a safe-guarded numerical

implementation because the prox operator associated with our DGF requires taking exponentials.
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9 CONCLUSIONS
We have investigated FOMs for computing Nash equilibria in two-player zero-sum perfect-recall

EFGs. On the theoretical side, we analyzed the strong convexity properties of the dilated entropy

DGF over treeplexes. By introducing speci�c weights that are tied to the structure of the treeplex,

we improved prior results on treeplex diameter from O ( |SQ |MQd2
d

logm) to O (M2

Q2
dQ+2

logm),

thereby removing all but a logarithmic dependence on branching associated with the branching

operator in the treeplex de�nition. �ese results lead to signi�cant improvements in the convergence

rates of many FOMs that can be equipped with dilated entropy DGFs and used for EFG solving

including but not limited to EGT, MP, and Stochastic MP.

We numerically investigated the performance of EGT and compared it to the practical state-of-

the-art algorithms CFR and CFR+. Our experiments showed that EGT with the dilated entropy

DGF, when tuned with a proper scaling, has be�er practical, as well as theoretical, convergence

rate than CFR+, the current state-of-the-art algorithm in practice. While our scaling parameter for

the DGF did not require extensive tuning, we believe a more principled way of se�ing it is worthy

of further future investigation.

�eorems 6.3 and 6.4 establish bounds for a general class of weights βj satisfying the recur-

rence (6). �en in Corollary 6.5, we have selected a particular weighting scheme for βj satisfying

(6) and performed our numerical tests. �ere may be other interesting choices of βj satisfying the

recurrence (6). �us, �nding a way to optimally choose among the set of weights satisfying (6) to

minimize the polytope diameter for speci�c games is appealing.

On a separate note, in practice CFR is o�en paired with an abstraction technique [Sandholm,

2010] such as those mentioned in Section 2. �is is despite the lack of any theoretical justi�cation.

E�ective ways to pair FOMs such as MP and EGT with practical abstraction techniques [Brown et al.,

2015] or abstraction techniques that achieve solution-quality guarantees [Kroer and Sandholm,

2014, 2016, Lanctot et al., 2012] are also worth further consideration.
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A OMITTED PROOFS
A.1 Proof of Lemma 6.6

Proof. Consider q ∈ ri (Q ) and any h ∈ Rn . For each j ∈ SQ and i ∈ Ij , the second-order partial

derivates of ω (·) w.r.t. qi are:

∇2

q2

i
ω (q) =

βj

qi
+

∑
k ∈Di

j

∑
l ∈Ik

βkql

q2

i
=
βj

qi
+

∑
k ∈Di

j

βk
qi
, (11)

where the last equality holds because k ∈ Di
j and thus

∑
l ∈Ik ql = ‖q

k ‖1 = qpk = qi . Also, for each

j ∈ SQ , i ∈ Ij ,k ∈ D
i
j , and l ∈ Ik , the second-order partial derivates w.r.t. qi ,ql are given by:

∇2

qi ,qlω (q) = ∇
2

ql ,qiω (q) = −
βk
qi
. (12)

�en equations (11) and (12) together imply

h>∇2ω (q)h =
∑
j ∈SQ

∑
i ∈Ij


h2

i
*..
,

βj

qi
+

∑
k ∈Di

j

βk
qi

+//
-
−

∑
k ∈Di

j

∑
l ∈Ik

hihl
2βk
qi


. (13)

Given j ∈ SQ and i ∈ Ij , we have pk = i for each k ∈ Di
j and for any k ∈ Di

j , there exists some

other j ′ ∈ SQ corresponding to k in the outermost summation. �en we can rearrange the following

terms:∑
j ∈SQ

∑
i ∈Ij

h2

i

∑
k ∈Di

j

βk
qi
=

∑
j ∈SQ

βj
h2

pj

qpj
and

∑
j ∈SQ

∑
i ∈Ij

∑
k ∈Di

j

∑
l ∈Ik

hihl
2βk
qi
=

∑
j ∈SQ

∑
i ∈Ij

βj
2hihpj
qpj

.

Using these two equalities in (13) leads to (7) and proves the lemma.

A.2 Proof of Theorem 6.8
Proof. For our choice of scaled weights βj , Corollary 6.5 implies that the resulting dilated

entropy function is strongly convex with modulus φ = 1. Hence, we only need to bound Ω.

Any vector q ∈ Q satisfying qi ∈ {0, 1} for all i maximizes ω (q) and results in maxq∈Q ω (q) = 0.

For the minimum value, consider any q ∈ ri (Q ). Applying the well-known lower bound of − logm
for the negative entropy function on anm-dimensional simplex, we have

ω (q) =
∑
j ∈SQ

βjqpj

∑
i ∈Ij

qi
qpj

log

qi
qpj
≥ −

∑
j ∈SQ

βjqpj logm = −

dQ∑
d=0

∑
j ∈SQ :dj=d

βjqpj logm

= −

dQ∑
d=1

∑
j ∈SQ :dj=d

βjqpj logm −
∑

j ∈SQ :dj=0

βjqpj logm

= −MQ logm

dQ∑
d=1

∑
j ∈SQ :dj=d

qpj

(
2 +

d∑
r=1

2
r (MQ j ,r − 1)

)
−MQ

∑
j ∈SQ :dj=0

2qpj logm

≥ −MQ logm

dQ∑
d=1

∑
j ∈SQ :dj=d

qpjMQ j

d∑
r=1

2
r − 2MQ logm

∑
j ∈SQ :dj=0

qpj , (14)
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where the last inequality follows because for each j ∈ SQ with dj = 0, the de�nition of MQ implies∑
j ∈SQ :dj=0

qpj ≤ MQ , and for each j ∈ SQ with dj = d ≥ 1, we have 2 +
∑d

r=1
2
r (MQ j ,r − 1) ≤∑d

r=1
2
rMQ j ,r ≤

∑d
r=1

2
rMQ j sinceMQ j,r ≤ MQ j . Also, from Fact 1(b), we have

∑
j ∈SQ :dj=d qpjMQ j ≤

MQ . �en we arrive at

(14) ≥ −M2

Q logm

(
2 +

dQ∑
d=1

d∑
r=1

2
r
)
= −M2

Q logm

(
2 +

dQ∑
d=1

(2d+1 − 2)

)

= −M2

Q logm

(
2 +

dQ∑
d=1

2
d+1 − 2dQ

)
≥ −M2

Q (logm)2dQ+2,

where the last inequality follows because for dQ = 0 we have 2
dQ+2 = 4 > 2 and for dQ ≥ 1 we

have 2dQ ≥ 2.

�is lower bound on the minimum value, i.e., minq∈Q ω (q) ≥ −M
2

Q (logm)2dQ+2
, coupled with

maxq∈Q ω (q) ≤ 0, establishes the theorem.
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