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Abstract: We study the polyhedral structure of a generalization of a mixing set described by the intersection of

two mixing sets with two shared continuous variables, where one continuous variable has a positive coefficient in

one mixing set, and a negative coefficient in the other. Our developments are motivated from a key substructure

of linear joint chance-constrained programs (CCPs) with random right hand sides from a finite probability space.

The CCPs of interest immediately admit a mixed-integer programming reformulation. Nevertheless, such standard

reformulations are difficult to solve at large-scale due to the weakness of their linear programming relaxations. In

this paper, we initiate a systemic polyhedral study of such joint CCPs by explicitly analyzing the system obtained

from simultaneously considering two linear constraints inside the chance constraint.

We carry out our study on this particular intersection of two mixing sets under a nonnegativity assumption on

data. Mixing inequalities are immediately applicable to our set, yet they are not sufficient. Therefore, we propose

a new class of valid inequalities in addition to the mixing inequalities, and establish conditions under which these

inequalities are facet defining. Moreover, under certain additional assumptions, we prove that these new valid

inequalities along with the classical mixing inequalities are sufficient in terms of providing the closed convex hull

description of our set. We also show that linear optimization over our set is polynomial-time, and we independently

give a (high-order) polynomial-time separation algorithm for the new inequalities. We complement our theoretical

results with a computational study on the strength of the proposed inequalities. Our preliminary computational

experiments with a fast heuristic separation approach demonstrate that our proposed inequalities are practically

effective as well.

Keywords: mixing inequalities; two-sided/joint chance-constraints; convex hull; separation; branch-and-cut

1. Introduction Consider a set P in the space of the variables yp, yd ∈ R and z ∈ Rm defined by

yp + yd + wjzj ≥ wj , ∀j ∈ Ω, (1a)

yp − yd + (vj + ud)zj ≥ vj , ∀j ∈ Ω, (1b)

yp ≥ 0, (1c)

ud ≥ yd ≥ 0, (1d)

z ∈ Bm, (1e)

where Ω := {1, . . . ,m} is a given set, wj , vj ∈ R for j ∈ Ω are given data, and ud ∈ R+ is a large finite

upper bound on the variable yd. Here, the variable zj , j ∈ Ω takes a value 1 if constraints (1a)–(1b) need to

be trivially satisfied, and it takes a value 0, otherwise. In this context, the coefficients of zj in (1a)–(1b) are

so-called big-M values so that inequalities (1a)–(1b) are trivially satisfied when zj = 1. Note that for the

big-M coefficient of zj in constraint (1b) to be well-defined, we need a finite upper bound on the nonnegative

variable yd, which we state in constraint (1d).

In this paper, we are primarily interested in the set defined as P := {(yp, yd, z) | (1a) − (1e)}. The
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polyhedral set P can be viewed as the intersection of two so-called individual mixing sets with shared

continuous and binary variables: one mixing set given by the system of inequalities (1a), (1c)–(1e), and the

other given by the system of inequalities (1b) and (1c)–(1e). For a single mixing set, a class of so-called

mixing inequalities is studied in [5], and this class of inequalities is shown to define the convex hull of

solutions to the associated individual mixing set (see also [2]). Since mixing set is a key substructure in

multiple applications, such as lot sizing and capacitated facility location, different variants of mixing set

have been studied in the literature; see the recent survey [14] and the references therein.

The interaction between the two individual mixing sets in P through the shared bounded continuous

variables yp and yd, along with the shared binary variables z, easily lead to a nontrivial structure that

has not received much attention in the literature. One exception to this is [6] where the author proposes

a blending procedure that takes a weighted sum of multiple individual mixing sets to arrive at another

individual mixing set. See [6, 15] for extensions utilizing a cardinality constraint on the binary variables

z. However, the valid inequalities based on blending relaxations are not guaranteed to be facet-defining

even when the cardinality constraint is relaxed (as we show in Example 2.1). While Küçükyavuz [6] also

gives disjunctive programming-based extended formulations for the intersection of mixing sets under a

cardinality constraint, the resulting extended formulations are large due to the large number of scenarios

and thus they are not effective in practice (see e.g., [13]). Hence, obtaining facet-defining inequalities and

an ideal formulation for the convex hull of P in its original space remain as interesting open questions. In

this study, we pursue these questions under some minor assumptions involving nonnegativity of the data

wj , vj , and ud used in P.

Before we present our results, we give a summary of the notation and conventions used throughout the

paper. Given a ∈ R, we set (a)+ = max{a, 0}. For a positive integer n, we let [n] = {1, . . . , n}. We use

bold letters to denote vectors. For a vector x ∈ Rn and an integer k ∈ [n], xk denote the k-th coordinate

of x. We use 0, 1 and ej , respectively, to denote the vector of all 0’s, the vector of all 1’s, and the jth

unit vector in the appropriate dimension to be understood from the context. Given a set S, we denote its

dimension and convex hull by dim (S) and conv(S), respectively. Given a vector a ∈ Rn, we follow the

convention maxj∈V aj = 0 whenever V = ∅.

While the set we study restricts the coefficients of the common continuous variables yp, yd to either 1 or

-1, we note that the inequalities we derive for P can be applied to an intersection of mixing sets with more

general coefficients and structure for continuous variables. Consider the set given by

(a1)>x + b1y +M1
j zj ≥ r1

j , ∀j ∈ Ω (2)

(a2)>x− b2y +M2
j zj ≥ r2

j , ∀j ∈ Ω, (3)

x ≥ 0, u ≥ y ≥ 0, z ∈ Bm, (4)

where x ∈ Rn, y ∈ R and z ∈ Bm are decision variables, and a1,a2 ∈ Rn+ are arbitrary vectors. In addition,

b1 > 0 and b2 > 0 are coefficients of y, and r1
j and r2

j are right-hand side parameters for the first and

second sets of inequalities for j ∈ Ω, respectively. Moreover, to simplify the exposition and without loss

of generality, we assume that x ≥ 0, and u ≥ y ≥ 0. Hence, we can set M1
j = r1

j , and M2
j = r2

j + b2u.

Letting yd = b1b2y, and wj = b2r1
j , vj = b1r2

j , j ∈ Ω, we obtain a structure generalizing (1a)–(1b) in that

the continuous variables with only positive coefficients (i.e., yp) do not necessarily have the same coefficient

in the general mixing set (2)–(4), except when b2a1 = b1a2. In Remark 2.2, we will revisit the set (2)–(4)

and discuss how the valid inequalities we propose apply to this more general set. Throughout the paper,
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we will mainly restrict our study to the form (1).

Our motivation in studying the structure of P or its generalization (2)–(4) arose from linear joint chance-

constrained programs (CCPs) with random right-hand side vectors and discrete probability distributions

(see, e.g., [12], for an overview of chance-constrained programs). The finite discrete distribution can be an

approximation of an unknown continuous distribution, obtained via Sample Average Approximation. Given

a finite probability space (Ω′,F ,P), a linear joint CCP with right-hand side uncertainty is of the form

min ξ>x (5a)

s.t. P
(
Ax + by ≥ r(ω)

)
≥ 1− ε. (5b)

x ∈ X, (5c)

where x ∈ Rn is the vector of decision variables from a convex compact domain X, y is a decision variable,

ξ is the cost vector, and ε is the user-given risk rate. Here b is a t-dimensional vector of coefficients for

the variable y with both positive and negative signs, and A is a t × n matrix with rows a1, . . . ,at. In

addition, r(ω) is the random right-hand side vector that depends on the random variable ω ∈ Ω. The

chance constraint (5b) enforces that the probability that the solution x and y satisfies Ax + by ≥ r(ω)

should be no less than the risk level 1− ε.

Let Ω := [m] be the index set of elementary events, and P(ωj) = δj , for all j ∈ Ω and
∑m
j=1 δj = 1. To

simplify notation, define rj := r(ωj) for all j ∈ Ω. Then constraint (5b) is equivalent to

Ax + by +M ′jzj ≥ rj , ∀j ∈ Ω, (6a)∑
j∈Ω

δjzj ≤ ε, (6b)

z ∈ Bm, (6c)

where for all j ∈ Ω, M ′j is a sufficiently large constant that makes (6a) redundant when zj = 1.

Luedtke et al. [11] observe that the above deterministic equivalent formulation of a single (t = 1) linear

CCPs with right-hand side uncertainty under finite probability spaces contains a mixing set substructure

and propose valid inequalities that strengthen the basic mixing inequalities studied in [5] and [2] by utilizing

the cardinality constraint (6b) (see also [6], [1] and [15] for other classes of strong valid inequalities and

extended formulations for the individual mixing set intersected with a cardinality/knapsack constraint

on the binary variables). Furthermore, mixing inequalities and their extensions derived for linear CCPs

under the right-hand side uncertainty assumption have been adapted to more general chance-constrained

programs that contain randomness in the technology matrix or those that permit recourse decisions [10, 8].

In contrast to this extensive literature on analyzing and strengthening mixing relaxations associated with

a single linear inequality inside a chance-constraint, in this paper we focus on explicitly exploiting the

joint CCP structure associated with multiple linear constraints inside a chance constraint where t ≥ 2 by

analyzing the intersection of resulting mixing sets.

1.1 Two-Sided Chance-Constrained Programs A particular form of joint chance constraints,

namely a two-sided chance constraint with right hand side uncertainty, is directly connected to our study.
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The two-sided chance constraints we consider are of the following form:

P
(
|d>x− h(ω)| ≤ p>x− q(ω)

)
≥ 1− ε, (7)

where d and p are n-dimensional coefficient vectors, and h(ω) and q(ω) are random parameters that depend

on the random variable ω ∈ Ω′. Note that (7) is nothing but a specific form of a joint chance constraint

(5b) because it is precisely

P

(
(p + d)>x ≥ q(ω) + h(ω)

(p− d)>x ≥ q(ω)− h(ω)

)
≥ 1− ε.

Two-sided CCPs are the most natural extensions of linear CCPs. While an individual linear CCP

with right hand-side uncertainty is easy to handle and can be expressed as a linear program using quantile

arguments (see [4]), the linearization of a single chance constraint containing absolute value terms introduce

correlation among random variables, and lead to a joint chance-constrained program. Hence, quantile

arguments cannot be used to obtain a linear programming representation of a chance-constrained problem

containing even a single absolute value term.

When the probability space Ω′ is finite, i.e., Ω′ = {ω1, . . . , ωm} for some finite integer m, problem (5)

can be reformulated as a so-called deterministic equivalent program as follows. To simplify notation, let

hj := h(ωj) and qj := q(ωj) for all j ∈ Ω. Let us define the variables yp = p>x and yd = d>x and

additional binary variables z ∈ Bm, one for each scenario in Ω where zj = 0 indicates that the relation in

the chance constraint is satisfied under scenario j. Then inequality (7) can be expressed as follows

yp + yd +M1
j zj ≥ qj + hj , ∀j ∈ Ω, (8a)

yp − yd +M2
j zj ≥ qj − hj , ∀j ∈ Ω, (8b)

(6b) – (6c),

where for all j ∈ Ω, M1
j and M2

j respectively are chosen sufficiently large to make inequalities (8a) and

(8b) redundant when zj = 1, and (6b)–(6c) enforce that the probability of violating the chance constraint

(7) should be less than or equal to ε. Because X is a compact set, we can also derive bounds on the new

variables yd = d>x and yp = p>x. In particular, ld := minx∈X d>x and u′d := maxx∈X d>x. Then

ld ≤ yd ≤ u′d. Similarly, we have yp ≥ lp, where lp := minx∈X p>x.

Now define wj := qj + hj and vj := qj − hj for all j ∈ Ω. Based on these definitions, we set the big-M

values in (8a)–(8b) to M1
j := wj − lp− ld and M2

j := vj − lp +ud for all j ∈ Ω. In Observation 1.1, we show

that without loss of generality, we can assume that lp = ld = 0. As a result, the constraint set (8) together

with (6c), yp ≥ 0 and (relaxed) bound constraints 0 ≤ yd ≤ ud, where ud := max{u′d,maxj∈Ω wj}, contains

the substructure (1) that is the main focus of our study.

Observation 1.1 Without loss of generality, we can assume that lp = ld = 0 in the preceding discussion.

Proof. Let y′p = yp + lp and y′d = yd + ld. Define w′j := wj + lp + ld and v′j := vj + lp− ld for all j ∈ Ω.

Consider the set P ′ defined by the following inequalities:

y′p + y′d + wjzj ≥ w′j , ∀j ∈ Ω,

y′p − y′d + (vj + ud)zj ≥ v′j , ∀j ∈ Ω,

y′p ≥ lp, ud + ld ≥ y′d ≥ ld, z ∈ Bm.
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For any (yp, yd, z) ∈ P, the corresponding (y′p, y
′
d, z) ∈ P ′ and vice versa. 2

Unlike the problem structures studied in [11], [6] [1], and [15], the chance constraint (7) involves an

absolute value function, which brings more complication in terms of the polyhedral structure of this problem.

On a related note, recently, two-sided CCPs with random constraint coefficients are discussed in [3] in the

context of energy applications and are studied in [9] under a joint Gaussian distribution assumption.

1.2 Joint Chance-Constrained Programs with Right-Hand Side Uncertainty Next, consider

a more general chance-constrained problem given by (5) with t ≥ 2. Consider (5b) any two rows of A, say

a1 and a2, and the corresponding elements of rj denoted by r1
j and r2

j , for all j ∈ Ω and the corresponding

elements of b denoted by b1 and b2, respectively. Suppose that this choice of the two rows of A satisfies

b1 · b2 < 0. In other words, consider any two inequalities inside the chance constraint such that there

exists a variable with a positive coefficient in one row, and a negative coefficient in the other. In this case,

constraints (6a)–(6c) are of the desired form (2)–(4).

In a related study, Liu and Küçükyavuz [7] propose valid inequalities for the intersection of multiple

mixing sets that appears in probabilistic lot sizing. However, in [7], the constraint matrix inside the chance

constraint is a lower triangular matrix of 1’s, which is different from the structural form we study.

1.3 Outline The rest of this paper is organized as follows. In Section 2, we introduce our basic setup

assumptions and propose a new class of valid inequalities for conv(P) in addition to the standard mixing

inequalities. Section 3 is dedicated to the polyhedral study of conv(P). In Section 3.1, we examine the

inner description of conv(P), where we prove that conv(P) is indeed a polyhedral set and thus closed. We

establish in Section 3.2 that linear optimization over P is polynomial-time. We further identify conditions

under which our new inequalities are facet-defining for conv(P) (see Section 3.3) and when they, in addition

to the individual mixing inequalities, are sufficient to give the complete linear inequality description of

conv(P) (see Section 3.4). We present a polynomial-time separation algorithm for the proposed inequalities

and some heuristic separation approaches in Section 4. Finally, Section 5 reports preliminary numerical

results on the computational performance of the proposed inequalities on two-sided CCPs and outlines some

future research directions.

2. Problem Setup and Valid Inequalities for the Set P We start by introducing our basic setup

assumptions and then proposing a new class of valid inequalities for the set P. In Section 3.3, we will

establish conditions under which these inequalities are facets of conv(P).

Throughout the paper, we use (yp, yd, z) to express points from P. Given a sequence Π = {π1 → π2 →
· · · → πτ}, we also refer to the associated set {π1, . . . , πτ} as Π; in such cases, whichever interpretation is

applicable will be clear within the context.

Next, we make some observations and assumptions on the problem data.

Observation 2.1 Without loss of generality, we can assume that wj ≥ 0 for all j ∈ Ω in P.

Proof. Define Ω− = {j ∈ Ω : wj < 0}. For every j ∈ Ω−, let z′j = 1− zj . For every j ∈ Ω \Ω−, we

set z′j = zj . Consider the set P ′ defined as follows:

yp + yd + wjz
′
j ≥ wj , ∀j ∈ Ω \Ω−,
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yp − yd + (vj + ud)z
′
j ≥ vj , ∀j ∈ Ω \Ω−,

yp + yd + (−wj)z′j ≥ 0, ∀j ∈ Ω−,

yp − yd + (−vj − ud)z′j ≥ −ud, ∀j ∈ Ω−,

yp ≥ 0, ud ≥ yd ≥ 0, z′ ∈ Bm.

Then there is a one-to-one correspondence between the vectors in P and the vectors in P ′. Moreover, for

all j ∈ Ω, the w coefficient in front of variable z′j is nonnegative in the constraints with terms yp + yd.

Note that after the transformation, the constraints yp+yd+(−wj)z′j ≥ 0 ∀j ∈ Ω− are redundant because

all of the variables are nonnegative and wj ≤ 0 for j ∈ Ω−. However, the constraint yp−yd+(−vj−ud)z′j ≥
−ud for some ∀j ∈ Ω− may be non-redundant. 2

We carry out our polyhedral study of conv(P) under several assumptions:

A1: vj ≤ wj for all j ∈ Ω;

A2: 0 < maxj∈Ω wj ≤ ud.

First, we show that Assumption A1 is without loss of generality. Suppose there exists j ∈ Ω such that

vj > wj , i.e., Assumption A1 is violated. Note that for any solution in P such that zj = 1, both of the

constraints (1a) and (1b) for this particular j are redundant. Furthermore, for any solution with zj = 0,

from (1a)–(1b), we must have yp + yd ≥ wj and yp− yd ≥ vj . Then yp ≥ vj + yd > wj − yd holds where the

last inequality follows from yd ≥ 0 and vj > wj . This then implies that constraint (1a) for this particular

j is redundant for the set P whenever vj > wj . Because of the redundancy of the constraint (1a) for

any j ∈ Ω such that vj > wj in P, in such cases, we can replace wj with vj . After this update in data,

Assumption A1 holds. Therefore, this assumption is without loss of generality.

Next, in the first part of Assumption A2, in addition to the implication maxj∈Ω wj ≥ 0 of Observation

2.1, we further assume that maxj∈Ω wj > 0. Otherwise, when maxj∈Ω wj = 0, constraint (1a) is redundant

because of constraints (1c) and (1d), and the set P no longer has the desired interesting mixing structure.

Hence, throughout the rest of the paper, in order to study interesting cases, we assume maxj∈Ω wj > 0.

Moreover, in the last part of Assumption A2, the condition ud ≥ maxj∈Ω wj ensures that the upper bound

of yd is sufficiently large so that it does not cut off any feasible solution with respect to inequalities (1a),

(1c), and (1e).

While it may be possible to have vj < 0 for some j ∈ Ω, throughout the rest of this paper, we work with

the following assumption that complements Observation 2.1:

A3: wj and vj are nonnegative for all j ∈ Ω.

However, we note that the nonnegativity of vj is not without loss of generality, as we will show in Example

2.2. Also, note that this assumption is satisfied in the case of joint chance-constrained setting described

in Section 1.2 if r2
j ≥ 0 in (3). In other words, the right-hand side of the chance constraint contains

nonnegative random data (as in demands, supplies, etc.). In the context of two-sided chance-constrained

program described in Section 1.1, this assumption is satisfied if qj ≥ hj for all j ∈ Ω in (8b).

2.1 Valid Inequalities The set P has a mixing set substructure, and thus the star inequalities of [2],

or the mixing inequalities of [5], can immediately be used to strengthen the formulation of P.
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Proposition 2.1 [2, 5] Let S := {s1 → s2 → · · · → sη} where si ∈ Ω for all i ∈ [η] be a nonempty

sequence such that ws1 ≥ ws2 ≥ · · · ≥ wsη , and define wsη+1 = 0. Similarly, let T := {t1 → t2 → · · · → tρ}
where ti ∈ Ω for all i ∈ [ρ] be a nonempty sequence of items such that vt1 ≥ vt2 ≥ · · · ≥ vtρ , and define

vtρ+1
= −ud. Then the following mixing inequalities are valid for P:

yp + yd +

η∑
j=1

(wsj − wsj+1
)zsj ≥ ws1 , for the given S ⊆ Ω, (9)

and yp − yd +

ρ∑
j=1

(vtj − vtj+1)ztj ≥ vt1 , for the given T ⊆ Ω. (10)

Proof. The validity of inequality (9) directly follows from [2] and [5]. In addition, inequality (10) is

closely related to the mixing inequalities for the set generated by inequalities (1b)–(1d). However, we need

to force vtρ+1
= −ud, because yp − yd ≥ −ud, for all (yp, yd, z) ∈ P. 2

From now on, we let α and β be the permutations of indices in Ω such that wα1
≥ wα2

≥ · · · ≥ wαm ,

and vβ1
≥ vβ2

≥ · · · ≥ vβm .

In general, the mixing inequalities are not sufficient to describe conv(P) because the intersection of the

convex hulls of the two mixing sets with two continuous variables as defined in (1a)-(1e) can create new

extreme points. We next introduce a new class of valid inequalities for P; we will later on show that these

inequalities are facet defining for P under certain conditions.

Let τ ∈ [m], and Π be a sequence of τ items given by π1 → π2 → · · · → πτ where πj ∈ Ω for all j ∈ [τ ].

Given Π := {π1 → π2 → · · · → πτ}, consider the following class of generalized mixing inequalities:

2yp +

τ∑
j=1

(
(wπj − w̄Π,j)+ + (vπj − v̄Π,j)+

)
zπj ≥ w̄Π,0 + v̄Π,0, (11)

where

w̄Π,j =

 max
j+1≤`≤τ

{wπ`}, if j ∈ [τ − 1] ∪ {0},

0, if j = τ,
and v̄Π,j =

 max
j+1≤`≤τ

{vπ`}, if j ∈ [τ − 1] ∪ {0},

0, if j = τ.

We define some notation to ease our exposition of the inequality (11). We will use this notation through-

out the rest of the paper. For a given τ ∈ [m] and a sequence Π := {π1 → π2 → · · · → πτ} where π1 ∈ Ω
for all i ∈ [τ ], we define R[Π] ⊆ Π to be the subsequence of Π given by r1 → r2 → · · · → rτR , with

τR := |R[Π]| ≤ τ , such that for all j ∈ [τR], rj ∈ R[Π] only if wrj ≥ w̄Π,k, where item rj is the k-th item in

the sequence Π, i.e., rj = πk, for some k ∈ [τ ]. Whenever Π is nonempty, from Observation 2.1 and since

w̄Π,τ = 0, we know that R[Π] cannot be empty either.

Similarly, let G[Π] ⊆ Π be a subsequence of Π given by g1 → g2 → · · · → gτG , with τG := |G[Π]| ≤ τ ,

such that for all j ∈ [τG], gj ∈ G[Π] only if vgj ≥ v̄Π,k, where gj is the k-th item in the sequence Π, i.e.,

gj = πk, for some k ∈ [τ ] . Whenever Π is nonempty, from Assumption A3 and since v̄Π,τ = 0, we know

that G[Π] cannot be empty either.

Based on these definitions, we have wri ≥ wri+1
for all i ∈ [τR − 1]. For each i ∈ [τR − 1], we have

wri ≥ wri+1
because ri = πk for some k ∈ [τ ], and ri ∈ R[Π] implies wri ≥ w̄Π,k. Moreover, because R[Π]
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is a subsequence of Π, item ri precedes item ri+1 in R[Π] if and only if ri precedes ri+1 in Π, which implies

w̄Π,k ≥ wri+1 . Thus, wri ≥ w̄Π,k ≥ wri+1 . Similarly, we have vgi ≥ vgi+1 , for all i ∈ [τG − 1]. Hence, in this

notation, inequality (11) is equivalent to

2yp +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj ≥ wr1 + vg1

, (12)

where we let wrτR+1
= 0, and vgτG+1

= 0 for notational convenience.

Proposition 2.2 For a given τ ∈ [m] and a sequence Π := {π1 → π2 → · · · → πτ} where πi ∈ Ω for all

i ∈ [τ ], inequality (11) is valid for conv(P) under Assumption A3.

Proof. Given Π, let R[Π], τR, and G[Π], τG be defined as described above. Then we will focus on

inequality (12) that is equivalent to inequality (11). We start by representing the left hand side of (12) in

an equivalent form:

2yp+

τR∑
j=1

(wrj −wrj+1)zrj +

τG∑
j=1

(vgj −vgj+1)zgj = yp+yd+

τR∑
j=1

(wrj −wrj+1)zrj +yp−yd+

τG∑
j=1

(vgj −vgj+1)zgj .

(13)

For a given solution (yp, yd, z) ∈ P, let j1 := arg mini∈[τR]{i | zri = 0} and j2 := arg mini∈[τG]{i | zgi = 0}.
First, consider a solution (yp, yd, z) such that both j1 and j2 exist. Then we have yp + yd ≥ wrj1 and

yp − yd ≥ vgj2 from inequalities (1a) and (1b). Hence, using (13), we deduce

yp + yd +

τR∑
j=1

(wrj − wrj+1
)zrj + yp − yd +

τG∑
j=1

(vgj − vgj+1
)zgj

≥ wrj1 +

j1−1∑
j=1

(wrj − wrj+1
) + vgj2 +

j2−1∑
j=1

(vgj − vgj+1
) = wr1 + vg1

,

and thus inequality (11) is valid for all solutions (yp, yd, z) such that both j1 and j2 exist.

Next, consider a solution (yp, yd, z) such that j1 does not exist but j2 exists. Because j1 does not exist

and wrτR+1 = 0, we have
∑τR
j=1(wrj − wrj+1)zrj = wr1 . Also, yp + yd ≥ 0, yp − yd ≥ vgj2 , and from (13),

yp + yd +

τR∑
j=1

(wrj − wrj+1)zrj + yp − yd +

τG∑
j=1

(vgj − vgj+1)zgj

≥ 0 + wr1 + vgj2 +

j2−1∑
j=1

(vgj − vgj+1
) = wr1 + vg1

.

This establishes the validity of inequality (11) for solutions such that j2 exists and j1 does not exist.

Next, consider a solution (yp, yd, z) such that j1 exists and j2 does not exist. Then zrj1 = 0, which

implies yp + yd ≥ wrj1 and yp − yd ≥ vrj1 . Moreover, we deduce
∑τG
j=1(vgj − vgj+1

)zgj = vg1
(because j2

does not exist and vgτG+1
= 0). As a result, using (13), we arrive at:

yp + yd +

τR∑
j=1

(wrj − wrj+1
)zrj + yp − yd +

τG∑
j=1

(vgj − vgj+1
)zgj
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≥ wrj1 +

τR∑
j=1

(wrj − wrj+1
)zrj + vrj1 + vg1

≥ wrj1 +

j1−1∑
j=1

(wrj − wrj+1) + vrj1 + vg1 = wr1 + vg1 + vrj1 ≥ wr1 + vg1 ,

where the last inequality follows from Assumption A3. Thus, (11) is valid for all such solutions as well.

Finally, consider a solution (yp, yd, z) such that that both j1 and j2 do not exist, then the expression

in (13) becomes 2yp and hence the inequality (11) is simply 2yp ≥ 0 which trivially holds. Therefore,

inequality (11) is valid for conv(P). 2

Remark 2.1 For a given sequence Π, from the equivalent representation of inequality (11) given as in-

equality (12), it is tempting to think that inequality (11) is generated by simply adding up two mixing

inequalities (9) and (10) for S = R[Π] and T = G[Π] respectively. However, whenever ud is positive, the

new inequality (11) will indeed be stronger than the inequality obtained by adding the two mixing inequalities

(9) for S = R[Π] and (10) for T = G[Π] because vtρ+1 = −ud in inequality (10) corresponding to the set

T = G[Π] and vgτ+1
= 0 in inequality (11) corresponding to the sequence Π. As a result, inequality (11)

can be obtained by adding up two mixing inequalities (9) and (10) for S = R[Π] and T = G[Π] respectively

and then strengthening the coefficient of zπτ .

We demonstrate Remark 2.1 more concretely on an example below where we also show that the proposed

inequalities are stronger than the mixing inequalities obtained by the blending procedure studied in [6].

Example 2.1 Suppose P is defined by the data m = 3, ud = 10, w = (8, 6, 10) and v = (3, 4, 2). Consider

Π := {2→ 1→ 3}. Then R[Π] = {3} and G[Π] = {2→ 1→ 3}, and the inequality (11) is given by

14 ≤ 2yp + (6− 10)+z2 + (4− 3)+z2 + (8− 10)+z1 + (3− 2)+z1 + (10− 0)+z3 + (2− 0)+z3

= 2yp + z1 + z2 + 12z3.

On the other hand, the inequality (9) for S = R[Π] is yp + yd + 10z3 ≥ 10, and the inequality (10)

for T = G[Π] is yp − yd + z1 + z2 + 12z3 ≥ 4. Note that the sum of the last two inequalities lead to

2yp+z1+z2+22z3 ≥ 14, which is significantly weaker in terms of the coefficient of z3 than the inequality (11)

corresponding to Π.

Next, we show that the proposed generalized mixing inequalities (11) are stronger than the mixing in-

equalities obtained by the blending procedure studied in [6]. Let δ1 = yp + yd, δ2 = yp − yd. Then following

[6], we obtain a blended set for δ1 + δ2 = 2yp given by: {(yp, z) ∈ R+×B3 : 2yp+w′jzj ≥ w′j , j ∈ [3]}, where

w′ = (11, 10, 12) = w+v. The blended set is nothing but a mixing set whose convex hull is given by the cor-

responding mixing inequalities. Furthermore, we can show that none of the facet-defining mixing inequalities

for this blended set are facet-defining for conv(P). For example, the mixing inequality 2yp+z1+10z2+z3 ≥ 12

for the blended set is dominated by inequality (11) with Π = {3→ 1→ 2}, R[Π] = {3→ 1→ 2}, G[Π] = {2}
given by 2yp + 2z1 + 10z2 + 2z3 ≥ 14.

Next, we give a counterexample to the validity of inequality (11) if Assumption A3 is removed.

Example 2.2 Consider an instance of P defined by the data m = 3, ud = 10, w = (4, 2, 10), v =

(−3,−4,−5). Then Assumption A3 is not satisfied. Note that the point yp = 2.5, yd = 7.5, z1 = 1 =
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z2, z3 = 0 is in P. Let us consider Π := {3 → 1} and the associated inequality (11) for this Π, i.e.,

2yp + z1 + 6z3 ≥ 7. The left hand side of this inequality evaluated at the point yp = 2.5, yd = 7.5,

z1 = 1 = z2, z3 = 0 is 6 6≥ 7; thus inequality (11) for this Π is not valid for P. Moreover, in this example,

conv(P) contains other facets such as

9yp + yd + 6z1 + 2z2 + 30z3 ≥ 38,

11yp − yd + 6z1 + 6z2 + 30z3 ≥ 32,

that cannot be described in the form of inequalities (9), (10) or (11).

Due to the unstructured coefficients of the continuous variable yp in facet-defining inequalities in Example

2.2, we restrict our attention to the intersection of two general mixing sets with two continuous variables

defined by (1a)–(1e) under Assumption A3.

Remark 2.2 For the set defined by (2)–(4), whenever r1
j , r

2
j ≥ 0 for all j ∈ Ω, we observe that replacing

2yp with y1
p + y2

p, where y1
p := b2a

>
1 x and y2

p := b1a
>
2 x in the proposed inequality (11) and its validity proof,

we obtain an inequality that is valid in the context of general joint chance constraints.

Example 2.3 Consider the following example of an intersection of two general mixing sets:

2x+ 3y +M1
j zj ≥ r1

j , ∀j ∈ Ω

x− 2y +M2
j zj ≥ r2

j , ∀j ∈ Ω,

where Ω = [3], r1 = (4, 5, 8), r2 = (3, 2, 1), u = 10, and M1
j and M2

j be set as described right after the

system (2)–(4). From Remark 2.2, the adaptation of inequality (11) associated with Π = {1→ 3} is simply

7x+ 6z1 + 19z3 ≥ 25. In fact, in this example, this inequality is not only valid but also facet-defining.

Next, we study the polyhedral structure of conv(P). In particular, we establish that conv(P) can be

obtained by adding only the classes of inequalities characterized in (9)–(11) under Assumptions A1–A3.

3. Closed Convex Hull of the Set P

3.1 Inner Description of conv(P) We start with an inner characterization of conv(P) under As-

sumptions A1-A3 by identifying its extreme points and extreme rays. Because conv(P) is convex hull of

finitely many extreme points and extreme rays, it is a polyhedral set and thus closed.

First, we present several results that are used to conduct our polyhedral study.

Observation 3.1 Consider a point (ȳp, ȳd, z̄) ∈ P. Define the set V (z̄) := {j ∈ [m] : z̄j = 0}.

(i) For any j′ ∈ V (z̄), the point (ȳp, ȳd, z̄ + ej′) is also in P.

(ii) For any j′ ∈ [m] \ V (z̄), whenever ȳd = 0, the point (max{ȳp, wj′}, 0, z̄− ej′) is also in P.

(iii) For any 4 > 0, the point (ȳp +4, ȳd, z̄) is also in P.

Proof. Given (ȳp, ȳd, z̄) ∈ P, let V := V (z̄), i.e., j ∈ V if and only if z̄j = 0.
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(i) Since (ȳp, ȳd, z̄) ∈ P, we have ȳp + ȳd ≥ maxj∈V wj , ȳp − ȳd ≥ maxj∈V vj , ȳp ≥ 0, and ud ≥
ȳd ≥ 0. Then for any j′ ∈ V , the point (ȳp, ȳd, z̄ + ej′) satisfies inequalities (1a) and (1b) because

maxj∈V wj ≥ maxj∈V \{j′} wj , and maxj∈V vj ≥ maxj∈V \{j′} vj . Also, because ȳp and ȳd remain

the same, inequalities (1c)–(1e) are also trivially satisfied. Hence, (ȳp, ȳd, z̄ + ej′) is also in P.

(ii) Since (ȳp, 0, z̄) ∈ P, we have ȳp ≥ maxj∈V wj , ȳp ≥ maxj∈V vj . Hence, max{ȳp, wj′} ≥
maxj∈V ∪{j′} wj ≥ maxj∈V ∪{j′} vj where the last inequality follows from Assumption A1, and

max{ȳp, wj′} ≥ 0 holds because ȳp ≥ 0. Thus, inequalities (1a)–(1c) are satisfied. Inequalities (1d)

and (1e) are also trivially satisfied. Hence, the point (max{ȳp, wj′}, 0, z̄− ej′) is also in P.

(iii) This part follows because there are no constraints in P that impose an upper bound on yp.

2

Next, we present classes of points that are critical in our convex hull characterization and polyhedral

study. Recall our convention that for V = ∅ and a ∈ Rn, we define maxj∈V aj = 0.

Lemma 3.1 The following points are in P:

A(V ) :
(

max
j∈V

wj , 0,
∑

j∈Ω\V

ej

)
, V ⊆ Ω, (14a)

B(V ) :
(

max
j∈V

vj + ud, ud,
∑

j∈Ω\V

ej

)
, V ⊆ Ω, (14b)

C(V ) :
(maxj∈V wj + maxj∈V vj

2
,

maxj∈V wj −maxj∈V vj
2

,
∑

j∈Ω\V

ej

)
, V ⊆ Ω, (14c)

D : (0, ud,1), (14d)

where A(∅) = C(∅) = (0, 0,1) and B(∅) = (ud, ud,1).

Proof. The points listed above satisfy inequality (1e) trivially. Moreover, because ud > 0 (from

Assumption A2), all of the points A(V ) for V ⊆ Ω, B(V ) for ∅ 6= V ⊆ Ω, and D immediately satisfy

inequalities (1d). The points C(V ) for V ⊆ Ω also satisfy inequalities (1d) because ud ≥ maxj∈V wj ≥
maxj∈V wj−maxj∈V vj

2 ≥ 0 holds from Assumptions A2, A3, and A1, respectively.

The point D satisfies inequalities (1c) trivially. It also satisfies inequalities (1a)–(1b) because ud > 0.

Clearly, A(∅) ∈ P. For a given ∅ 6= V ⊆ Ω, starting from the fact that A(∅) ∈ P and repeatedly applying

Observation 3.1(ii) for the indices j ∈ V , we observe that the point A(V ) is feasible. Next, the point B(V ),

for any V ⊆ Ω, satisfies inequalities (1a) and (1b), because yp + yd = 2ud + maxj∈V vj > maxj∈V wj from

Assumptions A3 (or A1) and A2, and yp − yd = maxj∈V vj , respectively. In addition, B(V ) also satisfies

(1c) since ud ≥ maxj∈V wj ≥ maxj∈V vj from Assumptions A1 and A2. Finally, the point C(V ), for any

V ⊆ Ω, satisfies (1a) and (1b), because yp + yd = maxj∈V wj , and yp − yd = maxj∈V vj , respectively.

Furthermore, C(V ) also satisfies (1c) from Assumption A3. 2

Note that for any V ⊆ Ω such that maxj∈V wj = maxj∈V vj we have A(V ) = C(V ). In such cases, we

may classify such a point as an A point or C point, and our classification will be clear based on the context.

Remark 3.1 (i) Assumptions A2 and A3 imply ud >
1
2

(
maxj∈V wj −maxj∈V vj

)
, for all V ⊆ Ω.

(ii) Assumption A1 implies maxj∈V wj ≥ maxj∈V vj for any V ⊆ Ω.
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(iii) If maxj∈V wj = maxj∈V vj for a given V ⊆ Ω, then it can been seen that the corresponding points

A(V ) and C(V ) are the same. In such a case, all of the inequalities tight at A(V ) are also tight at

C(V ), and thus if A(V ) is an optimal solution, then so is C(V ).

The points in Lemma 3.1 are useful in characterization of the extreme points of conv(P).

Proposition 3.1 The only recessive direction of conv(P) is (1, 0,0). The extreme points of conv(P) are

among A(V ) and C(V ), for all V ⊆ Ω, B(V ), for all ∅ 6= V ⊆ Ω, and D, as defined in (14a)–(14d).

Proof. From Observation 3.1(iii), (1, 0,0) is a recessive direction of P. Moreover, there are no other

recessive directions of conv(P) because yp is bounded from below, and yd and z are bounded from above

and below. In addition, from Lemma 3.1, the points A(V ), B(V ), C(V ) for some V ⊆ Ω and D are in P.

First, observe that the only extreme points of conv(P) where zj = 1 for all j ∈ Ω are D = (0, ud,1)

and A(∅) = C(∅) = (0, 0,1), because B(∅) = D + ud (1, 0,0). Point D is extreme because it satisfies

inequalities yp ≥ 0, yd ≤ ud and zj ≤ 1 for all j ∈ Ω at equality, and these inequalities are linearly

independent. Similarly, A(∅) satisfies yp ≥ 0, yd ≥ 0 and zj ≤ 1 for all j ∈ Ω at equality, and these

inequalities are linearly independent. Next, for a fixed ∅ 6= V ⊆ Ω, let P̂(V ) be the polyhedron obtained

from P by enforcing the restriction z =
∑
j∈Ω\V ej , i.e., P̂(V ) is the convex hull of feasible points of form

(yp, yd,
∑
j∈Ω\V ej), i.e.,

P̂(V ) :=

(yp, yd,
∑

j∈Ω\V

ej) | yp + yd ≥ max
j∈V

wj , yp − yd ≥ max
j∈V

vj , yp ≥ 0, ud ≥ yd ≥ 0

 .

t For a given ∅ 6= V ⊆ Ω, under Assumptions A1, A2 and A3, Figure 1 illustrates the projection of the

region P̂(V ) onto the space of (yp, yd) when maxj∈V wj > maxj∈V vj ≥ 0. Recall that when maxj∈V wj =

maxj∈V vj we have A(V ) = C(V ). Next, we prove the extreme points of P̂(V ) formally.

First note that we have only two variables yp, yd in P̂(V ), hence each extreme point of P̂(V ) is char-

acterized by at least two active linear inequalities. Therefore, it suffices to consider pairs of constraints

and identify the resulting situation in terms of feasibility vs infeasibility of the point, and categorize the

point whenever it is feasible. We summarize these possibilities in Table 1, where an entry “I” indicates that

the combination of active inequalities yield an infeasible point. Next, we explain each entry in the upper

triangular part of Table 1.

• When the constraints yp− yd ≥ maxj∈V vj and yp + yd ≥ maxj∈V wj are simultaneously active, we

obtain yp =
maxj∈V wj+maxj∈V vj

2 and yd =
maxj∈V wj−maxj∈V vj

2 which is a point of form C(V ).

• Let us explain why it is not possible to have the constraints yp + yd ≥ maxj∈V wj and yp ≥ 0

be simultaneously active at a feasible extreme point of P̂(V ). When these constraints are simul-

taneously active, we have yd = maxj∈V wj > 0 due to our Assumption A2. But, then the point

(yp, yd) = (0,maxj∈V wj) violates the constraint that yp− yd ≥ maxj∈V vj because of our Assump-

tion A2 which ensures vj ≥ 0.

• If both yp + yd ≥ maxj∈V wj and yd ≤ ud are simultaneously active, then we have yd = ud and

yp = maxj∈V wj − ud ≤ 0 because of Assumption A2. This violates the constraint yp ≥ 0.

• When the constraints yp + yd ≥ maxj∈V wj and yd ≥ 0 are simultaneously active, we obtain

yp = maxj∈V wj and yd = 0, which is a point of form A(V ).
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• If the constraints yp − yd ≥ maxj∈V vj and yp ≥ 0 are simultaneously active, then we get yp = 0

and yd = −maxj∈V vj ≤ 0 from Assumption A3. Therefore, in this case either the point is

infeasible because it violates the constraint yd ≥ 0 or the constraint yd ≥ 0 is also active. When

the constraints yp ≥ 0 and yd ≥ 0 are simultaneously active, the constraint yp + yd ≥ maxj∈V wj is

violated because of Assumption A2.

• When the constraints yp−yd ≥ maxj∈V vj and yd ≤ ud are simultaneously active, we obtain yd = ud

and yp = maxj∈V vj + ud, which is a point of the form B(V ).

• If the constraints yp − yd ≥ maxj∈V vj and yd ≥ 0 are simultaneously active, we obtain yd =

0 and yp = maxj∈V vj ≤ maxj∈V wj from Assumption A1. There are two cases to consider.

If maxj∈V wj > maxj∈V vj , then this point is infeasible, because it violates the constraint that

yp+yd ≥ maxj∈V wj . If maxj∈V wj = maxj∈V vj , then we obtain a point of the form A(V ) = C(V ).

• If yp ≥ 0 and yd ≤ ud are simultaneously active, then we have yd = ud and yp = 0, which violates

the constraint yp − yd ≥ maxj∈V vj because of Assumptions A2 and A3.

• If yp ≥ 0 and yd ≥ 0 are simultaneously active, then we have yp = yd = 0. From Assumptions A2,

we have maxj∈V wj > 0. Then this point violates the constraint yp + yd ≥ maxj∈V wj .

• Clearly, both yd ≥ 0 and yd ≤ ud cannot be simultaneously active because ud > 0 from Assumption

A2.

We then immediately observe from Figure 1, Table 1 and the discussion above that A(V ), B(V ), and

C(V ) are the only extreme points of P̂(V ). Note that P = D ∪A(∅)∪

( ⋃
∅6=V⊆Ω

P̂ (V )

)
and the recessive

yp0 A(V )

C(V )

B(V )

yp + yd ≥ maxj∈V wj

yd ≤ ud

yp − yd ≥ maxj∈V vj

yd

Figure 1: Projection of P̂(V ) onto the space of (yp, yd) under Assumptions A1, A2 and A3.

direction of P̂ (V ) for any V ⊆ Ω is (1, 0,0) for all ∅ 6= V ⊆ Ω. As a result, conv(P) is simply convex

combinations of the points of the form A(V ), C(V ), for some V ⊆ Ω, B(V ) for some ∅ 6= V ⊆ Ω, and D,

and conical combination of (1, 0,0). 2

3.2 Complexity of Linear Optimization over P Next, we address the complexity of optimizing a

linear objective over P. Given a linear objective function (cp, cd, f), we denote the cost of a given solution

(yp, yd, z) by F ((yp, yd, z)) := cpyp + cdyd + f>z.
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Table 1: Extreme points of Projection of P̂(V ) onto the space of (yp, yd).

Combination yp + yd ≥ maxj∈V wj yp − yd ≥ maxj∈V vj yp ≥ 0 yd ≤ ud yd ≥ 0
yp + yd ≥ maxj∈V wj - C(V ) I I A(V )
yp − yd ≥ maxj∈V vj C(V ) - I B(V ) I or A(V ) = C(V )
yp ≥ 0 I I - I I
yd ≤ ud I B(V ) I - I
yd ≥ 0 A(V ) I I I -

Proposition 3.2 Let (cp, cd, f) be an arbitrary nonzero cost vector. Then the optimization problem

{min(yp,yd,z)∈P cpyp + cdyd + f>z} can be solved in O(m3) time.

Proof. Note that if the problem is not unbounded (i.e., cp ≥ 0), then there exists an optimal solution

that is an extreme point of conv(P). Let V ∗A ⊆ Ω be such that V ∗A := arg minV⊆Ω F (A(V )), in other words,

A(V ∗A) is a solution among all solutions of the form A(V ) that gives the minimum objective. Define V ∗B
and V ∗C similarly for the solutions of the form B(V ) and C(V ), respectively. Then the optimal solution

is given by min
{
F (A(V ∗A)), F (B(V ∗B)), F (C(V ∗C)), F (D)

}
. Finding V ∗A and V ∗B takes O(m logm) time,

because this is equivalent to optimizing over the mixing set (see [2, 5]). Hence, we address the complexity

of finding V ∗C . Recall that A(∅) = C(∅). Therefore, we consider a slightly different problem of finding

V ∗C := arg min∅6=V⊆Ω F (C(V )).

For any V satisfying ∅ 6= V ⊆ Ω, let the indices iV , jV be defined as iV = arg maxi∈V wi and jV =

arg maxi∈V vi. Then both iV , jV belong to V , and they satisfy wiV ≥ wjV and vjV ≥ viV . We will partition

the points C(V ) where ∅ 6= V ⊆ Ω based on their two indices iV , jV . For i, j ∈ Ω such that wi ≥ wj and

vj ≥ vi, we define Ωij := {k ∈ Ω : wk ≤ wi, vk ≤ vj} and let G(i, j) be the objective value of the best

extreme point of form C(V ), for some set V satisfying {i, j} ⊆ V ⊆ Ωi,j . From the definition of Ωi,j , we

have wi = max`∈V w` and vj = max`∈V v` for any set V satisfying {i, j} ⊆ V ⊆ Ωi,j . Therefore, for fixed

i, j ∈ Ω, we have

G(i, j) = min
{i,j}⊆V⊂Ωij

cpwi + vj
2

+ cd
wi − vj

2
+

∑
`∈(Ω\V )

f`

 . (15)

Next, we show that for given i, j ∈ Ω such that wi ≥ wj and vj ≥ vi, the optimal set Vij ⊆ Ωij minimizing

(15) can be found in polynomial time. From the definition of G(i, j) in (15), we have i, j ∈ Vij . For all

` ∈ Ω such that w` > wi or v` > vj , the definition of Ωij implies ` 6∈ Vij . Next, for all ` ∈ Ω such that

` 6= i, j, and w` ≤ wi, and v` ≤ vj , if f` > 0, we must have ` 6∈ Vij to minimize the cost. Otherwise, if

f` ≤ 0, we let ` ∈ Vij . Hence, for a fixed i, j ∈ Ω, we can find the optimal G(i, j) in O(m) time. Finally,

V ∗C = Vi∗j∗ , where (i∗, j∗) = arg mini,j∈Ω G(i, j). Thus, the overall complexity is O(m3). 2

While Proposition 3.2 brings good news by demonstrating an efficient algorithm to optimize over P, in

the cases where P arises as a substructure, such as our motivation originating from two-sided (or joint)

chance constrained optimization problems, we cannot immediately use Proposition 3.2. On the other hand,

strong valid inequalities for P can immediately be employed in the cases where P arises as a substructure.

Consequently, we examine the strength of the inequalities (9)–(11).

3.3 When are Inequalities (9)–(11) Facets of conv(P)? In this section, we establish conditions

under which inequalities (9)–(11) are facet-defining for conv(P) under Assumptions A1-A3.
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We first establish that conv(P) is full dimensional under Assumptions A1 and A2.

Proposition 3.3 Consider the points A(∅), A(Ω), B(Ω), (wα1 , 0, ej) for all j ∈ Ω \ {α1}, and (wα1 +

4, 0,0), where 4 > 0 is a small number. All of these points are in P. Moreover, dim
(

conv(P)
)

= m+ 2.

Proof. Lemma 3.1 implies that A(∅), A(Ω) and B(Ω) are feasible. Next, using Observation 3.1(i)

starting from A(Ω) = (wα1 , 0,0), we deduce the point (wα1 , 0, ej), for all j ∈ Ω \{α1}, is feasible. Also, the

feasibility of the point A(Ω) along with Observation 3.1(iii) proves that the point (wα1 +4, 0,0) is feasible.

Let us denote P0 := A(Ω) = (wα1 , 0,0), P1 := A(∅) = (0, 0,1), P2 := (wα1 +4, 0,0), P2+i := (wα1 , 0, ej),

for all i ∈ [m− 1] and j ∈ Ω \ {α1}, and Pm+2 := B(Ω) = (vβ1 +ud, ud,0). Then Pi−P0, for all i ∈ [m+ 2]

are linearly independent. Hence, Pi, for all i ∈ [m+ 2] ∪ {0}, are affinely independent. 2

Let us next examine the mixing inequalities (9) and (10). Recall our convention that α and β are the

permutations of indices in Ω such that wα1
≥ wα2

≥ · · · ≥ wαm , and vβ1
≥ vβ2

≥ · · · ≥ vβm .

Proposition 3.4 Consider the setup of Proposition 2.1 with the nonempty sequences S = {s1 → s2 →
· · · → sη} and T = {t1 → t2 → · · · → tρ} as described there. Inequalities (9) and (10) associated S and T

are facet-defining for conv(P) if and only if ws1 = wα1
, and vt1 = vβ1

, respectively.

Proof. See Appendix A. 2

Next, we study the strength of the proposed inequalities (11).

Proposition 3.5 Consider the setup of Proposition 2.2 and the associated notation preceding it. Given

τ ∈ [m] and a sequence Π := {π1 → π2 → · · · → πτ} where πj ∈ Ω for all j ∈ [τ ]. Then inequality (11) is

facet-defining for conv(P) if and only if wr1 = wα1
and vg1

= vβ1
.

Proof. See Appendix B. 2

Example 2.1 (continued). Note that in this example, α1 = 3 with wα1 = 10, and β1 = 2 with vβ1 = 4.

Once again consider the inequality 2yp + z2 + z1 + 12z3 ≥ 14 derived for Π = {2 → 1 → 3}. Recall that

in this case R[Π] = {3} =: {r1} and G[Π] = {2 → 1 → 3} =: {g1 → g2 → g3}. Hence, r1 = 3 and g1 = 2.

Because wr1 = wα1
and vg1

= vβ1
, we deduce that this inequality is facet-defining.

3.4 Outer Description of conv(P) In this section, we shift our focus to the outer (complete linear

inequality) description of conv(P). We establish the sufficiency of inequalities (9)–(11) along with bound

constraints for describing the closed convex hull of P under our Assumptions A1, A2, and A3. In particular,

we have the following main result of this section—the linear inequality description of conv(P).

Theorem 3.1 Under Assumptions A1, A2 and A3, the set conv(P) is completely described by inequalities

(1c)–(1d),(9)–(11), and

0 ≤ zj ≤ 1 ∀j ∈ Ω. (16)

The inner characterization of conv(P) established in Proposition 3.1 and the associated point structure

identified in Lemma 3.1 form the basis of our developments to prove Theorem 3.1. Several observations and
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lemmas pertaining to the point structure identified in Lemma 3.1 are used in the proof of Theorem 3.1. We

start by presenting these results.

In our developments for Theorem 3.1, given two subsets V1 and V2 of Ω and a vector a ∈ Rm, we will

frequently refer to the function ψ(a, V1, V2) defined as

ψ(a, V1, V2) := min
{

max
j∈V1

aj ,max
j∈V2

aj

}
− max
j∈V1∩V2

aj .

Note that ψ(a, V, V ) = 0 for any V and any a. Moreover, for any a, if ψ(a, V1, V2) > 0, then V1 6= V2.

We next present a few observations related to this function ψ(·). These observations form the building

blocks of comparisons of the objective values of various sets of points of form A(V ), B(V ), and C(V ) for

some V ⊆ Ω in our analysis of optimal points for a given objective vector.

Observation 3.2 Let V1, V2 ⊆ Ω. Then for any vector a ∈ Rm, we have ψ(a, V1, V2) ≥ 0 and

max
j∈V1∪V2

aj ≤ max
j∈V1

aj + max
j∈V2

aj − max
j∈V1∩V2

aj . (17)

Inequality (17) holds at equality if and only if ψ(a, V1, V2) = 0. In addition, if ψ(a, V1, V2) > 0, then

V1 6= V2, inequality (17) is strict, and both V1 and V2 are nonempty.

Proof. Because maxj∈V1
aj ≥ maxj∈V1∩V2

aj , and similarly maxj∈V2
aj ≥ maxj∈V1∩V2

aj , we have

min
{

maxj∈V1 aj ,maxj∈V2 aj

}
≥ maxj∈V1∩V2 aj . This implies ψ(a, V1, V2) ≥ 0. Moreover,

max
j∈V1∪V2

aj = max
{

max
j∈V1

aj ,max
j∈V2

aj

}
= max

j∈V1

aj + max
j∈V2

aj −min
{

max
j∈V1

aj ,max
j∈V2

aj

}
= max

j∈V1

aj + max
j∈V2

aj − ψ(w, V1, V2)− max
j∈V1∩V2

aj ,

which together with the nonnegativity of ψ(a, V1, V2) establishes inequality (17). From this relation, it is

easy to see that inequality (17) holds at equality if and only if ψ(a, V1, V2) = 0 and that inequality (17) is

strict if ψ(a, V1, V2) > 0.

To finish the proof, note that ψ(a, V1, V2) = 0 if V1 = V2. Suppose that ψ(a, V1, V2) > 0, so V1 6= V2.

Observe that since V1 6= V2, at least one of them must be nonempty. Without loss of generality we assume

V1 6= ∅. Now, if V2 = ∅, then V1 ∩ V2 = ∅ implying min
{

maxj∈V1
aj ,maxj∈V2

aj

}
= maxj∈(V1∩V2) aj . This

then indicates ψ(a, V1, V2) = 0 which is a contradiction. Hence, we have V2 6= ∅ as well. 2

Observation 3.2 holds for any vector a ∈ Rm. In what follows, we apply it for the vectors w and v, as

needed.

Observation 3.3 Suppose ρ is a constant satisfying |ρ| ≤ 1. Let V1 and V2 be given subsets of Ω. Then

for any vectors w,v ∈ Rm, we have

max
j∈(V1∪V2)

wj + max
j∈(V1∪V2)

vj + ρ
(

max
j∈(V1∪V2)

wj − max
j∈(V1∪V2)

vj

)
≤ max

j∈V1

wj + max
j∈V1

vj + ρ
(

max
j∈V1

wj −max
j∈V1

vj

)
(18)

+ max
j∈V2

wj + max
j∈V2

vj + ρ
(

max
j∈V2

wj −max
j∈V2

vj

)
− max
j∈(V1∩V2)

wj − max
j∈(V1∩V2)

vj − ρ
(

max
j∈(V1∩V2)

wj − max
j∈(V1∩V2)

vj

)
.
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Inequality (18) holds at equality if and only if either ρ = 1 and ψ(w, V1, V2) = 0, or ρ = −1 and

ψ(v, V1, V2) = 0, or ψ(w, V1, V2) = ψ(v, V1, V2) = 0. In addition, if |ρ| < 1 and ψ(w, V1, V2) > 0 or

ψ(v, V1, V2) > 0, then inequality (18) is strict, and both V1 and V2 are nonempty, and V1 6= V2.

Proof. Recall from Observation 3.2 that ψ(w, V1, V2) ≥ 0 and ψ(v, V1, V2) ≥ 0. Then for any |ρ| ≤ 1,

we have

0 ≤ (1 + ρ)ψ(w, V1, V2) + (1− ρ)ψ(v, V1, V2) (19)

= ψ(w, V1, V2) + ψ(v, V1, V2) + ρ (ψ(w, V1, V2)− ψ(v, V1, V2)) .

Also, for any a ∈ Rm,

ψ(a, V1, V2) = min
{

max
j∈V1

aj ,max
j∈V2

aj

}
− max
j∈(V1∩V2)

aj

= max
j∈V1

aj + max
j∈V2

aj − max
j∈V1∪V2

aj − max
j∈(V1∩V2)

aj . (20)

By plugging in the expansion of ψ(w, V1, V2) and ψ(v, V1, V2) from (20) in inequality (19) and rearranging

the terms, we arrive at inequality (18).

Clearly, inequality (19) holds at equality if and only if either ρ = 1 and ψ(w, V1, V2) = 0, or ρ = −1 and

ψ(w, V1, V2) = 0, or ψ(w, V1, V2) = ψ(v, V1, V2) = 0. Also, inequality (19) holds in strict sense whenever

|ρ| < 1, and ψ(w, V1, V2) > 0 or ψ(v, V1, V2) > 0. Moreover, in such a case, Observation 3.2 implies V1 6= ∅,
V2 6= ∅, and V1 6= V2. 2

We prove that conv(P) is obtained by the variable bounds and inequalities (9)–(11) by showing that for

any nonzero cost vector (cp, cd, f), either the associated minimization problem is unbounded or we can find

an inequality among inequalities (1c)–(1d), (9)–(11) and (16) that is satisfied by all of the optimal extreme

point solutions corresponding to the cost vector (cp, cd, f) at equality. The only recessive direction of P is

(1, 0,0) (see Proposition 3.1), thus the minimization problem over P is unbounded only if the cost vector

(cp, cd, f) satisfies cp < 0. Consequently, we focus on the case where the minimization problem is bounded

and we assume cp ≥ 0. In addition, if there exists an index j ∈ Ω such that fj < 0, then zj = 1 in all

optimal solutions. Hence, throughout the rest of the discussion we assume that cp ≥ 0 and fj ≥ 0, for all

j ∈ Ω. Furthermore, if cp = 0, then either cd 6= 0, or there exists an index j ∈ Ω such that fj > 0, because

(cp, cd, f) 6= (0, 0,0). For the former case, if cd > 0, then in all of the optimal solutions, yd = 0. Otherwise,

if cd < 0, then in all of the optimal solutions, yd = ud. For the latter case, if fj > 0, for some j ∈ Ω, then

in all of the optimal solutions, zj = 0 because we can increase the value of yp at no cost. Hence, without

loss of generality, we assume cp > 0, and to simplify notation, we rescale the cost vector as (1, cd, f). We

break the proof of Theorem 3.1 into different cases based on cd, and examine each case separately.

We start with a few preliminaries on the structure of optimal extreme point solutions and alternative

optima characterizations. Note that given a linear objective vector (cp, cd, f), we denote the cost of a given

solution by F (•). Also, recall our convention that if V = ∅, then maxj∈V wj = maxj∈V vj = 0.

In the next lemma, for given sets V1, V2 ⊆ Ω, we establish certain relationships between the objective

function values of the solutions A(V1), A(V2), A(V1 ∪ V2) and A(V1 ∩ V2), which will then allow us to

characterize when these solutions constitute alternative optima.
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Lemma 3.2 Let V1, V2 be two subsets of Ω. Then the following statements hold.

(i)

F
(
A(V1 ∪ V2)

)
≤ F

(
A(V1)

)
+ F

(
A(V2)

)
− F

(
A(V1 ∩ V2)

)
. (21)

(ii) If ψ(w, V1, V2) > 0, then inequality (21) is strict, and V1 6= ∅, V2 6= ∅, and V1 6= V2. Inequality (21)

holds at equality if and only if ψ(w, V1, V2) = 0.

(iii) If A(V1) and A(V2) are alternative optimal solutions for a given linear objective function, then both

A(V1 ∪ V2) and A(V1 ∩ V2) are also optima and ψ(w, V1, V2) = 0.

Proof. Given V1, V2 ⊆ Ω, Lemma 3.1 implies A(V1), A(V2), A(V1 ∩V2) and A(V1 ∪V2) are all feasible.

(i) We have

F
(
A(V1 ∪ V2)

)
= max
j∈V1∪V2

wj +
∑

j∈Ω\(V1∪V2)

fj

≤ max
j∈V1

wj +
∑

j∈Ω\V1

fj + max
j∈V2

wj +
∑

j∈Ω\V2

fj − max
j∈(V1∩V2)

wj −
∑

j∈Ω\(V1∩V2)

fj (22)

= F
(
A(V1)

)
+ F

(
A(V2)

)
− F

(
A(V1 ∩ V2)

)
,

where inequality (22) follows from Observation 3.2 applied to V1 and V2 with a = w, and∑
j∈Ω\(V1∪V2)

fj =
∑

j∈Ω\V1

fj +
∑

j∈Ω\V2

fj −
∑

j∈Ω\(V1∩V2)

fj . (23)

(ii) If ψ(w, V1, V2) > 0, then from Observation 3.2 inequality (22) is strict and V1, V2 are nonempty

distinct subsets of Ω. In addition, inequality (22) holds at equality if and only if ψ(w, V1, V2) = 0.

(iii) Now suppose that A(V1) and A(V2) are alternative optimal solutions for a given linear objective

function. Because both solutions A(V1 ∪V2) and A(V1 ∩V2) are feasible, we have F
(
A(V1 ∪V2)

)
≥

F
(
A(V1)

)
and F

(
A(V1 ∩ V2)

)
≥ F

(
A(V1)

)
from the optimality of A(V1). Moreover, inequality

(21) implies the relation

F
(
A(V1 ∪ V2)

)
+ F

(
A(V1 ∩ V2)

)
2

≤
F
(
A(V1)

)
+ F

(
A(V2)

)
2

= F
(
A(V1)

)
,

where the equation follows because both A(V1) and A(V2) are optimal. From this inequality, the

optimality of both A(V1 ∪ V2) and A(V1 ∩ V2) follows immediately. Then the relation F
(
A(V1 ∪

V2)
)

+ F
(
A(V1 ∩ V2)

)
= F

(
A(V1)

)
+ F

(
A(V2)

)
implies that ψ(w, V1, V2) = 0 from part (ii).

2

Similar to Lemma 3.2, in the next lemma, for given sets V1, V2 ⊆ Ω, we establish certain relationships

between the objective function values of the solutions B(V1), B(V2), B(V1 ∪ V2) and B(V1 ∩ V2), which will

then allow us to characterize when these solutions constitute alternative optima.

Lemma 3.3 Let V1, V2 be two subsets of Ω. Then F
(
B(V1∪V2)

)
≤ F

(
B(V1)

)
+F
(
B(V2)

)
−F
(
B(V1∩V2)

)
.

If ψ(v, V1, V2) > 0, then the inequality above is strict, and V1 6= ∅, V2 6= ∅, and V1 6= V2. The inequality above
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holds at equality if and only if ψ(v, V1, V2) = 0. If B(V1) and B(V2) are alternative optimal solutions for a

given linear objective function, then both B(V1 ∪ V2) and B(V1 ∩ V2) are also optima and ψ(v, V1, V2) = 0.

Proof. The proof is identical to the proof for Lemma 3.2, where we use Observation 3.2 applied to V1

and V2 with a = v. 2

Our next lemma is similar to Lemmas 3.2 and 3.3, and, for given sets V1, V2 ⊆ Ω, we establish certain

relationships between the objective function values of the solutions C(V1), C(V2), C(V1∪V2) and C(V1∩V2),

which will then allow us to characterize when these solutions constitute alternative optima.

Lemma 3.4 Let V1, V2 be two subsets of Ω. Suppose cp = 1 and |cd| < 1. Then F
(
C(V1 ∪ V2)

)
≤

F
(
C(V1)

)
+ F

(
C(V2)

)
− F

(
C(V1 ∩ V2)

)
. If ψ(w, V1, V2) > 0 or ψ(v, V1, V2) > 0, then V1 6= ∅, V2 6= ∅

and V1 6= V2 and the inequality above is strict. If C(V1) and C(V2) are alternative optimal solutions for a

given linear objective function, then both C(V1 ∪ V2) and C(V1 ∩ V2) are also optima and ψ(w, V1, V2) =

ψ(v, V1, V2) = 0.

Proof. Given that V1 and V2 are subsets of Ω, from Lemma 3.1, points C(V1), C(V2), C(V1 ∩ V2) and

C(V1 ∪ V2) are feasible. If ψ(w, V1, V2) > 0 or ψ(v, V1, V2) > 0, then Observation 3.2 applied to V1 and V2

with a = w or a = v implies that V1 6= ∅, V2 6= ∅, and V1 6= V2. Moreover, we have

F
(
C(V1 ∪ V2)

)
=

maxj∈V1∪V2 wj + maxj∈V1∪V2 vj
2

+ cd
maxj∈V1∪V2 wj −maxj∈V1∪V2 vj

2
+

∑
j∈Ω\(V1∪V2)

fj

≤ maxj∈V1
wj + maxj∈V1

vj
2

+ cd
maxj∈V1

wj −maxj∈V1
vj

2
+

∑
j∈Ω\V1

fj

+
maxj∈V2 wj + maxj∈V2 vj

2
+ cd

maxj∈V2 wj −maxj∈V2 vj
2

+
∑

j∈Ω\V2

fj

−
(maxj∈(V1∩V2) wj + maxj∈(V1∩V2) vj

2
+ cd

maxj∈(V1∩V2) wj −maxj∈(V1∩V2) vj

2
+

∑
j∈Ω\(V1∩V2)

fj

)
= F

(
C(V1)

)
+ F

(
C(V2)

)
− F

(
C(V1 ∩ V2)

)
,

where the inequality follows from Observation 3.3 applied to V1 and V2, and the relation in (23). Finally,

similar to the proof of Lemma 3.2, if C(V1) and C(V2) are alternative optimal solutions for a given objective

function, then both C(V1 ∪ V2) and C(V1 ∩ V2) are also optima and ψ(w, V1, V2) = ψ(v, V1, V2) = 0. 2

Next, we study the form of the optimal solutions based on the structure of the objective vector. First,

observe that B(∅) = (ud, ud,1) = D + ud (1, 0,0) is not an extreme point, and thus it cannot be uniquely

optimal. B(∅) can be an alternative optimal solution only when both D is optimal and cp = 0 holds.

Because we focus on the case of cp = 1, we do not need to consider B(∅) in our analysis.

Lemma 3.5 Consider a cost vector of the form (1, cd, f) with f ≥ 0. Then,

(i) when cd > 1, all of the optimal solutions have the form A(V ) for some V ⊆ Ω.

(ii) when cd = 1, all of the optimal solutions have the form A(V ) or C(V ) for some V ⊆ Ω.
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(iii) when cd < −1, all of the optimal solutions have the form D or B(V ) for some ∅ 6= V ⊆ Ω.

(iv) when cd = −1, all of the optimal solutions have the form D, B(V ), or C(V ) for some ∅ 6= V ⊆ Ω.

(v) when −1 < cd < 1, all of the optimal solutions have the form D or C(V ) for some V ⊆ Ω.

Proof. First, note that when max
j∈V

wj = max
j∈V

vj for some V ⊆ Ω, then A(V ) = C(V ) (see Re-

mark 3.1(iii)). Hence, we will consider such points as of the form A(V ) or C(V ), whichever is appropriate.

Therefore, in the rest of the proof we assume that maxj∈V wj > maxj∈V vj for all ∅ 6= V ⊆ Ω.

(i) Because F (D) − F
(
A(∅)

)
= cdud and cd, ud > 0 holds, we have F

(
A(∅)

)
< F (D). Then D

cannot be optimal. Note A(∅) = C(∅). Consider a given ∅ 6= V ⊆ Ω. We will show that

F
(
A(V )

)
< F

(
C(V )

)
< F

(
B(V )

)
. Note that F

(
A(V )

)
< F

(
C(V )

)
because

max
j∈V

wj =
maxj∈V wj + maxj∈V vj

2
+
(maxj∈V wj −maxj∈V vj

2

)
<

maxj∈V wj + maxj∈V vj
2

+ cd

(maxj∈V wj −maxj∈V vj
2

)
< max

j∈V
vj + ud + cdud,

where the first inequality follows from cd > 1 and the assumption that maxj∈V wj > maxj∈V vj , for

all V ⊆ Ω, and the second inequality follows because ud >
maxj∈V wj−maxj∈V vj

2 for all V ⊆ Ω (see

Remark 3.1(i)). Then for any ∅ 6= V ⊆ Ω, the first inequality establishes F
(
A(V )

)
< F

(
C(V )

)
and the second one establishes F

(
C(V )

)
< F

(
B(V )

)
. Hence, the points of the form B(V ) and

C(V ) for some ∅ 6= V ⊆ Ω cannot be optimal for this cost vector. As a result, only the points of

the form A(V ) for some V ⊆ Ω can be optimal when cd > 1.

(ii) Similar to the preceding case, for any V ⊆ Ω, if cd = 1, then F
(
A(V )

)
= F

(
C(V )

)
< F

(
B(V )

)
,

and F
(
A(∅)

)
< F (D). The result then follows.

(iii) Because ud > 0 and cd < −1, we have F (D)− F
(
A(∅)

)
= cdud < 0. Hence, F

(
D
)
< F

(
A(∅)

)
.

Consider ∅ 6= V ⊆ Ω. Next, we will show that F
(
B(V )

)
< F

(
C(V )

)
< F

(
A(V )

)
. Note

F
(
B(V )

)
< F

(
C(V )

)
holds because

F
(
B(V )

)
− F

(
C(V )

)
= max

j∈V
vj + ud + cdud −

(maxj∈V wj + maxj∈V vj
2

)
− cd

(maxj∈V wj −maxj∈V vj
2

)
= (1 + cd)

(
ud −

maxj∈V wj −maxj∈V vj
2

)
(24)

< 0,

where the strict inequality follows from cd < −1 and the assumption ud > 1
2

(
maxj∈V wj −

maxj∈V vj
)

for all V ⊆ Ω. Also, for ∅ 6= V ⊆ Ω, we have F
(
C(V )

)
< F

(
A(V )

)
, because

F
(
C(V )

)
− F

(
A(V )

)
=
(maxj∈V wj + maxj∈V vj

2

)
+ cd

(maxj∈V wj −maxj∈V vj
2

)
−max

j∈Ω
wj

= (cd − 1)
(maxj∈V wj −maxj∈V vj

2

)
(25)
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< 0,

where the strict inequality follows from cd < −1 and maxj∈V wj > maxj∈V vj . Hence, we have

F
(
B(V )

)
< F

(
C(V )

)
< F

(
A(V )

)
, and F

(
D
)
< F

(
A(∅)

)
, which proves that if cd < −1, then

the optimal solutions are of the form D, and B(V ), for some ∅ 6= V ⊂ Ω.

(iv) Similar to the preceding case, for any ∅ 6= V ⊆ Ω, because cd = −1, we have F
(
B(V )

)
=

F
(
C(V )

)
< F

(
A(V )

)
, and F

(
D
)
< F

(
A(∅)

)
. The result then follows.

(v) In this case, from equations (24) and (25), it can be seen that F
(
C(V )

)
< F

(
B(V )

)
and

F
(
C(V )

)
< F

(
A(V )

)
for any ∅ 6= V ⊆ Ω. Also, by noting A(∅) = C(∅), we conclude the

optimal solutions are the points of the form D or C(V ) for some V ⊆ Ω.

2

We now show that we can find an inequality among inequalities (9)–(11) that is satisfied at equality

by all optimal extreme point solutions in P for the given objective function vector of the form (1, cd, f).

Throughout the rest of this section, let O := {o1, o2, . . . , op1
} be the set of optimal solutions for the given

objective vector (1, cd, f). In addition, let oi := (yip, y
i
d, z

i), for all oi ∈ O, i ∈ [p1], be an optimal solution.

For all oi ∈ O, i ∈ [p1], set Vi := {j ∈ Ω : zij = 0}. Furthermore, for Vi 6= ∅, i ∈ [p1], we define

j∗i = arg max{ wj | zij = 0, j ∈ Ω} , and j̄i = arg max{ vj | zij = 0, j ∈ Ω}, for all i ∈ [p1]. Before we

proceed, we make an observation on points on the same face.

Remark 3.2 (i) Given any ∅ 6= V ⊆ Ω, an inequality of form (9) is tight for the point A(V ) if and

only if the same inequality is tight for the point C(V ). To see this, note that for any V ⊆ Ω,

yp + yd = maxj∈V wj for both A(V ) and C(V ).

(ii) Given any ∅ 6= V ⊆ Ω, an inequality of form (10) is tight for the point B(V ) if and only if the same

inequality is tight for the point C(V ). To see this, note that for any V ⊆ Ω, yp − yd = maxj∈V vj

for both B(V ) and C(V ).

We next show that given a subset of points of a desired form, we can construct a mixing inequality (9)

that is satisfied at equality at all these points. Recall, from Remark 3.2 (i), that if a point of form A(V ) is

on the face defined by (9), then so is C(V ) for some V ⊆ Ω.

Lemma 3.6 Suppose p̂ ≥ 2 and Ô := {ô1, . . . , ôp̂} is a subset of points ôi of form A(Vi) or C(Vi) for some

Vi ⊆ Ω such that for all ôi, ôj ∈ Ô, we have both ψ(w, Vi, Vj) = 0 and there exists ôκ ∈ Ô satisfying

ôκ ∈ {A(Vi ∩ Vj), C(Vi ∩ Vj)}. Then there exists a mixing inequality (9) corresponding to the sequence

S = {s1 → . . .→ sη}, where {s1, . . . , sη} := {α1}∪{j∗1 , j∗2 , . . . , j∗p̂}, s1 = α1, and for all j ∈ [η], wsj ≥ wsj+1

with wsη+1
= 0 defined for convenience, that is satisfied at equality at all solutions in Ô.

Proof. To prove our claim, first, observe that if A(∅) = C(∅) ∈ Ô, then substituting the point

A(∅) into inequality (9) defined by the sequence S in the premise of the lemma, the left-hand side becomes∑η
j=1(wsj−wsj+1

) = ws1 = wα1
, which proves that inequality (9) defined by S is tight at A(∅) = C(∅) ∈ Ô.

Next consider any solution ôi = A(Vi) ∈ Ô or ôi = C(Vi) ∈ Ô with Vi 6= ∅ and i ∈ [p̂]. From the

definitions of A(Vi) and C(Vi), we have yip + yid = wj∗i (recall the definition of j∗i ) and zik = 1 for all k ∈ Ω
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such that wk > wj∗i (from inequality (1a) in the original constraint set). Also, by definition of S, j∗i = ski for

some ki ∈ [η], and we have wsj ≥ wski for j ∈ [ki−1]; hence, zisj = 1 for all j ∈ [ki−1] such that wsj > wski .

Then
∑ki
j=1(wsj − wsj+1

)zisj = wα1
− wski where the equality holds because ziski

= 0, s1 = α1 and for all

j ∈ [ki − 1] we have zisj = 1 if wsj > wski . Substituting this term and the relation yip + yid = wj∗i = wski in

inequality (9) leads to the equivalent inequality given by

wski + wα1 − wski +

η∑
j=ki+1

(wsj − wsj+1)zisj ≥ wα1 . (26)

Suppose, for contradiction, that ôi does not satisfy inequality (9) at equality for this choice of S. Then,

from (26), we see that we must have
∑η
j=ki+1(wsj −wsj+1

)zisj > 0. In other words, there exists sj′ ∈ S for

some j′ ∈ [η] \ [ki] with both zisj′ = 1 (i.e., sj′ 6∈ Vi) and wsj′ −wsj′+1
> 0. This along with Observation 2.1

implies that wsj′ > 0. Moreover, from j′ ∈ [η] \ [ki], ski = j∗i and the definition of the sequence S, we

deduce wsj′ ≤ wski = wj∗i .

Because sj′ ∈ S \ Vi, there exists another point, say ô` = A(V`) ∈ Ô or ô` = C(V`) ∈ Ô, such that

sj′ = arg max
{
wj | z`j = 0, j ∈ Ω

}
= j∗` . Hence, sj′ ∈ V` \ Vi. Thus,

min
{

max
j∈Vi

wj , max
j∈V`

wj

}
= min{wj∗i , wsj′} = wsj′ = max

j∈V`
wj > max

j∈(Vi∩V`)
wj ,

where in the equations we have used respectively the definitions of j∗i and j∗` along with sj′ = j∗` , and

the fact that wsj′ ≤ wj∗i . Whenever Vi ∩ V` = ∅, the strict inequality above follows from wsj′ > 0 and

our convention that maxj∈V wj = 0 for V = ∅. Whenever Vi ∩ V` 6= ∅, recall that if ôi ∈ {A(Vi), C(Vi)}
is in Ô and ô` ∈ {A(V`), C(V`)} is in Ô, then from the premise of the lemma, we have Vκ := Vi ∩ V`
such that ôκ ∈ {A(Vκ), C(Vκ)} is also in Ô which implies that the strict inequality above follows from

j∗` = sj′ 6∈ Vi ∩ V`, hence j∗κ = skκ for some η ≥ kκ ≥ j′ + 1 and that wsj′ > wsj′+1
≥ wj∗κ . Consequently,

we reach a contradiction because this inequality implies ψ(w, Vi, V`) > 0 contradicting the premise of the

lemma. As a result, sj′ cannot exist, i.e., zisj = 0 for all j = ki+1, . . . , η in inequality (26). Hence inequality

(9) for this choice of S must be tight at any solution ôi ∈ Ô satisfying the premise of the lemma. 2

In the next lemma, we show that given a subset of points of a desired form, we can construct a mixing

inequality (10) that is satisfied at equality at all these points. Recall, from Remark 3.2 (ii), that if a point

of form B(V ) is on the face defined by (9), then so is C(V ) for some V ⊆ Ω.

Lemma 3.7 Suppose p̂ ≥ 2 and Ô := {ô1, . . . , ôp̂} is a subset of points ôi of form D, B(Vi) or C(Vi) for

some ∅ 6= Vi ⊆ Ω such that for all ôi, ôj ∈ Ô, we have both ψ(v, Vi, Vj) = 0 and there exists ôκ ∈ Ô
satisfying ôκ ∈ {B(Vi ∩ Vj), C(Vi ∩ Vj)}. Then there exists a mixing inequality (10) corresponding to the

sequence T = {t1 → . . . → tρ}, where {t1, . . . , tρ} := {β1} ∪ {j̄1, j̄2, . . . , j̄p̂}, t1 = β1, and for all j ∈ [ρ],

vtj ≥ vtj+1 with vtρ+1 = −ud defined for convenience, that is satisfied at equality at all solutions in Ô.

Proof. The proof of Lemma 3.7 is similar to the proof of Lemma 3.6. We provide the details in

Appendix C for completeness. 2

Finally, we show that given a subset of points of a desired form, we can construct a generalized mixing

inequality (11) that is satisfied at equality at all these points, which are optimal solutions if cd = 0.

Lemma 3.8 Suppose cd = 0, p1 > 2, and O is a set of optimal solutions of form D and C(V ) for some
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V ⊆ Ω satisfying O ⊃ {D,C(∅)}. Then there exists a sequence Π ⊆ Ω such that the generalized mixing

inequality (11) corresponding to the sequence Π is satisfied at equality at all optimal solutions in O.

Proof. Given D,C(∅) ∈ O, we let op1
= D, and set p′1 = p1 − 1. Because O 6= {D,C(∅)}, there exists

i ∈ [p′1] and oi ∈ O such that oi = C(Vi) with Vi 6= ∅. In this case, we claim that there always exists an

inequality (11) that is tight for all optimal solutions in O. To do this, we first need to define a sequence Π.

(a) We first claim that there exists a maximal nested subsequence V1 ⊃ V2 ⊃ · · · ⊃ Vq = ∅, where

q ≤ p′1 corresponding to the optimal solutions o1 = C(V1), o2 = C(V2), . . . , oq = C(Vq), such that

y1
p ≥ y2

p ≥ · · · ≥ yqp and |V1| > |V2| > · · · > |Vq|. This subsequence is maximal in that there does not

exist an optimal solution oj = C(Vj) ∈ O for q < j ≤ p′1 where Vi−1 ⊂ Vj ⊂ Vi for some 2 ≤ i ≤ q.
In addition, V1 = ∪p

′
1
i=1Vi and Vq = ∩p

′
1
i=1Vi = ∅. Let us now argue that such a maximal nested

subsequence exists. Recall, from Lemma 3.4 that if C(Vi) and C(Vj) are alternative optima for some

i 6= j ∈ [p′1], then so are C(Vi ∪ Vj) and C(Vi ∩ Vj). Hence, if Vi 6⊂ Vj , then Vi ∪ Vj ⊃ Vi ⊃ Vi ∩ Vj
or Vi ∪ Vj ⊃ Vj ⊃ Vi ∩ Vj form two partial nested subsequences based on the pair Vi and Vj

only. (If Vi ⊂ Vj , then Vi ∪ Vj = Vj and Vi ∩ Vj = Vi, and the partial subsequence is Vj ⊃ Vi.)

Repeating this argument for all pairs, we see that we must have a maximal nested subsequence

V1 ⊃ V2 ⊃ · · · ⊃ Vq = ∅, with V1 = ∪p
′
1
i=1Vi and Vq = ∩p

′
1
i=1Vi = ∅.

(b) Now, we show how to construct a sequence Π that results in an inequality (11) that is tight at

the optimal solutions o1, . . . , oq. During this construction, we also consider the properties of the

coefficients of the z variables in the inequality being constructed. To this end, let θπj represent the

coefficient of the variable zπj in inequality (11), i.e., θπj = (wπj − w̄Π,j)+ + (vΠ,j − v̄Π,j)+. For

convenience, we set θj = 0 for all j ∈ Ω \ Π. In addition, for notational convenience, we define

j∗q := j∗q−1 and j̄q := j̄q−1 because Vq = ∅. Consider the subsequence constructed in (a). We will

only consider j∗i and j̄i for i ∈ [q− 1] for inclusion in Π. The index k ∈ [q] will consider the optimal

solutions starting from o1 until oq. The index ` will track the items being added to the sequence

Π. The construction of Π works such that when we consider ok for k > 1, the items j∗i and j̄i for

i ∈ [k − 1] will already be in Π and they will precede j∗k and j̄k, unless j∗k = j∗i or j̄k = j̄i for some

i ∈ [k− 1]. We initialize by letting `, k = 1. While k < q, consider Vk and its corresponding j∗k and

j̄k. There are four cases to consider, which we describe next.

– If j∗k = j∗k+1 and j̄k = j̄k+1. In this case we do not add an element to Π.

– If j∗k 6= j∗k+1 and j̄k = j̄k+1, then let π` = j∗k . Note that θπ` = wπ` −maxj∈Vk+1
wj + (vπ` −

maxj∈Vk+1
vj)+ = wj∗k − wj∗k+1

≥ 0, because only the items j∗i and j̄i for i ∈ [q] are included

in the sequence Π, and Vk+1 ⊃ Vk+2 ⊃ · · · ⊃ Vq, so vπ` = vj∗k ≤ vj̄k = vj̄k+1
implying

(vj∗k − vj̄k+1
)+ = 0. In addition,

∑
j∈Vk\Vk+1

θj = θj∗k +
∑
j∈Vk\(Vk+1∪{j∗k})

θj = θj∗k = θπ` =

wj∗k −wj∗k+1
= wj∗k −wj∗k+1

+ vj̄k − vj̄k+1
, where the second equation follows because any item

j ∈ Vk \ (Vk+1 ∪ {j∗k}) is not included in the construction of Π (due to the nested nature of

the subsets V , if j 6∈ Vk+1 then it is not in Vi, for k+ 1 < i ≤ q), hence θj = 0 for such j, and

the last equation follows from j̄k = j̄k+1. Let `← `+ 1.

– Similarly, if j∗k = j∗k+1 and j̄k 6= j̄k+1, then let π` = j̄k. Note that θπ` = vπ` −maxj∈Vk+1
vj =

vj̄k−vj̄k+1
≥ 0. In addition,

∑
j∈Vk\Vk+1

θj = wj∗k−wj∗k+1
+vj̄k−vj̄k+1

+
∑
j∈Vk\(Vk+1∪{j̄k}) θj =

wj∗k − wj∗k+1
+ vj̄k − vj̄k+1

, because any item j ∈ Vk \ (Vk+1 ∪ {j̄k}) is not included in the

construction of Π (due to the nested nature of the subsets V , if j 6∈ Vk+1 then it is not in Vi,

for k + 1 < i ≤ q), hence θj = 0 for such j. Let `← `+ 1.
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– Finally, consider the case of j∗k 6= j∗k+1, j̄k 6= j̄k+1. First, suppose j∗k 6= j̄k. In this case,

let π` = j∗k and π`+1 = j̄k. Now observe that θπ` = (wj∗k − maxj∈Vk+1∪{j̄k} wj)+ + (vj∗k −
maxj∈Vk+1∪{j̄k} vj)+ = wj∗k −maxj∈Vk+1∪{j̄k} wj , because vj∗k ≤ vj̄k , by definition of j̄k. In ad-

dition, θπ`+1
= (wj̄k−maxj∈Vk+1

wj)++(vj̄k−maxj∈Vk+1
vj)+ = (wj̄k−maxj∈Vk+1

wj)++vj̄k−
maxj∈Vk+1

vj . Now consider θπ`+θπ`+1
= (wj∗k−maxj∈Vk+1∪{j̄k} wj)+(wj̄k−maxj∈Vk+1

wj)++

vj̄k − maxj∈Vk+1
vj . There are two cases to consider. If wj̄k > maxj∈Vk+1

wj or if wj̄k ≤
maxj∈Vk+1

wj . However, in either case, θπ` + θπ`+1
= wj∗k − wj∗k+1

+ vj̄k − vj̄k+1
. In addition,∑

j∈Vk\Vk+1
θj = wj∗k−wj∗k+1

+vj̄k−vj̄k+1
+
∑
j∈Vk\(Vk+1∪{j∗k ,j̄k})

θj = wj∗k−wj∗k+1
+vj̄k−vj̄k+1

,

because any item j ∈ Vk \ (Vk+1∪{j∗k , j̄k}) is not included in the construction of Π (due to the

nested nature of the subsets V , if j 6∈ Vk+1 then it is not in Vi, k + 1 < i ≤ q), hence θj = 0

for such j. Let `← `+ 2. (If j∗k = j̄k, then we let π` = j∗k = j̄k and `← `+ 1. The remaining

arguments follow similarly.)

Let k ← k + 1, and repeat this process until k = q − 1. Note also that due to our construction,∑
j∈Vk\Vh θj = wj∗k − wj∗h + vj̄k − vj̄h for any 1 ≤ k < h ≤ q.

Next we show that the resulting sequence Π yields an inequality (11) that is tight at the optimal

solutions o1, . . . , oq. First, note D and C(∅) = C(Vq) make inequality (11) generated by this Π

tight because the left-hand side of inequality (11) is w̄Π,0 + v̄Π,0, which equals to the right-hand

side of inequality (11). From our construction, j∗1 and j̄1 are guaranteed to be in the sequence Π,

hence w̄Π,0 = wj∗1 and v̄Π,0 = vj̄1 . As a result, the right-hand side of inequality (11) for this choice

of Π is wj∗1 +vj̄1 . We will show the tightness of this inequality by induction on the optimal solution

index k. First, consider k = 1. Let us consider the left-hand side of inequality (11) for this choice

of π evaluated at o1. Note that y1
p = 1

2 (wj∗1 + vj̄1) and z1
j = 0 for all j ∈ Π. Hence, the inequality

is tight at o1. Now suppose that the inequality is tight at ok, then we will show that it is also tight

at ok+1 for k ∈ [q− 2] (recall that the tightness of this inequality is already shown for ok = C(Vq)).

Note that, comparing the inequality (11) evaluated at ok+1 to its evaluation at ok, the decrease in

the 2yp term in the left-hand side of the inequality (11) is wj∗k −wj∗k+1
+vj̄k−vj̄k+1

, and the increase

in the
∑
j∈Π θjzj term is

∑
j∈Vk\Vk+1

θj = wj∗k −wj∗k+1
+ vj̄k − vj̄k+1

. Hence, the inequality is tight

at ok+1 as well. Furthermore, for 1 ≤ i < k < q, we have F (oi) = 1
2 (wj∗i + vj̄i) +

∑
j∈Ω\Vi fj =

1
2 (wj∗k +vj̄k)+

∑
j∈Ω\Vk fj = F (ok), hence

∑
j∈Vi\Vk fj = 1

2 (wj∗i +vj̄i−(wj∗k +vj̄k)) = 1
2

∑
j∈Vi\Vk θj .

Also, F (oq) = F (C(∅)) =
∑
j∈Ω fj .

(c) Finally, we show that for this choice of Π, inequality (11) is also tight at the optimal solutions

oq+1, . . . , op′1 . Consider oi for q < i ≤ p′1. Because oi does not belong to the maximal nested

subsequence chosen in (a), we must have Vν1
⊃ Vi 6⊃ Vν1+1 for some ν1 ∈ [q − 2], because Vq = ∅.

Note that ν1 exists because we have V1 ⊃ Vj for all j ∈ [p′1]. Recall that C(Vi), C(Vj) ∈ O
implies C(Vi ∩ Vj), C(Vi ∪ Vj) ∈ O. Thus, Vν1

= Vi ∪ Vν1+1, and there exists Vν2
= Vi ∩ Vν1+1,

where ν1 + 1 < ν2 ≤ q. Note that ν2 exists because we have Vq ⊆ Vj for all j ∈ [p′1]. Moreover,

F (oν1) = 1
2 (wj∗ν1 + vj̄ν1 ) +

∑
j∈Ω\Vν1

fj = 1
2 (wj∗i + vj̄i) +

∑
j∈Ω\Vi fj = F (oi). Hence, we must have∑

j∈Vν1\Vi
fj = 1

2 (wj∗ν1 +vj̄ν1−(wj∗i +vj̄i)). We have shown that oν1
, oν1+1 and oν2

satisfy inequality

(11) at equality. Comparing the left-hand side of inequality (11) evaluated at oν1
and oi we see

that the decrease in the 2yp term in the left-hand side of the inequality is wj∗ν1
− wj∗i + vj̄ν1 − vj̄i ,

and the increase in the
∑
j∈Π θjzj term is

∑
j∈Vν1\Vi

θj . Then the difference between the left-hand
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side of inequality (11) evaluated at oν1 and oi is

wj∗ν1
− wj∗i + vj̄ν1 − vj̄i −

∑
j∈Vν1\Vi

θj = wj∗ν1
− wj∗i + vj̄ν1 − vj̄i −

∑
j∈Vν1+1\Vν2

θj

= wj∗ν1 − wj∗i + vj̄ν1 − vj̄i − 2
∑

j∈Vν1+1\Vν2

fj

= wj∗ν1 − wj∗i + vj̄ν1 − vj̄i − 2
∑

j∈Vν1\Vi

fj

= 2(F (oν1
)− F (oi)) = 0,

where the first and third equations follow from Vν1
\ Vi = Vν1+1 \ Vν2

, and the second equation

from the relation between the coefficients θ and f . As a result, the left-hand side of inequality (11)

evaluated at oν1
is equal to that evaluated at oi. Because we have shown that inequality (11) is

tight at oν1 , it must be tight at oi as well.

2

We are now ready to give the proof of Theorem 3.1.

Proof. [Proof of Theorem 3.1] From Proposition 3.1, we observe that O is composed of points of form

A(∅) = C(∅), D, and A(V ), B(V ), C(V ) for some ∅ 6= V ⊂ Ω.

First, we show that if p1 = 1, then we can find an inequality (9) or (10) that is tight for this single point.

If o1 = A(∅) (or o1 = D), then clearly every mixing inequality (9) ((10)) for any nonempty sequence S (T )

is satisfied at equality by this point. Otherwise, if o1 = A(V ) for some ∅ 6= V ⊆ Ω, then we consider two

cases. If wj∗1 = wα1
, then we let S = {j∗1}. In this case, because zj∗1 = 0, the left-hand side of inequality (9)

generated by this choice of S is wj∗1 = wα1 , implying that inequality (9) is tight at the point o1. Otherwise,

if wj∗1 < wα1 , then we have S = {α1, j
∗
1} and z1

α1
= 1. In this case, the left-hand side of inequality (9) for

this choice of S is wj∗1 + (wα1
− wj∗1 )zα1

= wα1
, which also implies that inequality (9) is tight at the point

o1. Otherwise, if o1 = B(V ) or o1 = C(V ), for some ∅ 6= V ⊆ Ω, then we can find a mixing inequality (10)

using a procedure similar to the preceding discussion.

Next, if p1 ≥ 2, then we break the proof into several cases based on the objective coefficient cd:

(i) Suppose cd > 0. In this case, for any two points oi, oj ∈ O for i, j ∈ [p1], we first claim that both

oi, oj are of the form A(V ) or C(V ) for some V ⊆ Ω, such that we have both ψ(w, Vi, Vj) = 0 and

there exists ok ∈ O satisfying ok ∈ {A(Vi ∩ Vj), C(Vi ∩ Vj)}.

• Suppose cd > 1. From Lemma 3.5(i), we deduce that only points of the form A(V ) for some

V ⊆ Ω can be optimal for this type of a cost vector. For any two points oi = A(Vi), oj = A(Vj)

such that oi, oj ∈ O, Lemma 3.2(iii) implies that both A(Vi ∩ Vj) ∈ O and ψ(w, Vi, Vj) = 0.

• Suppose that cd = 1. From Lemma 3.5(ii), we deduce that only points of the form A(V ) or

C(V ) for some V ⊆ Ω can be optimal for this type of a cost vector. Given that cd = 1, for any

oi ∈ O, i ∈ [p1], A(Vi) is an optimal solution if and only if C(Vi) is an optimal solution because

the sum yp + yd is the same for the solutions C(V ) and A(V ) corresponding to the same set

V . Then for any two points o1 ∈ {A(V1), C(V1)}, o2 ∈ {A(V2), C(V2)} such that o1, o2 ∈ O,

Lemma 3.2(iii) implies that ψ(w, V1, V2) = 0 and A(Vi ∩ Vj) ∈ O and C(Vi ∩ Vj) ∈ O.

• If 0 < cd < 1, then F
(
D
)
> F

(
C(∅)

)
. Hence, from Lemma 3.5(v), the points of the form



Liu, Kılınç-Karzan, Küçükyavuz: Intersection of Two Mixing Sets 26

C(V ) for some V ⊆ Ω can be optimal, but D 6∈ O. Moreover, for any C(Vi), C(Vj) ∈ O for

Vi, Vj ⊆ Ω, Vi 6= Vj , from Lemma 3.4 we have ψ(w, Vi, Vj) = 0 and C(Vi ∩ Vj) ∈ O.

Then Lemma 3.6 shows that we can always find a sequence S such that the mixing inequality (9)

corresponding to S is tight for all solutions in O.

(ii) Suppose cd = 0. From Lemma 3.5(v), we deduce that only points of the form C(V ) for some

V ⊆ Ω and D can be optimal for this type of a cost vector. Recall from Lemma 3.4, we have

for any C(Vi), C(Vj) ∈ O for Vi, Vj ⊆ Ω, Vi 6= Vj that ψ(w, Vi, Vj) = 0 and C(Vi ∩ Vj) ∈ O.

Consequently, observe that if D /∈ O, then all points in O are of the form C(V ) for some V ⊆ Ω. In

such a case, Lemma 3.6 shows that we can always find a sequence S such that the mixing inequality

(9) corresponding to S is tight for all solutions in O. Therefore, without loss of generality we can

assume that D ∈ O.

Now note that F
(
D
)

= F
(
C(∅)

)
because cd = 0. Therefore, we have both D,C(∅) ∈ O.

• When p1 = 2, since D,C(∅) ∈ O, we have O = {D,C(∅)}. In this case, the generalized mixing

inequality (11) corresponding to Π = {α1 → β1} is tight for all solutions in O.

• When p1 > 2, we have O ⊃ {D,C(∅)}. Then there exists oi = C(Vi) ∈ O, i ∈ [p1] for some

∅ 6= Vi ⊆ Ω. In this case, Lemma 3.8 shows that we can always find a sequence Π ⊆ Ω such

that the generalized mixing inequality (11) corresponding to Π is tight for all solutions in O.

(iii) Suppose cd < 0. In this case, for any two points oi, oj ∈ O, we first claim that both oi, oj are of the

form D, B(V ) or C(V ) for some ∅ 6= V ⊆ Ω. Moreover, we claim that for any oi ∈ {B(Vi), C(Vi)}
and oj ∈ {B(Vj), C(Vj)} with ∅ 6= Vi, Vj ⊆ Ω, we have both ψ(v, Vi, Vj) = 0 and there exists

ok ∈ O satisfying ok ∈ {B(Vi ∩ Vj), C(Vi ∩ Vj)}.

• Suppose cd < −1. From Lemma 3.5(iii), we deduce that only points of form D or B(V ) for

some ∅ 6= V ⊆ Ω can be optimal for this type of a cost vector. For any two points oi = B(Vi),

oj = B(Vj) such that oi, oj ∈ O, Lemma 3.3 implies that ψ(v, Vi, Vj) = 0 and B(Vi∩Vj) ∈ O.

Because B(Vi ∩ Vj) ∈ O and B(∅) /∈ O, we deduce Vi ∩ Vj 6= ∅.
• Suppose that cd = −1. From Lemma 3.5(iv), we deduce that only points of the form D,

B(V ) or C(V ) for some ∅ 6= V ⊆ Ω can be optimal for this type of a cost vector. Given that

cd = −1, for any oi ∈ O, i ∈ [p1], B(Vi) ∈ O if and only if C(Vi)) ∈ O because the term

yp − yd is the same for the solutions C(V ) and B(V ) corresponding to the same set V . Then

for any two points oi ∈ {B(Vi), C(Vi)}, oj ∈ {B(Vj), C(Vj)} such that oi, oj ∈ O, we deduce

C(Vi), C(Vj) ∈ O and then Lemma 3.4 implies that ψ(v, Vi, Vj) = 0 and C(Vi ∩ Vj) ∈ O.

Because C(Vi ∩ Vj) ∈ O and C(∅) /∈ O, we conclude that Vi ∩ Vj 6= ∅, and B(Vi ∩ Vj) ∈ O.

• If −1 < cd < 0, then F
(
D
)
< F

(
C(∅)

)
. Hence, from Lemma 3.5(v), only the points of the

form D or C(V ) for some ∅ 6= V ⊆ Ω can be optimal. Moreover, for any C(Vi), C(Vj) ∈ O for

∅ 6= Vi, Vj ⊆ Ω, Lemma 3.4 implies ψ(v, Vi, Vj) = 0 and C(Vi ∩ Vj) ∈ O. Once again, because

C(Vi ∩ Vj) ∈ O and C(∅) /∈ O, we deduce that Vi ∩ Vj 6= ∅.

Then Lemma 3.7 shows that we can always find a sequence T such that the mixing inequality (10)

corresponding to T is tight for all solutions in O.

2

4. Separation of Inequalities (11) In this section, we discuss exact and heuristic separation ap-

proaches for inequality (11). Let (ŷp, ŷd, ẑ) be a fractional solution. In order to find the most violated
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inequality (11), we need to find a sequence Π = {π1 → π2 → · · · → πτ} that minimizes the value of the

term
∑τ
j=1

(
(wπj − w̄Π,j)+ + (vπj − v̄Π,j)+

)
ẑπj . Throughout this section, this value is interpreted as cost.

4.1 An Exact Separation Approach In this section, we give a polynomial-time dynamic program-

ming algorithm to separate inequality (11) exactly. Without loss of generality, we assume that the sequence

Π has length m. Here, we only consider the case where α1 ∈ Π and β1 ∈ Π, because otherwise the resulting

inequality can be strengthened by including α1 and β1.

In our dynamic programming algorithm, the states are given by (i, j, W̄i−1, V̄i−1) for i, j ∈ Ω =

[m], W̄i−1 ≥ wj and V̄i−1 ≥ vj , where W̄i−1 and V̄i−1 represent the values of w̄Π,i−1 and v̄Π,i−1 for the

constructed sequence Π, respectively. Note that for any k ∈ [m], the eligible values of W̄k and V̄k are from

the entries of the vectors w and v, respectively. The state function is Ḡi(j, W̄i−1, V̄i−1), which is defined as

the minimum cost of the subsequence πi → πi+1 → · · · → πm, where item j is the first item in this subse-

quence (i.e., πi = j), max{wπj : i ≤ j ≤ m} = w̄Π,i−1 = W̄i−1, and max{vπj : i ≤ j ≤ m} = v̄Π,i−1 = V̄i−1.

Note that there are O(m4) many possible states (i, j, W̄i−1, V̄i−1), because i, j ∈ [m] and W̄i−1 = wk for

some k ∈ Ω and V̄i−1 = vk′ for some k′ ∈ Ω.

Next, the boundary condition is defined as:

Ḡm(j, W̄m−1, V̄m−1) =

(wj + vj)ẑj , if W̄m−1 = wj , and V̄m−1 = vj ,

+∞, if W̄m−1 > wj , or V̄m−1 > vj ,

where the state Ḡm(j, W̄m−1, V̄m−1), in which W̄m−1 > wj or V̄m−1 > vj is infeasible, because if item

j = πm, then we must have W̄m−1 = wj and V̄m−1 = vj . The optimal solution is then given by

min
{
Ḡ1(α1, wα1

, vβ1
), Ḡ1(β1, wα1

, vβ1
)
}
, because α1 and β1 are in Π, and without loss of generality,

we have wπ1
= wα1

or vπ1
= vβ1

.

Finally, we give the backward transition function

Ḡi(j, W̄i−1, V̄i−1) =

min
j′∈Ω

{
Ḡi+1(j′, W̄i−1, V̄i−1)

}
, if W̄i−1 > wj , and V̄i−1 > vj ,

min
j′∈Ω,W̄i≤wj ,V̄i≤vj

{
Ḡi+1(j′, W̄i, V̄i) + (wj + vj − W̄i − V̄i)ẑj

}
, if W̄i−1 = wj , and V̄i−1 = vj ,

min
j′∈Ω,W̄i≤wj

{
Ḡi+1(j′, W̄i, V̄i−1) + (wj − W̄i)ẑj

}
, if W̄i−1 = wj , and V̄i−1 > vj ,

min
j′∈Ω,V̄i≤vj

{
Ḡi+1(j′, W̄i−1, V̄i) + (vj − V̄i)ẑj

}
, if W̄i−1 > wj , and V̄i−1 = vj .

The running time of executing the transition function is O(m3), so the total running time of this dynamic

programming algorithm is O(m7).

4.2 Heuristic Separation Approaches Given the inefficiency of the exact separation algorithm in

Section 4.1, in this section we discuss simple heuristic separation approaches for (11) with complexity

O(m logm). The underlying idea for these heuristics is that instead of trying to minimize the overall term∑τ
j=1

(
(wπj − w̄Π,j)+ + (vπj − v̄Π,j)+

)
ẑπj , we can aim to minimize the partial sum terms for involving only

wj ’s or only vj ’s.

Suppose that the polynomial-time separation algorithm in [5] is applied to find the mixing sequences
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S∗ = {s1 = α1 → s2 → · · · → sη} and T ∗ = {t1 = β1 → t − 2 → · · · → tρ} that maximize the violation of

inequalities (9) and (10), respectively. Next, based on the sequences S∗ and T ∗, as a heuristic separation

procedure for (11), we generate the sequence Π := t1 → t2 → · · · → tρ → s1 → s2 → · · · → sη, where we

append sequence S∗ after the sequence T ∗. Then clearly R[Π] ⊇ S∗ because s1 = α1 and by definition of the

sequences α and S∗, we have ws1 = wα1
≥ wti for all i ∈ [ρ] as well as ws1 ≥ wsi for all i ∈ [η] which implies

w̄Π,1 = wα1
. In fact, we have R[Π] = S∗ whenever the values of wj are distinct because then we would

have ws1 = wα1 > wti for all i ∈ [ρ]. Therefore, the sequence Π generated by this procedure minimizes

the partial summation term
∑τ
j=1(wπj − w̄Π,j)+ẑπj in (11). Besides, the inequality (11) generated by this

choice of Π is different from inequality (9) for S∗ because G[Π] 6= ∅ (note β1 = t1 ∈ G[Π] and sη ∈ G[Π])

and the right hand side values of the two inequalities will differ whenever v > 0.

Similarly, an alternative heuristic separation for (11) is given by generating a sequence Π where we append

T ∗ after S∗, then the resulting sequence Π minimizes the partial summation term
∑τ
j=1(vπj − v̄Π,j)+ẑπj ,

because G[Π] ⊇ T ∗ (and whenever the values of vj are distinct, G[Π] = T ∗).

5. Preliminary Numerical Study and Future Directions In this section, we study the com-

putational performance of the proposed inequality (11) against adding only mixing inequalities (9) and

(10) on randomly generated test instances. Our test instances are deterministic equivalents of chance-

constrained programs taking the form min{ξ>x : (8a) − (8b), (6b) − (6c), x ≥ 0, yp =
∑5
i=1 pixi, yd =∑5

i=1 dixi, 0 ≤ yd ≤ ud}. We generate different classes of problems with varying scenario sizes by selecting

m = k · 1000 where k ∈ [4], and ε ∈ {0.1, 0.15, 0.2}. For each problem class, we generate three instances

and report the averages. We assume that each scenario is equally likely. For i ∈ [5], we generate pi and

di from uniform distribution U [0, 1], and ξi from U [1, 2]. In addition, for all j ∈ Ω, qj is generated as

max{q′j , 0}, where q′j follows the normal distribution N(40, 10), and hj = min{qj , h′j}, where h′j follows

N(20, 10). Furthermore, ud is taken as maxj∈Ω{hj + qj}. This data generation scheme ensures that As-

sumptions A1, A2, and A3 are satisfied. Our test instances are available in an Online Supplement at

http://faculty.washington.edu/simge/IntMixOS.zip.

All runs are executed on a Windows 7 with 2.27GHZ Intel(R) Core(TM) i3 CPU and 2.0 GB RAM.

We implemented our algorithms using C programming language, with Microsoft Visual Studio 2008 and

CPLEX 12.4 in its default setting. A time limit of one hour is used for each problem instance.

In our computational study, we separate and add inequalities (9)–(11) only at the root node using the

user cut callback function of CPLEX. In particular, at each fractional solution (x̂, ŷp, ŷd, ẑ) at the root

node, we add at most one violated inequality of each type (9), (10) and (11), in this order, and re-solve

the linear programming relaxation until either there are no further violated cuts from the given cut class

or a predetermined cut limit is reached. We apply the polynomial-time separation algorithm from [2] to

find the mixing sequences S∗ = {s1 = α1 → s2 → · · · → sη} and T ∗ = {t1 = β1 → t− 2 → · · · → tρ} that

maximize the violation of inequalities (9) and (10), respectively. The exact separation algorithm presented

in Section 4.1 is inefficient. Hence, we use some of the heuristic separation ideas presented in Section 4.2.

In particular, we use the heuristic that constructs Π by appending sequence S∗ after the sequence T ∗.

In our preliminary tests, the alternative heuristic of appending T ∗ after S∗ did not provide significant

improvements in the computational performance. While our focus in this paper is not on finding the most

effective heuristic to separate inequality (11), we observe that our heuristic strikes a good balance between

efficiency of cut generation and effectiveness in improving the integrality gaps and computational times.

http://faculty.washington.edu/simge/IntMixOS.zip
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In our preliminary numerical tests, we observe that a significant amount of time was being spent at

the root node without too much gap improvement after a certain number of cuts are added. Thus, in our

computational study, we imposed a limit on the number of cuts added at the root node. In particular, the

number of mixing inequalities (9), (10) and new inequalities (11) that can be added is limited to m× γ for

each class of inequalities, where we take γ ∈ {0.1, 0.2} e.g., for instances with m = 4000 and γ = 0.1, the

cut limit is set to 400 for each class of inequalities. In our experiments, the cut limits for mixing inequalities

(9) and (10) were hit in every instance for both settings for γ. This was not the case for inequalities (11).

Table 2: Effectiveness of inequalities (11) on random two-sided chance-constrained problem instances.

Instances DEP & Mix. Ineq. (γ = 0.1) DEP & Mix. Ineq. (γ = 0.2) DEP & Mix. Ineq. & New Ineq. (γ = 0.1)
ε m (103) Time (#, %) R.Gap (%) Nodes Time (#, %) R.Gap (%) Nodes Time (#, %) R.Gap (%) Nodes Cuts

0.10

1 45 12.0 2240 45 11.5 2328 30 11.2 262 88
2 259 14.0 4926 220 13.2 4025 107 12.4 2615 200
3 503 18.0 32472 480 16.2 280162 225 13.2 8327 273
4 1240 22.4 501547 2876 (2, 2.9) 24.0 612957 826 19.0 242918 300

0.15

1 274 17.2 9325 300 18.0 10042 200 13.0 75208 100
2 1452 19.3 125726 1328 18.5 102284 925 18.2 86122 180
3 2507 23.0 190742 2775 23.2 204182 1550 20.5 178252 290
4 3351 (1, 5.2) 24.2 228063 3600 (0, 5.7) 24.3 259175 2539 23.0 115254 377

0.20

1 841 19.7 54028 886 19.7 53325 623 19.0 49128 95
2 3072 20.4 90426 3286(2, 0.8) 21.0 11050 2528 19.5 77296 185
3 3600(0, 4.7) 22.0 105134 3600 (0, 4.5) 21.5 122057 2755(2, 1.2) 20.9 140231 282
4 3600 (0, 6.5) 22.6 338036 3600 (0, 7.2) 22.3 289625 3600(0, 2.6) 21.7 286855 400

Table 2 summarizes our computational results. In Table 2, the section “DEP & Mix. Ineq.” reports

the results of using mixing inequalities (9) and (10) only, where the cuts limits of both type of mixing

inequalities are set to m×γ for γ = 0.1 and 0.2, and the section “DEP & Mix. Ineq. (9), (10) & New Ineq.”

reports where both mixing inequalities and the new inequalities (11) are utilized. The column “Time”

reports the average solution time in seconds for the instances that are solved to optimality within the time

limit. Whenever all instances are not solved to optimality within the time limit, we report two additional

statistics in parentheses (#, %). The first number in the parentheses is the number of instances that are

solved to optimality within the time limit, and the second one is the average percentage final gap for the

instances that terminate due to the time limit. The column “R.Gap” reports the root node gap for the

instances after adding the violated inequalities. Furthermore, the column “Nodes” displays the average

number of branch-and-bound nodes explored during the process. Finally, the column “Cut” in the section

“DEP & Mix. Ineq. & New Ineq.” reports the average number of inequalities (11) that are added in addition

to the m× γ mixing inequalities (9) and (10).

First, comparing the results of the settings “DEP & Mix. Ineq.” with γ = 0.1 and γ = 0.2, we see the

diminishing returns of adding more mixing inequalities. This observation forms the basis for establishing

cut limits. We observe that the setting with γ = 0.1 provides better results in general. Hence, we set the

cut limit as m× 0.1 for the setting “DEP & Mix. Ineq. & New Ineq.”. Table 2 indicates the new inequality

class (11) is computationally effective: the solution time, ending gap, root node gap and number of branch-

and-bound (B&B) nodes generated are generally better for the option with the new inequality (11) than the

option without the inequality (11). In particular, the improvements in the overall solution times and the

number of B&B nodes are quite significant. Besides, the column “Cut” shows that the proposed inequalities

are useful in terms of cutting off the fractional solution. On the contrary, if we do not add the proposed

inequalities (11) and add more mixing inequalities (9) and (10) instead, i.e., compare the sections “DEP &
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Mix. Ineq.” for γ = 0.2 and “DEP & Mix. Ineq. & New Ineq.”, then the computational performance for

γ = 0.2 setting is still worse, both in terms of solution time (always) and average root gap (mostly).

In conclusion, not only do the proposed inequalities have desirable theoretical properties, namely that

they are convex-hull defining for the set P for which they are derived, but they are also effective in practice

where P appears as a substructure. Several interesting questions are left for future studies: study of an

intersection of mixing sets with general coefficients on multiple shared continuous variables, strengthening

of the proposed inequalities in the presence of cardinality/knapsack constraints for chance-constrained

applications, and lifting the assumption on the nonnegativity i.e., Assumption A3, of the data defining the

particular generalization of the intersection of mixing set P.
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Appendix A. Proof of Proposition 3.4 Proof. We first establish the necessity of the condition

ws1 = wα1 for inequality (9) to be a facet. Suppose ws1 < wα1 . Note that inequality (9) given for

S′ = {α1 → s1 → s2 → · · · → sη} is simply

yp + yd +

η∑
j=1

(wsj − wsj+1)zsj ≥ ws1 + (wα1 − ws1)(1− zα1).

This inequality is stronger than the original inequality (9) given for S = {s1 → s2 → · · · → sη} because

(wα1 − ws1)(1− zα1) ≥ 0. Hence, this establishes the necessity of condition ws1 = wα1 . The argument for

the necessity of condition vt1 = vβ1 for inequality (10) to be a facet is identical.

To see that inequality (9) is facet defining if ws1 = wα1 , first, for all j ∈ Ω \ S, we consider the

points (wα1 , 0, ej). These points are feasible (see the proof of Proposition 3.3). In addition, these points

satisfy inequality (9) at equality and are affinely independent. Next, for all j ∈ [η], we consider the points

A
(
∪ηi=j si

)
= (wsj , 0,

∑
i∈Ω\(∪ηi=jsi)

esi). The feasibility of these points follow from Lemma 3.1. In addition,

these points satisfy inequality (9) at equality and are affinely independent. Finally, we consider the feasible

points A(∅) and C(Ω), which are affinely independent from all other points. In addition, A(∅) and C(Ω)

satisfy inequality (9) at equality. Hence, we obtain m+ 2 affinely independent points that are feasible and

satisfy inequality (9) at equality. This proves that inequality (9) is facet-defining for conv(P).

The proof for inequality (10) to be facet defining when vt1 = vβ1
is similar. In this case, we consider the

points D, C(Ω), C(Ω \ {j}), for all j ∈ Ω \T , and B
(
∪ρi=j ti

)
, for all j ∈ [ρ] These points are feasible from

Lemma 3.1 and are also affinely independent. 2

Appendix B. Proof of Proposition 3.5 Proof. If wr1 < wα1 , then we can attach α1 at the

beginning of the sequence Π to obtain another valid inequality of form (11) (or equivalently (12))

2yp +

τR∑
j=1

(wrj − wrj+1)zrj +

τG∑
j=1

(vgj − vgj+1)zgj ≥ wr1 + vg1 + (wα1 − wr1)(1− zα1).

The resulting inequality is at least as strong as the original inequality because wα1
> wr1 and 1− zα1

≥ 0.

Similarly, if vg1
< vβ1

, then we can attach β1 at the beginning of the sequence Π to obtain another inequality

that is at least as strong as the original inequality. This shows the necessity of the facet conditions.
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To see the sufficiency, first consider the feasible points C(∅) and D (see Lemma 3.1 for their feasibility).

These points satisfy inequality (11) at equality. Next, we consider the feasible point C(Ω), which satisfies

inequality (11) at equality. Now, consider the points (
wα1

+vβ1

2 ,
wα1
−vβ1

2 , ej), for all j ∈ Ω \ Π. For each

j ∈ Ω \ Π, using Observation 3.1(i) and the feasibility of the point C(Ω) = (
wα1

+vβ1

2 ,
wα1
−vβ1

2 ,0), we

conclude that these points are also feasible. Since j 6∈ Π, these points satisfy (11) at equality as well. Note

that the points considered thus far are affinely independent.

Next, for all j ∈ [τ ] \ {1} such that πj ∈ Π, if wπj < w̄Π,j and vπj < v̄Π,j , then we consider the point

(
wα1

+vβ1

2 ,
wα1
−vβ1

2 , eπj ). For each such j, the feasibility of the associated point follows from the feasibility

of C(Ω) and Observation 3.1(i). In addition, this point also satisfies inequality (11) at equality, because

(wπj − w̄Π,j)+ = (vπj − v̄Π,j)+ = 0, so the left-hand side of inequality (11), after substituting this point,

becomes wα1
+ vβ1

. Otherwise, if wπj ≥ w̄Π,j or vπj ≥ v̄Π,j for some j ∈ [τ ] \ {1}, then we consider the

following feasible point C
(

Π \ (∪j−1
i=1{πi})

)
= (

w̄Π,j−1+v̄Π,j−1

2 ,
w̄Π,j−1−v̄Π,j−1

2 ,
∑j−1
i=1 eπi +

∑
i∈(Ω\Π) ei). Note

also
j−1∑
i=1

((
wπi − w̄Π,i

)
+

)
+ w̄Π,j−1 = max

`∈[τ ]
wπ` = wα1 ,

and
j−1∑
i=1

((
vπi − v̄Π,i

)
+

)
+ v̄Π,j−1 = max

`∈[τ ]
vπ` = vβ1

,

because α1 ∈ Π and β1 ∈ Π. Thus, the point C
(

Π\ (∪j−1
i=1{πi})

)
satisfies inequality (11) at equality as well.

Also, these points are affinely independent from the points listed earlier. Hence, in total, we obtain m+ 2

affinely independent feasible points that satisfy inequality (11) at equality. This completes the proof. 2

Appendix C. Proof of Lemma 3.7 Proof. To prove our claim, first, observe that if D ∈ Ô, then

substituting the point D into inequality (10) defined by the sequence T as defined in the premise of the

lemma, the left-hand side becomes −ud +
∑ρ
j=1(vtj − vtj+1

) = vt1 = vβ1
(recall vtρ+1

in (10)), which proves

that inequality (10) defined by T is tight at D ∈ Ô.

Next consider any solution ôi = B(Vi) ∈ Ô or ôi = C(Vi) ∈ Ô with Vi 6= ∅ and i ∈ [p̂]. From the

definitions of B(Vi) and C(Vi), we have yip − yid = vj̄i (recall the definition of j̄i) and zik = 1 for all k ∈ Ω
such that vk > vj̄i (from inequality (1b) in the original constraint set). Also, by definition of T , j̄i = tki
for some ki ∈ [ρ], and we have vtj ≥ vtki for j ∈ [ki − 1]; hence, zitj = 1 for all j ∈ [ki − 1] such that

vtj > vtki . Then
∑ki
j=1(vtj − vtj+1)zitj = vβ1 − vtki where the equality holds because zitki

= 0, t1 = β1 and

for j ∈ [ki − 1] we have zitj = 1 if vtj > vtki . Substituting this term and the relation yip − yid = vj̄i = vtki in

inequality (10) leads to the equivalent inequality given by

vtki + vβ1
− vtki +

ρ∑
j=ki+1

(vtj − vtj+1
)zitj ≥ vβ1

. (27)

Suppose, for contradiction, that ôi does not satisfy inequality (10) at equality for this choice of T . Then,

from (27), we see that we must have
∑ρ
j=ki+1(vtj − vtj+1)zitj > 0. In other words, there exists tj′ ∈ T for

some j′ ∈ [ρ] \ [ki] with both zitj′ = 1 (i.e., tj′ 6∈ Vi) and vtj′ − vtj′+1
> 0. This along with Assumption A3,

implies that vtj′ > 0. Moreover, from j′ ∈ [ρ] \ [ki], tki = j̄i and the definition of the sequence T , we deduce

vt′j ≤ vtki = vj̄i .

Because tj′ ∈ T \ Vi, there exists another point, say ô` = B(V`) ∈ Ô or ô` = C(V`) ∈ Ô, such that
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tj′ = arg max
{
vj | z`j = 0, j ∈ Ω

}
= j̄`. Hence, tj′ ∈ V` \ Vi. We have min

{
maxj∈Vi vj , maxj∈V` vj

}
=

min{vj̄i , vtj′} = vtj′ = maxj∈V` vj > maxj∈(Vi∩V`) vj , where in the equations we have used respectively the

definitions of j̄i and j̄` along with tj′ = j̄`, the fact that vtj′ ≤ vj̄i . Whenever Vi∩V` = ∅, the strict inequality

follows from vtj′ > 0 and our convention that maxj∈V vj = 0 for V = ∅. Whenever Vi ∩ V` 6= ∅, recall that

if ôi ∈ {B(Vi), C(Vi)} is in Ô and ô` ∈ {B(V`), C(V`)} is in Ô, then from the premise of the lemma, we

have Vκ := Vi ∩ V` is such that ôκ ∈ {B(Vκ), C(Vκ)} is also in Ô which implies that the strict inequality

above follows from j̄` = tj′ 6∈ Vi ∩ V`, hence j̄κ = tkκ for some ρ ≥ kκ ≥ j′ + 1 and that vtj′ > vtj′+1
≥ vj̄κ .

Consequently, we reach a contradiction because this inequality implies ψ(v, Vi, V`) > 0, which contradicts

the premise of the lemma. As a result, tj′ cannot exist, i.e., zitj = 0 for all j = ki + 1, . . . , ρ in inequality

(27). Hence, inequality (10) for this choice of T must be tight at any solution ôi ∈ Ô satisfying the premise

of the lemma. 2
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[5] Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Mathematical Programming 90, 429–457

(2001)
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