Deep Reinforcement Learning for Green Security Games with Real-Time Information

Yufei Wang¹, Zheyuan Ryan Shi², Lantao Yu³, Yi Wu⁴, Rohit Singh⁵, Lucas Joppa⁶, Fei Fang² ¹Peking University, ²Carnegie Mellon University, ³Stanford University ⁴University of California, Berkeley, ⁵World Wild Fund for Nature, ⁶Microsoft Research

Introduction

Real-time information such as footprints and agents' subsequent actions upon receiving the information, e.g., rangers following the footprints to chase the poacher, are neglected in previous work of Green Security Games.

Our paper fills the gap. First, we propose a new game model GSG-I which augments GSGs with sequential movement and the vital element of real-time information. Second, we design a novel deep reinforcement learning-based algorithm, DeDOL, to compute a patrolling strategy that adapts to the real-time information against a best-responding attacker.

Approximating best response strategy against a fixed opponent by DQN

Input : a 3-D tensor with the same height and width as the grid world, with each channel encoding different information such as the observed footprints, and etc. Output: each output unit represents the Q-value of choosing that action.

GSG-I Game Model

Attacker: red circle. He tries to put some attacking tools in the world to maximize the damage, meantime avoid defender. **Defender**: blue circle. She tries to catch the attacker and remove the attacking tools as soon as possible. **Sequential Interaction**: at each time step, attacker and defender both chooses a direction to move. Attacker also decides whether to put an attacking tool. The game environment decides whether an attacking tool will successfully launch an attack. **Footprints**: red/blue arrows. Players leave footprints as they move. Local observation: Players only observe opponent's footprints in the current cell.

DeDOL: Computing Optimal Patrol Strategy by Enhancing PSRO

Vanilla PSRO

Defender: random sweeping. She moves along the boundary to find outgoing attacker footprints to follow. If multiple footprints, she randomly chooses one direction.

Local Mode

DeDOL workflow

Experimental Results

Best Response Approximation

DeDOL Overview

DeDOL builds upon the double oracle (DO) framework and the policy-space response oracle (PSRO). It starts with a restricted game and iteratively adds best response

Expected Utility against a best-responding poacher

	Random Sweeping	Vanilla PSRO	DeDOL Pure Global Mode	DeDOL Local + Global Mode	DeDOL Pure Local Mode	CFR
3×3 Random	-0.04	0.65 (16)	0.73 (16)	0.85 (10 + 2)	0.71 (20)	1.01 (3500)
3×3 Gaussian	-0.09	0.52 (16)	0.75 (16)	0.86 (10 + 2)	0.75(20)	1.05 (3500)
5×5 Random	-1.91	-8.98 (4)	-1.63 (4)	-0.42 (4 + 1)	-0.25 (5)	-
5×5 Gaussian	-1.16	-9.09 (4)	-0.43 (4)	0.60 (4 + 1)	-2.41 (5)	-
7×7 Random	-4.06	-10.65 (4)	-2.00 (4)	-0.54 (3 + 1)	-1.72(5)	-
7×7 Gaussian	-4.25	-10.08 (4)	-4.15 (4)	-2.35 (3 + 1)	-2.62(5)	-

strategies to it, which is approximated by training DQN. Exploring the game structure, DeDOL uses domain-specific heuristic strategies as initial strategies in PSRO, and constructs several local modes for efficient and parallelized training.

Acknowledgment

The Azure resources are provided by Microsoft for Research AI for Earth award program.