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Abstract

In this paper we analyze general two-term disjunctions on a regular cone K and derive
a general form for a family of convex inequalities which are valid for the resulting nonconvex
sets. Under mild technical assumptions, these inequalities collectively describe the closed convex
hulls of these disjunctions, and if additional conditions are satisfied, a single inequality from this
family is sufficient. In the cases where K is the positive semidefinite cone or a direct product
of second-order cones and a nonnegative orthant, we show that these convex inequalities admit
equivalent conic forms for certain choices of disjunctions. Our approach relies on and generalizes
the work of Kılınç-Karzan and Yıldız which considers general two-term disjunctions on the
second-order cone. Along the way, we establish a connection between two-term disjunctions and
nonconvex sets defined by rank-two quadratics, through which we extend our convex hull results
to intersections of a regular cone with such quadratic sets.

1 Introduction

Let E be a finite-dimensional Euclidean space equipped with the inner product 〈·, ·〉. In this paper,
we consider nonconvex sets which result from the application of a linear two-term disjunction on
a regular (full-dimensional, closed, convex, and pointed) cone. Specifically, we consider a two-term
disjunction 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on a regular cone K ⊂ E. In reference to the disjunction,
we define the sets

Ci := {x ∈ K : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. (1)

The purpose of this paper is to study the structure of the closed convex hull of the disjunctive conic
set C1 ∪C2 and describe it explicitly with convex inequalities in the space of the original variables.
We also develop various techniques for constructing low-complexity convex relaxations of C1 ∪ C2

in the same space.
Disjunctive conic sets of the form C1 ∪C2 are at the core of convex optimization based solution

methods to conic programs with integrality requirements on the variables and other types of non-
convex constraints. In the context of mixed-integer conic programs (MICPs), integrality conditions
are naturally relaxed into disjunctions satisfied by all feasible solutions; convex inequalities that
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are valid for the resulting nonconvex sets can then be added to the problem formulation to obtain
a tighter description of the integer hull. Such inequalities are known as disjunctive inequalities [4].
We comment further on the use of disjunctive inequalities in the solution of MICPs in the following
paragraphs. In addition, two-term disjunctions are closely related to nonconvex sets defined by
rank-two quadratics of the form

X := {x ∈ E :
(
c1,0 − 〈c1, x〉

)(
c2,0 − 〈c2, x〉

)
≤ 0}.

For instance, given that there does not exist any point x ∈ K which satisfies both 〈c1, x〉 ≥ c1,0 and
〈c2, x〉 ≥ c2,0 strictly, a two-term disjunction on K can be represented using the set X: C1 ∪ C2 =
K ∩ X. We explore this relationship further in Section 2.3.

A conic program is the problem of optimizing a linear function over the intersection of a reg-
ular cone with an affine subspace. An MICP is a conic program where some decision variables
are constrained to take integer values. In the special case where the regular cone which underlies
the problem is a nonnegative orthant, MICPs reduce to mixed-integer linear programs (MILPs).
The combined representation power of integer variables and conic constraints makes MICPs an
attractive framework for modeling optimization problems which require discrete decisions. Follow-
ing the development of stable and efficient algorithms for solving second-order cone programs and
semidefinite programs, MICPs with second-order cone and positive semidefinite cone constraints
have received significant attention in the recent years. These problems find applications in opti-
mization under uncertainty as well as in engineering design and statistical learning. We refer the
reader to [9, 10] for recent surveys on applications of MICPs. Motivated by these applications, in
this paper we place special emphasis on the cases where K is the nonnegative orthant Rn+ :=

{
x ∈

Rn : xj ≥ 0 ∀j ∈ {1, . . . , n}
}

, the second-order (Lorentz) cone Ln :=
{
x ∈ Rn :

√∑n−1
j=1 x

2
j ≤ xn

}
,

the positive semidefinite cone Sn+ :=
{
x ∈ Rn×n : x> = x, a>x a ≥ 0 ∀a ∈ Rn

}
, or one of their

direct products.
Disjunctive inequalities, introduced in the early 1970s in the context of MILPs [4], are a main

ingredient of today’s successful integer programming technology. In their most general form, dis-
junctive inequalities are inequalities which are valid for nonconvex sets obtained from disjunctions
on a convex relaxation of an integer program. Despite their simplicity, the most powerful disjunc-
tions in integer programming are split disjunctions, which have the form 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0

for c1, c2 ∈ E selected as negative multiples of each other. Disjunctive inequalities derived using split
disjunctions are called split inequalities [17]. Some of the most well-known families of cutting-planes
for MILPs are split inequalities: Chvátal-Gomory inequalities [21, 16], Gomory mixed-integer in-
equalities [22], mixed-integer rounding inequalities [34], lift-and-project inequalities [5]. . . More
general two-term disjunctions are used for complementarity problems [26, 37] and integer programs
with nonconvex quadratic constraints [6, 14]. There has been a lot of recent interest in extending
the theory of disjunctive inequalities from the setting of MILPs to that of MICPs. Stubbs and
Mehrotra [35, 36] generalized lift-and-project inequalities to mixed-integer convex programs with
0-1 variables. Çezik and Iyengar [15] investigated Chvátal-Gomory inequalities for pure-integer
conic programs and lift-and-project inequalities for mixed-integer conic programs with 0-1 vari-
ables. Kılınç, Linderoth, and Luedtke [27] and Bonami [12] suggested improved methods for gen-
erating lift-and-project inequalities for mixed-integer convex programs. Atamtürk and Narayanan
[3] presented a method to lift a valid conic inequality in a low-dimensional restriction to a valid
conic inequality for the original mixed-integer conic set. As a special class of MICPs, mixed-integer
second-order cone programs have received particular attention [19, 2, 32]. Several authors have
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studied the problem of representing the closed convex hull of a two-term disjunction on the second-
order cone or one of its affine cross-sections in the space of the original variables with closed-form
convex inequalities [18, 1, 7, 8, 31, 29, 30, 38]. These results have been generalized to intersections
of the second-order cone or one of its affine cross-sections with a general quadratic [13, 33]. In a
different vein, Bienstock and Michalka [11] studied the characterization and separation of linear
inequalities which are valid for the epigraph of a convex, differentiable function restricted to a
nonconvex domain.

The set C1 ∪ C2 exemplifies the simplest form of a disjunctive conic set as defined by Kılınç-
Karzan [28]. Kılınç-Karzan studied more general disjunctive conic sets in [28] and established that
the minimality of a valid linear inequality defined with respect to the underlying cone K of the
disjunctive conic set determines a hierarchy for valid linear inequalities in terms of their dominance
relations. Based on this, she introduced and examined K-minimal valid linear inequalities for
general disjunctive conic sets and showed that these inequalities generate the associated closed
convex hulls under a mild technical condition which is also satisfied in our setup. In [29, 30], we
established necessary conditions for K-minimal and tight valid linear inequalities for sets of the
form C1 ∪ C2. In the case where K is the second-order cone, we showed that families of these
linear inequalities can be grouped into convex inequalities with a second-order cone structure. We
also gave general sufficient conditions which guarantee that a single convex inequality from this
family yields the closed convex hull of C1 ∪C2. In this paper, we continue our work in [29, 30] and
complement the literature on closed convex hull descriptions of two-term disjunctions on regular
cones. First, for a two-term disjunction on a general regular cone K, we introduce a family of
structured convex inequalities which together characterize the closed convex hull C1 ∪ C2. As in
[29, 30], under certain conditions, a single inequality from this family produces the closed convex
hull of C1 ∪ C2. Along the way, we establish a connection between two-term disjunctions and
nonconvex sets defined by simple quadratics. Through this connection, our results also yield valid
convex inequalities and closed convex hull descriptions for sets of the form K ∩ X. We note that
our results on disjunctions on regular cones easily extend to disjunctions on homogeneous cross-
sections of regular cones if we work in the linear subspace which defines the cross-section. We
then specialize these results to the case where K is the positive semidefinite cone. For K = Sn+, we
identify elementary disjunctions where these inequalities can be expressed in a simple second-order
conic form. For more general disjunctions on Sn+, we suggest low-complexity conic inequalities which
provide relaxations for the closed convex hull. To the best of our knowledge, none of the papers
from the previous literature provide closed convex hull characterizations of two-term disjunctions
on the positive semidefinite cone in the space of the original variables.

The remainder of the paper is organized as follows: In Section 2 we introduce the basic elements
of our study. In Section 2.1 we describe our notation and terminology. In Section 2.2 we define the
sets C1 and C2, identify the basic setup for our analysis with Conditions 2.1 and 2.2, and characterize
the set of valid linear inequalities which are of interest to us in this paper. In Section 2.3, we establish
a connection between two-term disjunctions and sets of the form K ∩ X; this connection carries
over to closed convex hulls of these sets as well. In Section 3 we consider two-term disjunctions
on a general regular cone K. In Section 3.1 we formulate the general form of a class of convex
inequalities. These inequalities are our main object of study in this paper; we explore their structure
in Section 3.1. In the case where K is a direct product of second-order cones and a nonnegative
orthant, we give structured closed-form equivalents of these convex inequalities, recovering the
earlier results of [2, 1, 31, 29, 30] on disjunctions on a single second-order cone and extending them
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to direct products multiple cones. In Section 3.2, using the connection established in Section 2.3,
we utilize these results to develop convex inequalities for sets of the form K∩X. In Section 3.3 we
show how the results of Section 3.1 can be strengthened when C1,C2 satisfy a certain disjointness
condition. In Section 4 we specialize the results of Section 3 to the case where K is the positive
semidefinite cone. In particular, our results demonstrate that the closed convex hull of C1 ∪ C2

can be described with a single second-order cone inequality for certain choices of disjunctions on
the positive semidefinite cone. For more general disjunctions, we present several techniques to
generate low-complexity conic inequalities valid for C1 ∪ C2. Although, we do not explicitly focus
on affine cross-sections of regular cones, our approach immediately leads to valid convex (or conic)
inequalities for two-term disjunctions applied to those sets. We comment on such extensions in
Section 5.

2 Preliminaries

2.1 Notation and Terminology

Let E be a finite-dimensional Euclidean space with an inner product 〈·, ·〉. The (standard) Euclidean
norm on E is defined as ‖x‖ :=

√
〈x, x〉 for any x ∈ E. If E is a direct product E =

∏p
j=1 Ej of

lower-dimensional Euclidean spaces Ej , we define 〈·, ·〉 as the sum of individual inner products 〈·, ·〉j
on Ej . We assume that Rn is equipped with the inner product 〈α, x〉 = α>x. For i ∈ {1, . . . , n},
we let ei be the i-th unit vector in Rn, and for a vector x ∈ Rn, we use x̃ to denote the subvector
x̃ := (x1; . . . ;xn−1). We assume that Sn := {x ∈ Rn×n : x>= x} has the (Frobenius) inner product
〈α, x〉 = Tr(αx).

Throughout the paper, we consider a regular cone K ⊂ E. In the case where E =
∏p
j=1 Ej , if

Kj ⊂ Ej is a regular cone for each j ∈ {1, . . . , p}, then the direct product K =
∏p
j=1 Kj is also a

regular cone in E. The dual cone of a cone K is K∗ := {α ∈ E : 〈x, α〉 ≥ 0 ∀x ∈ K}. The dual
cone K∗ of a regular cone K is also regular, and the dual of K∗ is K itself. Moreover, when K is the
nonnegative orthant, the second-order cone, the positive semidefinite cone, or any of their direct
products, K is self-dual, that is, K∗ = K.

Given a set A ⊂ E, we let conv(A), conv(A), int(A), and bd(A) denote the convex hull, closed
convex hull, topological interior, and boundary of A, respectively. For any positive integer k, we
let [k] := {1, . . . , k}.

2.2 Two-Term Disjunctions on a Regular Cone

Let K ⊂ E be a regular cone. In this section we consider C1 ∪ C2 where

Ci := {x ∈ K : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}.

2.2.1 The Basic Setup

In this section we describe conditions which simplify our analysis of the set C1 ∪C2 and its closed
convex hull.

The inequalities 〈c1, x〉 ≥ c1,0 and 〈c2, x〉 ≥ c2,0 can always be scaled so that their right-hand
sides are 0 or ±1. Therefore, we assume c1,0, c2,0 ∈ {0,±1} for convenience. Furthermore, when
C1 ⊂ C2, we have conv(C1 ∪ C2) = C2. Similarly, when C1 ⊃ C2, we have conv(C1 ∪ C2) = C1. In
the remainder we assume C1 6⊂ C2 and C1 6⊃ C2.

Condition 2.1. C1 6⊂ C2 and C1 6⊃ C2.
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In particular, Condition 2.1 implies C1,C2 6= ∅ and C1,C2 6= K. Hence, ci 6∈ −K∗ when
ci,0 = +1 and ci 6∈ K∗ when ci,0 ∈ {0,−1}. We also use the following technical condition in our
analysis.

Condition 2.2. C1 and C2 are strictly feasible. That is, C1 ∩ intK 6= ∅ and C2 ∩ intK 6= ∅.

Throughout the paper, we are mainly interested in sets C1 and C2 which are defined as in (1),
c1,0, c2,0 ∈ {0,±1}, and satisfy Conditions 2.1 and 2.2. We say that such sets C1 and C2 satisfy the
basic disjunctive setup.

Condition 2.1 has a simple implication which we state next. We refer to [30, Lemma 2] for its
proof.

Lemma 2.1 ([30]). Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (1). Suppose
Condition 2.1 holds. Then there does not exist any β1 ≥ 0 such that β1c1,0 ≥ c2,0 and c2−β1c1 ∈ K∗.
Similarly, there does not exist any β2 ≥ 0 such that β2c2,0 ≥ c1,0 and c1 − β2c2 ∈ K∗.

2.2.2 Properties of Valid Linear Inequalities

In this section we study the structure of valid linear inequalities for C1 ∪ C2.
Because C1 and C2 satisfy Condition 2.2, strong conic programming duality implies that a

linear inequality 〈µ, x〉 ≥ µ0 is valid for the closed convex hull of C1 ∪ C2 if and only if there exist
α1, α2, β1, β2 such that (µ, µ0, α1, α2, β1, β2) satisfies

µ = α1 + β1c1, µ = α2 + β2c2,

β1c1,0 ≥ µ0, β2c2,0 ≥ µ0,

α1 ∈ K∗, β1 ∈ R+, α2 ∈ K∗, β2 ∈ R+.

(2)

Consider (µ, µ0, α1, α2, β1, β2) which satisfies (2). If µ0 < β1c1,0 and µ0 < β2c2,0, then 〈µ, x〉 ≥
µ0 is not tight on C1 ∪C2. Any such inequality is dominated by 〈µ, x〉 ≥ min{β1c1,0, β2c2,0} which
has a larger right-hand side. Furthermore, if β1 = 0 or β2 = 0, then 〈µ, x〉 ≥ µ0 is implied by the
cone constraint x ∈ K. Therefore, for a complete outer description of the closed convex hull of
C1 ∪ C2, one only needs to consider inequalities 〈µ, x〉 ≥ µ0 where (µ, µ0, α1, α2, β1, β2) satisfies

µ = α1 + β1c1, µ = α2 + β2c2,

min{β1c1,0, β2c2,0} = µ0,

α1 ∈ K∗, β1 ∈ R+ \ {0}, α2 ∈ K∗, β2 ∈ R+ \ {0}.
(3)

The system (3) characterizes necessary conditions for linear inequalities which are valid for and
tight on C1 ∪ C2 and which are not implied by the cone constraint x ∈ K. Our approach is based
on grouping these linear inequalities from (3). Earlier research [29, 30] focused on identifying and
grouping tight and K-minimal valid linear inequalities. A valid inequality 〈µ, x〉 ≥ µ0 is said to
be K-minimal if there does not exist another valid inequality of the form 〈µ − δ, x〉 ≥ µ0 with
δ ∈ K∗ \ {0} (see [28] for further details). In our setup, tight and K-minimal linear inequalities are
known [28] to produce a complete outer description of conv(C1 ∪C2). In [29, 30], the more refined
characterization of the system (3) implied by the K-minimality concept was used to derive finer
structural results for conv(C1 ∪ C2) in the form of conic inequalities; we comment more on this in
Remarks 3.5 and 3.12. Nevertheless, as opposed to the previous approach, in this paper, we focus
on grouping the larger class of valid linear inequalities in (3) which are tight and not implied by
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x ∈ K but which are not necessarily K-minimal because we could not find a characterization of
K-minimal inequalities for general regular cones K that can be exploited in a structurally useful
form in our developments.

For given β1, β2 > 0, we develop structured valid nonlinear inequalities for C1 ∪C2 by grouping
the linear inequalities associated with the pair (β1, β2) in the system (3). For ease of notation, let
us define the scalar µ0(β1, β2) := min{β1c1,0, β2c2,0} and the set

M(β1, β2) := {µ ∈ E : ∃α1, α2 ∈ K∗, µ = α1 + β1c1 = α2 + β2c2}.

Then a point x ∈ E satisfies 〈µ, x〉 ≥ µ0(β1, β2) for all M(β1, β2) if and only if it satisfies

inf
µ∈M(β1,β2)

〈µ, x〉 ≥ µ0(β1, β2). (4)

Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) = {x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M(β1, β2), β1, β2 > 0}

=

{
x ∈ K : inf

µ∈M(β1,β2)
〈µ, x〉 ≥ µ0(β1, β2) ∀β1, β2 > 0

}
.

We note that (4) is valid for C1 ∪ C2, regardless of whether or not C1 and C2 satisfy the basic
disjunctive setup. Nevertheless, there are important known cases where (4) associated with a
single choice of (β1, β2) yields the complete closed convex hull description of C1∪C2, together with
the cone constraint x ∈ K. We summarize them in the next lemma.

Lemma 2.2. Let K ⊂ E be a regular cone. Consider C1 and C2 which satisfy the basic disjunctive
setup.

i. [30, Lemma 3] If c1 ∈ K∗ or c2 ∈ K∗, then

conv(C1 ∪ C2) =

{
x ∈ K : inf

µ∈M(1,1)
〈µ, x〉 ≥ min{c1,0, c2,0}

}
.

ii. [30, Lemma 4 and Proposition 5] If the convex hull of C1∪C2 is closed and c1,0 = c2,0 ∈ {±1},
then

conv(C1 ∪ C2) =

{
x ∈ K : inf

µ∈M(1,1)
〈µ, x〉 ≥ min{c1,0, c2,0}

}
.

In the remainder, we consider the inequality (4) associated with a fixed pair (β1, β2) where
β1, β2 > 0. As Lemma 2.2 demonstrates, an inequality of this form can describe the closed convex
hull of C1 ∪C2 in various cases of interest. In general, however, this inequality can be considered a
valid inequality derived for a relaxation 〈β1c1, x〉 ≥ µ0(β1, β2) ∨ 〈β2c2, x〉 ≥ µ0(β1, β2) of the original
disjunction on the cone K. From now on, we let di := βici, suppress the indices on M(β1, β2) and
µ0(β1, β2), and concentrate on the closed convex hull of D1 ∪ D2 where

Di := {x ∈ K : 〈di, x〉 ≥ µ0} for i ∈ {1, 2}. (5)

Given C1 and C2 which satisfy the basic disjunctive setup, the sets D1 and D2 always satisfy
Condition 2.2 because D1 ⊃ C1 and D2 ⊃ C2. However, they may violate Condition 2.1. When
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this is the case, the convex hull of D1 ∪D2 is equal to one of D1 or D2. Therefore, we are primarily
interested in cases where D1 and D2 also satisfy Condition 2.1. By Lemma 2.1, this can happen
only if r := d2− d1 /∈ ±K∗. Therefore, while studying convex relaxations for D1 ∪D2 in subsequent
sections, we sometimes state our results under the assumption that r /∈ ±K∗.

In Sections 3.1 and 3.3, we study the general form of (4) under various assumptions on the
structure of D1 and D2.

2.3 Intersection of a Regular Cone with Nonconvex Rank-Two Quadratics

Let V ⊂ E be any convex set. In this section we consider the set V ∩ X where

X := {x ∈ E : (c1,0 − 〈c1, x〉)(c2,0 − 〈c2, x〉) ≤ 0} (6)

is a nonconvex rank-two quadratic. Under a disjointness assumption, the two-term disjunction
〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on V can be written as the intersection of V with the nonconvex set
X. We discuss this connection further in Section 3.3. Note that X = X1 ∪ X2 where

X1 := {x ∈ E : 〈c1, x〉 ≥ c1,0, 〈c2, x〉 ≤ c2,0},
X2 := {x ∈ E : 〈c1, x〉 ≤ c1,0, 〈c2, x〉 ≥ c2,0}.

Associated with X,V ⊂ E, we define the sets C+
i ,C

−
i ⊂ E where

C+
i := {x ∈ V : 〈ci, x〉 ≥ ci,0}, C−i := {x ∈ V : 〈ci, x〉 ≤ ci,0} for i ∈ {1, 2}. (7)

Then V ∩ X1 = C+
1 ∩ C−2 and V ∩ X2 = C−1 ∩ C+

2 . Furthermore,

V ∩ X =
(
C+

1 ∪ C+
2

)
∩
(
C−1 ∪ C−2

)
.

In Proposition 2.3 below, we show that the convex hull of V ∩ X equals the intersection of the
convex hulls of C+

1 ∪ C+
2 and C−1 ∪ C−2 .

Proposition 2.3. Let V ⊂ E be a convex set. Let X ⊂ E and C+
i ,C

−
i ⊂ E be defined as in (6) and

(7), respectively.

i. conv(V ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ).

ii. Suppose V is closed. Then conv(V ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ).

Proof. First we prove (i). Because V∩X = (C+
1 ∪C

+
2 )∩ (C−1 ∪C

−
2 ), we immediately have conv(V∩

X) ⊂ conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ). If conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ) = ∅, then we have
equality throughout. Let x ∈ conv(C+

1 ∪ C+
2 ) ∩ conv(C−1 ∪ C−2 ). We will show x ∈ conv(V ∩ X).

If x ∈ X, then we are done, because conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ) ⊂ V. Hence, we assume
x /∈ X. Then x ∈ T+ ∪ T− where T+ := {x ∈ E : 〈c1, x〉 > c1,0, 〈c2, x〉 > c2,0} and T− := {x ∈
E : 〈c1, x〉 < c2,0, 〈c2, x〉 < c2,0}.

Consider the case where x ∈ T+. The case for x ∈ T− is similar. Because x ∈ T+, we have
〈c1, x〉 > c1,0 and 〈c2, x〉 > c2,0. Because x ∈ conv(C−1 ∪ C−2 ), there exists x1, x2 ∈ C−1 ∪ C−2 such
that x ∈ conv{x1, x2}. We claim x1, x2 ∈ X. Suppose not. Then x1 ∈ T− or x2 ∈ T−. In the first
case, x1 satisfies 〈c1, x1〉 < c1,0 and 〈c2, x1〉 < c2,0, whereas x2 ∈ C−1 ∪ C−2 implies that x2 satisfies
at least one of 〈c1, x2〉 ≤ c1,0 or 〈c2, x2〉 ≤ c2,0. This contradicts x ∈ T+. The case where x2 ∈ T−
is analogous and leads to the same conclusion.
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Now we prove (ii). The inclusion conv(V ∩X) ⊂ conv(C+
1 ∪C

+
2 ) ∩ conv(C−1 ∪C

−
2 ) follows from

statement (i). As in the proof of statement (i), we can assume conv(C+
1 ∪C

+
2 )∩conv(C−1 ∪C

−
2 ) 6= ∅.

Let x ∈ conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ). We will show x ∈ conv(V ∩ X). Because x ∈ V, it is
enough to consider x /∈ X. Suppose x ∈ T+. Because x ∈ conv(C−1 ∪ C−2 ), there exists a sequence
{ui}∞i=1 ⊂ conv(C−1 ∪C

−
2 ) which converges to x. The subsequence {ui}∞i=1∩T+ is infinite, contained

in conv(C+
1 ∪C

+
2 )∩ conv(C−1 ∪C

−
2 ), and also converges to x. By statement (i), this subsequence is

also contained in conv(V ∩ X). Therefore, x ∈ conv(V ∩ X).

3 Nonlinear Inequalities with Special Structure

3.1 Inequalities for Two-Term Disjunctions

Let K be a regular cone. In this section we consider sets D1 and D2 which are defined as in (5).
Let M := {µ ∈ E : ∃α1, α2 ∈ K∗, µ = α1 + d1 = α2 + d2}. As discussed in Section 2.2, any point
x ∈ D1 ∪ D2 satisfies

inf
µ∈M
〈µ, x〉 ≥ µ0, (8)

regardless of whether or not D1 and D2 satisfy the basic disjunctive setup. Furthermore, whenever
D1 and D2 satisfy the conditions of Lemma 2.2, the inequality (8) describes the closed convex hull
of D1 ∪ D2. Our main purpose is to investigate the general form of this inequality under minimal
assumptions on the structure of K. Through this framework, we also recover previous results about
two-term disjunctions on the nonnegative orthant and the second-order cone and extend them to
direct products of these cones.

Throughout this section, we denote r = d2 − d1 ∈ E. We start with a simple observation which
yields an alternate representation of the disjunction 〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0.

Remark 3.1. A point x ∈ E satisfies the disjunction 〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0 if and only if it
satisfies

|〈r, x〉| ≥ 2µ0 − 〈d1 + d2, x〉. (9)

♦

The following lemma is used in the proof of Proposition 3.2, which states (8) in an alternate
form.

Lemma 3.1. Let K ⊂ E be a regular cone. For any r ∈ E, there exist α1, α2 ∈ K∗ such that
α1 − α2 = r.

Proof. The dual cone K∗ is also a regular cone. Let e ∈ intK∗. Then there exists ε > 0 such that
e+B(ε) ⊂ K∗ where B(ε) := {x ∈ E : ‖x‖ ≤ ε}. Let r ∈ E. Then ε

‖r‖r ∈ B(ε). Hence, e+ ε
‖r‖r ∈ K∗.

After scaling, we obtain ‖r‖
ε e + r ∈ K∗, which implies that r can be written as the difference of

some point in K∗ and ‖r‖ε e.

Proposition 3.2. Let K ⊂ E be a regular cone. A point x ∈ E satisfies (8) if and only if it satisfies

fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉 (10)

where fK,r : E→ R ∪ {−∞} is defined as

fK,r(x) := inf
α1,α2

{〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ K∗} (11)

= max
ρ
{〈r, ρ〉 : x− ρ ∈ K, x+ ρ ∈ K}. (12)
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Proof. Consider (8). Note that

inf
µ
{〈µ, x〉 : µ ∈M} = inf

µ,α1,α2

{〈µ, x〉 : µ = α1 + d1, µ = α2 + d2, α1, α2 ∈ K∗}

=
1

2
〈d1 + d2, x〉+

1

2
inf
α1,α2

{
〈α1 + α2, x〉 :

α1 − α2 = r,
α1, α2 ∈ K∗

}
=

1

2
〈d1 + d2, x〉+

1

2
fK,r(x).

Therefore, (8) is equivalent to (10). Lemma 3.1(i) shows that there always exist α̂1, α̂2 ∈ K∗ such
that α̂1 − α̂2 = r. Hence, (11) is always feasible. Indeed, this minimization problem is strictly
feasible because, for any e ∈ intK∗, we have α̂1 + e, α̂2 + e ∈ intK∗ and (α̂1 + e) − (α̂2 + e) =
r. Therefore, strong conic programming duality applies, and the dual problem (12) is solvable
whenever the optimal value of (11) is bounded from below.

Next, we make a series of immediate observations on the function fK,r(x).

Remark 3.2. Let K ⊂ E be a regular cone. Fix r ∈ E.

i. As a function of x, −fK,r(x) is the support function of a nonempty set (see (11)). Therefore,
it is closed and sublinear. Furthermore, the value of −fK,r(x) is finite if and only if x ∈ K.

ii. The function fK,r(x) satisfies fK,r(x) ≥ |〈r, x〉| for any x ∈ K. If x is an extreme ray of K,
then fK,r(x) = |〈r, x〉|.

Proof. We only prove statement (ii). Let x ∈ K. Both x and −x are feasible solutions to (12).
Therefore, fK,r(x) ≥ |〈r, x〉|. Now suppose x is an extreme ray of K. Let ρ ∈ E be any feasible
solution to (12). We show ρ ∈ conv{x,−x}. First, note that 1

2(x− ρ) + 1
2(x+ ρ) = x. Because x is

an extreme ray of K, there must exist λ1, λ2 ≥ 0 such that x− ρ = λ1x and x+ ρ = λ2x. It follows
that ρ = (1− λ1)x = (λ2 − 1)x and λ1 + λ2 = 2, which completes the proof of the claim.

Recall from Remark 3.1 that (9) provides an exact representation of the disjunction 〈d1, x〉 ≥
µ0 ∨ 〈d2, x〉 ≥ µ0. Remark 3.2 shows that fK,r(x) is a concave function of x which satisfies
fK,r(x) ≥ |〈r, x〉| for any x ∈ K. Replacing the term |〈r, x〉| on the left-hand side of (9) with any
such function would define a convex relaxation of D1 ∪ D2 inside the cone K. On the other hand,
fK,r(x) is a “tight” concave overestimator of the function x 7→ |〈r, x〉| : E → R over K: It satisfies
fK,r(x) = |〈r, x〉| whenever x is an extreme ray of K. This implies that an extreme ray x ∈ K
satisfies (10) if and only if x ∈ D1 ∪ D2. Furthermore, if the sets D1 and D2 satisfy the conditions
of Lemma 2.2, the inequality (10) defines the closed convex hull of D1 ∪ D2.

Remark 3.3. Let K ⊂ E be a regular cone. Fix x ∈ K.

i. As a function of r, fK,r(x) is the support function of a bounded set which contains the origin
(see (12)). Therefore, it is nonnegative, finite-valued, and sublinear.

ii. As a function of r, fK,r(x) is symmetric with respect to the origin, that is, fK,r(x) = fK,−r(x)
for any r ∈ E.

♦
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Remark 3.4. Let K ⊂ E be a regular cone. Fix x ∈ K. If r ∈ K∗, then fK,r(x) = 〈r, x〉; if −r ∈ K∗.
then fK,r(x) = 〈−r, x〉. Thus, fK,r(x) = |〈r, x〉| if r ∈ ±K∗. ♦

Remark 3.5. Let K ⊂ E be a regular cone; and consider r /∈ ±K∗. Then from the definitions of r
and the set M, we immediately deduce that α1, α2 ∈ K∗ \{0} in (3). Moreover, using the necessary
conditions for tight and K-minimal inequalities 〈µ, x〉 ≥ µ0, it was shown in [30, Proposition 1] that
the conditions α1, α2 ∈ K∗ of (3) can be strengthened into α1, α2 ∈ bd(K∗). Then the sufficiency
of tight, K-minimal inequalities immediately implies fK,r(x) := f ′K,r(x) where f ′K,r : E→ R∪{−∞}
is defined as

f ′K,r(x) = inf
α1,α2

{〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ bd(K∗)} (13)

whenever r /∈ ±K∗. ♦

We can use Proposition 3.2 together with Remarks 3.2(i) and 3.3(i) to build simple convex
inequalities for D1 ∪ D2.

Remark 3.6. Let K ⊂ E be a regular cone. Fix r ∈ E. For any r1, . . . , r` ∈ E such that r =
∑`

i=1 ri,

we have
∑`

i=1 fK,ri(x) ≥ fK,r(x). Therefore, the inequality
∑`

i=1 fK,ri(x) ≥ 2µ0 − 〈d1 + d2, x〉 is a
relaxation of (10). Furthermore, note from Remark 3.2(i) that each function fK,ri(x) is a concave
function of x; hence, the resulting inequality is convex. ♦

Remark 3.6 suggests a general procedure for developing convex inequalities for D1 ∪ D2 which
might have nicer structural properties than (10). Furthermore, it allows great flexibility in the choice
of the decomposition r =

∑`
i=1 ri. For certain choices of r1, . . . , r` ∈ E, the relaxation suggested in

Remark 3.6 has the interpretation of relaxing the underlying disjunction. We comment more on this
interpretation in Section 4.4.2. Next we consider an immediate application of the procedure outlined
in Remark 3.6 which gives valid linear inequalities for D1 ∪ D2 as a consequence of Remark 3.4(i).

Remark 3.7. Let K ⊂ E be a regular cone. Fix r ∈ E. By Lemma 3.1, there exists r+, r− ∈ K∗ such
that r = r+ − r−. Remark 3.3(i) shows that fK,r(x) ≤ fK,r+(x) + fK,−r−(x) = fK,r+(x) + fK,r−(x).
Moreover, because r+, r− ∈ K∗, Remark 3.4(i) implies fK,r+(x) = 〈r+, x〉 and fK,r−(x) = 〈r−, x〉.
Finally, using Proposition 3.2, we conclude that any x ∈ D1 ∪ D2 satisfies the linear inequality

〈r+ + r−, x〉 ≥ 2µ0 − 〈d1 + d2, x〉. (14)

Note that any possible choice of r+, r− ∈ K∗ satisfying r = r+ − r− leads to a different inequality
of the form (14). Given a two-term disjunction and a point x ∈ K that is desired to be cut off, we
can select the best possible inequality of the form (14) via a conic optimization problem. ♦

Remark 3.8. Let K ⊂ E and K ⊂ E be regular cones such that K ⊃ K. Then K∗ ⊂ K∗, and for
any x, r ∈ E, we have fK,r(x) ≥ fK,r(x). ♦

The monotonicity result from Remark 3.8 can be useful when one would like to develop struc-
tured convex relaxations of D1 ∪ D2 by replacing K with a regular cone K ⊃ K such that an
expression for fK,r(x) is readily available.

Remark 3.9. Let E =
∏p
j=1 Ej be a direct product of finite-dimensional Euclidean spaces. Suppose

K =
∏p
j=1 Kj and each Kj ⊂ Ej is a regular cone. Then

fK,r(x) =

p∑
j=1

inf
αj
1,α

j
2

{
〈αj1 + αj2, x

j〉j : αj1 − α
j
2 = rj , αj1, α

j
2 ∈ Kj

∗

}
=

p∑
j=1

fKj ,rj (x
j).
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♦

Under the hypotheses of Remark 3.9, let us define the following sets with respect to r =
(r1, . . . , rp) ∈ E:

P+:=
{
j ∈ [p] : −rj ∈ Kj

∗
}
, P−:=

{
j ∈ [p] : rj ∈ Kj

∗
}
, P◦:=

{
j ∈ [p] : rj /∈ ±Kj

∗
}
. (15)

Next we state a consequence of Proposition 3.2 and Remarks 3.4(i) and 3.9.

Proposition 3.3. Let E =
∏p
j=1 Ej be a direct product of finite-dimensional Euclidean spaces.

Suppose K =
∏p
j=1 Kj and each Kj ⊂ Ej is a regular cone. Define the sets P+, P−, and P◦ as in

(15).

i. A point x ∈ K satisfies (10) if and only if it satisfies∑
j∈P◦

fKj ,rj (x
j) +

∑
j∈P◦

〈dj1 + dj2, x
j〉j + 2

∑
j∈P+

〈dj1, x
j〉j + 2

∑
j∈P−

〈dj2, x
j〉j≥2µ0. (16)

ii. A point x ∈ K satisfies (16) if and only if there exist zj ∈ R, j ∈ [p], such that

fKj ,rj (x
j) ≥ |2zj − 〈dj1 + dj2, x

j〉| ∀j ∈ [p], (17a)
p∑
j=1

zj ≥ µ0. (17b)

Furthermore, for each j ∈ [p], (17a) is equivalent to[
fKj ,rj (x

j)
]2 − 〈rj , xj〉2j ≥ 4(zj − 〈dj1, x

j〉j)(zj − 〈dj2, x
j〉j). (18)

Proof. Statement (i) follows directly from Proposition 3.2 and Remarks 3.4(i) and 3.9. Fix x ∈ K.
The “if” part of statement (ii) is clear. To show the “only if” part, let z̄j := 1

2(fKj ,rj (x
j) + 〈dj1 +

dj2, x
j〉j) for each j ∈ [p]. Recall from Remark 3.3(i) that each fKj ,rj (x

j) is finite and nonnegative.

Then 2z̄j − 〈dj1 + dj2, x
j〉j = fKj ,rj (x

j) ≥ 0. Hence, (z̄1, . . . , z̄p) satisfies (17).
To finish the proof, we show that (17a) is equivalent to [fKj ,rj (x

j)]2 − 〈rj , xj〉2j ≥ 4(zj −
〈dj1, xj〉j)(zj − 〈d

j
2, x

j〉j) for any zj ∈ R. The nonnegativity of fKj ,rj (x
j) implies

fKj ,rj (x
j) ≥ |2zj − 〈dj1 + dj2, x

j〉j | ⇔
[
fKj ,rj (x

j)
]2 ≥ (2zj − 〈dj1 + dj2, x

j〉j)2

⇔
[
fKj ,rj (x

j)
]2 − 〈rj , xj〉2j ≥ 4(zj − 〈dj1, x

j〉j)(zj − 〈dj2, x
j〉j).

Remark 3.10. Under the hypotheses of Proposition 3.3, Remark 3.4(i) shows that fKj ,rj (x
j) =

|〈rj , xj〉| for j ∈ P+ ∪ P−. Therefore, (17a) simplifies to 〈dj1, xj〉 ≥ zj ≥ 〈dj2, xj〉 for j ∈ P+ and

to 〈dj2, xj〉 ≥ zj ≥ 〈dj1, xj〉 for j ∈ P−. Hence, the auxiliary variables zj , j ∈ P+ ∪ P−, can be
eliminated from (17) after setting them equal to their corresponding upper bounds. ♦
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Remark 3.11. Let E = Rp and K = Rp+. Note that Rp+ is a decomposable cone: It can be seen as
a direct product

∏p
j=1 Kj where Kj = R+ for all j ∈ [p]. Then Remark 3.4(i), together with the

fact that rj ∈ ±R+ for all j ∈ [p], implies fRp
+,r

(x) =
∑p

j=1 |rjxj | =
∑p

j=1 |rj |xj for all x ∈ Rp+.

Proposition 3.2 shows that the inequality
∑p

j=1 |rj |xj ≥ 2µ0−〈d1 +d2, x〉 is valid for D1∪D2. This
inequality can be further simplified into

p∑
j=1

max
{
dj1, d

j
2

}
xj ≥ µ0.

♦

In the case of K = Ln, it was identified in [29, 30] that the structural properties of tight,
K-minimal inequalities lead to a nice characterization of the function fLn,r(x). These functions,
fLn,r(x), then induce second-order conic inequalities in a lifted space with one additional variable.
Next we summarize these results from [29, 30].

Remark 3.12. Let E = Rn and K = Ln. Suppose r /∈ ±Ln.

i. Let x ∈ Ln. Recall from Remark 3.5 that fLn,r(x) = f ′Ln,r(x). It was shown in [30, Theorem
3] that

f ′Ln,r(x) =
√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2).

Then (10) reduces to√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2) ≥ 2µ0 − 〈d1 + d2, x〉. (19)

ii. It was further shown in [30, Proposition 3] that, for any x ∈ Ln and z ∈ R, the inequality
[fLn,r(x)]2 − 〈r, x〉2 ≥ 4(z− 〈d1, x〉)(z− 〈d2, x〉) can be represented in second-order conic form
as (

‖r̃‖2 − r2
n

)
x− 2(〈d1, x〉 − z)

(
−r̃
rn

)
∈ Ln. (20)

Therefore, according to Proposition 3.3(ii), a point x ∈ Ln satisfies (19) if and only if there
exists z ≥ µ0 such that (20) holds.

♦

In parallel to Remark 3.12, the necessary conditions for tight, K-minimal inequalities also
lead to such refined characterizations of the functions fK,r(x) and a corresponding family of conic
inequalities for general p-order cones with p ∈ (1,∞) for certain elementary disjunctions.

The following corollary presents an extension of Remark 3.12 to the case where K is a direct
product of multiple second-order cones and nonnegative rays.

Corollary 3.4. Suppose E =
∏p1+p2
j=1 Ej and K =

∏p1+p2
j=1 Kj where Ej = Rnj

and Kj = Lnj
for

j ∈ [p1] and Ep1+j = R and Kp1+j = R+ for j ∈ [p2]. Let

P+
1 :=

{
j ∈ [p1] : −rj ∈ Lnj

}
, P−1 :=

{
j ∈ [p1] : rj ∈ Lnj

}
, P◦1:=

{
j ∈ [p1] : rj /∈ ±Lnj

}
.

12



i. A point x ∈ K satisfies (10) if and only if it satisfies∑
j∈P◦

1

fLnj ,rj (x
j) +

∑
j∈P◦

1

〈dj1 + dj2, x
j〉j

+2
∑
j∈P+

1

〈dj1, x
j〉j+2

∑
j∈P−

1

〈dj2, x
j〉j+2

p1+p2∑
j=p1+1

max
{
dj1, d

j
2

}
xj ≥ 2µ0 (21)

where fLnj
,rj

(xj) =
√
〈rj , xj〉2j+(‖r̃j‖2−(rj

nj )2)((xj
nj )2−‖x̃j‖2) for j ∈ P◦1.

ii. A point x ∈ K satisfies (21) if and only if there exist zj ∈ R, j ∈ P◦1, such that(
‖r̃j‖2 − (rj

nj )
2
)
xj − 2

(
〈dj1, x

j〉j − zj
)( −r̃j

rj
nj

)
∈ Ln

j ∀j ∈ P◦1, (22a)

∑
j∈P◦1

zj +
∑
j∈P+

1

〈dj1, x
j〉j +

∑
j∈P−1

〈dj2, x
j〉j +

p1+p2∑
j=p1+1

max
{
dj1, d

j
2

}
xj ≥ µ0. (22b)

Proof. Fix x ∈ K. By Proposition 3.3 and Remarks 3.11 and 3.12(i), the inequality (10) reduces
to (21). To show statement (ii), consider Proposition 3.3(ii). Remark 3.10 shows that the aux-
iliary variables zj can be eliminated from (17) for j ∈ P+

1 ∪ P−1 . Furthermore, as discussed in

Remark 3.12(ii), the inequalities
[
fLnj

,rj
(xj)

]2 − 〈rj , xj〉2j ≥ 4(zj − 〈dj1, xj〉j)(zj − 〈d
j
2, x

j〉j) can be

represented in second-order conic form as (22a) for j ∈ P◦1. Hence, (17) reduces to (22).

3.2 Inequalities for Intersections with Rank-Two Nonconvex Quadratics

In this section, we consider sets of the form K ∩ F where K ⊂ E is a regular cone and F ⊂ E is a
nonconvex set defined by a rank-two quadratic inequality:

F := {x ∈ E : (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0}. (23)

We will show how the results of Sections 2.3 and 3.1 can be combined to build convex relaxations
and convex hull descriptions for K ∩ F.

As in the previous section, we denote r = d2 − d1 ∈ E. We start with a simple observation on
an alternate representation of F, which parallels Remark 3.1.

Remark 3.13. A point x ∈ E satisfies (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0 if and only if it satisfies

|〈r, x〉| ≥ |2µ0 − 〈d1 + d2, x〉| (24)

♦

The following result is a consequence of Remark 3.3(ii) and Propositions 2.3 and 3.2.

Proposition 3.5. Let K ⊂ E be a regular cone. Consider F ⊂ E defined as in (23). Let D+
i :=

{x ∈ K : 〈di, x〉 ≥ µ0} and D−i := {x ∈ K : 〈di, x〉 ≤ µ0} for i ∈ {1, 2}.

i. Any point x ∈ K ∩ F satisfies

fK,r(x) ≥ |2µ0 − 〈d1 + d2, x〉|. (25)
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ii. Suppose conv(D+
1 ∪D

+
2 ) = K or the sets D+

1 and D+
2 satisfy the conditions of Lemma 2.2. Sup-

pose also that conv(D−1 ∪D
−
2 ) = K or the sets D−1 and D−2 satisfy the conditions of Lemma 2.2.

Then
conv(K ∩ F) = {x ∈ K : fK,r(x) ≥ |2µ0 − 〈d1 + d2, x〉|} . (26)

Proof. Note that K∩F = (D+
1 ∪D

+
2 )∩ (D−1 ∪D

−
2 ). Using Proposition 3.2 for D+

1 ∪D
+
2 and D−1 ∪D

−
2

shows that the inequalities fK,r(x) ≥ 2µ0−〈d1 +d2, x〉 and fK,−r(x) ≥ −2µ0 + 〈d1 +d2, x〉 are both
valid for K ∩ F. By Remark 3.3(ii), fK,−r(x) = fK,r(x) for any r ∈ E and x ∈ K. Therefore, the
two inequalities together are equivalent to (25). Under the hypotheses of statement (ii), we have

conv(D+
1 ∪ D+

2 ) = {x ∈ K : fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉} and

conv(D−1 ∪ D−2 ) = {x ∈ K : fK,−r(x) ≥ −2µ0 + 〈d1 + d2, x〉} .

Then Proposition 2.3 shows (26).

The next proposition shows that the linear inequality in (17) can be replaced with a linear
equality when we consider the intersection of K with a rank-two nonconvex quadratic instead of a
two-term disjunction.

Proposition 3.6. Let E =
∏p
j=1 Ej be a direct product of finite-dimensional Euclidean spaces.

Suppose K =
∏p
j=1 Kj and each Kj ⊂ Ej is a regular cone. A point x ∈ K satisfies (25) if and

only if there exist zj ∈ R, j ∈ [p], such that (17a) (or, equivalently (18)) holds together with∑p
j=1 z

j = µ0.

Proof. Fix x ∈ K. The “if” part follows from the triangle inequality. To show the “only if” part,
recall from Proposition 3.3(ii) that x satisfies fKj ,rj (x

j) ≥ 2µ0 − 〈dj1 + dj2, x
j〉 if and only if there

exist tj1 ∈ R, j ∈ [p], such that

fKj ,rj (x
j) ≥ |2tj1 − 〈d

j
1 + dj2, x

j〉| ∀j ∈ [p], (27a)
p∑
j=1

tj1 ≥ µ0. (27b)

Furthermore, x satisfies fKj ,rj (x
j) ≥ −2µ0 + 〈dj1 + dj2, x

j〉 if and only if there exist tj2 ∈ R, j ∈ [p],
such that

fKj ,rj (x
j) ≥ | − 2tj2 + 〈dj1 + dj2, x

j〉| ∀j ∈ [p], (28a)

−
p∑
j=1

tj2 ≥ −µ0. (28b)

Let 0 ≤ δ ≤ 1 such that δ
∑p

j=1 t
j
1 − (1 − δ)

∑p
j=1 t

j
2 = µ0. For all j ∈ [p], we also define

zj := δtj1− (1− δ)tj2. Then
∑p

j=1 z
j = µ0. For any j ∈ [p], combining (27a) and (28a) with weights

δ and 1− δ, we have

fKj ,rj (x
j) ≥ δ|2tj1 − 〈d

j
1 + dj2, x

j〉|+ (1− δ)| − 2tj2 + 〈dj1 + dj2, x
j〉|

= δ|2tj1 − 〈d
j
1 + dj2, x

j〉|+ (1− δ)|2tj2 − 〈d
j
1 + dj2, x

j〉|
≥ |2zj − 〈dj1 + dj2, x

j〉|,
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where the second inequality holds because the function z 7→ |2z − 〈dj1 + dj2, x
j〉| : R → R is con-

vex. This completes the proof of the first part. Finally, we note that the equivalence of (17a) to
[fKj ,rj (x

j)]2 − 〈rj , xj〉2j ≥ 4(zj − 〈dj1, xj〉j)(zj − 〈d
j
2, x

j〉j) can be shown as in the proof of Proposi-
tion 3.3.

We close this section by presenting a result which complements the relation between convex hulls
of nonconvex quadratic sets of form K∩F and the associated disjunctions given in Proposition 3.5.
In particular, we show that given a structured and explicit characterization of the closed convex
hull of F ∩K), we can obtain a convex hull characterization of D1 ∪ D2 even when the disjointness
assumption is violated.

Proposition 3.7. Let K ⊂ E be a regular cone. Consider D1,D2 ⊂ E defined as in (5) and F ⊂ E
defined as in (23). Let g(x) : E→ R ∪ {−∞} be an upper semi-continuous, concave function such
that g(x) ≥ 0 for any x ∈ K and K ∩ F ⊆ {x ∈ K : g(x) ≥ |2µ0 − 〈d1 + d2, x〉|}.

i. Any point x ∈ D1 ∪ D2 satisfies the convex inequality

g(x) ≥ 2µ0 − 〈d1 + d2, x〉. (29)

ii. If conv(K ∩ F) = {x ∈ K : g(x) ≥ |2µ0 − 〈d1 + d2, x〉|}, then

conv(D1 ∪ D2) = {x ∈ K : g(x) ≥ 2µ0 − 〈d1 + d2, x〉} . (30)

Proof. Note that D1∪D2 = (K∩F)∪ (D1∩D2). Our hypotheses ensure that any x ∈ K∩F satisfies
(29). Moreover, for any x ∈ D1 ∩D2, we have 0 ≥ 2µ0− 〈d1 + d2, x〉. Then (29) is valid for D1 ∩D2

because g(·) is nonnegative at K.
Statement (i), together with the concavity of g(·), shows that (29) is valid for conv(D1 ∪ D2).

The continuity of g(·) implies the validity of (29) for conv(D1 ∪ D2). If conv(D1 ∪ D2) = K, then
(29) is redundant. Suppose conv(D1 ∪ D2) 6= K. Assume for contradiction that there exists x̄ ∈ K
satisfying (29) but x̄ /∈ conv(D1∪D2). Then x̄ /∈ conv(K∩F) as well; thus g(x̄) < |2µ0−〈d1 +d2, x̄〉|.
Combining this with (29), we arrive at

|2µ0 − 〈d1 + d2, x̄〉| > g(x̄) ≥ 2µ0 − 〈d1 + d2, x̄〉,

which implies 0 > 2µ0 − 〈d1 + d2, x̄〉. Then at least one of 0 > µ0 − 〈d1, x̄〉 or 0 > µ0 − 〈d2, x̄〉
must hold. Hence, x̄ ∈ D1 ∪ D2, contradicting the assumption x̄ /∈ conv(D1 ∪ D2). This proves the
relation stated in (30).

3.3 Inequalities for Disjoint Two-Term Disjunctions

As in Section 3.1, we consider sets D1 and D2 defined as in (5). In the case of K = Ln, it
was identified in [30] that when the interiors of the sets D1 and D2 do not intersect, the convex
inequality (10) can be expressed in an equivalent second-order conic form without recourse to
auxiliary variables. Such a condition turns out to be relevant in our current setup for general K as
well. In this section, we assume {x ∈ K : 〈d1, x〉 > µ0, 〈d2, x〉 > µ0} = ∅. Whenever this is the
case, we say that D1 and D2 satisfy the disjointness condition. Such sets D1 and D2 are naturally
associated with rank-two quadratic constraints: In particular, under the disjointness condition,
D1 ∪ D2 = K ∩ F where F is defined as in (23). Therefore, we can immediately use the results of
Section 3.2 in this case. Specifically, we have the following result.

15



Corollary 3.8. Let K ⊂ E be a regular cone. Suppose D1 and D2 satisfy the disjointness condition.
Then a point x ∈ K satisfies (10) if and only if it satisfies (25).

Proof. Under the disjointness condition, any point x ∈ K satisfies the disjunction 〈d1, x〉 ≤ µ0 ∨
〈d2, x〉 ≤ µ0. Therefore, the inequality fK,−r(x) ≥ −2µ0 + 〈d1 + d2, x〉 is valid for the whole of K.
Recall from Remark 3.3(ii) that fK,−r(x) = fK,r(x) for any r ∈ E and x ∈ K. Hence, (10) and (25)
are equivalent for any x ∈ K.

For instance, when K = Ln, r /∈ ±Ln, and {x ∈ Ln : 〈d1, x〉 > µ0, 〈d2, x〉 > µ0} = ∅,
Corollary 3.8 and Proposition 3.6 show that any point x ∈ K satisfies (19) if and only if it satisfies
[fLn,r(x)]2 − 〈r, x〉2 ≥ 4(µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉). Using Remark 3.12(ii), this inequality can be
represented in second-order conic form as

(
‖r̃‖2 − r2

n

)
x− 2(〈d1, x〉 − µ0)

(
−r̃
rn

)
∈ Ln,

recovering [30, Proposition 3].

4 Two-Term Disjunctions on the Positive Semidefinite Cone

In this section, we concentrate our study on the case E = Sn where Sn is the space of symmetric
n×n matrices with real entries. We assume that Sn is equipped with the (Frobenius) inner product
〈A,X〉 = Tr(AX). From now on, we distinguish between the elements of Rn and Sn: We denote
the elements of Rn with lowercase letters and the elements of Sn with uppercase letters. With this
notation, we have Sn = {X ∈ Rn×n : X> = X}. We study sets arising from two-term disjunctions
〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0 on the positive semidefinite cone K = Sn+ = {X ∈ Sn : a>X a ≥
0 ∀a ∈ Rn}. We rewrite the sets D1 and D2 as

Di =
{
X ∈ Sn+ : 〈Di, X〉 ≥ µ0

}
for i ∈ {1, 2}. (31)

In addition, we consider the intersection F ∩ Sn+ where F ⊂ Sn is the nonconvex set

F = {X ∈ Sn : (µ0 − 〈D1, X〉)(µ0 − 〈D2, X〉) ≥ 0} . (32)

As in Section 3, we would like to develop structured nonlinear valid inequalities for D1 ∪ D2 and
F ∩ Sn+. Whenever we consider the sets D1 and D2, we are primarily interested in the cases where
D1 and D2 satisfy Condition 2.1. Hence, we assume R = D2 −D1 /∈ ±Sn+ when necessary.

Given a matrix A ∈ Rn×n, we let λ(A) denote the vector of the eigenvalues of A arranged in
nonincreasing order and λi(A) denote its i-th eigenvalue. If A ∈ Sn, then the eigenvalues of A are
real. Furthermore, A ∈ Sn is positive semidefinite (resp. positive definite) if and only if λi(A) ≥ 0
(resp. λi(A) > 0) for all i ∈ [n]. As a reminder, the dual cone of Sn+ is again Sn+. Given a matrix
A ∈ Rn×n and J ⊂ [n], we let A[J] denote the principal submatrix of A whose rows and columns
are indexed by the elements of J. We let In ∈ Sn represent the n× n identity matrix.

4.1 A Transformation to Simplify Disjunctions on the Positive Semidefinite
Cone

In this section, we establish a linear correspondence which reduces the closed convex hull description
of any two-term disjunction on Sn+ to the closed convex hull description of an associated disjunction
for which the matrix R = D2 −D1 is diagonal. We first prove the following more general result.
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Proposition 4.1. Let A : Sn → Rm be a linear map. Consider C1,C2 ⊂ Sn defined as Ci :=
{X ∈ Sn+ : AX = b, 〈Ci, X〉 ≥ ci,0}. Let Q ∈ int(Sn+) and U ∈ Rn×n be a diagonal matrix and an
orthogonal matrix, respectively. Define the linear map A′ : Sn → Rm as A′X := AUQXQU>, the
matrices C ′i := QU>CiUQ, and the sets C′i := {X ∈ Sn+ : A′X = b, 〈C ′i, X〉 ≥ ci,0} for i ∈ {1, 2}.
Then

i. Ci = UQC′iQU> for i ∈ {1, 2},

ii. conv(C1 ∪ C2) = UQ conv(C′1 ∪ C′2)QU>.

iii. conv(C1 ∪ C2) = UQ conv(C′1 ∪ C′2)QU>.

Proof. First we prove (i). Note that Ci = UQ−1C ′iQ
−1U> for i ∈ {1, 2}. We can write

Ci =
{
X ∈ Sn+ : AX = b, 〈Ci, X〉 ≥ ci,0

}
=
{
UQY QU> ∈ Sn+ : AUQY QU> = b,

〈
UQ−1C ′iQ

−1U>, UQY QU>
〉
≥ ci,0

}
=
{
UQY QU> : A′Y = b, 〈C ′i, Y 〉 ≥ ci,0, Y ∈ Sn+

}
= UQC′iQU>.

The third equality above uses the observation that UQY QU> ∈ Sn+ if and only Y ∈ Sn+, which is
true because QU> is a nonsingular matrix.

Statement (ii) follows from (i) and the observation that convex combinations are invariant
under the linear transformations X 7→ UQXQU> : Sn → Sn and X 7→ Q−1U>XUQ−1 : Sn →
Sn. Statement (iii) follows from (ii) and the observation that the linear transformations X 7→
UQXQU> : Sn → Sn and X 7→ Q−1U>XUQ−1 : Sn → Sn are continuous.

Corollary 4.2. Let A : Sn → Rm be a linear map. Consider V,X ⊂ Sn defined as V := {X ∈ Sn+ :
AX = b} and X := {X ∈ Sn : (c1,0−〈C1, X〉)(c2,0−〈C2, X〉) ≥ 0}. Let Q ∈ int(Sn+) and U ∈ Rn×n
be a diagonal matrix and an orthogonal matrix, respectively. Define the linear map A′ : Sn → Rm
as A′X := AUQXQU>, the matrices C ′i := QU>CiUQ, and the sets V′ := {X ∈ Sn+ : A′X = b}
and X′ := {X ∈ E : (c1,0 − 〈C ′1, X〉)(c2,0 − 〈C ′2, X〉) ≥ 0}. Then

i. conv(V ∩ X) = UQ conv(V′ ∩ X′)QU>.

ii. conv(V ∩ X) = UQ conv(V′ ∩ X′)QU>.

Proof. For i ∈ {1, 2}, let C+
i := {X ∈ V : 〈Ci, X〉 ≥ ci,0} and C−i := {X ∈ V : 〈Ci, X〉 ≤ ci,0}.

Similarly, define (C+
i )′ := {X ∈ V′ : 〈C ′i, X〉 ≥ ci,0} and (C−i )′ := {X ∈ V′ : 〈C ′i, X〉 ≤ ci,0}. Then

V∩X = (C+
1 ∪C

+
2 )∩ (C−1 ∪C

−
2 ) and V′∩X′ = ((C+

1 )′∪ (C+
2 )′)∩ ((C−1 )′∪ (C−2 )′). To prove statement

(i), note that

conv(V ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 )

= UQ
[

conv((C+
1 )′ ∪ (C+

2 )′) ∩ conv((C−1 )′ ∪ (C−2 )′)
]
QU>

= UQ conv(V′ ∩ X′)QU>.

The first and third equalities above hold as a result of Proposition 2.3; and the second equality
follows from Proposition 4.1(ii). Statement (ii) follows similarly from the same results.
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Remark 4.1. Based on Proposition 4.1, we can assume without any loss of generality that the
matrices D1, D2 ∈ Sn which define the sets D1 and D2 are such that the matrix R = D2 − D1 is
diagonal with diagonal elements from {0,±1} sorted in nonincreasing order. To see this, consider
the eigenvalue decomposition of R = UΛU> where U ∈ Rn×n is an orthogonal matrix and Λ ∈ Sn
is a diagonal matrix whose entries are the eigenvalues of R sorted in nonincreasing order. Let
Q ∈ int(Sn+) be the diagonal matrix with diagonal entries Qii = 1√

|Λii|
if Λii is nonzero and

Qii = 1 otherwise. By Proposition 4.1(iii), we have conv(D1 ∪ D2) = UQ conv(D′1 ∪ D′2)QU>

where D′i :=
{
X ∈ Sn+ : 〈D′i, X〉 ≥ µ0

}
and D′i := QU>DiUQ for i ∈ {1, 2}. Furthermore,

R′ := D′2 − D′1 = QU>RUQ = QΛQ is a diagonal matrix with diagonal elements from {0,±1}
sorted in nonincreasing order. When D1 and D2 satisfy Condition 2.1, Lemma 2.1 implies R /∈ ±Sn+,
in which case R′ has at least one diagonal entry equal to 1 and one diagonal entry equal to -1.
Analogously, based on Corollary 4.2, we can assume that the matrices D1, D2 ∈ Sn which define F
are such that the matrix R = D2 −D1 is diagonal with diagonal elements from {0,±1} sorted in
nonincreasing order. ♦

In order to simplify the presentation of certain results in the rest of the paper, we sometimes
make the assumption that R is a diagonal matrix whose diagonal elements are from {0,±1} and
sorted in nonincreasing order. Proposition 4.1, Corollary 4.2, and Remark 4.1 show that this
assumption is without any loss of generality.

4.2 General Two-Term Disjunctions on the Positive Semidefinite Cone

We specialize Proposition 3.2 to the case of E = Sn and K = Sn+ in Theorem 4.4. This result is
based on the following lemma.

Lemma 4.3. For any R ∈ Sn and X ∈ Sn+, we have fSn+,R(X) =
∥∥λ(X1/2RX1/2

)∥∥
1
.

Proof. The dual cone of Sn+ is again Sn+. Hence, by Proposition 3.2, we have

fSn+,R(X) = max
P

{
〈R,P 〉 : X − P ∈ Sn+, X + P ∈ Sn+

}
.

First consider the case X ∈ int(Sn+). Then there exists a matrix X1/2 ∈ int(Sn+) such that X =
X1/2X1/2. A matrix P ∈ Sn satisfies X − P ∈ Sn+ and X + P ∈ Sn+ if and only if it satisfies
In−X−1/2PX−1/2 ∈ Sn+ and In+X−1/2PX−1/2 ∈ Sn+. Therefore, after introducing a new variable
Q := X−1/2PX−1/2, we can write

fSn+,R(X) = max
Q

{
〈R,X1/2QX1/2〉 : In −Q ∈ Sn+, In +Q ∈ Sn+

}
= max

Q

{〈
X1/2RX1/2, Q

〉
: In −Q ∈ Sn+, In +Q ∈ Sn+

}
= max

Q

{〈
X1/2RX1/2, Q

〉
: ‖λ(Q)‖∞ ≤ 1

}
=
∥∥λ(X1/2RX1/2

)∥∥
1
.

Now consider the more general case X ∈ Sn+. For ε > 0, let Xε := X + εIn. Then Xε ∈
int(Sn+) and λi

(
(Xε)1/2

)
=
√
λi(X) + ε for all i ∈ [n]. Furthermore, limε↓0

∥∥(Xε)1/2R(Xε)1/2 −
X1/2RX1/2

∥∥ = 0. The function A 7→ ‖λ(A)‖1 : Sn → R is convex and finite everywhere; therefore,

it is continuous. It follows that limε↓0
∥∥λ((Xε)1/2R(Xε)1/2

)∥∥
1

=
∥∥|λ(X1/2RX1/2

)∥∥
1
. On the other

hand, according to Remark 3.2, the function −fSn+,R(X) is a closed convex function of X; therefore,
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limε↓0 fSn+,R(Xε) = fSn+,R(X) (see, for instance, [23, Proposition B.1.2.5]). Putting these together,
we get

fSn+,R(X) = lim
ε↓0

fSn+,R(Xε) = lim
ε↓0

∥∥λ((Xε)1/2R(Xε)1/2
)∥∥

1
=
∥∥λ(X1/2RX1/2

)∥∥
1
.

We note that, for any R ∈ Sn and X ∈ Sn+, the eigenvalues of X1/2RX1/2 are real because it is
real symmetric. Lemma 4.3 implies the following result.

Theorem 4.4. Let E = Sn and K = Sn+. Then a point X ∈ Sn+ satisfies (8) if and only if it satisfies∥∥λ(X1/2RX1/2
)∥∥

1
≥ 2µ0 − 〈D1 +D2, X〉. (33)

Similarly, a point X ∈ Sn+ satisfies (25) if and only if it satisfies∥∥λ(X1/2RX1/2
)∥∥

1
≥ |2µ0 − 〈D1 +D2, X〉|. (34)

Theorem 4.4 and Proposition 3.2 indicate that (33) is a valid convex inequality for D1 ∪ D2,
where D1,D2 ⊂ Sn+ are defined as in (31). Furthermore, if D1 and D2 satisfy the conditions of
Lemma 2.2, the inequality (33) describes the closed convex hull of D1 ∪D2, together with the cone
constraint X ∈ Sn+. If D1 and D2 satisfy the disjointness condition, then Corollary 3.8 shows that
a point X ∈ Sn+ satisfies (33) if and only if it satisfies (34). On the other hand, Theorem 4.4 and
Proposition 3.5(i) indicate that (34) is a valid convex inequality for F∩Sn+, where F ⊂ Sn is defined
as in (32). Furthermore, if F satisfies the conditions of Proposition 3.5(ii), then (34) describes the
closed convex hull of F ∩ Sn+.

The lemma below can be used to simplify the term
∥∥λ(X1/2RX1/2

)∥∥
1

on the left-hand side of
(33); we refer to [25, Theorem 1.3.22] for a proof of this result.

Lemma 4.5. Let A ∈ Rm×n and B ∈ Rn×m with m ≤ n. Then the n eigenvalues of BA are the
m eigenvalues of AB together with n−m zeroes.

Corollary 4.6. For any R ∈ Sn and X ∈ Sn+, we have λ
(
X1/2RX1/2

)
= λ(RX). In particular:

i. The eigenvalues of RX are real.

ii. fSn+,R(X) = ‖λ(RX)‖1.

Corollary 4.7. Let R ∈ Sn and X ∈ Sn+. Suppose R is diagonal with diagonal elements from
{0,±1} sorted in nonincreasing order. Let supp(R) ⊂ [n] be the set of indices of the nonzero
elements of the diagonal of R. Then

i. The eigenvalues of R[supp(R)]X[supp(R)] are real,

ii.

fSn+,R(X) =
∥∥λ(X[supp(R)]1/2R[supp(R)]X[supp(R)]1/2)

∥∥
1

=
∥∥λ(R[supp(R)]X[supp(R)])

∥∥
1
.
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Proof. Let t+, t−, and t0 be the number of diagonal elements of R which are equal to +1, −1, and
0, respectively. Then t+ + t− = | supp(R)|. Let P ∈ Rn×(t++t−) be the matrix whose i-th row is ei

if i ∈ [t+], ei−t
0

if i ∈ [n] \ [t+ + t0], and the zero vector otherwise. Then R = PR[supp(R)]P> and

X1/2RX1/2 = X1/2PR[supp(R)]P>X1/2.

Note that the eigenvalues of X1/2PR[supp(R)]P>X1/2 are real because it is real symmetric.
By Lemma 4.5, the n eigenvalues of X1/2PR[supp(R)]P>X1/2 are the t+ + t− eigenvalues of

R[supp(R)]P>XP = R[supp(R)]X[supp(R)] together with t0 zeroes. Noting X[supp(R)] ∈ St
++t−

+

and applying Lemma 4.5 again, we see that the eigenvalues of R[supp(R)]X[supp(R)] are the same
as the eigenvalues of X[supp(R)]1/2R[supp(R)]X[supp(R)]1/2.

We use the next result in the proof of Lemma 4.9, which provides an alternate representation
of
∥∥λ(X1/2RX1/2

)∥∥
1
.

Lemma 4.8. Let R ∈ Sn and X ∈ Sn+. The number of positive (resp. negative) eigenvalues of
X1/2RX1/2 is less than or equal to the number of positive (resp. negative) eigenvalues of R.

Proof. Consider the eigenvalue decomposition of X = UxDxU
>
x with an orthogonal matrix Ux

and a diagonal matrix Dx. Note λ(X1/2RX1/2) = λ(D
1/2
x UxRU

>
x D

1/2
x ). Let Ix be a diagonal

matrix which has (Ix)ii = (Dx)ii if (Dx)ii > 0 and (Ix)ii = 1 if (Dx)ii = 0. Let Px be a diagonal

matrix which has (Px)ii = 1 if (Dx)ii > 0 and (Ix)ii = 0 if (Dx)ii = 0. Then D
1/2
x UxRU

>
x D

1/2
x =

Px(I
1/2
x UxRU

>
x I

1/2
x )Px. The matrix I

1/2
x UxRU

>
x I

1/2
x has the same inertia as R because I

1/2
x Ux is

nonsingular. Because Px(I
1/2
x UxRU

>
x I

1/2
x )Px is a principal submatrix of I

1/2
x UxRU

>
x I

1/2
x , we deduce

the result from Cauchy’s interlacing eigenvalue theorem.

Lemma 4.9. Let R ∈ Sn and X ∈ Sn+. Suppose R /∈ ±Sn+ and it is diagonal with diagonal elements
from {0,±1} sorted in nonincreasing order. Let n+ := max{k : Rkk = 1}, n− := min{k : Rkk =
−1}, and J := {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then

∥∥λ(X1/2RX1/2
)∥∥

1
=

√
〈R,X〉2 − 4

∑
(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

Proof. Note that 〈R,X〉 = Tr(RX) =
∑n

i=1 λi(RX) =
∑n

i=1 λi
(
X1/2RX1/2

)
where the last equal-

ity follows from Corollary 4.6. Furthermore, X1/2RX1/2 has at most n+ positive and at most
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n− n− + 1 negative eigenvalues because of Lemma 4.8. Hence, we can write

∥∥λ(X1/2RX1/2
)∥∥2

1
− 〈R,X〉2 =

∥∥λ(X1/2RX1/2
)∥∥2

1
−
( n∑
i=1

λi
(
X1/2RX1/2

))2

=

[ n+∑
i=1

λi
(
X1/2RX1/2

)
−

n∑
i=n−

λi
(
X1/2RX1/2

)]2

−
[ n+∑
i=1

λi
(
X1/2RX1/2

)
+

n∑
i=n−

λi
(
X1/2RX1/2

)]2

= −4

[ n+∑
i=1

λi
(
X1/2RX1/2

)][ n∑
i=n−

λi
(
X1/2RX1/2

)]
= −4

∑
(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

The result follows from the nonnegativity of
∥∥λ(X1/2RX1/2

)∥∥
1
.

Lemmas 4.3 and 4.9, along with Propositions 3.3(ii) and 3.6(ii), have the following consequence.

Corollary 4.10. Let E = Sn and K = Sn+. Suppose R /∈ ±Sn+ and it is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ := max{k : Rkk = 1}, n− := min{k :
Rkk = −1}, and J := {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then a point X ∈ Sn+ satisfies (33) if and
only if there exists z ≥ µ0 such that

−
∑

(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
≥ (z−〈D1, X〉)(z−〈D2, X〉). (35)

Similarly, a point X ∈ Sn+ satisfies (34) if and only if it satisfies (35) together with z = µ0.

Proof. Lemmas 4.3 and 4.9 show

[fSn+,R(X)]2 − 〈R,X〉2 = ‖λ(X1/2RX1/2)‖21 − 〈R,X〉2

= −
∑

(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

Then the two claims follow from Propositions 3.3(ii) and 3.6(ii), respectively.

4.3 Elementary Disjunctions on the Positive Semidefinite Cone

Although it provides a closed-form equivalent for (8) in the case of disjunctions on the positive
semidefinite cone, (33) can pose challenges from a computational perspective. In this section, we
identify a class of two-term disjunctions for which (33) can be exactly represented in a tractable
form.

We say that the disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0 is elementary when the matrix
R = D2−D1 ∈ Sn has exactly one positive and one negative eigenvalue. In this section we consider
sets D1,D2 ⊂ Sn+ which are defined by an elementary disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0.
By Remark 4.1, we assume without any loss of generality that R is diagonal and has exactly one
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positive entry R11 = 1 and one negative entry Rnn = −1. In this case, using Lemma 4.8, the matrix
X1/2RX1/2 has at most one positive and at most one negative eigenvalue for any X ∈ Sn+. The
largest and smallest eigenvalues of X1/2RX1/2 are

λ1

(
X1/2RX1/2

)
=

1

2

(
X11 −Xnn +

√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n)

)
, (36a)

λn
(
X1/2RX1/2

)
=

1

2

(
X11 −Xnn −

√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n)

)
. (36b)

Hence, Lemma 4.3 and Theorem 4.4 reduce to the statement below for elementary disjunctions on
the positive semidefinite cone.

Corollary 4.11. Let E = Sn and K = Sn+. Suppose R = D2 − D1 is a diagonal matrix
with exactly one positive entry R11 = 1 and one negative entry Rnn = −1. Then fSn+,R(X) =√

(X11 −Xnn)2 + 4(X11Xnn −X2
1n) for any X ∈ Sn+. Furthermore, a point X ∈ Sn+ satisfies (33)

if and only if it satisfies√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n) ≥ 2µ0 − 〈D1 +D2, X〉. (37)

Proof. The proof follows from noting that ‖λ(X1/2RX1/2)‖1 = λ1(X1/2RX1/2)− λn(X1/2RX1/2)
where λ1(X1/2RX1/2) and λn(X1/2RX1/2) are as in (36).

Corollary 4.10 leads to equivalent second-order cone representations for (37) in the case of both
disjoint and non-disjoint disjunctions.

Theorem 4.12. Let E = Sn and K = Sn+. Suppose R = D2−D1 is a diagonal matrix with exactly
one positive entry R11 = 1 and one negative entry Rnn = −1. Then a point X ∈ Sn+ satisfies (33)
if and only if there exists z ≥ µ0 such that

X[{1, n}]− (z − 〈D1, X〉)R[{1, n}] ∈ S2
+. (38)

Similarly, a point X ∈ Sn+ satisfies (34) if and only if it satisfies (38) together with z = µ0.
Furthermore, the inequality (38) can be represented as a second-order cone constraint.

Proof. Fix X ∈ Sn+. The first part of Corollary 4.10 shows that X satisfies (33) if and only if there
exists z ≥ µ0 such that

(X11Xnn −X2
1n) ≥ (z − 〈D1, X〉)(z − 〈D2, X〉).

This inequality can be rewritten as

[X11Xnn −X2
1n] ≥ (z − 〈D1, X〉)(z − 〈D1, X〉 − 〈R,X〉)

⇔ [X11Xnn −X2
1n] ≥ (z − 〈D1, X〉)2 − (z − 〈D1, X〉)[X11 −Xnn]

⇔ X11Xnn + (z − 〈D1, X〉)[X11 −Xnn]− (z − 〈D1, X〉)2 −X2
1n ≥ 0

⇔ [X11 − (z − 〈D1, X〉)] [Xnn + (z − 〈D1, X〉)]−X2
1n ≥ 0. (39)

The left-hand side of (39) is equal to the determinant of the matrix(
X11 − (z − 〈D1, X〉) X1n

X1n Xnn + (z − 〈D1, X〉)

)
.
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This matrix equals X[{1, n}]− (z − 〈D1, X〉)R[{1, n}] which also appears in (38).
To finish the proof, we show that the diagonal elements of the matrix on the left-hand side of (38)

are nonnegative for anyX ∈ Sn+ and z ∈ R which satisfy (39). That is, we showX11−(z−〈D1, X〉) ≥
0 and Xnn + (z − 〈D1, X〉) ≥ 0. When X and z satisfy 〈D1, X〉 = z, the hypothesis that X ∈ Sn+
implies this immediately. Therefore, we can assume 〈D1, X〉 6= z. Note that (39) implies

[X11 − (z − 〈D1, X〉)] [Xnn + (z − 〈D1, X〉)] ≥ 0.

Because 〈D1, X〉 6= z and X11, Xnn ≥ 0 for X ∈ Sn+, at least one of the terms in the product above
is positive; this also implies the nonnegativity of the other term. Hence, (39) is equivalent to (38)
for any X ∈ Sn+ and z ∈ R.

The second part of Corollary 4.10 shows that X satisfies (34) if and only if it satisfies (38)
together with z = µ0.

Remark 4.2. Suppose the hypotheses of Theorem 4.12 are satisfied. Reversing the roles of D1 and
D2 in the proof of Theorem 4.12, the inequality (38) can be equivalently represented as

X[{1, n}] + (z − 〈D2, X〉)R[{1, n}] ∈ S2
+.

♦

4.4 Low-Complexity Inequalities for General Disjunctions

In this section, in a spirit similar to Remark 3.7, we study structured conic inequalities valid for
two-term disjunctions on Sn+. Section 4.3 showed that (33) admits an exact second-order cone rep-
resentation when we consider elementary disjunctions on the positive semidefinite cone. However,
the structure of (33) can be more complicated in the case of general two-term disjunctions. In this
section, we introduce and discuss simpler conic inequalities which provide good relaxations to (33)
at a significantly lower cost of computational complexity.

4.4.1 Relaxing the Inequality

We are going to use a classical result from matrix analysis to arrive at the results of this section.
We state this result as Lemma 4.13 below; see [25, Theorem 1.2.16] for a proof.

Lemma 4.13. Let A ∈ Rn×n. Then∑
1≤i<j≤n

det(A[{i, j}]) =
∑

1≤i<j≤n
λi(A)λj(A).

Using Lemma 4.13, we prove the following result.

Lemma 4.14. Let R ∈ Sn and X ∈ Sn+. Suppose R /∈ ±Sn+ and R is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ := max{k : Rkk = 1}, n− := min{k :
Rkk = −1}, and J := {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then∑

(i,j)∈J

det(X[{i, j}]) ≥ −
∑

(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
. (40)
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Proof. Let Y := RX. From Corollary 4.6, λ(Y ) = λ(X1/2RX1/2); therefore, the right-hand side
of (40) is exactly equal to −

∑
(i,j)∈J λi(Y )λj(Y ). Define the sets J+ := {(i, j) : 1 ≤ i < j ≤ n+}

and J− := {(i, j) : n− ≤ i < j ≤ n}. Note that det(Y [{i, j}]) = det(X[{i, j}]) if (i, j) ∈ J+ ∪ J−,
det(Y [{i, j}]) = −det(X[{i, j}]) if (i, j) ∈ J, and det(Y [{i, j}]) = 0 otherwise. Furthermore, Y has
at most n+ positive and at most n− n− + 1 negative eigenvalues. Then∑

(i,j)∈J

det(X[{i, j}]) = −
∑

(i,j)∈J

det(Y [{i, j}])

= −
∑

1≤i<j≤n
det(Y [{i, j}]) +

∑
(i,j)∈J+

det(Y [{i, j}]) +
∑

(i,j)∈J−
det(Y [{i, j}])

= −
∑

1≤i<j≤n
λi(Y )λj(Y ) +

∑
(i,j)∈J+

det(X[{i, j}]) +
∑

(i,j)∈J−
det(X[{i, j}])

= −
∑

(i,j)∈J

λi(Y )λj(Y ) +

[ ∑
(i,j)∈J+

det(X[{i, j}])−
∑

(i,j)∈J+
λi(Y )λj(Y )

]

+

[ ∑
(i,j)∈J−

det(X[{i, j}])−
∑

(i,j)∈J−
λi(Y )λj(Y )

]
.

In order to reach (40), we show∑
(i,j)∈J+

det(X[{i, j}]) ≥
∑

(i,j)∈J+
λi(Y )λj(Y ), (41a)

∑
(i,j)∈J−

det(X[{i, j}]) ≥
∑

(i,j)∈J−
λi(Y )λj(Y ). (41b)

Let P+ ∈ Sn+ be the diagonal matrix with diagonal entries P+
ii = 1 if i ∈ [n+] and zero otherwise.

Let P− ∈ Sn+ be the matrix P− := P+ − R. Define X+ := P+XP+ and X− := P−XP−. Then
X+, X− ∈ Sn+. Furthermore, X+ (resp. X−) has at most n+ (resp. n− n− + 1) nonzero (positive)
eigenvalues. We first prove (41a). Note that∑

(i,j)∈J+
det(X[{i, j}]) =

∑
1≤i<j≤n

det(X+[{i, j}]) =
∑

1≤i<j≤n
λi(X

+)λj(X
+)

=
∑

(i,j)∈J+
λi(X

+)λj(X
+),

where the second equation follows from Lemma 4.13 and the last one from the fact that X+

has at most n+ positive eigenvalues. From (P+)2 = P+ and Lemma 4.5, we have λ(X+) =
λ(P+XP+) = λ(P+X) = λ(X1/2P+X1/2). From Corollary 4.6, we have λ(Y ) = λ(X1/2RX1/2).
Note X1/2P+X1/2 −X1/2RX1/2 = X1/2P−X1/2 ∈ Sn+; hence, λ(X1/2P+X1/2) ≥ λ(X1/2RX1/2).
Note from Lemma 4.8 that X1/2RX1/2 has at most n − n− + 1 negative eigenvalues; hence, the
largest n+ eigenvalues of X1/2RX1/2 are all nonnegative. Then we have

∑
(i,j)∈J+ λi(X

+)λj(X
+) ≥∑

(i,j)∈J+ λi(Y )λj(Y ) because the first n+ coordinates of both λ(X+) and λ(Y ) are nonnegative

and λ(X+) ≥ λ(Y ). This proves (41a). The proof of (41b) follows in a similar manner.
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Remark 4.3. Suppose the hypotheses of Lemma 4.14 are satisfied. Then Remark 3.2(ii) and Lem-
mas 4.3, 4.9, and 4.14 imply that, for any X ∈ Sn+, we have√

〈R,X〉2 + 4
∑

(i,j)∈J

det(X[{i, j}]) ≥ ‖λ(X1/2RX1/2)‖1 ≥ |〈R,X〉|.

If the rank of X ∈ Sn+ is one, then det(X[{i, j}) = 0 for all (i, j) ∈ J; therefore, both inequalities
above hold at equality. ♦

Remark 3.2 entails an attractive feature of the inequality (33): any rank-one matrix X ∈ Sn+
satisfies (33) if and only if X ∈ D1 ∪D2. Next we use Remark 4.3 to construct a relaxation of (33)
which shares the same feature.

Proposition 4.15. Let E = Sn and K = Sn+. Suppose R /∈ ±Sn+ and it is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ := max{k : Rkk = 1}, n− := min{k :
Rkk = −1}, and J := {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Let gSn+,R : Sn → R ∪ {−∞} be defined as

gSn+,R(X) =

{√
〈R,X〉2 + 4

∑
(i,j)∈J det(X[{i, j}]) if X ∈ Sn+,

−∞ otherwise.

i. Any point X ∈ Sn+ which satisfies (33) also satisfies

gSn+,R(X) ≥ 2µ0 − 〈D1 +D2, X〉. (42)

Similarly, any point X ∈ Sn+ which satisfies (34) also satisfies

gSn+,R(X) ≥ |2µ0 − 〈D1 +D2, X〉|. (43)

ii. Any point X ∈ Sn+ satisfies (42) if and only if there exists z ≥ µ0 such that n+∑
i=1

Xii − (z − 〈D1, X〉)

 n∑
j=n−

Xjj + (z − 〈D1, X〉)

 ≥ ∑
(i,j)∈J

X2
ij , (44a)

n+∑
i=1

Xii − (z − 〈D1, X〉) ≥ 0,

n∑
j=n−

Xjj + (z − 〈D1, X〉) ≥ 0. (44b)

Similarly, any point X ∈ Sn+ satisfies (43) if and only if it satisfies (44) together with z = µ0.
Furthermore, (44) can be represented as a single second-order cone constraint.

Proof. By Remark 4.3, gSn+,R(X) ≥ fSn+,R(X) for all X ∈ Sn+. Then statement (i) follows from
Theorem 4.4. As in Proposition 3.3(ii), we can show that a point X ∈ Sn+ satisfies (42) if and only
if there exists z ≥ µ0 such that[

gSn+,R(X)
]2 − 〈R,X〉2 ≥ 4(z − 〈D1, X〉)(z − 〈D2, X〉). (45)

Similarly, as in Proposition 3.6(ii), we can show that a point X ∈ Sn+ satisfies (43) if and only if it
satisfies (45) together with z = µ0. We show that (45) can be represented as (44). The inequality
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(45) is identical to
∑

(i,j)∈J det(X[{i, j}]) ≥ (z − 〈D1, X〉)(z − 〈D2, X〉). Following steps similar to
those in the proof of Theorem 4.12, we rewrite it as∑

(i,j)∈J

det(X[{i, j}]) ≥ (z − 〈D1, X〉)(z − 〈D1, X〉 − 〈R,X〉)

⇔
∑

(i,j)∈J

[XiiXjj −X2
ij ] ≥ (z − 〈D1, X〉)2 − (z − 〈D1, X〉)

 n+∑
i=1

Xii −
n∑

j=n−

Xjj


⇔

 n+∑
i=1

Xii − (z − 〈D1, X〉)

 n−∑
j=1

Xjj + (z − 〈D1, X〉)

− ∑
(i,j)∈J

X2
ij ≥ 0.

The final form is the same as (44a). Furthermore, as in the proof of Theorem 4.12, we can show∑n+

i=1Xii − (z − 〈D1, X〉) ≥ 0 and
∑n

j=n− Xjj + (z − 〈D1, X〉) ≥ 0 for any X ∈ Sn+ and z ∈ R
satisfying (44a). Observing that the inequalities (44) can be written as a rotated second-order cone
constraint completes the proof.

Remark 4.4. Under the hypotheses of Proposition 4.15, the inequality (42) defines a convex region
in Sn+. To see this, note that the set of points satisfying (42) and X ∈ Sn+ is precisely the projection
of the set of points satisfying (44) and X ∈ Sn+ onto the space of X variables. Because projection
of a convex set is convex, this immediately proves the convexity of the region defined by (42) inside
Sn+. ♦

Remark 4.5. Proposition 4.15 immediately implies the results presented in Section 4.3 because in
the particular case of elementary disjunctions, (40) holds at equality. This can be seen by noting
that J+ = J− = ∅ in the proof of Lemma 4.14. Therefore, in the case of elementary disjunctions,
(42) does not only define a relaxation of (33); it is also equivalent to (33). Despite this connection,
we have opted to keep Section 4.3 due to its more transparent derivation. ♦

Example 4.16. Consider the split disjunction −1
2(X11+X22−X33) ≥ 1∨ 1

2(X11+X22−X33) ≥ 1 on

S3
+. The sets D1 and D2 are defined as in (31) with D1 := −1

2

((
e1
)(
e1
)>

+
(
e2
)(
e2
)> − (e3

)(
e3
)>)

,

D2 := −D1, and µ0 = 1. Proposition 4.15(ii) shows that the inequalities[
1

2
(X11 +X22 +X33)− 1

] [
1

2
(X11 +X22 +X33) + 1

]
≥ X2

13 +X2
23,

1

2
(X11 +X22 +X33)− 1 ≥ 0

1

2
(X11 +X22 +X33) + 1 ≥ 0

are valid for D1 ∪ D2. Furthermore, these inequalities can be represented as the second-order cone
constraint 

2X13

2X23

2
X11 +X22 +X33

 ∈ L4. (46)

Let G denote the region defined by (46). Figure 1 shows the intersection of various two-dimensional
linear spaces with D1 ∪ D2, S3

+, and G. Each two-dimensional linear space has the form W :=
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{xππ> + yψψ> : (x, y) ∈ R2} where π, ψ ∈ R3 are chosen such that π1 =
√

5
2 , ψ3 =

√
2, and the

remaining components of π and ψ are random numbers from the interval [−1, 1]. The intersection
of W with S3

+ corresponds to the nonnegative orthant in the (x, y) space. Each image depicts the
intersection of W with D1 ∪ D2 (blue meshed area) and G (red unmeshed area) in the (x, y) space.

We remind the reader that (46) is valid for all of D1∪D2 and not just D1∪D2∩W. Hence, even in
the cases where conv(D1∪D2) = S3

+∩G, we cannot in general expect to have conv((D1∪D2)∩W) =
S3

+ ∩G ∩W.

Figure 1: Sets associated with the disjunction −1
2(X11 +X22−X33) ≥ 1 ∨ 1

2(X11 +X22−X33) ≥ 1
on S3

+.

In the next remark, we discuss how we can utilize our results for elementary disjunctions in the
light of Remark 3.7 to build structured relaxations of (33).

Remark 4.6. Suppose R /∈ ±Sn+ is a diagonal matrix with diagonal elements from {0,±1} sorted in

nonincreasing order. Let R+, R− ∈ Sn+ and R1, . . . , R` /∈ ±Sn+ be such that R = R+−R−+
∑`

k=1Rk
and rank(Rk) = 2. Remark 3.6 indicates that any X ∈ D1 ∪ D2 satisfies the convex inequality

fSn+,R+(X) + fSn+,−R−(X) +
∑̀
k=1

fSn+,Rk
(X) ≥ 2µ0 − 〈D1 +D2, X〉.
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Note that, for any X ∈ Sn+, fSn+,R+(X) = 〈R+, X〉 and fSn+,−R−(X) = 〈R−, X〉. Now, for each

k ∈ [`], consider the eigenvalue decomposition of Rk = UkDkU
>
k , and define Qk ∈ int(Sn+) as in

Remark 4.1. Then J := QkU
>
k RkUkQk is a diagonal matrix with exactly one positive entry J11 = 1

and exactly one negative entry Jnn = −1. Furthermore, Lemmas 4.3 and 4.5 show

fSn+,Rk
(X) =

∥∥λ(RkX)∥∥1
=
∥∥λ(J(Q−1

k U>k XUkQ
−1
k )
)∥∥

1

= fSn+,J
(
Q−1
k U>k XUkQ

−1
k

)
.

The function fSn+,J(·) has the form given in Corollary 4.11. It follows that any inequality constructed
through this approach admits a second-order conic representation in a lifted space. We note that
there is a lot of flexibility in the choice of the matrices R+, R−, and Rk and each selection will lead
to a different valid inequality. ♦

Our simple numerical experimentation has demonstrated that neither the relaxed conic inequal-
ity from Proposition 4.15 nor the family of inequalities derived from the procedure described in
Remark 4.6 dominates each other.

4.4.2 Relaxing the Disjunction

Another approach to using our results on elementary disjunctions for arbitrary two-term disjunc-
tions might be through relaxing the underlying disjunction. To illustrate this point, consider a
disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0. Let R+, R− ∈ Sn+ be such that R′ := R−R++R− /∈ ±Sn+
and has rank two. Define D′1 := D1 + R− and D′2 := D2 + R+. The matrices D′1 and D′2 define a
relaxation 〈D′1, X〉 ≥ µ0 ∨ 〈D′2, X〉 ≥ µ0 of the original disjunction because any X ∈ Sn+ satisfying
〈Di, X〉 ≥ µ0 also satisfies 〈D′i, X〉 ≥ µ0 for i ∈ {1, 2}. Therefore, any inequality valid for the re-
laxed disjunction is also valid for the original. Because R′ /∈ ±Sn+ and has rank two, it has exactly
one positive and one negative eigenvalue. The relaxed disjunction is elementary, and the results of
Section 4.3 can be used to derive structured nonlinear valid inequalities for D1∪D2. In particular,
this approach leads to the inequality

fSn+,R′(X) ≥ 2µ0 − 〈D′1 +D′2, X〉 = 2µ0 − 〈D1 +D2, X〉 − 〈R+ +R−, X〉

⇐⇒ 〈R+ +R−, X〉+ fSn+,R′(X) ≥ 2µ0 − 〈D1 +D2, X〉

⇐⇒ fSn+,R+(X) + fSn+,−R−(X) + fSn+,R′(X) ≥ 2µ0 − 〈D1 +D2, X〉.

We note, however, that the inequality above can also be obtained through the approach outlined in
Remark 4.6. Therefore, the approach of Remark 4.6 is a more powerful method to build structured
relaxations of (33).

5 Conclusion

In this paper we have considered two-term disjunctions on a regular cone K and intersections of a
regular cone K with rank-two nonconvex quadratics. These sets provide fundamental nonconvex
relaxations for conic programs with integrality requirements and other types of nonconvex con-
straints. We have developed a general theory for constructing closed convex hull descriptions and
low-complexity relaxations of such sets in the space of the original variables or using a small num-
ber of auxiliary variables. These relaxations can be used to strengthen convex relaxations of conic
programs with nonconvex constraints. In the second part of the paper, we have specialized these
results to the case where K is the positive semidefinite cone.
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We note that our results immediately extend to cases where the base convex set is the intersec-
tion of a regular cone K with homogeneous half-spaces through [13, Lemma 5] (or its generalization
given in [24, Lemma 3.6]) and to cases where it corresponds to certain cross-sections of K through
[13, Lemma 7]. Nonetheless, studying closed convex hulls of disjunctions on general cross-sections
of K is a topic of future research. Particular cross-sections of the positive semidefinite cone deserve
specific interest from the point of view of combinatorial optimization. For instance, in the case of
the maximum cut problem, it is well-known that the elliptope {X ∈ Sn+ : Xii = 1 ∀i ∈ [n]} provides
a good outer approximation to the cut polytope, which is the convex hull of (±1) characteristic
vectors of all cuts in a complete graph on n vertices. Goemans and Williamson [20] used this
observation to develop the approximation algorithm with the best known approximation guarantee
for the maximum cut problem. Furthermore, the elliptope provides a valid integer programming
formulation for the maximum cut problem in the sense that any X ∈ {±1}n×n in the elliptope cor-
responds to the characteristic vector of a cut. On this cross-section of the positive semidefinite cone,
we can easily transform any two-term disjunction into an elementary disjunction. Thus, the results
of Section 4.3 can be relevant. We hope that these results will be instrumental to the development
of more practical algorithms for maximum cut and other hard combinatorial problems.
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