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Societal Challenges

Environmental
Sustainability
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Solution Approaches

Artificial Intelligence

Machine Learning /

Reinforcement Learning

Game Theory
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Recap: Security Games

» Strong Stackelberg Equilibrium
Defender: mixed strategy
Attacker: best response, break tie in favor of defender

Adversary

Target #1 Target #2

5.6%)\ Target #I 5, -3 -1, 1

Defender \¢4-4%y Target #2 5,4 2, -1

8/12/2019



Quiz

» How to get the defender’s mixed strategy in SSE in
this problem?

Adversary

Target #1 Target #2

5.6%)\ Target #I 5, -3 -1, 1

Defender 44.4%y Target #2 -5’ 4 2, - |
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Quiz

» How to get the defender’s mixed strategy in SSE in

this problem?
AttEUIl=p*x (-3)+ (1 —p)*x4=p*x1+ (1 —p) *
(—1)=AttEU2
Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)

Adversary

Target #1 Target #2

5.6%)\ Target #I 5, -3 -1, 1

Defender \¢4-4%y Target #2 5,4 2, -1

8/12/2019



Recap: SSE vs NE

» Zero-sum
SSE=NE=minimax=maximin
Approach I:Single LP (minimax or maximin strategy)
Approach 2: Greedy allocation for security games

» General-sum
SSE>NE

Computing NE: PPAD Complete, LCP (linear complementarity
problem) formulation, Gambit solver
Computing SSE

Approach |: Multiple LPs (each solve a subproblem)

Approach 2:A single MILP that combines all the LPs

Approach 3: Extended greedy allocation algorithm O(nlog n) for security
games

8 8/12/2019



Example: Protecting Staten Island Ferry

9 Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources. Fei Fang, Albert Xin 8/12/2019
Jiang, Milind Tambe. In AAMAS-13
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Wildlife Conservation

Googh

Image Landsat
Image IBCAO
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Human Behavior in Games

» Not always perfectly rational or behave as expected!
» Task: Predict where the poachers place snares

8/12/2019



Learn from Human Subject Experiments

Game 4
Total: $1.5

13/67 ”A Game of Thrones”: When Human Behavior Models Compete in Repeated Stackelberg Security Games. 8/12/2019
Debarun Kar, Fei Fang, Francesco Maria Delle Fave, Nicole Sintov, Milind Tambe. In AAMAS-15



Learn from Real-World Data

» Raw Dataset for Queen Elizabeth National Park
Covers 2520 sq. km
Patrol and poaching recorded

Collaborators: Wildlife Conservation Society, Uganda Wildlife Authority,
Rangers Pictures: Trip to Indonesia with World Wide Fund for Nature




Learn from Real-World Data
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Each data point represent a |kmX|km area in a season






Challenge 2: Lack of Recorded Attacks

=2010 = 2011 = 2012

=2013 2014 = 2015
Patrolled Cells 61.7 67.7 66.0 54.6 59.0 61.0

(Year)
Per 100 cells

|
[

=2010 = 2011 = 2012

=2013 = 2014 = 2015

Not Attacked ) 2. 93.0
Patrolled Cells 86.0 919 89.5 92.3 88.4

Per 100 cells

=2010 = 2011 = 2012

Attacked =2013 = 2014 = 2015
Patrolled Cells 14 8.1 10.5 177 7 11.6

I
HH

Per 100 cells



Quantal Response Model

» Classical model in behavioral game theory

» Probability of attacking target j

o AATLEU ()

q4j = Y. @A+AtEU;(x)
l

» A:represents error level (=0 means uniform random)
Maximal likelihood estimation (A=0.76)

max f (1) = X; N;log(q,)
Solved through gradient ascent A « A + aV,f (1)

18/67 McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equilibria for normal
form games. Games and economic behavior, 10(1), 6-38.

8/12/2019



Subjective Utility Quantal Response Model

/'l*SEU (x)

4 SEU Zk ka} y 4j = 3, o M+SEU;(x)

Past Success/Failure
Induced Features +

Coverage Probability
+ Reward/Penalty

SUQR

Attack Probability

19/67 Nguyen,T. H.,Yang, R.,Azaria, A, Kraus, S., & Tambe, M. Analyzing the 8/12/2019
Effectiveness of Adversary Modeling in Security Games. In AAAI, 2013.



Adapted Behavioral Game Theory Models

» CAPTURE

Real-world Data

Dynamic Bayes Net: Time Dependency & Imperfect Observation

Limited Data,
Predicting Everywhere,
Slow Learning

Distance to rivers /
roads / villages

Ranger observation

20/67 Thanh H. Nguyen, Arunesh Sinha, Shahrzad Gholami, Andrew Plumptre, Lucas Joppa, Milind Tambe, Margaret 8/12/2019
Driciru, Fred Wanyama, Aggrey Rwetsiba, Rob Critchlow, Colin Beale. CAPTURE: A New Predictive Anti-
Poaching Tool for Wildlife Protection. In AAMAS, 201 6.



Decision Tree

» PROS
High speed
Learn global poachers behavior 2
Learn nonlinearity in geo-spatial ﬁ ¢ o o o oo
PrediCtor 000 0 & & 000000 0 00000000
» CONS

L. . . ® ® & 000 o ®
No explicit temporal dimension

No aspect for label uncertainty



Markov Random Field

» PROS

Explicit spatial dimension
Explicit temporal dimension

Addresses label uncertainty

» CONS

Low speed

Data greedy

Time Step t-1

1o/ 0 | 1
041+1 |70,
1110 0
Tijne Step t
1111
11107
0/l0]|o0




Hybrid Model

Geo-clusters

Static Covariates

+

Spatial Coordinates

Gaussian Mixture Model




Hybrid Model

000 0 & & 000000 ¢ 20000000
0000000000000 0000000 [ ]

On Intensely Monitored Regions

Decision Tree
+

Markov Random Fields

Bagging of Decision Trees Markov Random Fields

Taking it for a Test Drive: A Hybrid Spatio-temporal Model for Wildlife Poaching Prediction Evaluated through a Controlled Field
Test. Shahrzad Gholami, Benjamin Ford, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey
Rwetsiba, Mustapha Nsubaga, Joshua Mabonga. In ECML-PKDD 2017



Augment Dataset With Expert Knowledge

Cluster Value in Estimated Snaring
Cluster Index "predict_heatmap_i10.tif" Threat (0~10)
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

» Negative sampling: sample from unpatrolled regions
» Positive sampling: Estimate from rangers’ estimated scores
Collect answers for several sets of clusters C1, C?

Compute aggregated scorea s = min{sl(Cil),SZ(le), }, add unlabeled
points as positive points if s = 6

25 Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. Swaminathan Gurumurthy, Lantao 8/12/2019
Yu, Chenyan Zhang, Yongchao Jin, Weiping Li, Xiaodong Zhang, Fei Fang. In COMPASS-18
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Field Test | in Uganda (I month)

» Trespassing

|9 signs of litter, ashes,
etc.

» Poached animals
| poached elephant

» Snaring
| active snare

| cache of 10 antelope
snares

| roll of elephant snares

» Snaring hit rates AT o
Outperform 91% of past TURERIRL e Hit Rate Rate

A : 0.73 3
months YETaee

| N

Cloudy with a Chance of Poaching: Adversary Behavior Modeling and Forecasting with Real-World Poaching Data. 8/12/2019
Debarun Kar, Benjamin Ford, Shahrzad Gholami, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred
Wanyama, Aggrey Rwetsiba. In AAMAS-17

26/67
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Field Test | in Uganda: % Months Exceeded Historical

Animal Commercial Animal Noncommercial Fishing Plant Noncommercial Trespassing

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

B Percentile

28/67 Fei Fang 8/12/2019



Field Test 2 in Uganda (8 months)

» 27 areas (9-sq km each)
» 454 km patrolled in total

» No point > 5 km from
patrol post

» No area patrolled too
much/rarely

» No overlapping areas

» <=2 areas per patrol
post

29/67 Fei Fang

0 75 15km
.

8/12/2019



Field Test 2 in Uganda (8 months)

» 2 experiment groups

|: >= 50% attack
prediction rate

5 areas 1o 0142
o g ]
2: < 50% attack > 0'0s
prediction rate EN )
D 6
22 areas %0.04
go.gz
£ oo

Z

» Catch Per Unit Effort
(CPUE)

Unit Effort = km walked

0 7.5 15km
.

30/67 Fei Fang 8/12/2019



Field Test in China

» Two-day field test in October 2017:22 snares
» 34 patrols from November 2017 to February 2018

7/ snares

31 8/12/2019



From Prediction to Prescription

Machine Learning

Where to

) :
place snares? Game Theoretic

Reasoning

Route Planning




Game Theoretic Reasoning Based on Learned Model

» Find optimal patrol strategy given poachers respond
to the patrol strategy according to learned model

» Challenges

Learned model is hard to represent using closed form
function (e.g., decision tree)

Hard to scale up when considering scheduling constraints

34 8/12/2019



Game Theoretic Reasoning Based on Learned Model

» Input: A machine learning model that predicts snares
» Output: an optimal patrolling strategy

» Goal: maximize catches of snares

Previous period Current period
o o o % e o o
\ J\ J
| |
happened To be planned

35 Optimal Patrol Planning for Green Security Games with Black-Box Attackers. Haifeng Xu, Benjamin Ford, Fei Fang, Bistra 8/12/2019
Dilkina, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, Joshua
Mabonga. In GameSec-17: The 8th Conference on Decision and Game Theory for Security



Game Theoretic Reasoning Based on Learned Model
For each cell i:

x;: Current patrol y;: Prob. of detecting a
effort at i share at i in current period

» Optimization problem: max }.; g;(x;)
X

» However... S 8 | 7
} Patrol post
/'/ (one patroller)

36 8/12/2019



Game Theoretic Reasoning

» Observe:a pure strategy
= a path from v{; to vyt

(N =)8

» Claim: a mixed strategy 7 e - 0-9--9
& one-unit fractional -0 --0-9--9
flow from v, to vy - --8-0--0
78
» Patrol effortatcelli = -3 ._"‘."_?\\_‘.
the aggregated flow --0---0--9-49 |
through cell i _»‘__"___"___"__g‘______flme
1 2 3 4 5 6(=T)
V11 Vir

» Build 2 mixed integer

. Time-unrolled Graph
linear program

37 8/12/2019



Game Theoretic Reasoning Based on Learned Model

» A MILP formulation

~ Hkéilxz 9i(x;)
)

[maximize Zf;l (gz-(O) + Z;nzl 23 +[9i(9) —9i(5 — 1)]

subject to(z; > D1 % oy — eyl )
m - _j
Ti <1+ i % 0 [0y — oyl N
g > 2P, i = Zi i
z € {0,1} .
\&i et i _/  Patrol effort at cell i = the aggregated flow

Ti =) Zegﬁ(v,_;) f(e)|, «—through cell i
Zeea'*'(vt’i) f(e) - ZCEU-(Ut,i) f(e)’

D ecot(vrq) F(€) = Xeco—(v, ) F(€) =1 f is a unit flow
0<z;<1, 0<f(e)<1,

38 8/12/2019



Complex Terrain

©:2015.Google ! 3 Google‘ea rth

€ 2015 Cnes/Spot Image

Fei Fang 8/12/2019




Complex Terrain

Patrol Route (3D)

Patrol Route (2D)

40/67 Fei Fang 8/12/2019



Trial Patrol in the Field

» 8-hour patrol in April 2015: patrolling is not easy!

T

41/67 Fei Fang 8/12/2019



Spatial Constraint

Fei Fang 8/12/2019




Spatial Constraint

» Grid based — Route based
» Hierarchical modeling: Focus on terrain features

» Build virtual street map

Fei Fang 8/12/2019



Spatial Constraint

» Hierarchical model: Focus on terrain feature

LIS
“\\&éﬁ  Ridgeline

— Stream

1

1

—  Street Map

T,

—  Patrol Route

oo

- A

<

44/67 Fei Fang 8/12/2019
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Patrol Route Design

©2015 Google

Darigues Google‘earth

€ 2015/ Cnes/Spot Image
Data'SIO, NOAA, U'S. Navy, NGA, GEBCO

Deploying PAWS: Field Optimization of the Protection Assistant for Wildlife 8/12/2019
Security. Fei Fang, Thanh H. Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R.
Clements, Bo An, Amandeep Singh, Milind Tambe, Andrew Lemieux. In IAAI-16




Field Test in Malaysia

» In collaboration with Panthera, Rimba

» Regular deployment since July 2015 (Malaysia)

46/67 Fei Fang 8/12/2019



Real-World Deployment

Grid Based Route Based

AN

N

__?
b

47167 Fei Fang 8/12/2019



Real-World Deployment

Animal Footprint

48/67 Fei Fang 8/12/2019



Real-World Deployment

|.2

0.8
0.6
0.4
: l

Human Activity Sign/km Animal Sign/km

B Previous Patrol m PAWVS Patrol m Explorative PAWS Patrol

» 49/67 Fei Fang 8/12/2019



PAWS: Protection Assistant for Wildlife Security
Past Patrolling and Protected Area
Poaching Information Information

Learn Behavior Model H

Game-theoretic :
. Route Planning
Reasoning

Patrol Routes
Poaching Data Collected

50/67 Fei Fang 8/12/2019




PAWS: Protection Assistant for Wildlife Security

» PAWS is deployed in the field

Saved animals!

1ERA

LEADERS IN WILD CAT CONSERVATION

WCS

51/67 Fei Fang 8/12/2019

Conserving
for Generations
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What game are we/they playing?

» Common criticism: game parameters are fully known

E.g. target importance

» How to learn parameters of 2-player zero sum
games from opponents’ or players’ actions?

53 What game are we playing? End-to-end learning in normal and extensive form games.
Chun Kai Ling, Fei Fang, J. Zico Kolter. In |JCAI-ECAI-18



Forward Problem: Game Solving

@ 0 1 1 Solve Equilibrium strategies
) SN
V2| 1 wev =g

54



Inverse Problem: Game Learning

55

: Learn

i.i.d samples from
equilibrium strategies

a®M =( D, ¥2)
a® =( ©,E3)

a® =(2,63)



What game are we/they playing?

» Previous work on this topic

Directly learn good strategies from data (e.g. Letchford et al.
, 2009)

Rely on special game structures (Vorobeychik et al., 2007)

Computational Rationalization framework (Waugh et al.,
201 1)

56 What game are we playing? End-to-end learning in normal and extensive form games.
Chun Kai Ling, Fei Fang, J. Zico Kolter. In |JCAI-ECAI-18



Differentiable Learning

€| 0 |=by |~b,
Y2| b | 0 |-bs
&b, | by | 0

» Guess the value of b;

» Compute equilibrium of guessed game

i.i.d samples from

: Learn equilibrium strategies

a® =( D, ¥2)
a® =( ©,E3)
a® =(2,83)

» Check if the computed equilibrium consistent with data
» Adjust the value of b; to increase consistency

» Repeat until satisfied

57

JL

- Update bi: = bi —

0b;

8/12/2019



NE and QRE in Zero-Sum Games

Recall LP for computing NE

min x
u,x

s.t.x = Zi uiPl-j ,VJ

Ziul‘ — 1,ul' = O,Vl

Nash Equilibrium
» Assumes perfect rationality
» May have multiple equilibria
» Discontinuous w.r.t. P

min max u’ Pv
u v

s.t.
1Tu=1u=0
1Tv=1,v=>0

58

Recall Quantal Response
eﬂ*AttEUj(x)

qj = Y e A*ATEU;(X)
l

Quantal Response Equilibrium

» Captures bounded rationality
» Unique

» Continuous w.r.t. P

min maxu’ Pv — z v; logv; + z u; log u;
u v
i i
s.t.
1Tu=1u=>0

1Tv=1,v=>0

exp(Pv); exp(P"u);
U: = SV =
boXgexp(Pv), T Ygexp(PTu),

8/12/2019



Learning of normal form games

» QRE = solution of min-max convex-concave problem

min max u! Pv — z v; logv; + z u; logu;

1Tu =1, 1Tv =1
» KKT conditions:

Pv+log(u) +1+ul =0
—log(v) —1+v1=0
1Tu=11Tv=1

Recall: Newton’s Method for |-D:

f ()

x7l+1 — xTL _fl(x )
n

Generally, for nonlinear system
Jr(xn) (ng1 — x5) = —F(xy)

» Forward pass Apply Newtons Method

dla — P
g( ) 1 0|[Au]
1\ 0 1|lav
T T - _
P diag <v> o ollau
1T 0 0 O _AV_
0 17

59

" Pv+log(u) + 1+ ul

PTu —log(v) — 1 +v1
1Tu -1
1Tv —1




Learning of normal form games

» Backward pass: Gradients of P may be obtained via
the implicit function theorem

60

where

Yu
Yv

L Yv

VeL = y,v’ +uyl,

_diag(%)
PT
1T

0

—diag(%)
0

oo O

O O = O

8/12/2019



Learning in the presence of features

2

Lz

S

0 |=b(® | by
@ﬁZ by(¥) | 0 |—bs(®)
@ ~by(x) | bs(x) | 0O

6l

: Learn

i.i.d samples from
equilibrium strategies

a® =( O, 2)

a® =( ,63)

a® =(2,63)
Cor;.t.ext

x(1) =10.1,0.5]
x() =10.3,0.7]



Learning in the presence of features

» Figure out which features attract/discourage attackers
Better understand attacker’s interests
Design better configurations which favor defenders

» Predict each player’s mixed strategy given an new
environment

In practice, environment is changing over time

62



Learning in the presence of features

» Context (feature) x() and payoff matrix Py (x (1),
parameterized by @

» Each player acts according to a mixed strategy (u, v)
given by the QRE of Py (x(V)), giving realizations a(

» Objective: Learn @ from {x, a(}

63



End-to-end learning

Algorithm 1: Learning parameters ® using SGD

Input: training data {(z(¥),a(9)}, learning rate 1, ®,i

for ep in {0,..., ep,,..} do

Sample (z(¥, (") from training data;

Forward pass: Compute Py (2®), QRE (u,v) and loss L(a'¥, u,v);
Backward pass: Compute gradients V,L,V, L, VpL.VagL;
Update parameters: ® < & —nVal;

end
Equilibrium
Parameters Payoff Matrix strategies
) (u,v)

2D — ® _,P o(x ) Game

Context VoL Solver (v,L,V,L)
Loss
Vol Main contribution
a®

Actions >

64




Extensive form Games

» Let (u, v) be strategies in sequence form

» Equilibrium is expressed as solution using dilated
entropy regularization (Equivalent to solving QRE for
the reduced normal form)

mln max uT Py — Z Z Vg log(—) + Z Z U, log(—)

u—eFv—f

VpL = yuvT + uyg,

65



Resource Allocation Security Game

» Defender: 1 resources, n targets
Can allocate multiple resources to one target

» Attacker choose a target to attack

» Each target has value R;

» If target i is protected by x resources and is attacked:
Ri

T 2%
» Attacker may learn R; from observed defender
actions

» Extend to T-stage game

66 8/12/2019



Resource Allocation Security Game

MSE of target values

»rn=2,r=5

10° o
E 10
1]
-
[

107! o
© 1072
-
[T
o
0

1072 s

200 500 1000 2000 5000 200 500 1000 2000 5000
Training samples Training samples
T=1 T=2

67



One-Card Poker

» Learn players’ belief of card distribution

» Variant of Kuhn Poker with 4 cards, with non-uniform
card distributions

» Observe actions of each player (e.g. raise, fold)
» Probabilities for chance nodes are embedded in Py

=
9
(¥

=
9
w

MSE of u, v

=
9
B
=
9
B

MSE of card weights

500 1000 2000 5000 500 1000 2000 5000
Training samples Training samples

68



Featurized Rock Paper Scissors

P S
0 —b, b,
P = P by 0 —b;
—b, bs 0
b = dx,
x € [0,1]?

® € [0,10]3 %2
Obijective is to
learn &

69

MSE of parameters

B

M

—~— MSE of parameters
——~ MSE of u, v

S

0=
500

1000

Training samples

2000

5000

=

MSE of u, v ©
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Improve Scalability using FOM

» Recall in the basic approach, each step in the
Newton’s method of each forward pass requires
solving a linear system — Time consuming

i 1
diag(— P
lag(u) 1 0|[AY] Py +log(u) + 1+ ul]
1\ 0 1||Av PTu —log(v) — 1 +v1
T T = _ _
17 0 0 OfLAv] ! 1Ty —1
0 1T

» Solution: Use first-order iterative method (FOM) to
solve the forward pass directly
min maxu’ Pv — Z v; logv; + z u; logu;

u v -
l
T, — T, —
1'u=11"v=1
70 Large Scale Learning of Agent Rationality in Two-Player Zero-Sum Games. 8/12/2019
Chun Kai Ling, Fei Fang, Zico Kolter. In AAAI-19



Improve Scalability using FOM

» The problem in the forward pass is a problem of the
following min-max format, where the last two terms
are strictly convex functions

min max 2’ Py + £(z) — F(y)

Fr=xq¢ Fy=yo

» This problem can be solved using various FOMs

Input: 29 ¢y P 7 o
for i in {0,...} do

end
71

g =y";
(i) _

BR, (z) §; P,7);

7= 2pUith) _ :U(i);

i+ =

=)

BR is smoothed best response

BR,(Z,7) = argmin 2z’ Pj + £(x)

Fx=xg

1
i _D;I:(xa i.)
T

1
BR, (7, %) = argmin —%7 Py + F(y) + —D,(y, 7).
. —D,

Fy=yo

8/12/2019



Improve Scalability using FOM

» Surprisingly, solving each step in the backward pass
can also be converted to solving a problem with the
min-max format. So same FOM can be applied.

Yu “Z(w) P ET 07 '[-V.L
Yo Pt Ew) 0 FT -V, L
yu| | E 0 0 0 0
Yv 0 F 0 0 0

KKT Conditions

72 8/12/2019



Speedup in Forward Pass

1.0e+02
1.5e+01
1.0e+01
@ .| S1.0e+01 O
T r 1R 3
E © =3
& 1.0e+00 3
y 5.0e+00 (@)
~—4— Our method O'_Qh
~— Newton's Method o
1_0e_01 ; : ' : " .............................................. G : 3
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 o)
size n size n o
(¢
: o
~4— Our method 6.0e+02 =
1.0e402 Newton's Method Q
()
m S 4.0e+02 o
T 1.0e+01 “8 %
2 g
= : ? 2.0e+02
1.0e+00 /,/1
1.08-01 Av i i ' 00e+00 , ......................... e ——— ’ ......................... :
10 15 20 25 10 15 20 25
size n size n

>

#Hactions increase
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Speedup in Backward Pass

| 0et01 —— Our method 3.5e+00 o
e+ .
Newton's Method _ 3 3.0e+00 /
w F : S 2.5e+00 __,,f”" O
T ~ o - 0)
E 1.0e+00 - v 2.0e+00 9
5 ¥ a2 =
y 4 1.5e+00 Vil o
{,f’g & o
1 GE""’DG ___..{' ......................................
1.0e-011{" , , . . . ¢ | | _ _ | 2
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 g
size n size n -
o
1.0e+02{ - Our method 1.0e+02 | / ®
/ —_
Newton's Method 8.0e+01 g
1.0e+01 1 a f__.-* -
wn _g 6.0e+01 - i 8
W ) W (7]
1.0e-01 _— 2.0e+01
T = -
L2 - I I E.UE+UG | ,.'.,_...rn-r.. . e I
10 15 20 25 30 10 15 20 25 30
5ize n size n
Hactions increase
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Outline
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» Learning-Powered Strategy Computation in Large Games

Leveraging Deep Reinforcement Learning

» Other Applications and Summary
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Solving Game through Learning from Self Play

3lnhaGo Vs AIphaGB!

-~ ' .‘

"." ‘fh. .

Compute Optimal Defender Strategy

https://www.youtube.com/watch?v=Ue4A2Y_i3ZQ
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More Complex Games: Patrol with Real-Time Information

» Sequential interaction
Players make flexible decisions instead of sticking to a plan
Players may leave traces as they take actions

» Example domain:Wildlife protection

Footprints Lighters Old poacher camp Tree marking

77 Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan 8/12/2019
Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19



Multi-Agent Reinforcement Learning

L] | Destructive tools placed by the
s==
attacker

[ ] [ ] [ ] ] [ |

Footprints of attacker

===
Attacker' view
[ ] H 1 { .
STRAT ¥
POINT . Footprints of defender

Features corresponding to
the cell @;.; (animal
density)

Defender’s view

8/12/2019




Compute Best Response by Training a Deep Q-Network

) e
l. _>7 == — 4,,.,, =S N
@ | vl oL oL , : T — 1 ‘ 7 D e = ‘ =
4 } ; D Max e - ' 4 L 7 B ~— o 7> iy 7777’
_ 1 ) 19 pooling  Max T — Ful 64 5
e ol il ol g 16 Pooling 32 connection conr’r:;’:,ﬁonw; '.
Up Down Left Still

» Q Network: Game state — Q-value

» Use Deep Reinforcement learning to train the network and
find optimal patrol policy (assuming fixed attacker)
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Compute Best Response by Training a Deep Q-Network

80

:i N E 0
N :’ 0 om
E = E = =
I . Alf B =
0 o im0
I = SN -
"= 0 E".[

DQN Defender

Vs
Non-Adaptive Attacker

Attacker .
Snares -

Start from one of the corners

Defender ‘

Start from
Patrol Base
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Compute Equilibrium: DQN + Double Oracle

Compute g gl = |
Nash(G%,G%)

Compute Nash / Minimax Find Best Response to
- attacker’s strategy

> [Train f¢=DQN(c%) }

\Vg
\Vg
[ Trainf® = DQN(0c9%) ] | > [ Add f%,f% to }
G4, G

Find Best Response to

Update basic strategy set
defender’s strategy

8l 8/12/2019



Enhancements

» Use local modes for efficient and parallized training

» Start with domain-specific heuristic strategies

i_’_’ |
9¢H B ® O 7 = o4 ®m N § H =
B mm 0 = § 0O [ :i E 0 ®m B [
N I.I H EH E o [ ... N e
[N A [N Y E T i E— O O m 0 =m0 O
[ o N o A Y N o A N | s B
[ N s Y Y N v Y N  ® ¢ojd @ 5 om

I N e E.E O B O m T E.[ a
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Solving Game through Learning from Self Play

» Green dots:Valuable trees

» Blue dots: Defender location
» Red dots: Logging locations
» Zero-sum game

» Goal: Find defender strategy or
defender policy

83 Policy Learning for Continuous Space Security Games using Neural Networks. Nitin 8/12/2019
Kamra, Umang Gupta, Fei Fang, Yan Liu, Milind Tambe. In AAAI-18



Solving Game through Learning from Self Play

» Key idea |: Represent mixed strategy using logit
normal distribution in polar coordinate system

T'NP(N(,L{T, 07’2))
O~P(N (1o, 04))

e

HE

-
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Solving Game through Learning from Self Play

» Key idea 2: Represent a “policy’” with Convolutional
Neural Network

Policy: mapping from game setting to strategy
CNN:Tree Distribution »Mean/Std of r and 6

'|:>Mean

Conv: 16, 4x4, 2x2
RelLU

Conv: 32, 16x16, 8x8 :> Std. Dev.
RelLU

Input image
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Solving Game through Learning from Self Play

» Key idea 3: Approximate Fictitious Play
Fictitious Play: Best responds to opponent's average strategy
Average strategy —» Random samples from history
Best response — Update neural network

'|:>Mean

Conv: 16, 4x4, 2x2
RelLU

Conv: 32, 16x16, 8x8 |:> Std. Dev.
RelLU

Input image
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Solving Game through Learning from Self Play

» Put them together

Algorithm 1: OptGradFP

Initialization. Initialize policy parameters wp and wq, replay memory mem;

for ep in {0, ..., epmax} do

Simulate ns game play. Sample game setting and actions from current policy mp
and mp ns times, save in mem;

Replay for defender. Draw n, samples from mem, resample defender action from
current policy 7p;

Update parameter for defender. Update defender policy parameter
wp ‘= wp + —2— %V, Jp;

1+ep Bp ]
Replay for attacker. Draw n, samples from mem, resample attacker action from

current policy mp;
Update parameter for attacker. Update attacker policy parameter

. a7e)
wo ‘= wp + T+ep Ao * VWOJO

87 8/12/2019



Solving Game through Learning from Self Play

» Single game setting

Cournot Adjustment StackGrad OptGradFP

» Multiple game setting
Train on 1000 forest states, predict on unseen forest state
7 days for training, Prediction time 90 ms
Shift computation from online to offline

88 8/12/2019



Enhancement

» DeepFP

Generative network for approx. BR + game model network

Allow to use mathematical programming-based approach to
compute BR for one or both players

Data: max_games, batch sizes (mq, my, m¢), memory oL
size I/, game simulator and oracle BRO,, for 69;'
players with no gradient ¢ '
Result: Final belief densities ¢ in mem V players p =~ N(O.1
e s E ) =P 3 BR;, Uy
Initialize all network parameters (€1, 62, ¢) randomly; — ©.) —> - -
. P 7
Create empty memory mem of size F; model —>
for game € {1, ..., max_games} do network R
Obtain best responses mp~ﬁw[ () =<

Play game and update memory

Train shared game model net A .
L'r'p (ap) = _E(zp ~N(O T u— p~E—p) [TP(BR'P(ZPE Hp): U—p; QD)]

| Train best response nets

89 DeepFP for Finding Nash Equilibrium in Continuous Action Spaces. Nitin Kamra, 8/12/2019
Umang Gupta, Kai Wang, Fei Fang, Yan Liu, Milind Tambe. In GameSec-19



Enhancement

90

OptGradFP

Forest structure

T -

DLP (approx. ground truth)

h s

€ —1.20 £ 0.07

il
e =0.53+0.10

e=2.05+0.13
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Outline

» Games with Human Players for Real-world Applications

Wildlife Conservation

» End-to-End Learning and Decision Making in Games

A differentiable learning framework for learning game parameters

» Learning-Powered Strategy Computation in Large Games

Leveraging Deep Reinforcement Learning

» Other Applications and Summary
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How Valuable is This Car?
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Deception
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Deception
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Cyber Deception

» What can the defender do without “patrol boats™?

» Use deception to confuse the attackers!

information

Send probes to
systems to gather
Attacker

Give information
about systems on
network

Enterprise Network

95 Deceiving Cyber Adversaries: A Game Theoretic Approach. Aaron Schlenker, 8/12/2019
Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, Long Tran-Thanh, Phebe
Vayanos, Yevgeniy Vorobeychik. In AAMAS-18



Cyber Deception

» How should the defender disguise the systems to
induce the adversary to attack the least valuable
systems!?

» Cyber Domain Challenges:
Intelligent adversary; could perceive deception occurring
Large number of system configurations and ways to disguise

Arbitrary deception may not be feasible or may affect
performance

96 8/12/2019



Cyber Deception Game: Setting

» K systems, each has true configuration (TC) f € F

» Successful attack on system with TC f yields utility
Ur to attacker; defender loses Ur (gains — Uy)

fz : 0
Linux,
NGINX 1.10
fl: 10 W f3 : 5
Windows, Linux,
Apache 2.2 § — NGINX 1.15

f2:0

Linux,
NGINX 1.10
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Cyber Deception Game: Setting

» Defender disguise the systems through deceptive
responses

» Each system gets observed configuration (OC) f € F

f2: 0

Linux, Linux,
Apache 2.4 NGINX 1.10

fz: 5

Linux, Linux,
= NGINX 1.15 Apache 2.4

Windows, Windows,
Apache 2.2 Apache 2.2

f2:0

Linux, Linux,
Apache 2.4 NGINX1.10
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Cyber Deception Game: Defender

» Know true configuration (TC) f

» Need to decides observed
configuration (OC) f

» Systems with same TC are
indifferent to the defender

» Ny = Number of systems having
TCfeF

99

mfl: Uy, =10
~
m f2: Ufz =0 fl
~
Wi
m f3: UfB - 5
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Cyber Deception Game: Defender

» Deception strategy encoded via integer matrix ¢
¢¢ 7 = number of systems with TC f and OC f

1]3: Uy =10 ol 7 7
113 Uy, = 0 fi A

Bl2 o
1f2 o f2 flo 1
i'fg U, =5

8/12/2019



Cyber Deception Game: Defender

» Deception strategy encoded via integer matrix ¢
¢¢ 7 = number of systems with TC f and OC f

TC f may not be masked with OC f (¢ 7 = 0)
Showing deceptive responses incur costs c(f, f); budget B

4']3: Uy, = 10
\ e
"fz Uy, = 0
i'fg: U, =5
|

8/12/2019



Cyber Deception Game: Attacker

» Can observe OC of each system
» Cannot differentiate systems with same OC

» Uniformly randomly attacks systems with most
attractive OC

|

How much does the attacker know
about the deception?
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Cyber Deception Game: Attacker

» Powerful attacker: Knows deception strategy ¢
Computes expected payoff for all OCs and best-responds

Robust assumption to minimize worst-case loss

W fi: Us, = 10 i 5
) (o Expected Payoff
—
- 2| [0 77 Eperdyy
m fz: Ufz = 0 O 1
~ 104+ 20
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Cyber Deception Game: Attacker

» Powerful attacker: Knows deception strategy ¢
Computes expected payoff for all OCs and best-responds

Robust assumption to minimize worst-case loss

» Naive attacker: Not aware of deception
Believe what they observe

Preset preferences (utilities) for attacking OCs

104 8/12/2019



Quiz
» With powerful attacker, when there are no budget

constraint and feasibility constraint, what is the
optimal defender strategy!?

105 8/12/2019



Quiz

» With powerful attacker, when there are no budget
constraint and feasibility constraint, what is the
optimal defender strategy?

» Trivial case (no constraints): assign to same OC

106 8/12/2019



Against Powerful Attacker

» Powerful attacker: Knows deception strategy ¢
Computes expected payoff for all OCs and best-responds

Robust assumption to minimize worst-case loss

» When some masking infeasible or budget limited

Theorem: NP-hard to compute optimal strategy for defender
against powerful adversary.

Proven via reduction to Partition problem
NP-hard even with just feasibility or just budget constraint

107 8/12/2019



Against Powerful Attacker

» Solve through mathematical programming

min u Non-linear
u,¢p

Yrer br U -
S| 2L PRI | re R

S.t.

2rer Pr

Expected Utility
for attacking T

Feasibility Constraints

Z 2 bricrf =B Budget Constraint

108

8/12/2019



Against Powerful Attacker

» Solve through mathematical programming

» Reformulate to MILP: Guaranteed to find optimal
solution
Remove the non-linear constraint
Adds |K||F| auxiliary variables
Adds 4|K||F| additional constraints

» Approximation algorithm: Solve sequential MILPs
» Heuristic algorithm: Greedy MiniMax (GMM)

A fast heuristic which greedily minimizes attacker utility

109 8/12/2019



Against Naive Attacker

» Naive attacker: Not aware of deception

Simply believes OCs (or just not reasoning about the actual
TC—OC mapping strategy used by the defender)

Preset preferences (utilities) for attacking OCs

» When no budget constraints; but just the
feasibility constraints

Theorem: can be solved in O(|F| |F |) time
» When both budget and feasibility constraints present

Theorem: NP-hard to compute optimal strategy for defender
against naive adversary.

110 8/12/2019



Simulation Results

» 20 TCs, 20 Systems
» Attacker Utility = 10 without deception

] *MILP
sGMM

Adversary Utility

10 12 14 16 18 20
Num of Observables
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Simulation Results

» Attacker model and belief of attacker model matters

Against Powerful Attacker Against Naive Attacker

210 210 *MILP
£8 = Naive
B x| %
04 W4
4 *MILP o
>2 Naive 92
o T
<0 <0

5 10 15 20 5 10 15 20

Number of Systems Number of Systems
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Evolution of Surge Pricing

» Surge price interface

SURGE PRICING X

I
Demand is off the charts! Fares have Harvard
increased to get more Ubers on the road. re’Q %rsnty R S0
A ““0ridge gy
NS
L] <
o) Y
.0) o
% Massachusetts !
@ @Kﬁ[ Institute of Technolo.. ~  Manst
DN
THE NORMAL FARE ,%,j ch”\\ \\5% \o
Economy
Fares are slightly higher due to increased demand
$0.84 $3.04
[ S .
$4.99
’ 00:03

or |
NOTIFY ME IF SURGE ENDS REQUEST UBERX £

Fei Fang
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Evolution of Surge Pricing

» Coarse — Fine grained in space

00000 AT&T LTE 10:38 PM p 00000 AT&T LTE 11:47 PM

j 5} = R

Earn up to $250 for every friend you

Invite Now
refer

| 14 Fei Fang 8/12/2019



Quiz

» What are the potential strategic behavior of a driver
(with old or new interface)?

115 Fei Fang 8/12/2019



Market Failure - |

00O AT&T LTE 10:38 PM

116 Fei Fang 8/12/2019



Market Failure - 2

117 Fei Fang 8/12/2019



Market Failure - 3

ailVerizdh = \Vafl6:38 ail Verizon 16:44 @73%3 6{ ()
% 9(,/.
&edfrd é Malden ,@'90'.

Me\dford

@

Tufts
liversity

Revere

Everett

Revere Q

Tufts
University

Everett

Gelsea

- #helsea
Bunker Hill Monument

7

= m Harvard University ~ 9
{ ‘ s

Al Monument",

, ouse > <
\ ,_7 - @ J'he Paul Revere House
| Boston Logan | B
j Gogg|e g .~ International Airport / @ \, BOStOh @
:enwaleaJ;L@_“‘_“ ‘ ——_ [J - = - / - . o ‘ : Con\A/iar\/ barl/ @"" /. ( /

Bad draw dispatches: “after accepting, drivers are able to contact the rider.
Some may [] learn [the] destination [] and canceling if [] the trip will not be
worth the time.”
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Competitive Equilibrium

» Competitive Equilibrium (CE)
Also called Walrasian equilibrium
Traditional concept in economics

Commodity markets with flexible prices and many traders

119 Fei Fang 8/12/2019



Competitive Equilibrium

» A very simple setting

120

A set of items [n] = {1,2,...n}

A set of buyers [m]| = {1,2, ..., m}

Each buyer i has a valuation for each item j: v;;

Given a price vector p € R", agent i’s utility is: u; (x; p) = v;

- X —p - x where x € {0,1}" indicates which items the agent
gets

Each agent can get at most one item

Fei Fang 8/12/2019



Competitive Equilibrium

» A CE consists of:
A price vector p € R}

A valid allocation matrix x
x;; € {0,1} indicates whether or not item j is allocated to agent i
Each item is allocated at most once };; x;; < 1,Vj
Each buyer can get at most one item 2 x;; < 1, Vi
Use x; to denote the binary vector for agent i
p and x satisfy the following constraints

Best response

X; € argmax  u;(x;p), Vi
x:xE{O,l}n,Zj xj<1

Market clearance
Vj,Lixij=1lorp; =0

121 Fei Fang 8/12/2019



Super Bowl Example

9:50pm 10:10pm 10:20pm

3\ 80

) ©
o0 ~

$100 $100
$90
$1 $10 $80
Eﬁ% 520 ° i
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Myopic Pricing

» At current time t, each location has a sub-market
» Allocate cars to the riders with highest valuations

» Driver-pessimal price shown in black

9:50pm 10:00pm 10:10pm 10:20pm

130 Fei Fang 8/12/2019



Quiz

» With Myopic Pricing, at most, how much more can the
purple driver earn if he deviates from the system’s
assighment and all other drivers always follow the

system’s assignment?! (Options: $100, $90, $80, $0)

9:50pm 10:00pm 10:10pm 10:20pm .

131 Fei Fang 8/12/2019



Useful Deviation

» Purple driver rejects the assigned ride at 9:50am to
earn more money

9:50pm 10:00pm 10:10pm 10:20pm .

132 Fei Fang 8/12/2019



Spatial-Temporal Pricing

» Model: Discrete time/location, Impatient riders,
Anonymous origin-destination trip price

» One-shot assignment

Assignment plan: Decompose a min-cost flow
Pricing: Dual of flow LP
Form competitive equilibrium (CE)

Welfare optimal

Maximize total payment for each driver
Maximize utility for each rider
Envy free

All feasible driver payments in CE form a lattice

134 Spatio-Temporal Pricing for Ridesharing Platforms. Hongyao Ma, Fei Fang, David C. Parkes. In EC-19 8/12/2019



ILP for Computing Optimal Assignment Plan

| Zi]
rrgﬁ/x Z TjVj — Z Zyi,k)‘i,k
JER i€D k=0 Dual Variables
| Zi]
s.t. ij]l{<0]ad]77—]) - (aabat)} < Zzyi,k]l{(aaba t) € Zi,k}a pa,b,t \V/(G/, bat) & F
JER 1€D k=0
| Z:]
Z yik =1, T LP Relaxation S
k=0
(01 xi<1l YjeR
{1 x; 20 VieD, k=1,...,|Z
Yik =0
8/12/2019
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Dual Problem to Compute CE Pricing

i€D JER
ST > > Papt — Aik Vk=0,1,...,|2], YieD
(a,b,t)EZ; 1
Uj 2 Vj — Do, dj,7is VieER
Pabt = 0, Y(a,b,t) € T
u; > 0, Vi EeR
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Spatial-Temporal Pricing

» However...Drivers can deviate and trigger
recomputation!

» Solution: Driver-Pessimal CE
Trip price = welfare gain difference

Pabt = CI)a,t — CI)b,t+dist(a,b)
CDa,t 2WMDU{(T,a)},R) — W(D,R)

Incentive compatible subgame perfect equilibrium

No driver want to deviate from assigned action!

137 8/12/2019



Spatial-Temporal Pricing

» SPT vs Naive surge

800 r 20
—— /Q’/O
o o<
o 700 @ 15 | el
g p 2
§ 600 1 g Y
= 5 10t @
m /
8 500 o ;
o) < @
w P 5 + /
400 q>.) // = STP
q -+ - Myopic < /®’ - - Myopic
300 : : ' : ' O R UL S A
0 20 40 60 80 100 0 20 40 60 80 100

# (C,B,1) Riders # (C,B,1) Riders
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Time Efficiency
o

o ™

(o] [4)]

o
14
a

©-0-0--06-0-606-90O

—8—STP
- - Myopic
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# (C,B,1) Riders
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Summary

» Games with Human Players for Real-world
Applications

» End-to-End Learning and Decision Making in Games

» Learning-Powered Strategy Computation in Large
Games

Thank you!

Fei Fang
Carnegie Mellon University
feifang@cmu.edu
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Security Challenges

=

Explosions near stadium & o5 &0 2

Restaurant shooting

Hostages at theater

Charlie Hebdo attack -

\ < k
Eiffel Tower . -

Explosions in Brussels

Brussels Airport w

o
*

Maalbeek
Subway Station

&
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gNuremberg, on July 24. This is the fourth violent incident in

et PARIS
ememe - ¢ ATTACKS

IAnsbach attack

A suicide bomb injured at least 12 in Germany’s Ansbach, near

Germany in a week.

R GERMANY
. Frankfurt @
e Wurzbuerg ®
' g July 18 Nuremberg
A Pakistan refugee injured [
) five people with an axe ® _
T near Wurzbuerg. Ansbach .\
7 July 24 ™
7 @ Stuttgart Asuicide bomb injured at least 12. \7'\
~/ -
“paNCE [ Reutlingene J
July 24 > et
A Syrian/refugee killed a Munich o C AUSTRIA
pregnant women. July 22 NN =
. e _Agunman shot - /
Senny T hinepeopledead. (™ ) g5 e
Cr g A RN N N B ‘h’-, ‘._. .;\ o f{” NV ?
SWITZERLAND /) Y/ A b7
Source: Reuters
J.Wu, 25/07/2016 % REUTERS
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Sustainability Challenges

Tooa Y
~ 3,200

100 Years ago
~ 0,000
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Mobility Challenges
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