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Abstract

The Stackelberg Security Game (SSG) model has
been immensely influential in security research
since it was introduced roughly a decade ago.
Furthermore, deployed SSG-based applications are
one of most successful examples of game theory
applications in the real world. We present a broad
survey of recent technical advances in SSG and re-
lated literature, and then look to the future by high-
lighting the new potential applications and open re-
search problems in SSG.

1 Introduction
Game theory has long held the promise of improving intel-
ligent decision making for complex security problems. This
promise has been partially realized with application of Stack-
elberg Security Games (SSG) to a variety of security prob-
lems since 2006. Starting with the application of allocating
security resources to eight terminals of the Los Angeles In-
ternational Airport, recent advances in SSGs have enabled
solving problems of immense complexity such as protecting
biodiversity in conservation areas that span over 2500 square
kilometers [Fang and Nguyen, 2016] and screening 800 mil-
lion airport passengers annually throughout USA [Brown et
al., 2016]. In this survey, we walk through the various innova-
tions in the application of SSGs with an eye towards potential
applications and research challenges in the near future.

Security is a critical concern around the world, manifest-
ing in such examples as infrastructure and human life pro-
tection, wildlife protection, and protection against cyber at-
tacks. In all of these domains, the defender has limited se-
curity resources that preclude full security coverage of im-
portant potential targets at all times. Thus, allocations of lim-
ited security resources must be intelligent, taking into account
differences in priorities of targets requiring security cover-
age, the response of adversaries to the security posture based
on knowledge gained from surveillance, and potential uncer-
tainty over the types, capabilities, knowledge, and priorities
of adversaries faced. Casting these problems as a Stackelberg
game is the basis of a growing literature on models and so-
lution methods for solving these games to yield randomized
security policies.

The SSG model has flourished, with dozens of papers
on SSGs every year in major AI conferences1. The ap-
plications have also spread across countries and application
domains. As reported in conferences such IJCAI’17 and
2017 Conference on Decision and Game Theory for Secu-
rity (GameSec’17), the SSGs framework is now being tested
in Israel for traffic monitoring, and in Chile and Argentina
for drug interdiction. SSGs have also found substantial ap-
plications in cybersecurity, auditing for privacy, drug design
against viruses, traffic enforcement, software code testing,
adversarial learning, and many others. We present a the-
matic view of Stackelberg game-based approaches to secu-
rity. Since deployed applications of SSG are quite well-
known, we focus our attention more on techniques and poten-
tial new applications. We also briefly mention other models
and techniques for security that do not fit the SSG framework.
Finally, we present some open problems in SSGs.

Related surveys: There have been a number of surveys on
SSGs such as [Fang and Nguyen, 2016; Nguyen et al., 2016],
which are often not widely available (e.g., book chapters) and
targeted at a specialized audience. We give a general survey
of SSGs for an AI audience that focuses on recent develop-
ments, distills the underlying concepts across the varied ap-
plications of SSGs and provides a centralized presentation of
open problems in this area. We hope that this introduction to
the state-of-the-art will aid new researchers in this area.

2 The Basic SSG Model
In SSG, a defender must defend a set of targets T using a lim-
ited number of resources, whereas the attacker is able to ob-
serve and learn the defender’s strategy and attack after care-
ful planning. An action, or pure strategy, for the defender,
represents deploying a set of resources R for defending the
targets. The set of all defender pure strategies are given by
a set of allocation constraints, referred to as scheduling con-
straints in literature. The pure strategy for an attacker is an
attack at a target. The mixed strategy of the defender is a
probability distribution over the pure strategies. Additionally,
with each target, there is an associated set of payoff values
that define the utilities for both the defender and the attacker

1Given the space constraint on references, we cannot cite all rel-
evant papers even in the last few years, so we aim to cover a repre-
sentative sample that outlines the scope of the field.



in case of a successful or a failed attack. A key assumption of
many SSG models is that the payoff of an outcome depends
only on the target attacked, and whether or not it is “covered”
(protected) by the defender (with a notable exception in [Gan
et al., 2015]). This allows us to compactly represent the pay-
offs of a security game. Formally, if target t is attacked, the
defender’s utility is U c

d(t) if t is covered, or Uu
d (t) if t is not

covered. The attacker’s utility is U c
a(t) if t is covered, or

Uu
a (t) if t is not covered. In SSGs, it is always better for the

defender to cover the attacked target as compared to leaving
it uncovered, whereas it is always better for the attacker to at-
tack an uncovered target. This assumption is consistent with
the payoff trends in the real world. A special case is zero-sum
games, in which for each outcome the sum of utilities for the
defender and attacker is zero, although general SSGs are not
necessarily zero-sum.

Strong Stackelberg Equilibrium: The solution to an SSG
is a mixed strategy for the defender that maximizes the ex-
pected utility of the defender, given that the attacker learns
the mixed strategy of the defender and chooses a best re-
sponse. The most commonly adopted version of this so-
lution concept in related literature is called Strong Stack-
elberg Equilibrium (SSE) [Conitzer and Sandholm, 2006;
von Stengel and Zamir, 2004]. In SSGs, the mixed strategy
of the defender induces probabilities of covering every target
t denoted by a vector C = {ct}. Furthermore, it is enough to
consider a pure strategy of the rational adversary [Conitzer
and Sandholm, 2006], which is to attack a target t. The
expected utility for defender for a strategy profile (C, t) is
Ud(t, C) = ctU

c
d(t) + (1− ct)U

u
d (t), and a similar form for

the adversary. An SSE for the basic SSG (non-Bayesian, ra-
tional adversary) is defined as follows:
Definition 1. A pair of strategies (C∗, t∗) form a Strong
Stackelberg Equilibrium (SSE) if they satisfy the following:

1. The attacker plays a best-response against C∗:
Ua(t

∗, C∗) ≥ Ua(t, C
∗) for all targets t.

2. The attacker breaks ties in favor of the defender:
Ud(t

∗, C∗) ≥ Ud(t
′, C∗) for all targets t′ such that

t′ = argmaxt Ua(t, C
∗)

3. C∗ is optimal for the defender, that is, Ud(t
∗, C∗) ≥

Ud(t(C), C) for all defender’s strategy C where t(C) =
argmaxt Ua(t, C) is the attacker’s best response against
C when breaking ties in favor of the defender.

The assumption that the follower (attacker) will always
break ties in favor of the leader (defender) in cases of indif-
ference is reasonable because in most cases the leader can in-
duce the favorable strong equilibrium by selecting a strategy
arbitrarily close to the equilibrium that causes the follower
to strictly prefer the desired strategy [von Stengel and Zamir,
2004]. Furthermore, an SSE exists in all Stackelberg games,
which makes it an attractive solution concept compared to
versions of Stackelberg equilibrium with other tie-breaking
rules.

Many variations of this basic SSG model and solution con-
cepts other than SSE have been studied to handle different
types of adversaries. For example, one variation is when the
adversary does not best respond, but samples the target to at-
tack from a probability distribution over target h(C) that is

Target Defender Adversary

U c
d Uu

d U c
a Uu

a

1 0 -1 -1 1
2 -1 -2 -4 2
3 0 -3 -4 4
4 -2 -10 -5 10

Table 1: Example SSG

conditional on C. h is the response function of the bounded
rational adversary and various forms of h have been studied
in literature [Sinha et al., 2016]. Sequential versions with re-
peated interactions have also been studied.

Illustrative examples: Consider the defender and adver-
sary utilities in Table 1 for four targets. The defender has
only two security resources r1, r2, each of which can pro-
tect one target. The set of feasible pure strategies for the
defender can be represented by a set of vectors P = {P}
such that

∑4
t=1 Pt = 2, Pt ∈ {0, 1}, where Pt = 1 means a

security resource is allocated to protect target t. The mixed
strategy is completely specified as all vectors {ct} such that∑4

t=1 ct = 2, ct ≥ 0, ct ∈ [0, 1], which can be seen to be a re-
laxation of the constraints used to specify the pure strategies.
The SSE is given by {0.5, 0.33, 0.5, 0.66}.

However, the mixed strategy cannot always be represented
succinctly as above. Suppose the resources can defend
subsets of two targets simultaneously, but r1 can defend
(1, 2), (3, 4) only and r2 can defend (1, 4), (2, 3) only; such
constraints are called scheduling constraints in literature. Let
Pr,t ∈ {0, 1} be an indicator variable for when resource r
protects target t. The set of feasible pure strategies is given by
P = {P} such that Pt = min{1, Pr1,t + Pr2,t}, Pt ∈ {0, 1}
for all t. Now, the space of feasible mixed strategies can-
not be represented by a simple relaxation of the pure strategy
constraints. Rather, the mixed strategy space is given by all
vectors

∑
P∈P pPP , where P is the set of all pure strategies

and pP denotes the probability of choosing pure strategy P .
Furthermore, in many SSGs, the adversary is bounded ra-

tional [Nguyen et al., 2013]. In these cases, instead of a sin-
gle target chosen as part of the best response by the adversary
to the induced coverage C = {ct}, the adversary’s response
h(C) is to choose a target stochastically according to a prob-
ability qt of choosing target t. One such probability function
form is qt ∝ ewtct+at , where wt and at are learnable con-
stants. Intuitively, at denotes attractiveness of target t, that
is, the adversary is more likely to consider attacking attrac-
tive targets. Also, wt is always negative, that is, the adversary
will likely not attack targets that have a higher chance of be-
ing defended. at can be a function of U c

a(t) and Uu
a (t).

3 Deployed Applications
We briefly cover deployed applications of SSG to emphasize
the practical importance of this domain. All references for
these can be found in prior surveys [Nguyen et al., 2016].
Figure 1 provides an illustration of some applications. SSGs
started with applications in infrastructure security including



(a) Barrier free train station requires randomized in-
spection; SSGs have been used for such inspection.

(b) SSG has been tested for intelligent screening of
passengers (as part of the TSA DARMS program).

(c) SSG is being used to design effective human pa-
trols and drone usage in wildlife protection.

Figure 1: Deployed Applications

ARMOR at the Los Angeles Airport (LAX) deployed in 2007
to randomize checkpoints on the roadways entering the air-
port; which was followed by IRIS, a game-theoretic sched-
uler for randomized deployment of the U.S. Federal Air Mar-
shal Service (FAMS) that has been in use since 2009; and
PROTECT which is deployed for generating randomized pa-
trol schedules for the U.S. Coast Guard in Boston, New York,
Los Angeles, and other ports around the United States. The
threat screening game (TSG) is currently being evaluated
for screening airport passengers in the USA as part of the
TSA DARMS program for an overhaul of screening proce-
dures [Brown et al., 2016].

Green security games [Fang and Nguyen, 2016; Fang et al.,
2015; Fang et al., 2016] focus on defending against environ-
mental crimes. These problems exhibit a spatial and temporal
aspect that distinguishes work on these problems from infras-
tructure security. Moreover, the adversaries in such games
cannot be expected to be completely strategic so behavioral
adversary models play an important role. In particular, PAWS
is a wildlife protection assistant system that has been exten-
sively evaluated in Malaysia and the Queen Elizabeth Na-

tional Park in Uganda and incorporated in operations. MI-
DAS is another application that was tested by the US Coast
Guard for protecting fisheries against over-fishing.

Opportunistic crime [Zhang et al., 2015] refers to the prob-
lem of urban crime where criminals are not committed to de-
tailed plans and are flexible in the execution of their plans,
as opportunities arise. Protecting against such urban crime
has been studied as a Stackelberg game and evaluated for
deterring fare evasion within the Los Angeles Metro Sys-
tem (TRUSTS) and for crime prevention at the University of
Southern California.

While many deployed applications have originated from
research work (and spin-offs) conducted at the University of
Southern California, there are a growing number of indepen-
dent applications including traffic monitoring in Israel and
drug interdiction in Chile and Argentina (see proceedings of
GameSec’17). These demonstrate the generality of the SSG
framework in tackling real-world security problems.

4 Key Technical Innovations
We survey the technical advances in SSGs and variants in two
parts, focusing on technical approaches in deployed applica-
tions and then presenting various modifications to the basic
SSG model proposed in the literature. In order to easily find
the references to these approaches and models, we cite key
relevant papers for the approaches in Table 2 and the modi-
fied models in Table 3.

4.1 Deployed Applications and Extensions
The increasing intricacy of SSG models for new applications
has also resulted in a number of algorithmic advances for
SSE. We identify three main dimensions that affect the SSE
computation: (1) large models, (2) bounded rationality mod-
els, and (3) uncertainty. First, the growing size of applications
has presented challenges in computing the SSE. For example,
the defender strategy space in recent applications like TSG is
larger than 1033. In the road networks security problem, the
adversary space is of the order 1018 [Nguyen et al., 2016].

Next, in many domains such as green security, it is un-
realistic to assume that the adversary is fully rational. This
motivates work in SSGs that focuses on bounded rationality
models for the adversary. These have used behavior mod-
els such as quantal response models, lens-QR models and
prospect theory inspired models [Kar et al., 2015]. These
parametrized models not only inherently present a problem of
learning the parameters, they also greatly exacerbate the SSE
computation problem due to the non-linearity introduced by
the behavior models.

Finally, the parameters of any game model are never known
with certainty; incorporating such uncertainty in the SSE
computation can mitigate the effect of worst-case realizations
of parameters. In the literature, models of uncertainty in-
clude both Bayesian and interval models of uncertainty for
parameter values. There are various other kinds of possible
uncertainty such as action outcome uncertainty (modeled as
MDPs) as well as uncertainty about underlying state of the
world (partial observability) [Nguyen et al., 2014]. Uncer-
tainty considerations can greatly (though not always) increase



Approach Key Paper(s) General-sum Bounded rationality Multi-step

1a [Kiekintveld et al., 2009] Yes No No
1b [Jain et al., 2010] [Jain et al., 2011] Yes No No
1c [Brown et al., 2016] No No No
1d [Basak et al., 2016] Yes No No
2a [Nguyen et al., 2013] [Kar et al., 2015] N/A Yes Yes
2b [Yang et al., 2013] N/A Yes Yes
3a [Nguyen et al., 2014] Yes No No
3b [Blum et al., 2014] Yes No Yes
3c [Kar et al., 2017] [Zhang et al., 2015] N/A Yes Yes

Table 2: Summary of key papers for technical approaches in SSGs. The papers cited are the first paper that introduced a new approach in a
series of papers for the corresponding approach. N/A means not applicable.

the computational burden in computing the SSE, and motivate
learning game parameters as a research topic in itself.

In response to these challenges, various innovative ap-
proaches have been proposed in the literature. These ap-
proaches can be broadly classified according to the three
challenges they address (the three dimensions stated above).
We present these approaches in the following list with ap-
proaches 1a,1b,1c,1d addressing challenge 1 (large models),
approaches 2a,2b addressing challenge 2 (bounded rational-
ity), and approaches 3a,3b,3c addressing challenge 3 (uncer-
tainty).

1.a) Marginal strategy representation. An approach based
on a relaxed representation of the SSE optimiza-
tion problem using unconstrained (no scheduling con-
straints) coverage (marginal) probabilities. The resulting
marginal solution may not be a feasible mixed strategy
in the worst case, but can sometimes be repaired. The
relaxed problem is solved based on a bucket-filling ap-
proach revealing and exploiting features of SSGs. This
approach is much faster than solving a linear optimiza-
tion and enables solving very large SSGs directly, and is
also useful as a heuristic in more complex algorithms

1.b) Incremental strategy generation. An approach based
on solving the SSE problem with restricted action spaces
for the defender or the adversary, and then iteratively ex-
panding the action space with relevant actions. This in-
cludes methods based on column generation or the dou-
ble oracle approach or branch and price techniques.

1.c) Polytope decomposition approach. An approach
building on the marginal approach by identifying fea-
sible sub-polytopes of the defender mixed strategy poly-
tope around the marginal solution and taking their con-
vex hull to yield marginal solutions that are feasible
mixed strategies. This new approach to linear optimiza-
tion is computationally efficient in some scenarios and
applicable to problems beyond SSGs.

1.d) Abstraction. An approach often used in AI is abstrac-
tion, that is, formulating a smaller problem from a given
large problem, solving the smaller problem and mapping
the solution back to the large problem. An approach to
abstraction is to combine similar actions, and while it
may lead to a loss in solution quality, it can significantly

improve the computational efficiency. Abstraction has
been extensively used in Poker games research and has
been applied to improve scalability in SSGs as well.

2.a) Modeling adversary bounded rational behavior. In-
spired by psychology and behavioral economics mod-
els, parametrized models of bounded rationality such as
quantal response, subjective utility quantal response and
prospect theoretical models have been studied for SSG.
These models provide general techniques for modeling
bounded rationality in games, which can be broadly ap-
plied to other types of game interaction. Unfortunately,
the (typical) non-convexity of these model greatly in-
creases the computational burden.

2.b) Incremental strategy generation with non-linear ad-
versary behavior. An approach that is an efficient re-
alization of the well-known optimization technique of
cutting-planes with non-linear bounded rationality mod-
els in SSGs. The approach is a general technique
for solving non-linear optimization using cutting plane
methods that could be used for general nonlinear opti-
mization problems.

3.a) Robust optimization. These techniques have addressed
uncertainty in game parameters using concepts of max-
imin robustness and minimax regret robustness among
others forms of optimization. The approaches here also
provide general models of adversary behavior called
monotone maximin that generalize those in 2(a) above,
and techniques of solving games with such models.

3.b) Learning defender strategies against an unknown ra-
tional adversary. An approach that assumes the rational
adversary’s utility is unknown and learns the optimal de-
fender strategy by repeatedly playing intelligently cho-
sen strategies against the adversary. This approach guar-
antees to learn the optimal defender strategy within a
polynomial number of defender strategies.

3.c) Learning bounded rational adversary model. While
early work in learning bounded rational adversary mod-
els used basic maximum likelihood estimation, recent
approaches have integrated defender strategy in the
learning itself to propose various techniques based on
graphical models or decision trees.



Model Key Paper(s) General-sum Bounded rationality Multi-step

4a
[Letchford and Vorobeychik, 2013]
[Panda and Vorobeychik, 2017] Yes No Yes

4b [Guo et al., 2016][Gholami et al., 2016] Yes No and Yes No
4c [Basilico et al., 2012][Basilico et al., 2016] Yes No Yes
4d [Blocki et al., 2013][Blocki et al., 2015] Yes No No

Table 3: Summary of key papers for SSG inspired models.

Besides the above techniques, there are broad theoretical
characterizations of classes of SSGs: e.g., the complexity of
SSE computation in the rational adversary setting [Xu, 2016],
a theoretical characterization of the equilibrium [Korzhyk et
al., 2011] in SSGs, and sample complexity of learning [Sinha
et al., 2016].

4.2 Novel Potential Applications
There is an exciting set of emerging SSG inspired models for
entirely new kinds of problems in the literature with corre-
sponding techniques of solving them (citations in Table 3).
4.a) Plan interdiction games. These games present a Stack-

elberg game model of security combined with planning
representations in which the defender chooses a miti-
gation strategy that interdicts potential attack actions,
and the attacker responds by computing an optimal at-
tack plan that circumvents the deployed mitigations.
The work has focused on interdiction of very elaborate
Markov decision process based plans of the adversary,
which applies to adversaries in cybersecurity.

4.b) Coalitional security games. This deals with scenarios
where attackers can form coalitions and addresses the
problem of optimally inhibiting the formation of attacker
coalitions. The motivating domain is breaking up terror-
ist links or cells or breaking up collusion between mul-
tiple attackers. This topic marries aspects of coalitional
game theory with SSGs.

4.c) Patrolling games. An extensive-form infinite-horizon
game with commitment by the defender, where decision
nodes are potentially infinite. The attacker can undertake
actions during the execution of the defender’s strategy.
The most prominent application is patrolling environ-
ments against intruders, which is inspired by the well-
known game model of pursuit-evasion, but has been
extended in various ways including the introduction of
alarm systems.

4.d) Audit games. These games study economic considera-
tions in the design of audit mechanisms, focusing on ef-
fective resource allocation and appropriate punishment
schemes. The audit game model is a generalization of
a security game model with an additional punishment
parameter. The models are applied to audits to ensure
privacy policy compliance in US hospitals.

Unlike the basic SSG model, some of the models above, such
as 4b and 4c, have multiple attackers. In literature, various
theoretical extensions of the SSG model such as multiple at-
tackers [Korzhyk et al., 2017], multiple defenders [Lou and

Vorobeychik, 2015], and Bayesian generalization of SSGs [Li
et al., 2016] have also been considered. Influenced by re-
search on SSGs, Stackelberg games have been used broadly
in literature for other applications such as drug design against
viruses, software code testing, and adversarial learning.

4.3 Open Problems
We present some immediate open problems in SSGs. Scala-
bility remains an issue despite many existing approaches, es-
pecially in handling uncertainty. As a result, most deployed
applications do not handle uncertainty so there is a press-
ing need to address scalability when dealing with uncertainty.
Moreover, scalability has resulted in a number of approaches
that perform well in practice but are not known to be poly-
nomial time such as the polytope decomposition method. In
problems using bounded rationality models, the question of
how to further improve the prediction of adversary behavior
using recent advances in learning is an interesting research
direction. Two other across-the-board issues are discussed
below.

Deception: A fundamental issue in any security situation
is deception. The mythical Trojan Horse is a classic example
of deception. Classes of computer malware are called trojan
horses, symbolizing the deceptive behavior inherent in mal-
ware. Deception by the defender has been studied in SSG
literature, albeit in simple one-time interaction settings us-
ing signaling enabled by the advantage of extra information
available to the defender [Xu et al., 2015]. More broadly,
deception in game theory arises from asymmetric informa-
tion. Some proposals in SSG based approaches to cybersecu-
rity have looked at expending resources to provide additional
information advantage to the defender. This is in the form
of honeypots [Gutierrez and Kiekintveld, 2017], which are
dummy systems meant to lure the adversary to attack them.
Honeypots, in addition to minimizing loss from the current
attack, fool adversaries to reveal their secrets.

Deception can be complicated, especially when used by
both the defender and adversary [Guo et al., 2017]. Research
on deception by signaling or by designing the game to provide
an information advantage in a sequential game could enable
applications of SSGs for highly complex defender-adversary
interaction.

Active and secure defense: The SSG models have mostly
specified the defender’s actions as defending targets, with
some exceptions (e.g., plan interdiction and coalition games).
More broadly, defense can be a combination of defensive ac-
tions, offensive actions, and information seeking actions. In
a highly tactical environment, a defender must use all options



and decide which actions to take or not. It is important to
note that actions taken by defender may not always improve
the security situation, as an observant adversary may be able
to figure out weaknesses in defense such as the lack of infor-
mation that a defender is seeking to obtain. Thus, defender
actions may need to be covert and any defense strategy must
be itself secure from adversarial attacks.

5 Other Approaches to Security
While SSGs have been quite successful in tackling security
problems, a number of other game-theoretic approaches to
security have been proposed. Some of these approaches fo-
cus on different modeling aspects of security, while others
focus on technical generalizations of SSGs. A prominent
model of security interactions is known as interdependent se-
curity games [Laszka et al., 2014]. This simultaneous move
model focuses on the interdependence between multiple de-
fenders within the underlying system that is being protected.
For technical generalization, there are theoretical papers on
commitment in extensive form game [Letchford et al., 2014],
stochastic games [Letchford et al., 2014] and games with im-
perfect information [Cermak et al., 2016]. While theoretical
in nature, these techniques could be useful in future as the
applications become increasingly complex.

6 Future Applications
We discuss potential application domains where SSGs can be
applied. Some initial applications in these domains are in a
nascent stage but there is scope for much more research and
new applications. These require innovations in models and
algorithms that extend beyond those discussed previously.

Changing terrorism threats: The terrorist threat scenario
has been evolving over the last decade. In response to effi-
cient anti-terrorism measures, the nature of threats has moved
from scenarios of well-planned attacks to lone wolf attacks.
This presents a whole new modeling problem in itself where
terrorists act like opportunistic criminals but are determined
to carry out an attack. Models need to incorporate the action
of actively seeking information about the potential lone wolf,
which needs to conducted with limited resources.

Green security challenges: The current green security ap-
plications have addressed problems in wildlife and natural
resources protection for specific scenarios. However, every
nature park presents unique challenges requiring novel tech-
niques to address them. The scale of these parks, their di-
versity, the different needs of human patrollers, and differ-
ent types of crimes against the environment imply that a sin-
gle model or software and a fixed level of autonomy will not
work across the world. However, an entirely different model
and approach for each park is also not desirable. Thus, the
challenge is to develop a flexible and tunable model of green
security problems.

Elaborating on a few points above, incorporating real time
information in patrolling strategy is important; this presents
an opportunity to use drones for passive patrolling of large
areas [Bondi et al., 2018] and also use of other static sen-
sors. Of course, drones are costly (especially in resource

constrained countries) and thus it is critical to use such re-
sources optimally. Another aspect of wildlife crime is the var-
ied types of crimes that include poaching, illegal logging, en-
croachment of park lands, and others. This presents a multi-
objective problem that requires innovations in multi-objective
game theory.

Cyber-security applications: Cybersecurity is a
quintessential example of a complex security challenge.
There are a variety of sub-problems in cyber-security that in-
volve interaction between defenders, adversaries, and users.
In contrast to physical security, a number of characteristics
of cybersecurity make the problem more complex, including:

• Changing state of the world. The underlying state in
cyber-security includes dynamically changing compo-
nents such as operating systems, software applications,
communication networks, etc. This makes it hard to
technically specify the underling system even without
considering defender-adversary interaction. This is gen-
erally known as a dynamic attack surface.

• Enormous problem size with unobserved actions. The
possible actions over multiple time steps for both the de-
fender and adversary in cybersecurity domain are enor-
mous. Further, imperfect and incomplete information is
the norm in cybersecurity. Attacks are often stealthy and
go unnoticed for days or months. Scalability in pres-
ence of such complications is an even greater challenge
in cyber-security than other domains.

• Unknown actions. A complete specification of all pos-
sible actions is often not feasible, resulting in what are
known as zero-day attacks. Handling zero-day attack ac-
tions is a critical modeling problem in cyber-security.

• Multiple players. The attack surface in cyber-security
includes human actor such as the users of the cyber-
system. Attacks on the cyber-system often succeed by
deceiving users to reveal critical credential and these are
referred to as social engineering attacks in the literature.
The presence of these user agents adds another player(s)
to the game apart from the defender and adversary, mak-
ing the problem significantly harder.

One subproblem that researchers have looked at in cyber-
security using the SSG framework is the problem of allocat-
ing limited human resources to inspecting a large number of
alerts from any intrusion prevention system [Schlenker et al.,
2017]. Looking forward, the problem of protection against
social engineering attacks, balancing between performance
and protection when using anti-virus software and ensuring
compliance with security policies are topics amenable to SSG
solutions. Other applications include fighting against spear
phishing [Zhao et al., 2016].

Privacy applications: While privacy is sometimes con-
flated with security, privacy presents distinct challenges from
traditional security issues. A potential application that we dis-
cussed was SSGs for privacy audits. Broadly, privacy issues
with any software system always involve a trade-off between
privacy and usefulness of the system such as location privacy
in social networks. This balance is meaningful only when
there is a model of how the privacy-compromising adversary



will act. Game theory is an apt model for such interactions.
However, privacy problems possess the same three issues as
cybersecurity so there are significant research challenges in
applying SSG for privacy problems.

Combating fraud in e-commerce: The main function of
many e-commerce platforms is to guide buyer impressions to
sellers, where a buyer impression means one buyer click on
a product. Buyer impressions are usually allocated through a
ranking system that displays the sellers’ products according
to the conversion rate, which is the probability that a buyer
buys the product if he clicks on it. This is done to increase
the total number of transactions. Since the sellers usually can-
not control the conversion rate of their products, they usually
spend much effort on getting more buyer impressions. A le-
gal approach to obtain more buyer impressions is advertising,
which is costly. Many sellers resort to illegal ways such as ar-
tificially raising the conversion rate through fake transactions,
wherein sellers control a number of buyer accounts and use
them to buy their own products. Such fraudulent behaviors
severely decrease the effectiveness of impression allocation
and jeopardize the business environment.

Currently, e-commerce platforms mainly rely on fraud de-
tection techniques to combat fraudulent behaviors. However,
fraudulent behaviors and techniques are always evolving, re-
sulting in a low detection rate. A promising approach is to
design an optimal mechanism for the platform (the leader)
to deter fraudulent behaviors by the followers who learn the
platform’s policy through their interactions with the platform.
The key research challenges include: 1) learning heteroge-
neous sellers’ behavior models from trading data, 2) comput-
ing the optimal policy with millions of sellers and continuous
strategy space, 3) designing policies robust to market evolu-
tion and uncertainty, and 4) balancing other optimization ob-
jectives of the platform while deterring fraudulent behaviors.

7 Discussion
The SSG research area has been application driven and
presents large-scale interdisciplinary research challenges that
call upon multi-agent researchers to work with researchers in
other disciplines, be on the ground with the domain experts,
and examine real-world constraints and challenges that can-
not be abstracted away. Our goal with this survey is to point
out some fundamental publications in this area that shed light
on how these practical challenges were addressed. Clearly,
there are many more publications beyond what we are able to
cite in this survey. As such, there are a number of resources
(mostly online) to explore SSGs further and also for getting
starting with research in this area. The conferences that SSG
papers have appeared in include AAAI, AAMAS, IJCAI and
GameSec. A recent tutorial named “Advances in Game The-
ory for Security and Privacy” in ACM-EC 2017 (slides avail-
able online) provides more material for perusal.
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